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Abstract

In this paper, we introduce the probabilistic justification logic PJ,
a logic in which we can reason about the probability of justification
statements. We present its syntax and semantics, and establish a
strong completeness theorem. Moreover, we investigate the relation-
ship between PJ and the logic of uncertain justifications.

1 Introduction

The idea of probability logics was first proposed by Leibnitz and subsequently
discussed by a number of his successors, such as Jacobus Bernoulli, Lambert,
Boole, etc. The modern development of this topic, however, started only
in the late 1970s and was initiated by H. Jerome Keisler in his seminal pa-
per [10], where he introduced probability quantifiers of the form Px > r
(meaning that the probability of a set of objects is greater than r), thus
providing a model-theoretic approach to the field. Another important effort
came from Nils Nilsson, who tried to provide a logical framework for uncer-
tain reasoning in [14]. For example, he was able to formulate a probabilistic
generalization of modus ponens as if α holds with probability s and β follows
from α with probability t, then the probability of β is r.

Following Nilsson, a number of logical systems appeared (see [17] for refer-
ences) that extended the classical language with different probability oper-
ators. The standard semantics for this kind of probability logic is a special
kind of Kripke models, where the accessibility relation between worlds is re-
placed with a finitely additive probability measure. As usual, the main logical
problems in the proof-theoretical framework concern providing a sound and
complete axiomatic system and decidability.
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In fact, there are two kinds of completeness theorems: the simple complete-
ness (every consistent formula is satisfiable) and the strong completeness
theorem (every consistent set of formulas is satisfiable). In the first paper
[7] along the lines of the Nilsson’s research, Fagin, Halpern and Meggido in-
troduced a logic with arithmetical operations built into the syntax so that
Boolean combinations of linear inequalities of probabilities of formulas can
be expressed. A finite axiomatic system is given and proved to be simply
complete. However, the corresponding strong completeness does not follow
immediately (as in classical logic) because of the lack of compactness: there
are unsatisfiable sets of formulas that are finitely satisfiable. An example is
the set of probabilistic constraints saying that the probability of a formula is
not zero, but that it is less than any positive rational number. Concerning
this issue, the main contribution of [15, 18, 16] was the introduction of sev-
eral infinitary inference rules (rules with countably many premises and one
conclusion) that allowed proofs of strong completeness in the corresponding
logics.

Traditional modal epistemic logic uses the formulas �α to express that an
agent believes α. The language of justification logic [5, 19] ‘unfolds’ the
�-modality into a family of so-called justification terms, which are used to
represent evidence for the agent’s belief. Hence, instead of �α, justification
logic includes formulas of the form t : α meaning

the agent believes α for reason t.

Artemov [1, 2] developed the first justification logic, the Logic of Proofs,
to provide intuitionistic logic with a classical provability semantics. There,
justification terms represent formal proofs in Peano arithmetic. Later Fit-
ting [8] introduced epistemic, that is Kripke, models for justification logic.
In this semantics, justification terms represent evidence in a much more gen-
eral sense [3, 6, 12]. For instance, our belief in α may be justified by direct
observation of α or by learning that a friend of a friend has heard about α.
Obviously these two situations are not equal: they provide different degrees
of justification that α holds.

In this paper we introduce the system PJ, a combination of justification logic
and probabilistic logic that makes it possible to adequately model different
degrees of justification. We consider a language that features formulas of the
form P≥rα to express that the probability of truthfulness of the justification
logic formula α is equal to or greater than the rational number r. Hence we
can study, for instance, the formula

P≥r(u : (α → β)) →
(

P≥s(v : α) → P≥r·s(u · v : β)
)

, (1)
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which states that the probability of the conclusion of an application axiom is
greater than or equal to the product of the probabilities of its premises. We
will see later that this, of course, only holds in models where the premises
are independent.

Our semantics consists of a set of possible worlds, each a model of justification
logic, and a probability measure µ(·) on sets of possible worlds. We assign a
probability to a formula α of justification logic as follows. We first determine
the set [α] of possible worlds that satisfy α. Then we obtain the probability
of α as µ([α]), i.e. by applying the measure function to the set [α]. Hence our
logic relies on the usual model of probability. This makes it possible, e.g., to
explore the role of independence and to investigate formulas like (1) in full
generality.

We study the basic properties of the probabilistic justification logic PJ,
present an axiom system for PJ, and establish its soundness and complete-
ness. In order to achieve strong completeness (i.e. every consistent set has a
model), our axiom system includes an infinitary rule.

Related Work.

So far, probabilistic justification logics have not been investigated. Closely
related are Milnikel’s proposal [13] for a system with uncertain justifications
and Ghari’s recent preprint [9] introducing fuzzy justification logics.

Milnikel introduces formulas of the form t :q α, which correspond to our
P≥q(t : α). However, there are three important differences with our current
work.

First, his semantics is completely different from the one we study. Instead of
using a probability space, Milnikel uses a variation of Kripke-Fitting models.
In his models, each triple (w, t, α) (of world, term and formula) is assigned
an interval E(w, t, α) of the form [0, r) or [0, r] where r is a rational number
from [0, 1]. Then the formula t :q α is true at a world w iff q ∈ E(w, t, α)
and also α is true in all worlds accessible from w. Because of this interval
semantics, Milnikel can dispense with infinitary rules.

Second, Milnikel implicitly assumes that various pieces of evidence are inde-
pendent. Hence the formula corresponding to (1) is an axiom in his system
whereas (1) may or may not hold in a model of PJ depending on the inde-
pendence of the premises of (1) in the given model.

Third, the logic of uncertain justification includes iterated statements of the
form s :r t :q α. In PJ we do not have this kind of iteration; that means
P≥r(u : P≥s(t : α)) is not a formula of PJ. However, we plan to study a
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system with formulas of this type in future work.

Ghari presents various justification logics where he replaces the classical base
with well-known fuzzy logics. In particular, he studies a justification logic
RPLJ that is defined over Pavelka logic, which includes constants for all
rational numbers in the interval [0, 1]. This allows him to express statements
of the form t is a justification for believing α with certainty degree at least r.
Ghari shows that all principles of Milnikel’s logic of uncertain justifications
are valid in RPLJ.

Our probabilistic justification logic is inspired by the system LPP2, which
is a probability logic over classical propositional logic without iterations of
probability operators [17]. The definitions of syntax and semantics of PJ
follow the pattern of LPP2 and our completeness proof is an adaptation of
the completeness proof for LPP2.

The possible worlds in the semantics of PJ are so-called basic modular models
of justification logic. Artemov [4] originally proposed these models to pro-
vide an ontologically transparent semantics for justifications. Kuznets and
Studer [11] further developed basic modular models so that they can be used
as a semantics for many different justification logics.

2 The Justification Logic J

In this section we present the basic justification logic J. We introduce its
syntax and semantics and recall some fundamental properties of J.

2.1 Syntax

Justification terms are built from countably many constants and countably
many variables according to the following grammar:

t ::= c | x | (t · t) | (t+ t) | !t

where c is a constant and x is a variable. Tm denotes the set of all terms.
For any term t and non-negative integer n we define:

!0t := t and !n+1t := ! (!nt)

We assume that ! has greater precedence than · and +, and that · has greater
precedence than +. The operators · and + are assumed to be left-associative.
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Let Prop denote a countable set of atomic propositions. Formulas of the lan-
guage LJ (justification formulas) are built according to the following gram-
mar:

α ::= p | ¬α | α ∧ α | t : α

where t ∈ Tm and p ∈ Prop. We define the following abbreviations:

α ∨ β ≡ ¬(¬α ∧ ¬β)

α → β ≡ ¬α ∨ β

α ↔ β ≡ (α → β) ∧ (β → α)

⊥ ≡ α ∧ ¬α, for some α ∈ LJ

⊤ ≡ α ∨ ¬α, for some α ∈ LJ

We assume that : and ¬ have higher precedence than ∧ and ∨, which have
higher precedence than → and ↔.

Sometimes we will write α1, . . . , αn instead of {α1} ∪ · · · ∪ {αn} as well as
T, α instead of T ∪ {α} and X, Y instead of X ∪ Y .

In Figure 1 we present the axioms of logic J. The axiom (J) is called the
application axiom. It states that we can combine a justification (proof) for
α → β and a justification for α to obtain a justification for β. Axiom (+)
states that if u or v is a justification for α then the term u + v is also a
justification for α.

(P) ⊢ α, where α is a propositional tautology

(J) ⊢ u : (α → β) → (v : α → u · v : β)

(+) ⊢ u : α ∨ v : α → u+ v : α

Figure 1: Axioms of J

We will call constant specification any set CS that satisfies the following
condition:

CS ⊆ {(c, α) | c is a constant and α is an instance of some axiom of J}

So, CS determines some axiom instances for which the logic provides justifi-
cations (without any proof).

A constant specification CS is called axiomatically appropriate if for every
axiom α of J, there exists some constant c such that (c, α) ∈ CS, i.e. every
axiom of J is justified by at least one constant.
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Let CS be any constant specification. The deductive system JCS is the Hilbert
system obtained by adding to the axioms of J the rules modus ponens, (MP),
and axiom necessitation, (AN!), as one can see in Figure 2. Rule (AN!)
makes the connection between the constant specification and the proofs in
JCS: if (c, α) ∈ CS then we can prove that c is justification for α, that !c is a
justification for c : α and so on.

axioms of J

+

(AN!) ⊢ !nc : !n−1c : · · · : !c : c : α, where (c, α) ∈ CS and n ∈ N

(MP) if T ⊢ α and T ⊢ α → β then T ⊢ β

Figure 2: System JCS

Let L be a logic. As usual T ⊢L A will mean that the formula A is deducible
from the set of formulas T using the rules and axioms of L. When L is clear
from the context, it will be omitted.

Let L be a logic and L be a language. A set T is said to be L-deductively
closed for L iff for every A ∈ L:

T ⊢L A ⇐⇒ A ∈ T.

2.2 Semantics

We use T to represent the truth value “true” and F to represent the truth
value “false”. Let P(W ) denote the powerset of the set W .

Definition 1. Let X, Y ⊆ LJ and t ∈ Tm. We define the following set:

X · Y :=
{

α ∈ LJ
∣

∣ β → α ∈ X and β ∈ Y for some formula β ∈ LJ
}

Definition 2 (Basic Evaluation). Let CS be any constant specification. A
basic evaluation for JCS, or a basic JCS-evaluation, is a function ∗ that maps
atomic propositions to truth values and maps justification terms to sets of
justifiaction formulas, i.e. ∗ : Prop → {T, F} and ∗ : Tm → P(LJ), such that
for u, v ∈ Tm, for a constant c and α ∈ LJ we have:

(1) u∗ · v∗ ⊆ (u · v)∗

(2) u∗ ∪ v∗ ⊆ (u+ v)∗
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(3) if (c, α) ∈ CS then:

(a) α ∈ c∗

(b) for all n ∈ N we have:

!nc : !n−1c : · · · :!c : c : α ∈ (!n+1c)∗

We will usually write t∗ and p∗ instead of ∗(t) and ∗(p) respectively.

Now we will define the binary relation .

Definition 3 (Truth under a Basic Evaluation). Let α ∈ LJ. We define what
it means for α to hold under a basic JCS-evaluation ∗ inductively as follows:

• If α = p ∈ Prop then:
∗  α ⇐⇒ p∗ = T

• If α = ¬β then:
∗  α ⇐⇒ ∗ 6 β

• If α = β ∧ γ then:

∗  α ⇐⇒
(

∗  β and ∗  γ
)

• If α = t : β then:
∗  α ⇐⇒ β ∈ t∗

Let T ⊆ LJ, let α ∈ LJ and let ∗ be a basic JCS-evaluation. ∗  T means that
∗ satisfies all the members of the set T . T CS α means that for every basic
JCS-evaluation ∗, ∗  T implies ∗  α.

2.3 Fundamental Properties

Internalization states that justification logic internalizes its own notion of
proof. The version without premises is an explicit form of the necessitation
rule of modal logic. A proof of the following theorem can be found in [11].

Theorem 4 (Internalization). Let CS be an axiomatically appropriate con-
stant specification. For any formulas α, β1, . . . , βn ∈ LJ and terms t1, . . . , tn,
if:

β1, . . . , βn ⊢JCS
α

then there exists a term t such that:

t1 : β1, . . . , tn : βn ⊢JCS
t : α
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The deduction theorem is standard for justification logic [2]. Therefore, we
omit its proof here.

Theorem 5 (Deduction Theorem for J). Let T ⊆ LJ and let α, β ∈ LJ. Then
for any JCS we have:

T, α ⊢JCS
β ⇐⇒ T ⊢JCS

α → β

Last but not least, we have soundness and completeness of J with respect to
basic evaluations [4, 11].

Theorem 6 (Completeness of J). Let CS be any constant specification. Let
α ∈ LJ. Then we have:

⊢JCS
α ⇐⇒ CS α.

3 The Probabilistic Justification Logic PJ

The probabilistic justification logic PJ is a probabilistic logic over the jus-
tification logic J. We first introduce syntax and semantics of PJ and then
establish some basic facts about it. Remarks 18, 21, and 23 make the rela-
tionship of PJ to the logic of uncertain justification formally precise.

3.1 Syntax

We will represent the set of all rational numbers with the symbol Q. If X
and Y are sets, we will sometimes write XY instead of X ∩ Y . We define
S := Q[0, 1], while S[0, t) will denote the set [0, t) ∩Q[0, 1].

The formulas of the language LP (the so called probabilistic formulas) are
built according to the following grammar:

A ::= P≥sα | ¬A | A ∧ A

where s ∈ S, and α ∈ LJ.

We assume the same abbreviations and the same precedence for the propo-
sitional connectives ¬,∧,∨,→,↔, as the ones we defined in subsection 2.1
for logic J. However, we need to define a bottom and a top element for the
language LP. Hence we define:

⊥ := A ∧ ¬A, for some A ∈ LP

⊤ := A ∨ ¬A, for some A ∈ LP
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It will always be clear by the context whether ¬,∧,⊤,⊥, . . . refer to formulas
of LJ or LP. The operator P≥s is assumed to have greater precedence than
all the propositional connectives. We will also use the following syntactical
abbreviations:

P<sα ≡ ¬P≥sα

P≤sα ≡ P≥1−s¬α

P>sα ≡ ¬P≤sα

P=sα ≡ P≥sα ∧ P≤sα

We will use capital Latin letters like A, B, C, . . . for members of LP and the
letters r, s for members of S, all of them possibly primed or with subscripts.

The axioms of PJ are presented in Figure 3. Axiom (PI) corresponds to
the fact that the measure of the set of worlds satisfying a justification for-
mula is at least 0. Observe that by substituting ¬α for α in (PI), we have
P≥0¬α, which by our syntactical abbreviations is P≤1α. Hence axiom (PI)
also corresponds to the fact that the measure of the set of worlds satisfying
a justification formula is at most 1. Axioms (WE) and (LE) state that our
degree of confidence for the truth of a justification formula can be weakened.
Axioms (DIS) and (UN) correspond to the additivity of measures. Axiom
(DIS) states that if the set of worlds satisfying α and the set of worlds satis-
fying β are disjoint, then the measure of the set of worlds that satisfy α∨β is
at least the sum of the measures of the former two sets. Axiom (UN) states
that the measure of the set of worlds that satisfy α ∨ β cannot be greater
than the sum of the measure of the worlds satisfying α and the measure of
the worlds satisfying β.

(P) ⊢ A, where A is a propositional tautology

(PI) ⊢ P≥0α

(WE) ⊢ P≤rα → P<sα, where s > r

(LE) ⊢ P<sα → P≤sα

(DIS) ⊢ P≥rα ∧ P≥sβ ∧ P≥1¬(α ∧ β) → P≥min(1,r+s)(α ∨ β)

(UN) ⊢ P≤rα ∧ P<sβ → P<r+s(α ∨ β), where r + s ≤ 1

Figure 3: Axioms of PJ

It is very important to note the different uses of axiom (P). As an axiom
of J, (P) contains all the propositional tautologies that are members of LJ,
e.g. t : α → t : α. As an axiom of PJ, (P) contains all the propositional
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tautologies that are members of LP, e.g. P≥s(t : α) → P≥s(t : α). Recall
that any constant specification contains pairs of term constants and axioms
of J. Thus (c, t : α → t : α) may belong to a constant specification whereas
(c, P≥s(t : α) → P≥s(t : α)) may not.

For any constant specification CS the deductive system PJCS is the Hilbert
system obtained by adding to the axioms of PJ the rules (MP), (CE) and
(ST) (see Figure 4). Rule (CE) makes the connection between justification
logic and probabilistic logic possible. It states that if a justification formula
is a validity, then it has probability 1 because it holds in every possible world.
Rule (CE) can also be considered as the analogue of the necessitation rule
for modal logics. The rule (ST) intuitively states that if the probability of
a justification formula is arbitrary close to s, then it is at least s. Observe
that the rule (ST) is infinitary in the sense that it has an infinite number of
premises. It corresponds to the Archimedean property for the real numbers
(see Proposition 24). As a consequence, the depth of a proof is given by an
(infinite) ordinal.

axioms of PJ

+

(MP) if T ⊢ A and T ⊢ A → B then T ⊢ B

(CE) if ⊢JCS
α then ⊢PJCS

P≥1α

(ST) if T ⊢ A → P≥s− 1

k
α for every integer k ≥ 1

s
and s > 0

then T ⊢ A → P≥sα

Figure 4: System PJCS

When we present proofs in a logic we are going to use the following abbrevi-
ations:

P.R.: it stands for “propositional reasoning”. E.g. when we have ⊢ A → B
we can claim that by P.R. we get ⊢ ¬B → ¬A. We can think of
P.R. as an abbreviation of the phrase “by some applications of (P)
and (MP)”.

S.E.: it stands for “syntactical equivalence”. E.g. according to our syn-
tactical conventions the formulas P≥1−s(α ∨ β) and P≤s(¬α ∧ ¬β) are
syntactically equivalent. We will transform our formulas to syntac-
tically equivalent ones (using the syntactical abbreviations defined in
subsections 2.1 and 3.1), in order to increase readability of our proofs.

10



We have to be very careful when we apply S.E.. For example the
formulas P≥s(¬α ∨ β) and P≥s(α → β) are syntactically equivalent,
whereas the formulas P≥sα and P≥s¬¬α are not.

Theorem 7 (Deduction Theorem for PJ). Let T ⊆ LP and assume that
A,B ∈ LP. Then for any PJCS we have:

T,A ⊢PJCS
B ⇐⇒ T ⊢PJCS

A → B

Proof. We only show the interesting cases of the direction =⇒, which is
established as usual by induction on the depth of the proof T,A ⊢PJCS

B.

1. Assume that B is the result of an application of (CE). That means
there exists α ∈ LJ such that B = P≥1α and also ⊢JCS

α. Hence we
have:

⊢JCS
α (2)

⊢PJCS
P≥1α [2, (CE)] (3)

⊢PJCS
P≥1α → (A → P≥1α) [(P)] (4)

⊢PJCS
A → P≥1α [3, 4, (MP)] (5)

T ⊢PJCS
A → B (6)

2. Assume that B is the result of an application of (ST). That means that
B = C → P≥sα and also:

T,A ⊢PJCS
C → P≥s− 1

k
α, ∀ integer k ≥

1

s

Thus we have:

T ⊢PJCS
A → (C → P≥s− 1

k
α), ∀ integer k ≥

1

s
[i.h.] (7)

T ⊢PJCS
(A ∧ C) → P≥s− 1

k
α, ∀ integer k ≥

1

s
[7,P.R.] (8)

T ⊢PJCS
(A ∧ C) → P≥sα [8, (ST)] (9)

T ⊢PJCS
A → (C → P≥sα) [9,P.R.] (10)

T ⊢PJCS
A → B [10,S.E.] (11)
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3.2 Semantics

Definition 8 (Algebra over a set). Let W be a non-empty set and let H
be a non-empty subset of P(W ). H will be called an algebra over W iff the
following hold:

• W ∈ H

• U, V ∈ H =⇒ U ∪ V ∈ H

• U ∈ H =⇒ W \ U ∈ H

Definition 9 (Finitely Additive Measure). Let H be an algebra over W and
µ : H → [0, 1]. We call µ a finitely additive measure iff the following hold:

(1) µ(W ) = 1

(2) for all U, V ∈ H:

U ∩ V = ∅ =⇒ µ(U ∪ V ) = µ(U) + µ(V )

Definition 10 (Models). Let CS be any constant specification. A PJCS-
model, or simply a model, is a structure M = 〈W,H, µ, ∗〉 where:

• W is a non-empty set of objects called worlds.

• H is an algebra over W .

• µ : H → [0, 1] is a finitely additive measure.

• ∗ is a function from W to the set of all basic JCS-evaluations, i.e. ∗(w)
is a basic JCS-evaluation for each world w ∈ W . We will usually write
∗w instead of ∗(w).

Definition 11 (Independent Sets in a Model). Let M = 〈W,H, µ, ∗〉 be a
PJCS-model and let U, V ∈ H. U, V will be called independent in M iff the
following holds:

µ(U ∩ V ) = µ(U) · µ(V )

Definition 12 (Measurable model). Let M = 〈W,H, µ, ∗〉 be a model and
α ∈ LJ. We define the following set:

[α]M = {w ∈ W | ∗w  α}

We will omit the subscript M , i.e. we will simply write [α], if M is clear from
the context. A PJCS-model M = 〈W,H, µ, ∗〉 is measurable iff [α]M ∈ H
for every α ∈ LJ. The class of measurable PJCS-models will be denoted by
PJCS,Meas.
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We have the following standard properties of a finitely additive measure.

Lemma 13. Let H be an algebra over some set W , µ : H → [0, 1] be a
finitely additive measure and U, V ∈ H. Then the following hold:

(1) µ(U ∪ V ) + µ(U ∩ V ) = µ(U) + µ(V )

(2) µ(U) + µ(W \ U) = 1

(3) U ⊇ V =⇒ µ(U) ≥ µ(V )

Remark 14. Let M = 〈W,H, µ, ∗〉 be a model and α, β ∈ LJ. It holds:

[α ∨ β]M ={w ∈ W | ∗w  α ∨ β} = {w ∈ W | ∗w  α or ∗w  β} =

{w ∈ W | ∗w  α} ∪ {w ∈ W | ∗w  β} = [α]M ∪ [β]M

[α ∧ β]M ={w ∈ W | ∗w  α ∧ β} = {w ∈ W | ∗w |= α and ∗w  β} =

{w ∈ W | ∗w  α} ∩ {w ∈ W | ∗w  β} = [α]M ∩ [β]M

[¬α]M ={w ∈ W | ∗w  ¬α} = {w ∈ W | ∗w 6 α} =

W \ {w ∈ W | ∗w  α} = W \ [α]M

Hence if M ∈ PJCS,Meas we get by Lemma 13:

µ([α ∨ β]M) + µ([α ∧ β]M) = µ([α]M) + µ([β]M)

µ([α]M) + µ([¬α]M) = 1

Definition 15 (Truth in a PJCS,Meas-model). Let CS be any constant speci-
fication. Let M = 〈W,H, µ, ∗〉 be a PJCS,Meas-model and A ∈ LP. We define
what it means for A to hold in M inductively as follows1:

• If A ≡ P≥sα then:

M |= A ⇐⇒ µ([α]M) ≥ s

• If A ≡ ¬B then:
M |= A ⇐⇒ M 6|= B

• If A ≡ B ∧ C then:

M |= A ⇐⇒
(

M |= B and M |= C
)

1observe that the satisfiability relation of a basic evaluation is represented with 

whereas the satisfiability relation of a model is represented with |=.
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Let T ⊆ LP, A ∈ LP and M be a PJCS,Meas-model. Then M |= T means that
M satisfies all members of the set T . Further T |=PJCS,Meas

A means that for
every M ∈ PJCS,Meas, M |= T implies M |= A.

Lemma 16 (Properties of the Class PJCS,Meas). Let CS be any constant spec-
ification, let M = 〈W,H, µ, ∗〉 ∈ PJCS,Meas and let α ∈ LJ. Then the following
hold:

(1) M |= P≤sα ⇐⇒ µ([α]) ≤ s

(2) M |= P<sα ⇐⇒ µ([α]) < s

(3) M |= P>sα ⇐⇒ µ([α]) > s

(4) M |= P=sα ⇐⇒ µ([α]) = s

Proof. (1) We have:

M |= P≤sα
S.E.
⇐⇒ M |= P≥1−s¬α

Def. 15
⇐⇒

µ([¬α]) ≥ 1− s
Remark 14
⇐⇒

1− µ([α]) ≥ 1− s ⇐⇒ µ([α]) ≤ s

(2) M |= P<sα
S.E.
⇐⇒ M |= ¬P≥sα ⇐⇒ M 6|= P≥sα

Def. 15
⇐⇒ µ([α]) < s

(3) M |= P>sα
S.E.
⇐⇒ M |= ¬P≤sα ⇐⇒ M 6|= P≤sα

(1)
⇐⇒ µ([α]) > s

(4) We have:

M |= P=sα
S.E.
⇐⇒

(

M |= P≥sα and M |= P≤sα
) (1) and Def. 15

⇐⇒
(

µ([α]) ≥ s and µ([α]) ≤ s
)

⇐⇒ µ([α]) = s
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4 Relations with the Logic of Uncertain Jus-

tifications

The logic of uncertain justifications [13] consists of the following axioms (we
use notation and syntactical conventions from [13]):

A0. Propositional tautologies

A1. s :p (F → G) → (t :q F → (s · t) :p·q G) (the application axiom scheme)

A2. s :r F → (s+ t) :r F and

t :r F → (s+ t) :r F (the monotonicity axiom schemes)

A3. s :p F → s :q F,where p ≥ q (the confidence weakening axiom scheme)

Further it includes modus ponens and a version of axiom necessitation that
is slightly different from (AN!). Recall that Milnikel’s formula t :q F should
be read as the “term t justifies formula F with probability at least q” and
therefore corresponds to our formula P≥qt : F .

The version of axiom necessitation that is studied in [13] cannot be expressed
in the logic PJ since in this logic we cannot have iterations of the probability
operators.

In this section we will show that all the axioms of the logic of uncertain
justifications (without iterations of the form s :r t :q α) can be expressed in
our framework. Axioms A0, A2 and A3 are theorems of PJ and therefore hold
in all PJCS,Meas-models, whereas axiom A1 can hold in a PJCS,Meas-model only
under the assumption that the premises of the the axiom are independent in
the model.

Lemma 17. Let CS be any constant specification. Then the following hold:

(i) ⊢PJCS
P≥1(α → β) → (P≥sα → P≥sβ)

(ii) If ⊢JCS
α → β then ⊢PJCS

P≥sα → P≥sβ

(iii) if s > r then ⊢PJCS
P≥sα → P>rα

(iv) ⊢PJCS
P>rα → P≥rα

(v) if r ≥ s then ⊢PJCS
P≥rα → P≥sα

15



Proof. (i) We have:

⊢JCS
¬(α ∧ ⊥) [(P)] (12)

⊢PJCS
P≥1¬(α ∧ ⊥) [12, (CE)] (13)

⊢JCS
(¬α ∧ ¬⊥) ∨ ¬¬α [(P)] (14)

⊢PJCS
P≥1

(

(¬α ∧ ¬⊥) ∨ ¬¬α
)

[14, (CE)] (15)

⊢PJCS

(

P≥sα ∧ P≥0⊥ ∧ P≥1¬(α ∧ ⊥)
)

→ P≥s(α ∨ ⊥) [(DIS)] (16)

⊢PJCS
P≥0⊥ [(PI)] (17)

⊢PJCS
P≥sα → P≥s(α ∨ ⊥) [13, 16, 17,P.R.] (18)

⊢PJCS

(

P≤1−s(¬α ∧ ¬⊥) ∧ P<s¬¬α
)

→ P<1

(

(¬α ∧ ¬⊥) ∨ ¬¬α
)

(UN) (19)

⊢PJCS
¬¬P≥1

(

(¬α ∧ ¬⊥) ∨ ¬¬α
)

[15,P.R.] (20)

⊢PJCS
¬P<1

(

(¬α ∧ ¬⊥) ∨ ¬¬α
)

[20,S.E.] (21)

⊢PJCS
¬
(

P≤1−s(¬α ∧ ¬⊥) ∧ P<s¬¬α
)

[19, 21,P.R.] (22)

⊢PJCS
P≤1−s(¬α ∧ ¬⊥) → ¬P<s¬¬α [22,P.R.] (23)

⊢PJCS
P≤1−s(¬α ∧ ¬⊥) → ¬¬P≥s¬¬α [23,S.E.] (24)

⊢PJCS
P≤1−s(¬α ∧ ¬⊥) → P≥s¬¬α [24,P.R.] (25)

⊢PJCS
P≥s(α ∨ ⊥) → P≥s¬¬α [25,S.E.] (26)

⊢PJCS
P≥sα → P≥s¬¬α [18, 26,P.R.] (27)

⊢PJCS
¬
(

P≥1(α → β) → (P≥sα → P≥sβ)
)

→

P≥1(α → β) ∧ P≥sα ∧ ¬P≥sβ [(P)] (28)

⊢PJCS
¬
(

P≥1(α → β) → (P≥sα → P≥sβ)
)

→

P≥1(α → β) ∧ P≥s¬¬α ∧ ¬P≥sβ [27, 28,P.R.] (29)

⊢PJCS
¬
(

P≥1(α → β) → (P≥sα → P≥sβ)
)

→

P≥1(¬α ∨ β) ∧ P≤1−s¬α ∧ P<sβ [29,S.E.] (30)

⊢PJCS
P≤1−s¬α ∧ P<sβ → P<1(¬α ∨ β) [(UN)] (31)

⊢PJCS
¬
(

P≥1(α → β) → (P≥sα → P≥sβ)
)

→
(

P≥1(¬α ∨ β) ∧ P<1(¬α ∨ β)
)

[30, 31,P.R.] (32)

⊢PJCS
¬
(

P≥1(α → β) → (P≥sα → P≥sβ)
)

→
(

P≥1(¬α ∨ β) ∧ ¬P≥1(¬α ∨ β)
)

[32,S.E.] (33)

⊢PJCS
P≥1(α → β) → (P≥sα → P≥sβ) [33,P.R.] (34)

(ii) Follows by (CE), (i) and (MP).
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(iii) It holds:

⊢PJCS
P≤rα → P<sα [(WE)] (35)

⊢PJCS
¬P<sα → ¬P≤rα [35,P.R.] (36)

⊢PJCS
¬¬P≥sα → P>rα [36,S.E.] (37)

⊢PJCS
P≥sα → P>rα [37,P.R.] (38)

(iv) Similar to case (iii).

(v) Follows by (iii) and (iv).

Remark 18. From statement (v) of Lemma 17 it follows that:

if r ≥ s, then ⊢PJCS
P≥r(u : α) → P≥s(u : α)

and, indeed, this corresponds to Axiom A3 of the logic of uncertain justi-
fications [13]. Moreover, from statement (ii) we get the following corollary,
which corresponds to Axiom A2 of [13].

Corollary 19. Let α ∈ LJ, u, v ∈ Tm and r, s ∈ S. Then for any PJCS we
have:

(1) ⊢PJCS
P≥r(u : α) → P≥r(u+ v : α)

(2) ⊢PJCS
P≥r(v : α) → P≥r(u+ v : α)

Proof. (1) We have:

⊢JCS
(u : α ∨ v : α) → u+ v : α [(+)] (39)

⊢JCS
u : α → u+ v : α [39,P.R.] (40)

⊢PJCS
P≥r(u : α) → P≥r(u+ v : α) [Lemma 17(ii), 40] (41)

(2) Similar to the previous case.

Theorem 20 (Probabilistic Internalization). Let CS be an axiomatically ap-
propriate constant specification. For any formulas α, β1, . . . , βn ∈ LJ, terms
t1, . . . , tn ∈ Tm and s ∈ S, if:

β1, . . . , βn ⊢JCS
α

then there exists a term t such that:

(1) P≥s(t1 : β1 ∧ . . . ∧ tn : βn) ⊢PJCS
P≥s(t : α)

17



(2) for every i ∈ {1, . . . , n}:
{

P≥1(tj : βj)
∣

∣ j 6= i
}

, P≥s(ti : βi) ⊢PJCS
P≥s(t : α)

Proof. By Theorem 4 we find that there exists a term t such that:

t1 : β1, . . . , tn : βn ⊢JCS
t : α

By repeatedly applying Theorem 5 we get:

⊢JCS
t1 : β1 → ( . . . → (tn−1 : βn−1 → (tn : βn → t : α)) . . .) (42)

So we have:

(1) By (42) and P.R. we get:

⊢JCS

(

t1 : β1 ∧ . . . ∧ tn : βn

)

→ t : α

By Lemma 17(ii):

⊢PJCS
P≥s

(

t1 : β1 ∧ . . . ∧ tn : βn

)

→ P≥s

(

t : α
)

and by Theorem 7:

P≥s

(

t1 : β1 ∧ . . . ∧ tn : βn

)

⊢PJCS
P≥s

(

t : α
)

(2) Let i ∈ {1, . . . , n} and {j1, . . . , jn−1} = {1, . . . , n} \ i. By (42) and
P.R. we get:

⊢JCS
tj1 : βj1 → ( . . . → (tjn−1

: βjn−1
→ (ti : βi → t : α)) . . .)

By (CE) we get:

⊢PJCS
P≥1

(

tj1 : βj1 → ( . . . → (tjn−1
: βjn−1

→ (ti : βi → t : α)) . . .)
)

By repeatedly applying Lemma 17(i) and P.R. we get:

⊢PJCS
P≥1(tj1 : βj1) → ( . . . → (P≥1(tjn−1

: βjn−1
) → (P≥s(ti : βi) →

P≥s(t : α))) . . .)

And by repeatedly applying Theorem 7 we get:

P≥1

(

tj1 : βj1

)

, . . . , P≥1

(

tjn−1
: βjn−1

)

, P≥s

(

ti : βi

)

⊢PJCS
P≥s

(

t : α
)

i.e.
{

P≥1(tj : βj)
∣

∣ j 6= i
}

, P≥s(ti : βi) ⊢PJCS
P≥s(t : α)
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Remark 21. If we consider the formulation of probabilistic internalization
without premises, then we obtain for an axiomatically appropriate CS that

⊢JCS
α implies ⊢PJCS

P≥1(t : α) for some term t.

This version corresponds to internalization for the logic of uncertain justifi-
cations, see Theorem 3 of [13].

Theorem 22. Let CS be a constant specification. Let u, v ∈ Tm, α, β ∈ LJ
and M be a PJCS,Meas-model. Assume that [u : (α → β)]M and [v : α]M are
independent in M . Then for any r, s ∈ S we have:

M |= P≥r(u : (α → β)) →
(

P≥s(v : α) → P≥r·s(u · v : β)
)

Proof. Assume that M = 〈W,H, µ, ∗〉.

Let w ∈ [u : (α → β)] ∩ [v : α]. We have that ∗w  u : (α → β) and that
∗w  v : α. Since ∗w is a basic JCS-evaluation, by Theorem 6 we get that ∗w
satisfies all instances of axiom (J), i.e. ∗w  u : (α → β) → (v : α → u ·v : β).
Hence we have ∗w  u · v : β, i.e. w ∈ [u · v : β]. So we proved that
[u : (α → β)] ∩ [v : α] ⊆ [u · v : β]. So by Lemma 13(3) we get:

µ
(

[u · v : β]
)

≥ µ
(

[u : (α → β)] ∩ [v : α]
)

And since [u : (α → β)] and [v : α] are independent in M we have:

µ
(

[u · v : β]
)

≥ µ
(

[u : (α → β)]
)

· µ
(

[v : α]
)

(43)

Assume that:

M |= P≥r(u : (α → β)) and M |= P≥s(v : α), i.e.
µ
(

[u : (α → β)]
)

≥ r and µ
(

[v : α]
)

≥ s

By (43) we have µ
(

[u · v : β]
)

≥ r · s, i.e. M |= P≥r·s(u · v : β). Hence we
proved that:

M |= P≥r(u : (α → β)) →
(

P≥s(v : α) → P≥r·s(u · v : β)
)

Remark 23. The previous theorem corresponds to Axiom A1 of [13]. How-
ever, we have to explicitly formulate the additional assumption that the
premises are independent. In the logic of uncertain justifications, indepen-
dence of evidential assertions is assumed implicitly.
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5 Soundness and Completeness of PJ

In order to prove soundness for PJ we will need the Archimedean property
for the real numbers.

Proposition 24 (Archimedean Property for the real numbers). For any real
number ǫ > 0 there exists an n ∈ N such that 1

n
< ǫ.

Theorem 25 (Soundness). Let CS be any constant specification. Then the
system PJCS is sound with respect to the class of PJCS,Meas-models. I.e. for
any T ⊆ LP and A ∈ LP we have:

T ⊢PJCS
A =⇒ T |=PJCS,Meas

A

Proof. Let T ⊆ LP and A ∈ LP. We prove the claim by transfinite induction
on the depth of the derivation T ⊢PJCS

A. Let M = 〈W,H, µ, ∗〉 ∈ PJCS,Meas.
We assume that M |= T . We distinguish the following cases:

(1) A ∈ T . Then M satisfies A by assumption.

(2) A is an instance of (P). Then obviously M satisfies A.

(3) A is an instance of (PI). This means:

A = P≥0α

Since µ : H → [0, 1] and [α] ∈ H we have µ([α]) ≥ 0, i.e. M |= P≥0α,
i.e. M |= A.

(4) A is an instance of (WE). That means:

A = P≤rα → P<sα, with s > r

We have:

M |= A ⇐⇒

(M |= P≤rα =⇒ M |= P<sα)
Lemma 16
⇐⇒

(µ([α]) ≤ r =⇒ µ([α]) < s)

The last statement is true since r < s. Thus M |= A.

(5) A is an instance of (LE). Similar to case (4).
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(6) A is an instance of (DIS). Then we have:

A =
(

P≥rα ∧ P≥sβ ∧ P≥1¬(α ∧ β)
)

→ P≥min(1,r+s)(α ∨ β)

It holds:

M |= A ⇐⇒

M |=
(

P≥rα ∧ P≥sβ ∧ P≥1¬(α ∧ β)
)

→ P≥min(1,r+s)(α ∨ β)
S.E.
⇐⇒

M |=
(

P≥rα ∧ P≥sβ ∧ P≤0(α ∧ β)
)

→ P≥min(1,r+s)(α ∨ β)

By Lemma 16 the last statement is equivalent to:
(

µ([α]) ≥ r and µ([β]) ≥ s and µ([α ∧ β]) ≤ 0
)

=⇒

µ([α ∨ β]) ≥ min(1, r + s)

Let µ([α]) ≥ r, µ([β]) ≥ s and µ([α ∧ β]) ≤ 0. By Remark 14 we have:
µ([α∨β]) = µ([α])+µ([β])−µ([α∧β]) ≥ r+s. Since µ([α∨β]) ≤ 1 we
have µ([α∨ β]) ≥ min(1, r+ s). Thus, the last of the above statements
is true, so M |= A.

(7) A is an instance of (UN). Then we have:

A =
(

P≤rα ∧ P<sβ
)

→ P<r+s(α ∨ β), r + s ≤ 1

We have:

M |= A ⇐⇒
(

M |=
(

P≤rα ∧ P<sβ
)

→ P<r+s(α ∨ β)
) Lemma 16

⇐⇒
(

(

µ([α]) ≤ r and µ([β]) < s
)

=⇒ µ([α ∨ β]) < r + s
)

Assume that µ([α]) ≤ r and µ([β]) < s. By Remark 14 we have that
µ([α ∨ β]) = µ([α]) + µ([β]) − µ([α ∧ β]) < r + s − µ([α ∧ β]). Since
µ([α ∧ β]) ≥ 0 we have µ([α ∨ β]) < r + s. Thus, the last of the above
statements is true, so M |= A.

(8) A is obtained by an application of the rule (MP). Thus there exists
some B ∈ LP such that T ⊢PJCS

B and T ⊢PJCS
B → A. By the

inductive hypothesis we have that M |= B and M |= B → A. Thus
M |= A.

(9) A is obtained by an application of (CE). That means A = P≥1α and
also ⊢JCS

α for some α ∈ LJ. By Theorem 6 we have CS α, which
implies that (∀w ∈ W )[∗w  α], i.e. [α] = W . Thus µ([α]) = 1,
i.e. M |= P≥1α.
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(10) A is obtained by an application of (ST). That means A = B → P≥sβ
for s > 0 and also T ⊢PJCS

B → P≥s− 1

k
β for every integer k ≥ 1

s
. By

the inductive hypothesis we have that M |= B → P≥s− 1

k
β for every

integer k ≥ 1
s
.

Assume that M |= B. This implies that for every integer k ≥ 1
s
we

have M |= P≥s− 1

k
β, i.e.

µ([β]) ≥ s−
1

k
for every integer k ≥

1

s
. (44)

Assume that µ([β]) < s, i.e. s − µ([β]) > 0. By the Archimedean
property for the real numbers we know that there exists some integer
n such that 1

n
< s − µ([β]), which implies n > 1

s−µ([β])
≥ 1

s
since

s > µ([β]) ≥ 0. Hence there exists some n ≥ 1
s
with µ([β]) < s − 1

n
,

which contradicts (44). Thus µ([β]) ≥ s, i.e. M |= P≥sβ. Hence we
proved that M |= B implies M |= P≥sβ. So we have that M |= A.

Now we define the notion of PJCS-consistent sets.

Definition 26 (PJCS-Consistent Sets). Let CS be any constant specification
and let T be a set of LP-formulas.

• T is said to be PJCS-consistent iff T 0PJCS
⊥. Otherwise T is said to be

PJCS-inconsistent.

• T is said to be LP-maximal iff for every A ∈ LP either A ∈ T or ¬A ∈ T .

• T is said to be maximal PJCS-consistent iff it is LP-maximal and PJCS-
consistent.

Alternatively we can say that T is PJCS-consistent iff there exists some A ∈
LP such that T 0PJCS

A.

Before proving completeness for PJ we need to prove some auxiliary Lemmata
and Theorems.

Lemma 27 (Properties of PJCS-Consistent Sets). Let CS be any constant
specification and let T be a PJCS-consistent set of LP-formulas.

(1) For any formula A ∈ LP either T,A is PJCS-consistent or T,¬A is
PJCS-consistent.

(2) If ¬(A → P≥sβ) ∈ T for s > 0, then there is some integer n ≥ 1
s
such

that T,¬(A → P≥s− 1

n
β) is PJCS-consistent.
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Proof. The proof of (1) is standard and therefore omitted. For (2) we have
the following:

Assume that for every integer n ≥ 1
s
the set T,¬(A → P≥s− 1

n
β) is PJCS-

inconsistent. Then we have the following:

T ,¬(A → P≥s− 1

n
β) ⊢PJCS

⊥, ∀ integer n ≥
1

s
(45)

T ⊢PJCS
¬(A → P≥s− 1

n
β) → ⊥, ∀ integer n ≥

1

s
[Thm.7, 45] (46)

T ⊢PJCS
A → P≥s− 1

n
β, ∀ integer n ≥

1

s
[46,P.R.] (47)

T ⊢PJCS
A → P≥sβ [47, (ST)] (48)

T ⊢PJCS
¬(A → P≥sβ) (49)

T ⊢PJCS
⊥ [48, 49,P.R.] (50)

(50) contradicts the fact that T is PJCS-consistent. Thus there exists some
n ≥ 1

s
such that T,¬(A → P≥s− 1

n
β) is PJCS-consistent.

Lemma 28 (Properties of Maximal PJCS-Consistent Sets). Let CS be any
constant specification and let T be a maximal PJCS-consistent set. Then the
following hold:

(1) For any formula A ∈ LP, exactly one member of {A,¬A} is in T .

(2) For any formula A ∈ LP:

T ⊢PJCS
A ⇐⇒ A ∈ T

(3) For all formulas A,B ∈ LP we have:

A ∧ B ∈ T ⇐⇒ {A,B} ⊆ T

(4) For all formulas A,B ∈ LP we have:

{A,A → B} ⊆ T =⇒ B ∈ T

(5) Let α ∈ LJ, X = {s | P≥sα ∈ T } and t = sup(X). Then:

(i) For all r ∈ S[0, t) we have that P>rα ∈ T

(ii) For all r ∈ S[0, t) we have that P≥rα ∈ T

(iii) If t ∈ S then P≥tα ∈ T .
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Proof. The proofs of (1) to (4) are standard and therefore omitted. For (5)
we have the following:

(i) Let r ∈ S[0, t). Assume that P>rα /∈ T . Then assume that for some
r′ ∈ S(r, 1] we have P≥r′α ∈ T . Since r′ > r by Lemma 17(iii) we
have that T ⊢PJCS

P≥r′α → P>rα. By (2) we have P≥r′α → P>rα ∈ T
and by (4) we have P>rα ∈ T which is absurd since we assumed that
P>rα /∈ T . Thus for all r′ ∈ S(r, 1] we have P≥r′α /∈ T . Thus r is an
upper bound of X, which is again absurd since r < t and t = sup(X).
Hence we conclude that P>rα ∈ T .

(ii) Let r ∈ S[0, t). By (i) we have that P>rα ∈ T . By Lemma 17(iv) we
have P>rα → P≥rα ∈ T and by (4) we get P≥rα ∈ T .

(iii) If t = 0 then by (PI) we have that T ⊢PJCS
P≥0α. Thus by (2) we have

that P≥tα ∈ T .

Let t > 0. By (ii) we have that for all n ≥ 1
t
, P≥t− 1

n
α ∈ T . So by the

rule (ST) we get P≥tα ∈ T .

Lemma 29 (Lindenbaum). Let CS be any constant specification. For every
PJCS-consistent set T , there exists a maximal PJCS-consistent set T such that
T ⊆ T .

Proof. Let T be a PJCS-consistent set. Let A0, A1, A2, . . . be an enumer-
ation of all the formulas in LP. We define a sequence of sets {Ti}i∈N such
that:

(1) T0 := T

(2) for every i ≥ 0:

(a) if Ti ∪ {Ai} is PJCS-consistent, then we set Ti+1 := Ti ∪ {Ai},
otherwise

(b) if Ai is of the form B → P≥sγ for s > 0 then we choose some
integer n ≥ 1

s
such that Ti ∪ {¬Ai,¬(B → P≥s− 1

n
γ)} is PJCS-

consistent2 and we set Ti+1 := Ti ∪ {¬Ai,¬(B → P≥s− 1

n
γ)}, oth-

erwise

(c) we set Ti+1 := Ti ∪ {¬Ai}

(3) T =
⋃∞

i=0 Ti

2we will show in the case (ii) below that such an n always exists
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By induction on i we will prove that Ti is PJCS-consistent for every i ∈ N.

(i) The consistency of T0 follows from that of T .

(ii) Let i ≥ 0. Assuming that Ti is PJCS-consistent, we will prove that Ti+1

is PJCS-consistent. We have the following cases:

• If Ti+1 is constructed using the case (2)(a) above, then it is obvi-
ously PJCS-consistent.

• If Ti+1 is constructed using the case (2)(b) above then we know
that Ti, Ai is PJCS-inconsistent, thus according to Lemma 27(1)
we have that Ti,¬Ai is PJCS-consistent. We also have that Ai =
B → P≥sγ for s > 0. So according to Lemma 27(2) we know
that there exists some n ≥ 1

s
such that Ti,¬Ai,¬(B → P≥s− 1

n
γ)

is PJCS-consistent, thus Ti+1 is PJCS-consistent.

• If Ti+1 is constructed using the case (2)(c) above then we know
that Ti, Ai is PJCS-inconsistent, thus according to Lemma 27(1) we
have that Ti,¬Ai is PJCS-consistent, i.e. Ti+1 is PJCS-consistent.

Now we will show that T is a maximal PJCS-consistent set.

We have that for every A ∈ LP either A ∈ T or ¬A ∈ T . Thus according to
Definition 26, the set T is LP-maximal.

It remains to show that T is PJCS-consistent. We will first show that T
does not contain all LP-formulas (see (A) below) and then that T is PJCS-
deductively closed for LP (see (B) below). The fact that T is PJCS-consistent
follows easily from (A) and (B).

(A) Assume that for some A ∈ LP both A and ¬A belong to T . That means
there are i, j such that A ∈ Ti and ¬A ∈ Tj. Since T0 ⊆ T1 ⊆ T2 ⊆ . . . ,
we have that {Ai, Aj} ⊆ Tmax(i,j), which implies that Tmax(i,j) is PJCS-
inconsistent, a contradiction. Thus T does not contain all members
of LP.

(B) We show that T is PJCS-deductively closed for LP-formulas.

Assume that for some A ∈ LP we have that T ⊢PJCS
A. We will prove

by transfinite induction on the depth of the derivation T ⊢PJCS
A that

A ∈ T . We distinguish cases depending on the last rule or axiom used
to obtain A from T .

(1) If A ∈ T then we are done.

(2) Assume that A is an instance of some PJ-axiom. We know that
there exists some k such that A = Ak. Assume that ¬Ak ∈ Tk+1.
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Then we have that Tk+1 ⊢PJCS
¬Ak and Tk+1 ⊢PJCS

Ak, which
contradicts the fact that Tk+1 is PJCS-consistent. Hence Ak ∈
Tk+1, i.e. A ∈ T .

(3) If A is obtained from T by an application of the rule (MP), then
by the inductive hypothesis we have that all the premises of the
rule are contained in T . So there must exist some l such that Tl

contains all the premises of the rule. So, Tl ⊢PJCS
A. There exists

also some k such that A = Ak. Assume that ¬A ∈ Tmax(k,l)+1.
This implies that Tmax(k,l)+1 ⊢PJCS

A and Tmax(k,l)+1 ⊢PJCS
¬A,

which contradicts the fact that Tmax(k,l)+1 is PJCS-consistent. Thus
we have that A ∈ Tmax(k,l)+1, i.e. A ∈ T .

(4) Assume that A is obtained by T by an application of the rule (CE).
This means that A = P≥1α and that ⊢JCS

α for some α ∈ LJ. We
know that there exists some k such that A = Ak. Using the
same arguments with the case (2) we can prove that A ∈ Tk+1,
i.e. A ∈ T .

(5) Assume that A is obtained from T by the rule (ST). That means
that A = B → P≥sγ for s > 0 and also that for every integer k ≥ 1

s

we have T ⊢PJCS
B → P≥s− 1

k
γ. Assume that A does not belong to

T , thus ¬A ∈ T , i.e. ¬(B → P≥sγ) ∈ T . Letm be such that Am =
B → P≥sγ. We find ¬(B → P≥sγ) ∈ Tm and by the construction
of T , there exists some l ≥ 1

s
such that ¬(B → P≥s− 1

l
γ) ∈ Tm.

However, we also find that the formula B → P≥s− 1

l
is a premise

of (ST), thus by the inductive hypothesis B → P≥s− 1

l
∈ T . So,

there exists an m′ such that B → P≥s− 1

l
∈ Tm′ . Thus

{¬(B → P≥s− 1

l
), B → P≥s− 1

l
} ⊆ Tmax(m,m′)+1,

which contradicts the fact that Tmax(m,m′)+1 is PJCS-consistent.
Thus A ∈ T .

So, we proved that T is a maximal PJCS-consistent set that contains the
PJCS-consistent set T .

Now we will define a canonical model for any maximal PJCS-consistent set of
formulas.

Definition 30 (Canonical Model). Let CS be any constant specification and
let T be a maximal PJCS-consistent set of LP-formulas. The canonical model
for T is the quadruple MT = 〈W,H, µ, ∗〉, defined as follows:

• W =
{

w
∣

∣ w is a basic JCS-evaluation
}
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• H =
{

[α]MT

∣

∣ α ∈ LJ
}

• for every α ∈ LJ, µ([α]MT
) = sups

{

P≥sα ∈ T
}

• for every w ∈ W , ∗w = w

Remark 31. In Definition 30 the canonical model MT = 〈W,H, µ, ∗〉 was
defined. Observe that in definition of H we use the set [α]MT

. This is not
a problem since by Definition 12 we have that [α]MT

depends only on ∗, W
and the justification formula α, which do not depend on H. The same holds
for µ. Thus, the canonical model is well defined.

Lemma 32. Let CS be any constant specification and let T be a maximal
PJCS-consistent set. The canonical model for T , MT , is a PJCS,Meas-model.

Proof. Let MT = 〈W,H, µ, ∗〉. Observe that according to Definition 30 for
every α ∈ LJ we have:

[α]MT
=

{

w ∈ W
∣

∣ ∗w  α
}

=
{

w
∣

∣ w is a basic JCS-evaluation and w  α
}

In order for MT to be a PJCS,Meas-model we have to prove the following:

(1) W is a non-empty set:

We know that there exists a basic JCS-evaluation, thus W 6= ∅.

(2) H is an algebra over W :

It holds that [⊤] = W . Thus W ∈ H. Hence H 6= ∅. Let [α] ∈ H. It
holds that [α] ⊆ W . Thus H ⊆ P(W ).

Let α, β ∈ LJ and assume that [α], [β] ∈ H. We have that ¬α, α∨β ∈ LJ
and by Remark 14 [α] ∪ [β] = [α ∨ β] ∈ H and W \ [α] = [¬α] ∈ H.

So, according to Definition 8, H is an algebra over W .

(3) µ is a function from H to [0, 1]:

We have to prove the following:

(a) the domain of µ is H and the codomain of µ is [0, 1]:

Let [α] ∈ H for some α ∈ LJ. We have that P≥0α is an axiom
of PJ, thus P≥0α ∈ T . Hence the set {s ∈ S | P≥sα ∈ T } is
not empty which means that it has a supremum. We have that
µ([α]) = sups{P≥sα ∈ T }. Thus, µ is defined for all members
of H, i.e. the domain of µ is H. In sups{P≥sα ∈ T } we have by
definition that s ∈ S, i.e. s ≤ 1. By a previous argument it also
holds that sups{P≥sα ∈ T } ≥ 0. Thus 0 ≤ sups{P≥sα ∈ T } ≤ 1,
i.e. 0 ≤ µ([α]) ≤ 1. So the codomain of µ is [0, 1].
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(b) for every U ∈ H, µ(U) is unique:

Let U ∈ H and assume that U = [α] = [β] for some α, β ∈ LJ.
We will prove that µ([α]) = µ([β]). Of course it suffices to prove
that:

[α] ⊆ [β] =⇒ µ([α]) ≤ µ([β]) (51)

We have:

[α] ⊆ [β] implies

(∀w ∈ W )
[

w ∈ [α] =⇒ w ∈ [β]
]

implies

(∀w ∈ W )
[

w  α =⇒ w  β
]

implies

(∀w ∈ W )
[

w  α → β
]

implies

CS α → β implies by Theorem 6

⊢JCS
α → β implies by Lemma 17(ii)

(∀s ∈ S)
[

⊢PJCS
P≥sα → P≥sβ

]

implies by Lemma 28(2)

(∀s ∈ S)
[

P≥sα → P≥sβ ∈ T
]

implies by Lemma 28(4)

(∀s ∈ S)
[

P≥sα ∈ T =⇒ P≥sβ ∈ T
]

implies

{s ∈ S | P≥sα ∈ T } ⊆ {s ∈ S | P≥sβ ∈ T } implies

sup
s

{P≥sα ∈ T } ≤ sup
s

{P≥sβ ∈ T } i.e.

µ([α]) ≤ µ([β])

Hence (51) holds, which proves that µ(U) is unique.

(4) µ is a finitely additive measure:

Before proving that µ is a finitely additive measure we need to prove
the following statement:

µ([α]) + µ([¬α]) ≤ 1 (52)

Let:

X = {s | P≥sα ∈ T }

Y = {s | P≥s¬α ∈ T }

r1 = µ([α]) = sup(X)

r2 = µ([¬α]) = sup(Y )

Let s ∈ Y . It holds that P≥s¬α ∈ T . If 1 − s < r1 then by
Lemma 28(5)(i) we would have P>1−sα ∈ T . By S.E. we get ¬P≤1−sα
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∈ T and by S.E. again we get ¬P≥s¬α ∈ T which contradicts the fact
that T is PJCS-consistent. Thus 1− s ≥ r1, i.e. 1− r1 ≥ s, i.e. 1− r1 is
an upper bound of Y , hence 1− r1 ≥ r2, i.e. r1+ r2 ≤ 1, i.e. (52) holds.

Now in order to prove that µ is a finitely additive measure we need to
prove the following:

(i) µ(W) = 1

We have that ⊢JCS
⊤. By the rule (CE) we get ⊢PJCS

P≥1⊤. By
Lemma 28(2) we get P≥1⊤ ∈ T . It holds that W = [⊤]. Thus
µ(W ) = µ([⊤]) = sups{P≥s⊤ ∈ T } ≥ 1, i.e. µ(W ) = 1.

(ii) [α] ∩ [β] = ∅ =⇒ µ([α] ∪ [β]) = µ([α]) + µ([β])

Let α, β ∈ LJ such that:

[α] ∩ [β] = ∅

r = µ([α]) = sup
s

{

s
∣

∣ P≥sα ∈ T
}

s = µ([β]) = sup
r

{

r
∣

∣ P≥rβ ∈ T
}

It holds [β] ⊆ [¬α]. By (51) we have µ([β]) ≤ µ([¬α]) and by (52)
we have:

µ([β]) ≤ 1− µ([α])

i.e. s ≤ 1− r

i.e. r + s ≤ 1 (53)

We also have that

µ([¬(α ∧ β)]) = µ(W \ ([α] ∩ [β])) = µ(W ) = 1.

Thus 1 = sups{P≥s¬(α ∧ β) ∈ T }. So by Lemma 28(5)(iii) we
find

P≥1¬(α ∧ β) ∈ T (54)

We distinguish the following cases:

• Suppose that r > 0 and s > 0. By Lemma 28(5)(ii) we
have that for every r′ ∈ S[0, r) and every s′ ∈ S[0, s), P≥r′α,
P≥s′β ∈ T . It holds that r′ + s′ < r + s and by (53) we
get r′ + s′ < 1. Thus by (54) and by axiom (DIS) we get
P≥r′+s′(α∨β) ∈ T . Hence t0 = supt{P≥t(α∨β) ∈ T } ≥ r+s.

If r + s = 1 then we have that t0 = 1, i.e. µ([α ∨ β]) =
µ([α]) + µ([β]).
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If r+ s < 1 then since r, s > 0 we have that r, s < 1. Assume
that r+ s < t0. By Lemma 28(5)(ii) for every t′ ∈ S(r+ s, t0)
we have P≥t′(α ∨ β) ∈ T . We choose rational numbers r′′

and s′′ such that t′ = r′′ + s′′ and r′′ > r and s′′ > s. If we
had P≥r′′α, P≥s′′β ∈ T this would imply that

µ([α]) = sup
s

{s | P≥sα ∈ T } = r ≥ r′′

and
µ([β]) = sup

r

{r | P≥rβ ∈ T } = s ≥ s′′

which is absurd since r′′ > r and s′′ > s. Thus we have:

¬P≥r′′α ∈ T ,¬P≥s′′β ∈ T

by S.E. we get:

P<r′′α ∈ T , P<s′′β ∈ T

By Axiom (LE) we get:

P≤r′′α ∈ T , P<s′′β ∈ T

It holds that r′′ + s′′ = t′ < t0 ≤ 1. Thus by Axiom (UN) we
get:

P<r′′+s′′(α ∨ β) ∈ T and by S.E. ¬P≥r′′+s′′(α ∨ β) ∈ T , i.e.
¬P≥t′(α ∨ β) ∈ T

which is a contradiction since P≥t′(α∨ β) ∈ T and T is PJCS-
consistent. Thus r+ s = t0, i.e. µ([α]∪ [β]) = µ([α]) + µ([β]).

• Assume that at least one of r, s is equal to 0. Then we can
reason as in the above case with the only exception that r′ = 0
or s′ = 0 (depending on whether r = 0 or s = 0 respectively).

(5) for all w ∈ W , ∗w is a basic JCS-evaluation:

It holds by the construction of MT .

(6) for all α ∈ LJ, [α]MT
∈ H

It holds by the construction of MT .

Lemma 33 (Truth Lemma). Let CS be a constant specification. Let T be
a maximal PJCS-consistent set of LP-formulas and let MT be the canonical
model for T . We have:

(∀A ∈ LP)[A ∈ T ⇐⇒ MT |= A]

Proof. We prove the claim by induction on the structure of A ∈ LP. We
distinguish the following cases:
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A ≡ P≥sα: (=⇒) Assume that P≥sα ∈ T . By definition of the canonical
model we have:

µ([α]) = supr{P≥rα ∈ T }

Thus µ([α]) ≥ s. We conclude that MT |= P≥sα.

(⇐=) Assume that MT |= P≥sα. That means:

s ≤ µ([α]) = sup
r

{P≥rα ∈ T }

By Lemma 28(5)(ii)-(iii) we have that P≥sα ∈ T .

A ≡ ¬B or A ≡ B ∧ C: These cases are standard and therefore omitted.

Theorem 34 (Strong Completeness for PJ). Let CS be any constant specifi-
cation, let T ⊆ LP and let A ∈ LP. Then we have:

T |=PJCS,Meas
A =⇒ T ⊢PJCS

A

Proof. We prove the claim by contraposition. Assume that T 0PJCS
A. This

means that T 0PJCS
(¬A) → ⊥. By Theorem 7 we get T,¬A 0PJCS

⊥,
i.e. the set T,¬A is PJCS-cosistent. By Lemma 29 there exists a maximal
PJCS-consistent set T such that T ⊇ T ∪ {¬A}. By Lemma 33 we have that
MT |= T and MT |= ¬A. By Lemma 32 we have that MT ∈ PJCS,Meas. Hence
T 6|=PJCS,Meas

A.

6 Conclusion

In this paper we introduced the probabilistic justification logic PJ, a logic
in which we can reason about the probability of justification statements. To
our knowledge, we are the first to study probabilistic justification logic using
the standard model for probability.

Some natural questions about the logic PJ, which we plan to work on, are
the decidability and the complexity of PJ. However, the main direction
for further research is how probability and justification may interact. We
will study a system where interleaving and iteration of probabilistic and
justification operators is possible, i.e. a system that includes formulas like
P≥sP≥rβ and t : (P≥s(u : P≥rα)).

Also it will be interesting to investigate a system where statistical evidence
can serve as justification. For instance, if we know that the conditional
probability of β given α is 0.6, it seems natural to use α (or, better, a term
representing α) as a justification for β with probability 0.6.
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