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Memristors are widely considered as promising elements for the efficient implemen-

tation of synaptic weights in artificial neural networks (ANNs) since they are resistors

that keep memory of their previous conductive state. Whereas demonstrations of sim-

ple neural networks (e.g., a single-layer perceptron) based on memristors already

exist, the implementation of more complicated networks is more challenging and has

yet to be reported. In this study, we demonstrate linearly nonseparable combinational

logic classification (XOR logic task) using a network implemented with CMOS-based

neurons and organic memrisitive devices that constitutes the first step toward the real-

ization of a double layer perceptron. We also show numerically the ability of such

network to solve a principally analogue task which cannot be realized by digital

devices. The obtained results prove the possibility to create a multilayer ANN based

on memristive devices that paves the way for designing a more complex network such

as the double layer perceptron. © 2016 Author(s). All article content, except where

otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4966257]

I. INTRODUCTION

The development and hardware realization of artificial neural networks that are capable of learn-

ing information processing (pattern recognition and classification, approximation, prediction, etc.)

remains one of the most challenging tasks in artificial intelligence. One of the main issues in this

pursuit is the lack of suitable hardware for the implementation of key elements of a typical ANN –

neurons and synapses. While the CMOS based neurons are nowadays commercially available,1 the

appropriate candidate for the synapse is still under discussion. There are two main possible ways

of synapse realization: a digital one (e.g., as the Static Random Access Memory2 or floating gate

transistor3) and an analogue one (memristive device).4 The main advantage of the first one is its

full integration with the standard CMOS technology. However this approach suffers from i) digi-

tal versus analogue representation of synaptic weights reflecting the lower performance of ANNs’

super-parallel computations; ii) mediocre energy efficiency, if compared to memristive systems and

to their biological counterparts, iii) the chip has a lower potential density than in case of memris-

tors use. In this context, memristive devices are very promising candidates.5 Basically, a memristive

device is a two-terminal device, whose conductivity may be changed almost continuously by applying

a relatively large voltage bias, but is retained constant when a smaller bias or no bias is applied.6
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Memristive properties were found in inorganic (such as TiOx, HfOx, SiOx, etc.),7–10 organic (polyani-

line, polyimide)11,12 and hybrid organic/inorganic13 materials. Organic or polymeric materials have

unique advantages over traditional inorganic memristive devices, including high flexibility for

biocompatible neuromorphic circuits and implants, low cost, solution processability, large-area

implementation. An important advantage is also the possibility to realize the polymeric stochas-

tic memristive systems in which communication between the computing elements (neurons) can be

arranged in 3D.14 Regarding neural networks, where effective learning requires a precise knowledge

of the conductivity state of all elements and kinetics of its variation, polyaniline based system has

another very important advantage. Conductivity of polyaniline, and, therefore memristive elements,

is directly connected to its color.15 Thus, it gives the possibility to measure conductivity of each

element with a contactless spectrophotometric method, what will allow simplifying the circuit.

Dealing with the hardware realization of a simple ANN, based on memristive devices, few

are proposed in literature.16–19 The single-layer (or elementary) perceptron is the simplest kind of

neural network which can implement basic learning and parallel processing. However, to the best

of our knowledge, there is no successful attempt of multilayer perceptron hardware realization on

memristive devices. Nevertheless, in the field of artificial intelligence, more complex neural networks

are requested to solve demanding tasks.20 A multilayer perceptron can perform linearly nonseparable

tasks (i.e. the tasks that cannot be separated by an hyper-plane in the space of their features, which

is also an input space of the perceptron21), that cannot be solved by a single-layer perceptron.

Thus, the main goal of the present work is the hardware realization of a simple double-layer ANN

based on organic (polyaniline) memristive devices able to solve linearly nonseparable tasks. In this

manuscript we present the first steps towards the realization of the double layer perceptron, includ-

ing the design and hardware realization of the ANN. The implementation of the backpropagation

algorithm and its use to train the device will be the subject of a subsequent work. Here, we designed

an ANN and showed the first results of its capability in performing the XOR logic task. Moreover,

we show numerically that our setup is capable to solve an analogue task particularly demanding for

the standard von Neumann architectures. The obtained results, although still preliminary, are highly

encouraging and suggest a new route for the implementation of multilayer ANN based on memristive

devices.

II. METHODS

PANI based memristive devices were fabricated following the technique reported in Ref. 22. A

solution of PANI (Mw≈100 000, Sigma Aldrich) was prepared with a concentration of 0.1 mg·mL☞1

in 1-methyl-2-pyrrolidinone (Sigma Aldrich ACS reagent >99.0%) with the addition of 10% of

Toluene (AnalaR NORMAPUR➤ ACS). This solution was filtered twice and then deposited onto a

glass substrate (1.5x0.5 cm2) with two Cr electrodes by Langmuir–Schaefer technique. The PANI

conductive channel was formed by depositing 60 layers of polymer in its emeraldine base form

and then transforming it in the emeraldine salt conducting form by a doping process consisting

in the immersion in HCl (1M). Subsequently, a stripe of solid electrolyte, of about 1 mm width,

was deposited in the center of the PANI channel in a crossed configuration and a silver wire (0.05

mm), inserted in the polyelectrolyte, worked as a reference electrode. The electrolyte was prepared

starting from a water solution (20 mg·ml☞1) of polyethylene oxide (PEO) with a molecular weight

of 8·106 Da in which a solution of LiClO4 (Sigma) and water were added to reach the concentration

of 0.1M. The final structure was additionally doped in HCl vapor. The voltage cycles application

and the current measurements were performed by means of a NI PXIe-4130, PXIe-4138, PXIe-4139

Source Measure units, NI DAQ board and two bias voltage suppliers (0.4 and 15 V). All source and

measurement elements were controlled by a dedicated LabVIEW program.

III. RESULTS AND DISCUSSION

A. ANN construction

The principal scheme of the network, as shown in Fig. 1a, consisted of two inputs (X1, X2), two

neurons (several in general case) on the hidden layer and an output neuron (or several neurons). Inputs
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FIG. 1. a) Logic scheme of the implemented neural network with 2 inputs, 2 hidden and 1 output neurons. b) Circuit diagram

of the ANN memristor-based hardware with circled “neurons”, each consisted of differential summator and activation function.

Numeration of memristive links (Mnij(±)) comprises a number of layer n, connected with i-th input and j-th output neurons.

A sign defines if this partial weight is positive or negative. Access system is shown for M111+ and M121+ memristors and is

omitted for others for simplicity. c) Logic scheme of the commutator used with 5 logic inputs (L0 – L4) and 16 outputs (only

12 of them were used according to the number of memristors). Separate output “All” corresponds to the application of control

voltage (+15 V) to all memristive device access systems (during reading some input vector by the perceptron). In absence of

control voltage, -15 V was applied to the access systems due to the necessity of applying +0.2 V to all memristors (see the

inset and the text for details).

and neurons were connected by links with specific synaptic weights (wij, wjk). The circuit diagram

of the network based on memristive devices is presented in Fig. 1b (color parts coincides with those

in Fig. 1a). Each weight was represented by two memristive devices (see below). Vital requirement

for training the network is the ability to change the resistance (proportional to the synaptic weight)

of every memristive device independently from others. To manage this issue we developed an access

system based on CMOS-transistors as the voltage-controlled switches. This system allowed to apply

a writing voltage to the specified memristive device within a training procedure or to read the voltage

during information processing. Such a switch connects each memristor either to one of the inputs

when being biased by some non-negative voltage or to the reference voltage source (+0.2 V) (for

motivation see below). A commutator composed of one 1-in-8 analogue switch (considered as a

“master”) and two more (“slave”) connected in series allowed us to control all 12 switches in the

circuit by the five logic inputs (Fig. 1c).

The artificial neuron body (soma) was implemented in the circuit by an op-amp based differential

adder and a voltage divider with a MOSFET controlled by the output of the summator. This element

executed the basic neuron functions in terms of information processing – summation and threshold.
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The differential summator performing y=
∑

wixi function is required to separate different classes of

input combinations, where y is the output voltage of the summator, xi, wi – the i-th input voltage and

the corresponding weight respectively. Moreover, such a scheme allows the realization of negative

synaptic weights by doubling the number of memristors which is crucial for the learning algorithm

convergence in almost all possible tasks. In this scheme, each synapse was represented by two

memristive devices, “excitatory” and “inhibitory”, connected to non-inverting and inverting inputs of

the op-amp accordingly. The resulting weight of the i-th synapse was wi =Rfb

(

G+
i
− G−

i

)

, where Rfb is

the value of the feedback resistance, G+
i

and G−
i

the conductances of the i-th excitatory and inhibitory

memristive devices respectively. The output voltage y was applied to the gate of the MOSFET in

the voltage divider connecting the neuron output to the logic “1” when open and to the logic “0” in

the opposite case. The threshold voltage of the voltage divider was about 1.8 V, depending on the

characteristics of the MOSFET used. Typical transfer function (which in terms of ANNs is called an

activation function) is shown in Fig. 2a.

B. Memristive device behavior

The initial characterization of the memristive devices was developed by measuring cyclic I-V

curves. The measurement scheme is described in detail elsewhere.23 Typical I-V characteristics for

electronic and ionic currents are shown in Fig. 2b. There are two peaks in the I-V ionic curve at

about 0.1 V and 0.5V (inset in Fig. 2b), corresponding to the potentials of redox reactions that the

PANI undergoes. The ionic current passing through the PANI/PEO interface is due to the variation of

redox state that changes the conductivity of PANI. Thus, adjusting the potential value it is possible

to control the rate of PANI conductivity change. The electronic current shows a nonlinear rectifying

FIG. 2. a) Transfer functions of the three used voltage dividers implementing an activation function of neurons. b) Typical I-V

curve of the organic PANI-based memristive device. The inset shows typical I–V curve for the ionic current of the PANI-based

memristive device. c) Typical kinetics of the PANI-based memristive device conductance under potentiating voltage pulse

(+0.6 V, solid line) and depressing one (-0.2 V, dashed line). d) Absolute values of the memristive conductance change under

the potentiating voltage pulse (+0.6 V, prefix “p” in the legend) and depressing one (-0.2 V, prefix “d”) as a function of the

initial conductance, for various pulse durations (specified in the legend).
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behavior (Fig. 2b). The electronic current presents a slight increment before 0.5 V applied, while, at

about 0.7 V, the current increases markedly, because of the oxidation process.24 During the backward

voltage sweep, the reduction process results in the conductivity decrease. According to this, the

voltage of 0.4 V was used for reading the output values and memristive device’s conductance to

prevent their noticeable variations. This value was also determined as logic “1”. The voltage of 0 V

was considered as logic “0”. When no input vector was applied to the network, each memristive device

was biased to +0.2 V, as it approximately corresponds to the redox equilibrium potential of PANI. For

the learning procedure, the amplitude of potentiation voltage pulse was chosen to be +0.6 V, while

that of depression to -0.2 V.

The training pulses durations were established on the base of PANI memristive device resis-

tive switching kinetics. Typical plots are shown in Fig. 2c. Absolute values of the conductance

change under potentiating voltage pulse (+0.6 V) and depressing one (-0.2 V) are presented in

Fig. 2d, as functions of the initial conductance for various pulse durations. Each value was obtained

by applying voltage during 10, 20 and 40 s for depression and 100, 200 and 400 s for potentia-

tion and measuring current through the device within 1 s. The figure shows that the memristive

device conductance could be changed almost continuously from 10-7 to 10-5 S. Additional analysis

demonstrated that conductance, under potentiating voltage, could be well approximated by a function

A0 + A1 exp (−t/τ1)+ A2 exp (−t/τ2), while that under depression by a function A3 + A4 exp (−t/τ3).

Characteristic time values τ1, τ2 and τ3 varied from sample to sample, but their averages were 400 s,

40 s and 50 s respectively. It should be noted also that endurance characteristics of each memristive

device strongly depend on the state of its solid electrolyte: when it dries out the device loses its mem-

ristive properties and becomes a simple resistor. In order to extend the working time of the device we

covered it with a polyimide kapton tape. The retention time of memristive devices at +0.2 V (PANI

redox potential) was not very long (about a day) but it was enough for the demonstration purposes

of our work. It could be increased by, for example, inserting of metal nanoparticles inside the PANI

layer as it potentially can preserve the charge for conserving the current electrochemical state and

thus conductance of the memristive device.25

C. Nonseparable task solving

Since a double-layer perceptron is able to solve linearly nonseparable task, we chose the “XOR”

function to be performed by our network. It is the logic task, where (0;0) and (1;1) input signals belong

to the class “0” and the other two (1;0) and (0;1) to the class “1” (according to the logic outputs),

leading to the lack of a single straight line in the feature plane separating these classes. This task

cannot be solved by elementary (single-layer) perceptron, where each output neuron implements one

hyper-plane separating the classes. Nevertheless, the second layer neurons in a double-layer ANN

perform the separation in a feature space of the first layer, enabling union, intersection and difference

of the “subclasses” highlighted by the hidden layer of the network.

In machine learning, the back propagation with batch correction learning algorithm26 is widely

used for nonseparable task solving. Shortly, the algorithm comprises the calculation of the gradient

of a squared error function with respect to all the weights in the network. The gradient is fed to

the optimization method which in turn uses it to update the weights, in an attempt to minimize the

squared error function. It means that one has to tune the weight values very precisely. This point was

an issue for the hardware perceptron due to the fact that resistive switching kinetics of memristive

devices were not similar enough for unified mathematical model. So we could only follow the weight

correction direction (sign), but not its value, choosing the empirically established learning pulse time

duration. Such modification of the back propagation learning algorithm leads to the strong correlation

of the necessary number of steps to converge with the initial weights distribution: closer it was to the

final distribution, the less number of steps was needed. It is to note that even not every initial state

of the network led to the convergence. Possible solutions of the issue could be an implementation

of different algorithms based on spike timing dependent plasticity (STDP) rules27 or realization the

circuit where conductivity of each element would be measured with a contactless spectrophotometric

method.15

Each step of our learning procedure consisted consecutively of an application of the whole

training set of vectors x(k ) (k = 1, 2, 3, 4), actual weight measuring (applying the “reading” pulses)
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FIG. 3. Experimental data. a) Output signal within the epochs before (left) and after (right) training and expected output

signal (dotted). b) Synaptic weights and c) corresponding feature plane partition (area above and below the plane y=4,5 is the

class “1” and “0”, correspondingly). Obtained separating planes are implemented by corresponding neurons in the first layer.



111301-7 Emelyanov et al. AIP Advances 6, 111301 (2016)

and weight correction (applying the “writing” pulses). The correction pulse duration values were

chosen in such a way as to minimize the duration of learning steps, and it was kept constant (but

different for depressing and potentiating pulses) for all steps in the whole learning procedure. The

procedure was performed until convergence. Fig. 3a shows results of the learning procedure for

XOR logic function at the first and last iterations (the whole procedure consisted of two steps as

in the example). Fig. 3b depicts the weight values change after learning. As described above, each

weight was adjusted by two memristive devices (their conductances are not shown separately) and

set in arbitrary units. As shown in Fig 3c, the weights were adjusted so that two output classes were

separated by two planes in the feature space.

D. Analogue task solving

Since the double layer perceptron separates the feature space into different classes by hyper-

planes and their further combination, one class represents the multidimensional polygon-like area

in the feature space. This form allows the perceptron to classify not only “black” (logic “0”) and

“white” (“1”) classes, but also “gray” ones (some range of signal amplitude between logic “0” and

“1”), i.e. the analogue input signals. Here, we show a basic opportunity to solve an analogue task

by means of our circuit on an example of the simplest polygon: the triangle. As every straight line

was performed by one neuron in the hidden layer, we used a circuit consisting of two inputs and

three neurons on the first layer and one output neuron on the second layer. The circuit was simulated

using real characteristics (memristive device kinetics, neuron activation functions, resistors and other

elements shown in Fig. 1b). Used for the i-th neuron activation function was obtained by fitting

experimental data shown in Fig. 1a by sigmoidal function yi =
1

1+e
Σi−4.5

0.5

, where Σi is the weighted sum

of the inputs of the i-th neuron, considering +0.4 V as logic “1”. Learning was performed following

back propagation learning algorithm described in Ref. 24, simplified by replacing the derivative of the

activation function by a constant 0.5 to speed up the convergence. Optimal learning rate constant η was

found to be equal to 2 for used initial weights uniformly distributed on the interval.2,8 The possible

position of separating lines (in bold red), implemented by the hidden neurons, and the calculated

output signal (heat map) are shown in Fig. 4a. Vector points of the training set (white squares

in Fig. 4a) were chosen for learning the perceptron to classify the analogue signal approximately

in the geometry of triangle, with enough margins between points to avoid a possible uncertainty

of classification, associated to the activation function width. The points inside the triangle were

defined as corresponding to the class “1”, while the others to the class “0”. The learning procedure

can be seen as the value dependence of the squared error function E on the epoch number for

different initial conditions (Fig. 4b). The error convergence to the value of zero means that the double

layer perceptron could be learned to solve an analogue classification task for different sets of initial

weights.

FIG. 4. a) Simulated output signal and corresponding separating lines. b) Error function value within the learning procedure

for 4 different sets of initial weights.
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IV. CONCLUSIONS

In conclusion, we have shown that memristive devices can be used in principle for multilayer

ANN hardware realization. For the first time, we built a double-layer ANN network that paves the way

for the realization of a multi-layer perceptron, demonstrating the possibility to perform nonseparable

combinational logic classification (XOR logic task). It was also proved that a perceptron principally

can solve analogue tasks which cannot be realized by digital devices. This approach could be extended

(but not directly) to larger ANNs and other machine learning algorithms for more complex and

data-intensive tasks.
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