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Abstract. Soon after the launch of Aeolus on 22 August

2018, the first ever wind lidar in space developed by the

European Space Agency (ESA) has been providing pro-

files of the component of the wind vector along the in-

strument’s line of sight (LOS) on a global scale. In or-

der to validate the quality of Aeolus wind observations, the

German Aerospace Center (Deutsches Zentrum für Luft-

und Raumfahrt e.V., DLR) recently performed two air-

borne campaigns over central Europe deploying two differ-

ent Doppler wind lidars (DWLs) on board the DLR Fal-

con aircraft. The first campaign – WindVal III – was con-

ducted from 5 November 2018 until 5 December 2018 and

thus still within the commissioning phase of the Aeolus

mission. The second campaign – AVATARE (Aeolus Val-

idation Through Airborne Lidars in Europe) – was per-

formed from 6 May 2019 until 6 June 2019. Both cam-

paigns were flown out of the DLR site in Oberpfaffen-

hofen, Germany, during the evening hours for probing the

ascending orbits. All together, 10 satellite underflights with

19 flight legs covering more than 7500 km of Aeolus swaths

were performed and used to validate the early-stage wind

data product of Aeolus by means of collocated airborne

wind lidar observations for the first time. For both cam-

paign data sets, the statistical comparison of Aeolus horizon-

tal line-of-sight (HLOS) observations and the correspond-

ing wind observations of the reference lidar (2 µm DWL)

on board the Falcon aircraft shows enhanced systematic and

random errors compared with the bias and precision re-

quirements defined for Aeolus. In particular, the system-

atic errors are determined to be 2.1 m s−1 (Rayleigh) and

2.3 m s−1 (Mie) for WindVal III and −4.6 m s−1 (Rayleigh)

and −0.2 m s−1 (Mie) for AVATARE. The corresponding

random errors are determined to be 3.9 m s−1 (Rayleigh) and

2.0 m s−1 (Mie) for WindVal III and 4.3 m s−1 (Rayleigh)

and 2.0 m s−1 (Mie) for AVATARE. The Aeolus observations

used here were acquired in an altitude range up to 10 km

and have mainly a vertical resolution of 1 km (Rayleigh)

and 0.5 to 1.0 km (Mie) and a horizontal resolution of

90 km (Rayleigh) and down to 10 km (Mie). Potential rea-

sons for those errors are analyzed and discussed.

1 Introduction

Since 22 August 2018, the first European spaceborne lidar

and the first ever spaceborne Doppler wind lidar, Aeolus, de-

veloped by ESA has been circling in its sun-synchronous or-

bit at about 320 km altitude (ESA, 1999). Aeolus is carry-

ing a single payload, namely the Atmospheric Laser Doppler

Instrument (ALADIN), which provides profiles of the com-

ponent of the wind vector along the instrument’s LOS direc-

tion on a global scale from the ground up to about 30 km

in the stratosphere (ESA, 1999; Stoffelen et al., 2005; Re-

itebuch, 2012; Kanitz et al., 2019). With that, the Aeolus

mission is primarily aiming to improve numerical weather

prediction (NWP) and medium-range weather forecast (e.g.,

Weissmann and Cardinali, 2007; Tan et al., 2007; Marseille

et al., 2008; Horányi et al., 2015).

ALADIN is a direct detection wind lidar operating at a

laser wavelength of 354.8 nm and is able to retrieve LOS
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wind speeds by exploiting the Doppler shift of light backscat-

tered from molecules and from particles. In order to do so,

ALADIN is equipped with two different frequency discrim-

inators, namely a Fizeau interferometer that is used to ana-

lyze the frequency shift of the narrowband particulate return

signal by means of the so-called fringe imaging technique

(McKay, 2002) and two coupled Fabry–Pérot interferome-

ters that are used to analyze the frequency shift of the broad-

band molecular return signal by the so-called double-edge

technique (e.g., Chanin et al., 1989; Flesia and Korb, 1999).

This high-spectral-resolution receiver configuration also pro-

vides the possibility to retrieve information on the verti-

cal distribution of aerosol and cloud optical properties such

as backscatter and extinction coefficients (Ansmann et al.,

2007; Flamant et al., 2008).

The direct detection measurement principle requires regu-

lar instrument calibration, a stable instrument alignment and

further post-processing that relates the measured signal lev-

els to a frequency Doppler shift which can then be trans-

lated into a wind speed (Dabas et al., 2008; Lux et al., 2018;

Marksteiner et al., 2018; Zhai et al., 2020). Hence, in par-

ticular the accuracy of wind speeds retrieved from direct de-

tection wind lidars strongly depends on the aforementioned

points. This also means that a validation of Aeolus winds by

means of independent ground-based and airborne measure-

ments is inevitable. For that reason, ESA already provided

preliminary Aeolus data in a very early stage of the mission

(since 16 December 2018) to approved cal–val (calibration

and validation) teams that especially perform ground-based

and airborne measurements for validation purposes (https:

//aeolus-ds.eo.esa.int/oads/access/, last access: 12 November

2019).

As one of these teams, DLR recently performed two

airborne campaigns over central Europe, namely the

WindVal III campaign and the AVATARE campaign with

the DLR Falcon research aircraft equipped with two wind

lidar systems that have been deployed in several Aeolus

pre-launch campaigns within the last 10 years (Marksteiner,

2013; Marksteiner et al., 2018; Schäfler et al., 2018; Lux

et al., 2018). During both campaigns, 10 satellite underflights

covering more than 7500 km of Aeolus swaths were ac-

quired. Based on these measurements, this paper presents the

first validation of the early-stage Aeolus horizontal-line-of-

sight (HLOS) wind product (Level 2B). In particular, the Ae-

olus data are compared to 2 µm DWL measurements which

act as a reference due to their low systematic and random er-

rors that come along with the coherent measurement princi-

ple of the system. A study of the Aeolus measurement prin-

ciple, its calibration procedures and retrieval algorithms is

performed based on ALADIN airborne demonstrator (A2D)

observations as discussed in Lux et al. (2020a).

First, an overview of the two validation campaigns is

given, followed by a discussion of the ALADIN and

2 µm DWL instrumental setup and measurement schemes.

Afterwards, the procedure of matching the different reso-

lutions of the used data sets is explained and a statistical

comparison is performed. Finally, potential reasons for the

observed enhanced systematic and random errors of Aeolus

winds are discussed.

2 Validation campaign overview

Still within the commissioning phase of Aeolus, DLR

performed a first airborne Aeolus validation cam-

paign (WindVal III) from the site in Oberpfaffenhofen,

Germany, in the timeframe from 5 November 2019 to 5 De-

cember 2018. Half a year later, a second airborne Aeolus

validation campaign called AVATARE was conducted from

6 May until 6 June 2019.

During both campaigns, the DLR Falcon was equipped

with two wind lidar systems that have been deployed in sev-

eral Aeolus pre-launch campaigns such as WindVal I (Mark-

steiner et al., 2018) and WindVal II (Schäfler et al., 2018;

Lux et al., 2018), both flown out of Keflavík, Iceland. In

particular, the Falcon hosted the A2D, which is a proto-

type of the ALADIN instrument with representative design

and measurement principle (Reitebuch et al., 2009). The

A2D was developed by the former European Aeronautic De-

fence and Space Company (EADS-Astrium – now Airbus

Defence and Space) together with DLR in order to validate

the ALADIN measurement principle, calibration procedures,

retrieval algorithms and wind product quality before and af-

ter the launch of Aeolus. Additionally, a coherent detection

wind lidar (2 µm DWL) with a high sensitivity to particulate

returns was flown and acted as a reference system (Witschas

et al., 2017)

Whereas the flights performed during WindVal I and

WindVal II resulted in refinements of the Aeolus wind re-

trieval algorithms based on measurements performed in real

atmosphere, wind observations collocated with Aeolus could

be acquired during WindVal III and AVATARE, enabling

the first ever validation of the early-stage Aeolus HLOS

winds (Level 2B). In order to do so, four satellite under-

flights composed of eight flight legs were conducted dur-

ing WindVal III over central Europe, covering more than

3000 km of Aeolus swaths. During AVATARE, six satellite

underflights composed of 11 flight legs were performed over

central Europe covering more than 4500 km along the Aeolus

swath. Thus, data of 19 flight legs from 10 satellite under-

flights that cover more than 7500 km of Aeolus swaths are

available and used for the validation Aeolus HLOS winds.

An overview of the flight tracks flown during WindVal III

and AVATARE is shown in Fig. 1, left and right, respectively.

Further details about the flight times of the Falcon aircraft

and the overflight times of Aeolus are given in Table 1.
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Figure 1. Flight tracks of the Falcon aircraft during the WindVal III campaign performed from 17 November to 5 December 2018 (left) and

the AVATARE campaign performed from 17 May to 6 June 2019 (right). Each color represents a single flight. The Aeolus measurement

swath is shown in gray. During the probed evening satellite tracks, the Aeolus moving direction was always from south to north (ascending

orbit).

Table 1. Overview of Aeolus underflights performed during the WindVal III and the AVATARE campaign.

Falcon flight Aeolus underflight

Date Time (UTC) Route Start and stop time (UTC) Geolocation

W
in

d
V

al
II

I

17 November 2018 15:14 to 19:14 OBF to OBF 17:01:21 to 17:03:56 44.7◦ N, 10.6◦ E to 54.9◦ N, 7.8◦ E

22 November 2018 14:29 to 17:56 OBF to OBF 16:34:14 to 16:36:02 40.0◦ N, 18.3◦ E to 47.2◦ N, 16.5◦ E

3 December 2018 15:48 to 19:31 FMM to OBF 17:27:55 to 17:28:51 47.1◦ N, 3.6◦ E to 50.8◦ N, 2.6◦ E

3 December 2018 14:56 to 18:22 OBF to OBF 16:23:50 to 16:25:02 50.2◦ N, 19.0◦ E to 54.9◦ N, 17.5◦ E

A
V

A
T

A
R

E

17 May 2019 15:36 to 18:46 OBF to OBF 16:48:39 to 16:51:01 46.3◦ N, 13.4◦ E to 55.5◦ N, 10.7◦ E

23 May 2019 14:30 to 18:08 OBF to OBF 16:34:55 to 16:36:55 42.9◦ N, 17.5◦ E to 50.5◦ N, 15.6◦ E

24 May 2019 15:28 to 19:09 OBF to OBF 16:50:01 to 16:52:18 51.2◦ N, 12.2◦ E to 59.0◦ N, 9.4◦ E

28 May 2019 15:54 to 19:13 NUE to OBF 17:40:05 to 17:41:10 44.0◦ N, 1.1◦ E to 48.2◦ N, 0.1◦ E

29 May 2019 15:26 to 19:11 OBF to OBF 16:24:40 to 16:26:12 53.5◦ N, 18.1◦ E to 59.4◦ N, 15.9◦ E

3 June 2019 15:26 to 18:46 OBF to OBF 17:27:50 to 17:28:48 46.8◦ N, 3.6◦ E to 50.6◦ N, 2.6◦ E

The time gives the duration between takeoff and landing. The flight route is indicated by the IATA (International Air Transport Association) airport code.

OBF: Oberpfaffenhofen airport. FMM: Allgäu airport Memmingen. NUE: Nuremberg airport.

3 The Atmospheric Laser Doppler Instrument

(ALADIN) on board Aeolus

In this section, the Aeolus satellite and its instrument

ALADIN are briefly introduced, including its measurement

procedure and resulting data products. For more information

regarding these topics, please refer to ESA (1999), Reite-

buch (2012), Reitebuch et al. (2019), Kanitz et al. (2019) and

Straume et al. (2018, 2019), for example.

3.1 Instrument description

The Aeolus satellite was launched on 22 August 2018. It has

a weight of 1360 kg and a launch configuration dimension of

4.6m × 1.9m × 2.0m, and it can provide a power of 2.4 kW.

It flies in a 320 km sun-synchronous orbit with an inclination

of 97◦, leading to a 7 d repeat cycle. Aeolus carries a sin-

gle payload, ALADIN, which is a direct-detection wind lidar

operating at an ultraviolet wavelength of 354.8 nm. ALADIN

emits short laser pulses (≈ 40 to 70 mJ, 50.5 Hz) down to the

atmosphere where a few of the photons are backscattered on

air molecules, aerosols and hydrometeors. The backscattered
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light is collected with a 1.5 m diameter telescope and directed

to the optical receiver that is used to detect the Doppler fre-

quency shift of the backscattered light and with that the wind

velocity in the LOS direction at different altitudes. In or-

der to do so, ALADIN is equipped with two different fre-

quency discriminators, namely a Fizeau interferometer that

is used to analyze the frequency shift of the narrowband par-

ticulate backscatter signal (Mie) and two sequentially cou-

pled Fabry–Pérot interferometers that are used to analyze

the frequency shift of the broadband molecular return sig-

nal (Rayleigh). Both the Rayleigh and Mie channels sample

the backscatter signal time resolved to 24 bins with a vertical

resolution between 0.25 and 2.0 km. The horizontal resolu-

tion of the wind observations is about 90 km for the Rayleigh

channel and down to 10 km for the Mie channel with overall

subsample information on a 3 km scale. Furthermore, due to

the high-spectral-resolution receiver configuration, informa-

tion on the vertical distribution of aerosol and cloud optical

properties such as backscatter and extinction coefficients can

also be retrieved from Aeolus data (Ansmann et al., 2007;

Flamant et al., 2008).

As demonstrated by several authors (e.g., Reitebuch et al.,

2018; Lux et al., 2018; Marksteiner et al., 2018; Zhai et al.,

2020), the direct detection measurement principle requires

regular instrument calibration and further post-processing

that relates the measured signal levels to a frequency Doppler

shift which can then be converted into a wind speed. Hence,

the systematic error of wind speeds retrieved from direct de-

tection wind lidars in particular strongly depends on the qual-

ity of the instrument calibration and the alignment stability

of the instrument itself. Thus, in order to verify if the Ae-

olus instrument calibration procedures and processing steps

are robust, validation measurements are inevitable.

3.2 Aeolus data products

The Aeolus data processing chain offers different data prod-

uct levels containing different types of information. A short

overview of them is given in this section. For additional in-

formation it is referred to De Kloe et al. (2017), Tan et al.

(2008), ESA (2016) and Rennie (2018), for example.

The Level 0 data contain the raw data of ALADIN as well

as the instrument housekeeping data and the housekeeping

data of the satellite platform. The assignment of the geoloca-

tion to each measurement and the full processing of the satel-

lite housekeeping data is done in the Level 1A processor. The

Level 1B data already provide processed ground echo data

and preliminary HLOS wind observations that have not been

corrected for atmospheric temperature and pressure (Reite-

buch et al., 2018). Additionally, the viewing geometry data

are available (Tan et al., 2008). The Level 2B data contain

the time series of fully processed profiles of HLOS wind

along the satellite orbit. It is the data product that is also used

by the European Centre for Medium-Range Weather Fore-

casts (ECMWF) for NWP (Tan et al., 2017; Rennie, 2018)

and for the validation by means of 2 µm DWL measurements

as discussed later. It is worth mentioning that the sign of

the HLOS winds is defined such that it is positive for winds

blowing away from the satellite. For instance, for an ascend-

ing orbit, when the satellite moves from south to north and

the laser is pointing eastwards, westerly winds lead to posi-

tive HLOS winds.

Additionally, there are also Level 2C data available which

contain the time series of three-dimensional wind vector pro-

files along the satellite track, which are produced by the

ECMWF model after ingestion of Level 2B data.

From Level 1B to Level 2B, the following important steps

are performed. First, the single measurements are grouped

into observations. By doing so, the horizontal resolution and

the noise of the respective wind observation are controlled.

Furthermore, the measurements are classified by means of

the optical properties of the atmosphere. In particular, the

wind observations are classified into Rayleigh-clear winds,

indicating wind observations in aerosol-poor atmosphere,

and Mie-cloudy winds, indicating winds acquired from par-

ticulate backscatter, predominately from clouds. There are

also Rayleigh-cloudy and Mie-clear winds available in the

data product which are not further discussed within this

study. Moreover, a temperature and pressure correction is

applied for the Rayleigh-wind retrieval which is needed in

order to avoid systematic errors (Dabas et al., 2008). As the

Rayleigh–Brillouin spectrum of molecular scattered light de-

pends on temperature and pressure (Witschas et al., 2010,

2014; Witschas, 2011a, b), any temperature and pressure dif-

ferences between instrument response calibration and wind

observation have to be taken into account. Additionally, a po-

tential cross talk between the Mie and the Rayleigh channel

is corrected within the Level 2B processor. Rayleigh-clear

winds are usually retrieved for a backscatter ratio from 1.0 to

1.4, where the backscatter ratio is defined as the ratio of the

total backscatter coefficient (particles and molecules) to the

molecular component. Thus, for the larger scattering ratios

(close to 1.4) the sensitivity of the Rayleigh channel might

already be impacted by the enhanced Mie signal which has to

be considered for the wind retrieval in order to avoid system-

atic errors. Besides these processing steps, uncertainty esti-

mates and quality flags are calculated for each wind observa-

tion and can be used for quality control.

It is worth mentioning that the Level 2B HLOS winds used

in this study are still in an early-stage state. The Level 1B and

Level 2B processors are continuously updated, and particu-

lar improvements have already been performed; however, the

satellite data have not been reprocessed yet. For the Level 2B

HLOS winds analyzed here, one and the same instrument

calibration file was used from the start of the mission un-

til 16 May 2019. Additionally, ECMWF model comparisons

from September 2018 were used to further correct a remain-

ing systematic bias. On 16 May 2019, the calibration file was

updated. Thus, the two campaigns discussed here are com-

pared to Aeolus data processed with different instrument cal-
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ibration files. Another difference between both campaigns is

the resolution of Mie winds. On 5 March 2019 (08:44 UTC),

the resolution of Mie winds was increased by decreasing the

horizontal averaging down to about 10 km. Furthermore, the

range-gate settings of Aeolus were changed on 26 Febru-

ary 2019 (00:00 UTC) such that they follow the ground el-

evation, which also increases the number of available data

points due to smaller range gates in altitudes with airborne

lidar measurements.

4 The 2 µm Doppler wind lidar at DLR

The 2 µm DWL has been operated by DLR for almost

20 years and has been deployed in several ground and air-

borne field campaigns for measuring aircraft wake vortices

(Köpp et al., 2004), aerosol optical properties (Chouza et al.,

2015, 2017), horizontal wind speeds over the Atlantic Ocean

as input data for assimilation experiments (Weissmann et al.,

2005; Schäfler et al., 2018), and horizontal and vertical wind

speeds to study the life cycle of gravity waves (Witschas

et al., 2017). In addition to that, the system was applied in

several Aeolus pre-launch campaigns conducted within the

last 10 years (e.g., Marksteiner et al., 2018; Lux et al., 2018).

In this section, the 2 µm DWL instrument is shortly de-

scribed, followed by an explanation of the corresponding

measurement procedure and wind retrieval algorithm. After-

wards, the accuracy and precision of the derived wind speeds

are discussed by means of comparison to dropsonde mea-

surements available from previous campaigns.

4.1 Instrument description

The 2 µm DWL is a coherent detection wind lidar system

based on a Tm:LuAG laser operating at a wavelength of

2022.54 nm (vacuum), a laser pulse energy of 1 to 2 mJ and

a pulse repetition rate of 500 Hz, ensuring eye-safe opera-

tion. The system was built by CLR Photonics, Inc. (today

Lockheed Martin Coherent Technologies, Inc.) and has been

deployed at DLR since October 1999.

The 2 µm DWL is composed of three units, namely (1) a

transceiver head containing the laser, a 11 cm afocal tele-

scope, receiver optics, detectors and a double-wedge scan-

ner enabling us to steer the laser beam to any position within

a 30◦ cone angle; (2) a power supply and the cooling unit

of the laser, mounted in a separate rack; and (3) a rack con-

taining the data acquisition unit and the control electronics,

developed by DLR. For a more detailed description of the

2 µm DWL including a listing of the system specifications,

please refer to Witschas et al. (2017).

4.2 Measurement procedure and wind retrieval

In order to measure the three-dimensional wind speed and di-

rection, the velocity–azimuth display (VAD) scan technique

is applied (Browning and Wexler, 1968). That is, a conical

step-and-stare scan around the vertical axes with an off-nadir

angle of 20◦ is performed for 21 LOS positions, separated

by 18◦ in the azimuth direction. Considering a 1 s averag-

ing time for each LOS measurement and an additional sec-

ond in order to change the laser beam pointing direction, one

scanner revolution takes about 42 s. By further taking into

account the aircraft speed of about 200 m s−1, the horizontal

resolution of 2 µm DWL wind observations is about 8.4 km,

depending on the actual ground speed of the aircraft. The ver-

tical resolution of the wind observations is determined by the

laser pulse length and the averaging interval which is set to

be 100 m.

In order to retrieve wind speed and wind direction profiles

from the single LOS measurements performed during one

scanner revolution, several techniques are available (Sma-

likho, 2003). As discussed by Witschas et al. (2017), an

algorithm based on a maximum function of accumulated

spectra (MFAS) is used as the baseline for the 2 µm DWL.

The MFAS algorithm retrieves wind speed and wind direc-

tion without estimating single LOS wind velocities and thus

yields valid wind estimates even in regions of low signal-to-

noise ratios (SNRs). In particular, the spectra of all 21 LOS

measurements are shifted to be proportional to their azimuth

angle and an assumed wind vector. Afterwards, all spectra

are accumulated, and the maximum of the accumulated spec-

tra is determined. For a correctly assumed wind vector, the

accumulated spectra have a maximum and thus indicate the

prevailing wind vector. By applying the MFAS algorithm to

one scanner revolution, the horizontal resolution and vertical

resolution of the retrieved wind vectors are about 8.4 km and

100 m, respectively.

Considering the lower resolution of Aeolus data, which is

about 90 km for the Rayleigh-clear winds and down to 10 km

for the Mie-cloudy winds (horizontal) and between 0.25 and

2 km (vertical), it was investigated if an increased number of

averaged spectra for the MFAS algorithm could further im-

prove the 2 µm DWL data coverage and with that increase

the number of data points available for comparison to Aeo-

lus observations. In particular, a sliding window of five scan-

ner revolutions (90 LOS measurements) and five range gates

(500 m) is used, decreasing the effective horizontal and ver-

tical resolution of the retrieved wind vectors to 42 km and

500 m, respectively, whereas the data are still available on

the one scanner revolution grid, which is 8.4 km and 100 m,

respectively.

In Fig. 2, an example of the wind speed retrieved from

2 µm DWL measurements performed on the first flight leg of

the first ever Aeolus underflight performed on 17 Novem-

ber 2018 during the WindVal III campaign is shown. The

flight leg ranges from 44.85 to 54.82◦ N, which corresponds

to a track length of 1146 km. The leg started south of the

Alps at 15:57 UTC and ended in the north of Germany at

17:45 UTC (see also Fig. 1, left, red line). The Aeolus over-

flight was at around 17:02 UTC. The top panel indicates data

processed with the MFAS algorithm for one scanner revo-
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Figure 2. Wind speed retrieved from 2 µm DWL data by means of the MFAS algorithm for one scanner revolution (a) and five scanner

revolutions and five range gates with a sliding window (b), during the first ever Aeolus underflight performed on 17 November 2018 during

the WindVal III campaign (see also Table 1 and Fig. 1, left, red line). The flight leg ranges from 44.85 to 54.82◦ N which corresponds

to 1146 km track length. The leg started in the south at 15:57 UTC and ended in the north at 17:45 UTC. The satellite overflight was at

around 17:02 UTC. White indicates areas with no valid wind measurements due to aerosol-poor atmospheric conditions and a corresponding

insufficient SNR.

lution and 100 m vertical resolution; the bottom panel shows

data processed with the MFAS algorithm for five scanner rev-

olutions and 500 m vertical resolution (sliding window).

It can be seen that the data coverage for the five-scanner-

revolution average is remarkably increased. In particular, the

retrieval by means of one scanner revolution yields 4693

valid data points out of 12 517 data points which would

give full coverage. Thus, the data coverage with one scanner

revolution is about 37.5 %. On the other hand, the retrieval

by means of five scanner revolutions yields 8719 valid data

points which corresponds to a data coverage of 70 % and thus

an increase of 86 % compared to the one scanner revolution.

Apart from that, it can be seen that detailed structures, for

instance in the vicinity of the jet stream (47.5 to 50.0◦ N),

become less pronounced or blurred due to the decreased res-

olution of the data. However, as the resolution of the satellite

data is even coarser, this should not be an issue for compari-

son.

In order to prove this hypothesis, the wind speeds retrieved

by means of one scanner revolution (v2 µm1-scan
) and five scan-

ner revolutions (v2 µm5-scans
) are analyzed. In particular, the

difference of both data sets (v2 µm1-scan
− v2 µm5-scans

) for all

common data points of all flights flown during the AVATARE

campaign (see also Table 1) and the corresponding mean and

standard deviation (SD) are calculated. A histogram of the

wind speed difference is shown in Fig. 3.

All together, more than 40 000 data points contribute to

this analysis. It can be seen that the systematic error of

the wind speed difference is 0.04 m s−1 and thus negligi-

ble for the comparison to Aeolus data. The random error

(standard deviation) is determined to be 1.24 m s−1. Assum-

ing that both data sets contribute equally, the random error

of 2 µm DWL wind speeds can be estimated to be σ2 µm =
(σdifference/2)1/2 = 0.88 m s−1, which is in line with previ-

ous comparisons to dropsonde measurements as shown in

Sect. 4.3, Table 2.

Considering that, it was decided to use the 2 µm DWL

data retrieved by means of the modified MFAS algorithm

using five scanner resolutions (horizontal) and five range

gates (vertical) for comparison to Aeolus observations as

this increases the number of available data points signifi-

cantly without introducing a distinct systemic error. For all

flight legs performed during WindVal III and AVATARE,

56 % more data are available when applying the five-scanner-

revolution average, keeping all the other parameters constant.
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Figure 3. Histogram of the difference of wind speeds derived from

2 µm DWL data by means of one scanner revolution and five scan-

ner revolutions (v2 µm1-scan
− v2 µm5-scans

) for all flights performed

during the AVATARE campaign (see also Table 1). The mean and

the standard deviation (SD) of the data are indicated by the inset.

4.3 Accuracy and precision of the retrieved wind speed

In order to assess the accuracy (systematic error) and preci-

sion (random error) of 2 µm DWL wind measurements, com-

parisons to dropsonde data were performed during several

campaigns within the past years (Weissmann et al., 2005;

Chouza et al., 2016; Reitebuch et al., 2017; Schäfler et al.,

2018, 2020), and power spectra of LOS winds were analyzed

(Witschas et al., 2017).

During the Gravity Wave Life-Cycle (GW-LCYCLE) I

campaign (Wagner et al., 2017), the 2 µm DWL was used to

measure horizontal and vertical wind speeds in order to in-

vestigate the life cycle of internal gravity waves induced by

flow across the Scandinavian mountains. The spectral power

of the vertical winds measured on a flight performed on

13 December 2013 at 5 km altitude indicates that the mean

random error of LOS winds is 0.21 m s−1, and the mean sys-

tematic error of LOS winds is estimated to be smaller than

0.05 m s−1 (Witschas et al., 2017).

In addition, the random and systematic errors of

2 µm DWL wind speed measurements were determined by

means of comparisons to dropsonde data. In particular, the

data set acquired during the A-TreC campaign (Weissmann

et al., 2005), the SALTRACE campaign (Chouza et al.,

2016), the WindVal I campaign (Reitebuch et al., 2017) and

the NAWDEX campaign (Schäfler et al., 2018) was used to

determine the systematic error of retrieved wind speeds to

be always below 0.1 m s−1 and the random error to vary be-

tween 0.92 and 1.5 m s−1. It is worth mentioning that both the

systematic and the random errors are composed of the contri-

bution of the 2 µm DWL and the dropsonde and correspond-

ing representativeness errors. An overview of the respective

results is given in Table 2.

Figure 4. Sketch of the processing steps used to compare

2 µm DWL measurements with Aeolus observations.

The variability of the systematic and the random errors for

different campaign data sets can have several causes, for in-

stance slightly different thresholds for the allowed spatial and

temporal distance between dropsonde and lidar observation

and slightly different quality controls for the dropsonde and

lidar measurements. Nevertheless, considering the low sys-

tematic error of smaller than 0.1 m s−1 and a reasonable ran-

dom error varying between 0.92 and 1.5 m s−1, it can be con-

cluded that the 2 µm DWL is a suitable reference instrument

for Aeolus validation. For further analysis, the 2 µm DWL

random error is considered to be 1 m s−1 for the horizontal

wind speed.

5 Comparison of Aeolus and 2 µm Doppler wind lidar

data

Due to the different horizontal and vertical resolutions of

2 µm DWL measurements (≈ 8.4 km, 100 m for one scan-

ner revolution or ≈ 42 km, 500 m) and Aeolus measurements

(≈ 90 km (Rayleigh) and down to ≈ 10 km (Mie), 0.25 to

2 km), averaging procedures are needed in order to compare

respective wind observations. Furthermore, as Aeolus only

provides HLOS winds, the 2 µm DWL measurements have

to be projected onto the Aeolus HLOS direction. A sketch of

the applied processing steps is shown in Fig. 4.

First, the wind speed and wind direction measured by the

2 µm DWL are averaged to the Aeolus grid by using the top

and bottom altitudes as well as the start and stop latitudes

given in the Aeolus Level 2B data product. As the 2 µm DWL

does not provide full data coverage, a threshold for the num-

ber of available 2 µm DWL observations within an Aeolus

grid point has to be set. In this study, at least 50 % valid

2 µm DWL measurements need to be available in order to

consider the averaged wind speed and wind direction for fur-

ther comparison. It was verified that using a more restrictive

threshold of, for instance, 75 % or 90 % yields comparable

systematic and random errors but with a significantly reduced

number of data points that can be compared. Thus, it was de-

cided to apply a threshold of 50 %.
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Table 2. Systematic and random error of 2 µm DWL wind speeds determined by comparison to dropsonde measurements and power spectrum

analysis of 2 µm DWL horizontal and LOS wind speeds.

Wind product Systematic error Random error Data points Reference

Horizontal wind speed < 0.01 m s−1 1.20 m s−1 740 Weissmann et al. (2005)

Horizontal wind speed 0.08 m s−1 0.92 m s−1 1329 Chouza et al. (2016)

Horizontal wind speed −0.03 m s−1 1.46 m s−1 938 Reitebuch et al. (2017)

Horizontal wind speed 0.05 m s−1 1.50 m s−1 245 Schäfler et al. (2020)

Single LOS wind speed 0.05 m s−1 0.20 m s−1 2000 Witschas et al. (2017)

Both the random error and the systematic error are composed of the contribution of the 2 µm DWL and the dropsondes, and

corresponding representativeness errors.

Afterwards, all valid averaged wind speeds (ws2 µm) and

directions (wd2 µm) are projected onto the horizontal LOS of

Aeolus (v2 µmHLOS
) by means of the range-dependent azimuth

angle ϕAeolus that is provided in the Aeolus Level 2B data

product according to

v2 µmHLOS
= cos

(

ϕAeolus − wd2 µm

)

· ws2 µm. (1)

In a next step, the Aeolus HLOS winds (Rayleigh clear and

Mie cloudy) are extracted for areas of valid 2 µm DWL mea-

surements. Beforehand, the data are filtered by means of an

estimated error for the wind speeds, which is also given in the

Level 2B data product and which is estimated based on the

measured signal levels as well as the temperature and pres-

sure sensitivity of the Rayleigh channel response (Tan et al.,

2008, 2017). In this study, a threshold for the estimated error

of 8 m s−1 is applied for the Rayleigh winds and 4 m s−1 for

the Mie winds.

The explained averaging procedure and the resulting data

sets for the 2 µm DWL and Aeolus are illustrated in Fig. 5

for the satellite underflight performed on 17 November 2018.

Panel (a) shows all valid Aeolus Rayleigh-clear observations,

panel (b) shows the 2 µm DWL data averaged to the Aeolus

measurement grid and projected onto its HLOS direction and

panel (c) displays the corresponding Rayleigh-clear winds in

regions where 2 µm DWL data are available. It can be seen

that from 8719 available 2 µm DWL observations (see also

Fig. 2), a comparison to only 72 Rayleigh-clear observations

(13 Mie cloudy, not shown) is possible. Thus, a certain num-

ber of underflights are needed in order to obtain enough data

points for a statistically significant comparison.

In order to validate the quality of Aeolus HLOS

winds (vAeolusHLOS
), the difference to the corresponding

2 µm DWL winds projected onto the Aeolus viewing direc-

tion (v2 µmHLOS
) is calculated according to

vdiffHLOS
= vAeolusHLOS

− v2 µmHLOS
. (2)

vdiffHLOS
can also be used to verify the thresholds for the

Aeolus estimated error used in this study as shown in Fig. 6.

For the Rayleigh-clear winds (Fig. 6, top) it can be seen that

the lowest estimated errors are calculated to be 3.7 m s−1.

The systematic error, represented by the difference of Ae-

olus and 2 µm DWL (Eq. 2), remains rather constant until

an estimated error of about 8 m s−1 and then starts to in-

crease gradually. The Mie-cloudy winds show estimated er-

rors down to 0.7 m s−1. The systematic error is rather con-

stant up to an estimated error value of 4 m s−1. For larger

estimated errors, the systematic error increases remarkably.

Thus, for further analysis, only Rayleigh-clear winds with

estimated errors smaller than 8 m s−1 and Mie-cloudy winds

with estimated errors smaller than 4 m s−1 are considered.

In order to quantify the quality of Aeolus HLOS winds, the

bias and standard deviation (SD) of vdiffHLOS
are calculated by

use of

bias =
1

n

n
∑

i=1

vdiffHLOS
(3)

and

SD =

√

√

√

√

1

n − 1

n
∑

i=1

(

vdiffHLOS
− bias

)2
, (4)

where n is the number of available data points. In addition to

the standard deviation, the scaled median absolute deviation

(scaled MAD) is calculated according to

scaled MAD

= 1.4826 × median
(
∣

∣vdiffHLOS
− median

(

vdiffHLOS

)
∣

∣

)

. (5)

The scaled MAD has the advantage that it is less sensitive to

single outliers which may result in larger SD values and is

thus used as a measure of the random error of Aeolus HLOS

winds. The scaled MAD is identical to the standard devia-

tion (Eq. 4) if the analyzed data are normally distributed. In

addition to the aforementioned quantities, a least-square line

fit to the respective data sets is performed, and the retrieved

slopes and intercepts are evaluated.

All Aeolus wind results in relation to the averaged

2 µm DWL wind results for both the WindVal III and the

AVATARE campaigns are shown in Fig. 7a and b, respec-

tively, and are discussed in the next section.

Atmos. Meas. Tech., 13, 2381–2396, 2020 www.atmos-meas-tech.net/13/2381/2020/



B. Witschas et al.: Validation of Aeolus wind observations 2389

Figure 5. Wind observations obtained during the first leg of the Aeolus underflight on 17 November 2018 between 45 and 55◦ N (1146 km)

in the framework of the WindVal III campaign. (a) Aeolus Rayleigh-clear winds with an estimated error of smaller than 8 m s−1. (b) Corre-

sponding 2 µm DWL observations averaged to the Aeolus grid and projected onto its viewing direction. (c) Aeolus Rayleigh-clear winds as

shown in (a) in regions where 2 µm DWL data are available for comparison.

6 Discussion

In Fig. 7, Rayleigh-clear winds and Mie-cloudy winds are in-

dicated by blue dots and orange dots, respectively. Line fits

to the corresponding data sets are depicted by the light blue

and the yellow lines. The x = y line is represented by the

gray dashed line. A summary of the statistical parameters re-

trieved from the scatter plot analysis is given in Table 3.

All together, the four satellite underflights during the

WindVal III campaign resulted in 231 data points for

Rayleigh-clear wind validation and 109 data points for Mie-

cloudy wind validation. The six satellite underflights dur-

ing the AVATARE campaign resulted in 504 or 339 data

points for Rayleigh and Mie wind validation, respectively,

and thus about a factor of 2 more than for WindVal III. The

increased number of data points can be explained by two

more underflights performed during the AVATARE campaign

and a better 2 µm DWL performance during AVATARE due

to a complete optical realignment of the system before the

campaign, leading to a remarkably better data coverage and

hence to more data points being available for comparison.

Additionally, since 5 March 2019 (08:44 UTC), Aeolus Mie

winds have been processed with a shorter horizontal averag-

ing length of down to 10 km, also leading to more Mie winds

that can be used for comparison. Furthermore, the range-

gate settings of Aeolus were changed on 26 February 2019

(00:00 UTC) such that the vertical bins follow the ground el-

evation, which also increases the number of available data

points.

The slope of the least-square line fits is close to 1 for

both campaign data sets and both wind products (Mie

cloudy and Rayleigh clear), indicating the good correspon-

dence of the Aeolus HLOS wind data. No significant wind-

speed-dependent bias is obvious from the slope analysis.

In particular, the slope yields 0.99 ± 0.01 (Rayleigh) and

0.96 ± 0.03 (Mie) for the WindVal III data set and 0.98 ±
0.02 (Rayleigh) and 1.01±0.02 (Mie) for the AVATARE data

set. Here, the given uncertainty represents the standard error

of the mean value retrieved from the least-square line fit. In

the following, the magnitude of the systematic error and the

random error retrieved from both campaign data sets and po-

tential reasons for them are discussed.
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Table 3. Comparison of Aeolus HLOS winds and 2 µm DWL winds projected onto the horizontal viewing direction of Aeolus.

Rayleighclear Miecloudy

Slope Intercept Bias Scaled Points Slope Intercept Bias Scaled Points

MAD MAD

(ms−1)/(ms−1) (ms−1) (ms−1)/(ms−1) (ms−1)

WindVal III 0.99 ± 0.01 2.2 ± 0.3 2.1 4.0 231 0.96 ± 0.03 2.7 ± 0.4 2.3 2.2 109

AVATARE 0.98 ± 0.02 −4.4 ± 0.3 −4.6 4.4 504 1.01 ± 0.02 −0.2 ± 0.2 −0.2 2.2 339

The uncertainty given for the slope and intercept values represents the standard error retrieved from the least-square line fit.

Figure 6. Wind speed difference of Aeolus HLOS winds and

2 µm DWL winds projected onto the Aeolus viewing direction ac-

cording to Eq. (2) depending on the estimated error given in the L2B

product for Rayleigh-clear winds (a) and Mie-cloudy winds (b).

Shown are all valid data points from WindVal III and AVATARE.

Data points with an estimated error larger than 8 m s−1 (Rayleigh)

or 4 m s−1 (Mie) are not considered to be valid observations (gray

areas).

6.1 Systematic error

The intercepts of the respective line fits are determined to be

(2.2 ± 0.3) m s−1 (Rayleigh) and (2.7 ± 0.4) m s−1 (Mie) for

WindVal III and (−4.4±0.3) m s−1 (Rayleigh) and (−0.21±
0.17) m s−1 (Mie) for AVATARE, where the uncertainty rep-

resents the standard error of the mean value retrieved from

the least-square line fit. Except for the Mie winds of the

AVATARE data, these values are considerably larger than

the specified systematic error of 0.7 m s−1 for Aeolus HLOS

winds (ESA, 2016). A similar finding is obtained from the

biases calculated according to Eq. (3) which yield 2.1 m s−1

(Rayleigh) and 2.3 m s−1 (Mie) for the WindVal III data set

and −4.6 m s−1 (Rayleigh) and −0.17 m s−1 (Mie) for the

AVATARE data set. As revealed in Sect. 4.3, the systematic

error of 2 µm DWL observations is smaller than 0.1 m s−1

and thus does not noticeably contribute here. Though the root

cause of the enhanced systematic error is not unequivocally

verified yet, it can be explained by an inadequate calibration

file that is used within the Aeolus Level 2B processor, cou-

pled with instrumental drifts that were observed throughout

the mission time (Reitebuch et al., 2019). Such instrumental

drifts require a regular update of the calibration file in order

to avoid systematic errors in the wind retrieval which was not

performed in the early stage of the mission.

It can also be seen that both the bias and the intercept

of Rayleigh-clear winds change sign between the two cam-

paigns, which is due to different calibration files used for the

wind retrieval within the respective campaign periods. In par-

ticular, since the start of the mission on 22 August 2018, the

very same calibration file was used until 16 May 2019 when

a different calibration file was implemented. Thus, the Aeo-

lus data acquired in the campaign period of WindVal III and

AVATARE were processed with different calibration files,

leading to the different systematic errors.

In order to further characterize and constrain the root cause

of the enhanced systematic error, its dependency on several

quantities, namely the time difference between 2 µm DWL

and satellite observation, the actual wind speed, the scatter-

ing ratio, the altitude and the geolocation (latitude), is inves-

tigated, as shown in Fig. 8. The respective random error can

be estimated by analyzing the spread of the systematic errors.

Due to the different platform speeds of the satellite

(≈ 7.7 km s−1) and the Falcon aircraft (≈ 200 m s−1), almost

all 2 µm DWL observations have a certain temporal differ-

ence with respect to the satellite observations. Depending

on the variability of the atmospheric wind field, this can

lead to both systematic and increased random errors for the

comparison, where it is expected that both systematic and

random errors increase with an increasing temporal differ-

ence between satellite and lidar observation. Thus, the ob-

tained wind speed differences (Eq. 2) were analyzed depend-

ing on the time difference between satellite and 2 µm DWL

observation as shown in Fig. 8a. In addition to the respec-

tive observation, the mean value of 50 observations and the

corresponding standard deviation (error bars) are shown for

the WindVal III data set (orange) and the AVATARE data

set (magenta). It can be seen that data from about 1.5 h be-

Atmos. Meas. Tech., 13, 2381–2396, 2020 www.atmos-meas-tech.net/13/2381/2020/



B. Witschas et al.: Validation of Aeolus wind observations 2391

Figure 7. Aeolus HLOS wind speed plotted against the 2 µm DWL wind speed projected onto the horizontal viewing direction of Aeolus

for eight flight legs from four underflights performed during the WindVal III campaign in 2018 (a) and for 10 flight legs from six under-

flights performed during the AVATARE campaign in 2019 (b) (see also Table 1). The wind measurements are separated in Rayleigh-clear

winds (blue) and Mie-cloudy winds (orange). Corresponding least-square line fits are indicated by the light blue and yellow lines. The fit

results are shown in the insets. The x = y line is represented by the gray dashed line.

fore to 1.5 h after the satellite overflight are used for com-

parison. By analyzing the mean values and standard devi-

ations, it becomes obvious that there is no significant in-

crease in the systematic or the random error with an increas-

ing time difference. Thus, a least-square line fit is performed

for further analysis. The determined slopes of the respec-

tive data sets are (1.1 ± 0.4) (m s−1) h−1 for WindVal III and

(0.38±0.33) (m s−1) h−1 for AVATARE. Thus, a small linear

trend with respect to the time difference of the satellite over-

flight is obvious from the WindVal III data set, whereas no

significant dependency is obvious for AVATARE. The inter-

cept values of (2.2 ± 0.3) m s−1 and (−4.7 ± 0.2) m s−1 are

comparable to the mean bias obtained for the respective data

sets, namely 2.1 and −4.6 m s−1 (see also Fig. 7). Hence,

it is verified that the time difference between satellite and

2 µm DWL observation does not introduce a significant sys-

tematic error for the statistical analysis of the data. It can

also be seen that the points scatter randomly around the mean

value with a comparable spread (see also error bars of mean

values), indicating that the random error also does not have a

remarkable dependency on the temporal difference of Aeolus

and 2 µm DWL observations.

In the next step, the dependency of the systematic er-

ror of Rayleigh-clear winds on the actual wind speed rep-

resented by the 2 µm DWL measurements is investigated as

shown in Fig. 8b. It can be seen that the acquired HLOS

wind speed range was much larger for the WindVal III cam-

paign (blue dots), ranging from −50 to 35 m s−1, whereas it

was −20 to 35 m s−1 for AVATARE. Least-square line fits to

the respective data sets yield a slope of −0.014 ± 0.015 and

−0.022±0.025 and thus would indicate a wind speed depen-

dency of the systematic error of about 1 % to 2 %. However,

as the uncertainty of the slope has the same order of magni-

tude, this dependency is not considered to be significant. Ad-

ditionally, the intercepts of (2.2±0.3) and (−4.4±0.3) m s−1

are comparable to the mean bias obtained for the respective

data sets stated above.

Another interesting topic to analyze is the dependency of

the systematic error of Rayleigh-clear winds on the scattering

ratio given in the L2B product as shown in Fig. 8c. It can be

seen that there is a significant dependency of the systematic

error on the scattering ratio for both campaign data sets. Ac-

cording to the least-square line fits applied to the respective

data sets, the systematic error decreases from 3.4 to 1.0 m s−1

for WindVal III and from −2.6 to −8.0 m s−1 for AVATARE

within the available scattering ratio range. If one corrects this

trend for the determined bias of 2.1 m s−1 (WindVal III) and

−4.6 m s−1 (AVATARE), the systematic error varies around

zero, from −1.1 to 1.3 m s−1 (WindVal III) or from −3.4 to

2.0 m s−1 (AVATARE). Furthermore it can be seen that the

scattering ratio varied between 1.08 and 1.18 for WindVal III

and from 1.15 to 1.38 for AVATARE. This means that the

determination of the scattering ratio, the respective thresh-

old for classifying Rayleigh-clear winds or the actual aerosol

load during the flights changed between the two campaigns.

The slopes of the least-square line fits are determined to be

(−24.9 ± 21.4) and (−23.2 ± 5.1) (m s−1)−1 and thus even

show similar magnitudes. The uncertainty of the obtained

slope is smaller for the AVATARE data set as it extends over a

broader scattering ratio range. A larger scattering ratio means
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Figure 8. Wind speed difference of Aeolus Rayleigh-clear winds and 2 µm DWL winds calculated according to Eq. (2) depending on time

difference of 2 µm DWL observation to satellite overflight time (a), wind speed (b), scattering ratio (c) and altitude (d) and latitude (e). Data

points of the WindVal III and AVATARE campaign are indicated in blue and green, respectively. Least-square line fits to the data points

are represented by the light blue and light green lines. In plot (a), the mean of 50 subsequent data points and the corresponding standard

deviation (error bars) are show for WindVal III (orange) and AVATARE (magenta).

that there is a stronger contribution of the narrowband Mie re-

turn which also partly enters the Rayleigh spectrometer and

hence results in a changed sensitivity of the Rayleigh chan-

nel. This has to be considered for the wind retrieval in order

to avoid systematic errors. Hence, it is likely that this effect

is not fully corrected so far, making the scattering ratio a sig-

nificant contributor of the Rayleigh-clear wind systematic er-

ror. While writing this paper, improvements on the scattering

ratio determination and correction scheme were already on-

going in the Level 2B processor (Jos de Kloe, personal com-

munication, 7 August 2019).

The altitude dependency of the systematic error of

Rayleigh-clear winds is shown in Fig. 8d. It can be seen that

the Aeolus range-gate setting was kept constant during the
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WindVal III campaign period (blue dots), leading to a vertical

accumulation of wind observations. For the AVATARE cam-

paign, the range gates followed the ground elevation, leading

to a more scattered distribution of the data points. The least-

square line fits to the respective data sets yield (−0.27±0.12)

and (0.20±0.11) (m s−1) km−1 and thus indicate a small alti-

tude dependency. Though it is not verified, this could be due

to an imperfect temperature and pressure correction needed

for the wind retrieval (Dabas et al., 2008) or an altitude-

dependent scattering ratio during the flights. As two different

calibration files were used for the Level 2B processing of Ae-

olus data within the respective campaign period, this could

also explain the different slope sign for the two campaign

data sets. However, more measurements would be needed in

order to solidly determine if the systematic error shows a sig-

nificant altitude dependency.

Lastly, the dependency of the systematic error of Rayleigh-

clear winds on latitude is analyzed as indicated by Fig. 8e.

It can be seen that 2 µm DWL observations are available

from 40 to 60◦ N. The least-square line fits to the respec-

tive data sets yield (0.26 ± 0.08) m s−1 per degree latitude

north (WindVal III) and (0.02 ± 0.05) m s−1 per degree lati-

tude north (AVATARE). Thus, a small latitude dependency

is obvious from the WindVal III comparison, but not for

AVATARE. The analysis of Aeolus ground returns, which

should actually yield 0 m s−1 wind velocity, has shown that

there is a harmonic variation in the bias along the orbital

phase (latitude dependence) (Reitebuch et al., 2019). In the

future, this harmonic bias will be corrected by, for instance,

exploiting ground return signals.

In summary, besides a generally incorrect calibration file,

the scattering ratio or the corresponding correction scheme

seems to be the main contributor to the systematic error of

Rayleigh-clear winds. For Mie-cloudy winds the calibration

file is considered to be the main reason for the enhanced sys-

tematic error. Given the small systematic bias of Mie-cloudy

winds (−0.17 m s−1) for the AVATARE campaign, it can be

concluded that the strict requirement of 0.7 m s−1 specified

for Aeolus HLOS winds can principally be met.

6.2 Random error

The random error σdiffHLOS
given in Fig. 7 is represented by

the scaled median absolute deviation according to Eqs. (4)

and (5) and is determined to be 4.0 m s−1 (Rayleigh) and

2.2 m s−1 (Mie) for the WindVal III data set and 4.4 m s−1

(Rayleigh) and 2.2 m s−1 (Mie) for the AVATARE data

set. As revealed in Sect. 4.3, the random error σDWL of

2 µm DWL observations lies between 0.92 and 1.50 m s−1.

By assuming independence between Aeolus and 2 µm DWL

measurements, the actual Aeolus random error σAeolus can be

calculated according to σAeolus =
√

σ 2
diffHLOS

− σ 2
DWL, where

σDWL is assumed to be 1 m s−1 here. With that, the ran-

dom error of Aeolus HLOS winds is derived to be 3.9 m s−1

(Rayleigh) and 2.0 m s−1 (Mie) for the WindVal III data

set and 4.3 m s−1 (Rayleigh) and 2.0 m s−1 (Mie) for the

AVATARE data set. This demonstrates that the 2 µm DWL

only contributes marginally to the random error and that the

random error of Rayleigh-clear winds is significantly larger

than the 2.5 m s−1 required for Aeolus HLOS winds at alti-

tudes between 2 and 16 km (ESA, 2016; Kanitz et al., 2019;

Reitebuch et al., 2019).

The main reason for the enhanced random error is a lower-

than-expected signal level of the light backscattered from the

atmosphere. On the one hand, this is caused by a lower laser

pulse energy of about 53 mJ during WindVal III and 42 mJ

during AVATARE instead of 80 mJ as originally planned for

Aeolus (ESA, 2016; Kanitz et al., 2019; Reitebuch et al.,

2019; Lux et al., 2020b). On the other hand, slight misalign-

ments could introduce a clipping of the laser beam within the

receiver at the field stop, leading to additional signal loss. Us-

ing a radiometric performance simulation tool, the detected

signal levels are estimated to be a factor of 2.5 to 3 lower

than expected (Reitebuch et al., 2019).

The 11 mJ decrease in laser pulse energy between the

WindVal III and the AVATARE campaign periods also ex-

plains the increase in random error of the Rayleigh-clear

winds from 4.0 to 4.4 m s−1. Considering that the random

error is dominated by shot noise (Poisson noise), it is ex-

pected to scale with the square root of the laser energy. Thus,

the expected random error for AVATARE can be calculated

by considering the random error determined for WindVal III

(3.97 m s−1) and the respective mean laser energies (53 mJ

for WindVal III and 42 mJ for AVATARE) according to

4.0ms−1 ·
√

53mJ/42mJ = 4.5ms−1, which is in good ac-

cordance with the determined random error of 4.4 m s−1,

considering the uncertainties of the respective quantities. The

Mie-cloudy wind random error does not show this trend,

which is due to the fact that the Mie return signal depends not

only on the laser energy but also on the presence of aerosols

and clouds and their respective optical properties (backscat-

ter and extinction coefficient) which can compensate for the

lower laser power.

It is worth mentioning that all flights during WindVal III

and AVATARE were performed under conditions where

larger vertical wind speeds, induced by mountain waves for

instance, can be excluded. The vertical winds measured by

the 2 µm DWL confirm that the vertical wind speeds rarely

exceed 0.5 m s−1. Thus, the vertical wind speed can be ex-

cluded as a distinct contributor to the Aeolus random error.

7 Summary

DLR recently performed two airborne campaigns with two

wind lidars aboard DLR’s Falcon aircraft over central Europe

in November–December 2018 and June–July 2019 in order

to validate ESA’s Aeolus mission. A total of 10 satellite un-

derflights with 19 flight legs covering more than 7500 km of

www.atmos-meas-tech.net/13/2381/2020/ Atmos. Meas. Tech., 13, 2381–2396, 2020
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Aeolus swaths were performed and used to validate the pre-

liminary wind data product of Aeolus by means of collocated

observations for the first time. In this paper, the systematic

and random errors of Aeolus HLOS wind observations are

determined by means of the 2 µm DWL which acts as a ref-

erence system due to its low systematic and random errors

that come along with the coherent measurement principle of

the system (see Sect. 4.3). In particular, the systematic er-

ror of 2 µm DWL observations is smaller than 0.1 m s−1, and

the random error is between 0.92 and 1.5 m s−1. Though this

random error is noticeably smaller than that of Aeolus, it is

considered for the statistical comparison performed here. The

Aeolus measurement principle, its calibration procedures and

wind data products are addressed in the context of an inter-

comparison study between Aeolus and A2D wind observa-

tions from the WindVal III campaign (Lux et al., 2020a).

For the WindVal III campaign, the systematic error is

determined to be 2.1 m s−1 for Rayleigh-clear winds and

2.3 m s−1 for Mie-cloudy winds. For the AVATARE cam-

paign, the systematic error is −4.6 m s−1 (Rayleigh clear)

and −0.2 m s−1 (Mie cloudy). Except for the Mie-cloudy

winds measured during the AVATARE campaign, the sys-

tematic error is remarkably larger than the 0.7 m s−1 value

planned for Aeolus. Instrumental drifts together with inade-

quate calibration files are presumed to be the reasons for the

enhanced systematic errors, which can and will be corrected

in reprocessed data sets and which will be avoided for future

data by improved algorithms.

Dependencies of the systematic error on observation time

difference, wind speed, scattering ratio, altitude and geolo-

cation were investigated, showing that the backscattering ra-

tio has a remarkable influence on the systematic error of the

Rayleigh-clear winds. This points to an issue with the cross-

talk correction within the Level 2B retrieval which is cur-

rently revised.

It is worth mentioning that the Aeolus Level 2B product

used in this study is still in an early stage and will also be

improved based on the results of the airborne campaigns pre-

sented in this study. A few of the mentioned and discussed

issues are already solved.

The random error of Rayleigh-clear winds is determined

to be 3.9 m s−1 (WindVal III) and 4.3 m s−1 (AVATARE)

and that of Mie-cloudy winds to be 2.0 m s−1 (WindVal III)

and 2.0 m s−1 (AVATARE). Thus, for Rayleigh-clear winds,

the random error is significantly larger than the 2.5 m s−1

planned for Aeolus HLOS winds at altitudes between 2 and

16 km. The enhanced random error is related to the lower

laser energy together with an additional signal loss in the re-

ceiver possibly caused by clipping of the return signal on the

field stop of the receiver. This also explains the even higher

random error during the AVATARE campaign, where the

mean laser energy was 11 mJ lower than during WindVal III.

The results elaborated in this study confirm the necessity

to validate the Aeolus wind product and demonstrate that the

DLR airborne wind lidar payload is well suited for this task.

In September 2019, another validation campaign is planned

to be flown out of Keflavík, Iceland, in order to verify the

performance of Aeolus in the North Atlantic region over a

large wind speed range in the vicinity of the jet stream. This

is also the first opportunity to investigate the performance

of the second laser of Aeolus which has been operating since

July 2019 during collocated airborne wind lidar observations.
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