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ABSTRACT

We present an analysis of the luminosity distances of Type Ia Supernovae from the
Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey in conjunction with other
intermediate redshift (z < 0.4) cosmological measurements including redshift-space
distortions from the Two-degree Field Galaxy Redshift Survey (2dFGRS), the Inte-
grated Sachs-Wolfe (ISW) effect seen by the SDSS, and the latest Baryon Acoustic
Oscillation (BAO) distance scale from both the SDSS and 2dFGRS. We have analysed
the SDSS-II SN data alone using a variety of “model-independent” methods and find
evidence for an accelerating universe at >97% level from this single dataset. We find
good agreement between the supernova and BAO distance measurements, both con-
sistent with a Λ–dominated CDM cosmology, as demonstrated through an analysis of
the distance duality relationship between the luminosity (dL) and angular diameter
(dA) distance measures. We then use these data to estimate w within this restricted
redshift range (z < 0.4). Our most stringent result comes from the combination of
all our intermediate–redshift data (SDSS-II SNe, BAO, ISW and redshift–space dis-
tortions), giving w = −0.81+0.16

−0.18
(stat)±0.15(sys) and ΩM = 0.22+0.09

−0.08
assuming a flat

universe. This value of w, and associated errors, only change slightly if curvature is al-
lowed to vary, consistent with constraints from the Cosmic Microwave Background. We
also consider more limited combinations of the geometrical (SN, BAO) and dynamical
(ISW, redshift-space distortions) probes.

Key words: (stars:) supernovae: general, (cosmology:) observations, distance-scale,
cosmological parameters, large-scale structure of universe

1 INTRODUCTION

It is now widely believed that the late-time expansion
of the universe is accelerating. General Relativity (GR)
implies that the acceleration is driven by “dark energy”
(DE) — an unknown energy component in the universe
with a negative effective pressure. Describing dark energy
by an equation-of-state parameter of w(z) = p/(ρc2) re-
quires that w < −1/3. Alternatively, accelerated expan-
sion could be an indication that GR is not the correct
theory of gravity or that we have applied GR incorrectly
in a cosmological context (see recent reviews of DE by
Peebles & Ratra 2003, Uzan 2006, Copeland et al. 2006, and
Frieman, Turner, & Huterer 2008).

Over the last decade, the most direct way of study-
ing this acceleration of the expansion of the universe, and
therefore DE, has been using Type Ia Supernovae (SNe), as
they have been shown by many authors to be well-calibrated
“standard candles” in the universe, i.e., their relative dis-
tances can be determined from the dependence of their peak
luminosity on the shape of the light curve. This method was
used to great effect by astronomers in 1998 to provide the
first evidence for an accelerated universe (Riess et al. 1998;
Perlmutter et al. 1999; see Filippenko 2005 for a review).

Briefly, a Type Ia supernova occurs when a white dwarf
star in a close binary system accretes enough mass from
its companion to undergo a thermonuclear explosion in the
core. Both Phillips (1993) and Hamuy et al. (1993) have
shown that such explosions can serve as consistent light
sources in the universe to high accuracy. This is achieved by
transforming the measured light curve of the explosion into
the rest frame of the supernova (so called K-corrections) and

⋆ E-mail: Hubert.Lampeitl@port.ac.uk

then correcting the luminosity at maximum as a function of
the shape of the rest-frame light curve.

Several techniques now exist for fitting SN light curves
known under different acronyms (∆m15, Hamuy et al.
1996; MLCS, Riess, Press, & Kirshner 1996; stretch,
Perlmutter et al. 1997; CMAGIC, Wang et al. 2003;
BATM, Tonry et al. 2003; SALT, Guy et al. 2005; ∆C12,
Wang et al. 2006; SALT2, Guy et al. 2007; SiFTO,
Conley et al. 2008). In this analysis, we consider MLCS2k2
(Jha, Riess, & Kirshner 2007; Riess, Press, & Kirshner
1996), which is among the most commonly used, and best
tested, of these various techniques.

Recently, several dedicated SN surveys have been car-
ried out to confirm and extend the earlier detections of
an accelerating universe (HST, Riess et al. 2004, 2007;
SNLS, Astier et al. 2006; ESSENCE, Wood-Vasey et al.
2007) as well as new compilations of existing SN datasets
(Davis et al. 2007; Kowalski et al. 2008; Hicken et al. 2009).
In addition to supernovae, observations of Baryon Acoustic
Oscillations (BAO) can be used to measure distances in the
universe (Blake & Glazebrook 2003; Seo & Eisenstein 2003;
Hu & Haiman 2003). The BAO are caused by sound waves
in the early universe which leave a preferred scale in the
distribution of matter equal to the sound horizon at recom-
bination. Today, this scale corresponds to ∼ 100/h Mpc
(Hubble constant at present: H0 = 100h km/s/Mpc) and
can thus be used as a “standard ruler” throughout the uni-
verse. The BAO signature has been detected in the cluster-
ing of galaxy clusters by Miller, Nichol, & Batuski (2001), in
the correlation of galaxies in the Sloan Digital Sky Survey
(SDSS, York et al. 2000) by Eisenstein et al. (2005), Hütsi
(2006), Padmanabhan et al. (2007), and Blake et al. (2007),
and in the Two-degree Field Galaxy Redshift Survey (2dF-
GRS, Colless et al. 2001) by Cole et al. (2005).

In addition to the geometrical methods discussed above,
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observations of the dynamical properties of matter can pro-
vide constraints on the matter density of the universe and
w (assuming General Relativity is the appropriate theory
of gravity). For example, the growth rate of structure in
the universe can be observed via the coherent infall of
galaxies into large clusters and superclusters of galaxies
seen in redshift surveys (Kaiser 1987). Also, the growth of
structure can be measured using the late-time Integrated
Sachs-Wolfe (ISW) effect (Sachs & Wolfe 1967), which has
now been detected to high significance through the cross-
correlation of galaxy surveys with the Cosmic Microwave
Background (CMB) (see Giannantonio et al. 2008 and ref-
erences therein). The ISW is sensitive to deviations from
a matter-dominated, Einstein-de Sitter universe (ΩM = 1,
where ΩM is the matter density at present divided by the
critical density.).

Taken together, the present combination of cosmologi-
cal measurements suggests we live in a flat univers, domi-
nated by a cosmological constant (Λ) with the energy density
in matter and Λ known to a statistical accuracy of better
than a few percent (see Dunkley et al. 2009). However, sev-
eral of these cosmological measurements, especially SNe, are
becoming limited by their systematic uncertainties which are
now dominating, e.g., Hicken et al. (2009) showed that the
best combination of available SNe and BAO measurements
provide 1 + w = 0.013+0.066

−0.068 but with a systematic uncer-
tainty of 0.11. Therefore, it is clear that future cosmological
surveys must resolve these systematic errors through new
observations and better analysis methods to mitigate their
effect.

This paper is one of three complementary papers fo-
cused on the cosmological analysis of a new sample of inter-
mediate supernova distances recently obtained by the SDSS-
II Supernova Survey (see Section 2 for details). Our analy-
sis differs from those presented in our companion papers of
Kessler et al. (2009) and Sollerman et al. (2009), as we first
study the cosmological information obtained solely from the
SDSS-II SN sample, and then in combination with other cos-
mological probes over the same redshift range (z < 0.4). Al-
ternatively, Kessler et al. (2009) presents a detailed exami-
nation of the impact of both statistical and systematic errors
on deriving standard cosmological constraints based on the
combination of the SDSS-II SN with most of the currently
available high and low redshift SNe and which are all anal-
ysed in a consistent way. Sollerman et al. (2009) then use the
same compilation of data to study an expanded set of exotic
cosmological models, in combination with a wider variety of
other cosmological information. Our approach is also com-
plementary to the many other analyses in the literature (e.g.
Davis et al. 2007, Kowalski et al. 2008, Hicken et al. 2009)
that have used data from all possible sources.

In our approach we concentrate on the information from
cosmological measurements that cover the same range of
redshifts as the SDSS SN sample. Our aim is not to derive
the most stringent limit on cosmological parameters avail-
able, but rather to verify that if we restrict ourself to probes
coming from a small and similar redshift slice the results
on cosmological parameters remain stable and consistent.
This approach is warranted because of the growing empha-
sis on controlling systematic uncertainties in the analysis of
cosmological data. There are clearly a number of system-
atic uncertainties that could affect the use of SNe as cos-

mological probes which likely depend on, or change with,
redshift, including SN evolution (e.g., changes in the metal-
licity of progenitor stars Timmes, Brown, & Truran (2003);
Howell et al. (2009); Sullivan et al. (2009)), intergalactic
dust (Conley et al. 2007; Holwerda 2008), Malmquist bias
and the effects of gravitational lensing and peculiar veloc-
ities (Hui & Greene 2006). Moreover, the photometric un-
certainties associated with combining SN data from multi-
ple surveys, over a range of redshifts, is already seen as the
main limitation in using presently available datasets (see
Hicken et al. 2009). Our analysis addresses this issue by fo-
cusing exclusively on the SDSS SN sample, which is derived
from a well-understood and stable photometric system. The
SDSS has a relative photometric accuracy of better than
2% in griz, and 4% for the u–band (Padmanabhan et al.
2007), while the absolute calibration is also known to be of
the order of 1%, leading to a homogeneous set of SN light-
curves with high photometric accuracy (see Holtzman et al.
2008). This set of data is robust to uncertainties in light-
curve fitting. For example, the MLCS2k2 and SALT2 fits to
the SDSS-only sample are shown to agree well (see Section
10 in Kessler et al. 2009) which is not the case when the
higher redshift SN samples are added.

The outline of this paper is as follows. In Section 2, we
describe the SDSS-II SN data and use that data in Section
3 to study the cosmic acceleration in the Universe. Section 4
then compares the SDSS-II SN luminosity distances to the
BAO distances from the SDSS and 2dFGRS, checking the
distance duality relation. We then derive in Section 5 con-
straints on w by combining the best-fit luminosity distances
for SDSS-II SNe with the growth rate of structure measure-
ments taken from Hawkins et al. (2003) and a new mea-
surement of the ISW effect taken from Giannantonio et al.
(2008). We conclude in Section 6.

2 THE FIRST-YEAR SDSS SN DATA

The SDSS-II Supernova Survey (Frieman et al. 2008) was
part of the SDSS-II project and was focused on construct-
ing a large sample of intermediate-redshift SNe (0.045 <
z < 0.42). One of the strengths of the SDSS-II SN Survey is
that it builds upon the existing (and stable) infrastructure
from the original SDSS (Fukugita et al. 1996; Gunn et al.
1998; York et al. 2000; Lupton et al. 2001; Hogg et al. 2001;
Eisenstein et al. 2001; Strauss et al. 2002; Pier et al. 2003;
Gunn et al. 2006). The SDSS-II SN Survey is based on re-
peat imaging of “Stripe 82”, a region of the original SDSS
with significantly deeper photometry than the regular SDSS
survey. This region is ∼ 120◦ long and 2.5◦ wide, centered
along the celestial equator and extending from 20hrs to 4hrs

in right ascension (passing through 0hrs).
The SDSS-II SN Survey was carried out in three observ-

ing campaigns from September through December in each of
2005, 2006, and 2007 (there were also some observations for
a short period in 2004). The new imaging data were initially
reduced using the standard SDSS pipelines (Stoughton et al.
2002; Smith et al. 2002; Ivezić et al. 2004; Tucker et al.
2006; Padmanabhan et al. 2008; Adelman-McCarthy et al.
2008), followed by specific image-subtraction software to
identify transient objects (Sako et al. 2008). To determine
the nature of these transients, the data were both visu-
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Figure 1. Residual Hubble diagram with respect to an empty
universe for the 103 Type Ia SNe from the first year of operation
of the SDSS-II SN Survey. The red line shows a ΛCDM model
with (ΩM ,ΩΛ) = (0.3, 0.7), similar to our best-fit model given in
Table 1. The blue line is the best fit to the data derived from the
“sliding window” technique described in Section 4.1, and the cyan
and green shaded regions correspond to the 1σ and 2σ confidence
intervals, respectively. The black line indicates an expansion his-
tory with a deceleration parameter of q0 = −0.34 as described in
Section 3. The lower panel shows the same parameterization but
now converted to DV according to Eq. (9). The two data points
represent the BAO measurements from Percival et al. (2009).

ally inspected and fit with SN models. Subsequently, objects
with a high probability of being a SN Ia (Sako et al. 2008)
were spectroscopically observed using a variety of telescopes
around the world (Frieman et al. 2008; Zheng et al. 2008).

In this paper, we only consider the 2005 observing cam-
paign (the first year of operation) as the data from other
years is still being collated and analysed. That year, the
SDSS-II SN Survey discovered 130 spectroscopically con-
firmed type Ia supernovae and an additional 16 spectro-
scopically probable SNe Ia. In Kessler et al. (2009) distance
moduli are obtained for 103 of the spectroscopically con-
firmed SNe Ia that pass stringent light-curve quality cuts,
using the MLCS2k2 light-curve fitting routine. In the upper
panel of Fig. 1 we show for these 103 SNe the residuals of
the distance modules with respect to an empty universe. We
refer the reader to Section 9 of Kessler et al. (2009) for an
extensive discussion of systematic effects caused by changing
the various light-curve fitting parameters.

We also direct the reader to Section 11 of Kessler et al.
(2009) for a comparison of the MLCS2k2 and SALT2
(Guy et al. 2007) light-curve fitters. They show that for the
SDSS–only data the systematic difference between these two
light-curve fitting methods is only 0.04 in w, while Fig. 42
of their paper shows the two methods give consistent dis-
tance moduli for the same SDSS-II supernovae. We also
highlight that the two methods give similar contours in Fig.
26a and 35a of Kessler et al. (2009) when comparing the
full cosmological fits to the SDSS–only data. This motivates
the analysis in this paper and means our results are unaf-
fected by the choice of light-curve fitter used. We restrict

the analysis to the MLCS2k2 reduction taken from Table 10
in Kessler et al. (2009), as these data include corrections for
selection effects.

When using these SDSS-II SNe for cosmological fitting,
we calculate the confidence intervals via the χ2 statistic,

χ2 =

N
∑

i=1

(µLC,i(zi) − µmodel(zi, ~x))2

σ2
LC,i + σ2

sp + σ2
int

, (1)

where µLC and σLC are the distance moduli and errors, re-
spectively, derived from the light-curve fitting method (see
Kessler et al. 2009), and µmodel are the expected distance
moduli according to parameters ~x of the assumed cosmo-
logical model. Uncertainties in the measured spectroscopic
redshift and peculiar velocity of the SN are taken into ac-
count using

σsp =
5

ln(10)

(1 + z)

z(1 + z/2)

√

(∆z)2 + (∆vp)2/c2, (2)

where ∆z is the measurement uncertainty in redshift and
∆vp is the characteristic amplitude of the peculiar veloci-
ties, which we take to be 360 km s−1 (see, e.g., Masters et al.
2006). We investigated the effect of correlated peculiar ve-
locities of SDSS-II SNe and found no detectable effect (see
Appendix B). We therefore do not include peculiar velocity
correlations in further analyses. Besides peculiar velocities
we ignore further potential correlations between individual
SNe and treat them according Eq. (1) as statistical indepen-
dent.

Following standard practice, we add an intrinsic disper-
sion in distance modulus, σ2

int, in the denominator of Eq. (1)
and determine it by setting χ2/Ndof = 1 for the best-fit cos-
mological model. This term accounts for the fact that the
errors on the distance moduls reported by the light curve
fitter could underestimate the real error if we assume that a
smooth cosmology is the correct underlying model. For the
best-fit model with constant w, we find σint = 0.088 mag for
our SDSS-only SN sample, while in Kessler et al. (2009) a
value of σint = 0.16 derived from the nearby supernova sam-
ples is used in combination with the SDSS data. This results
in broader contours compared to the one shown in this paper
(see their Fig. 26a, and Appendix E for a possible explana-
tion), but only marginally changes the most likely values of
w and ΩM . Similarly if we omit any intrinsic dispersion we
get narrower contours but only slight changes in w and ΩM

well within the errors given in Table 1.

A further complication arises due to the uncertain cal-
ibration of the absolute magnitude (at peak) of SNe Ia,
leading to a degeneracy with the absolute value of H0. To
account for this, we marginalize over H0. This procedure
makes use of the relative distances reported by the light
curve fitter but not of their absolute value. In a recent pa-
per Riess et al. (2009) redetermined the Hubble constant H0

or equivalently the absolute brightness of SN Ia. One could
use this value obtained from measurements in the nearby
universe as a prior on H0 in our analysis. But - as laid out
in the introduction - we want to limit our analysis to probes
taken at comparable redshifts as the SDSS SNe and there-
fore refrain from using this additional information.
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3 TESTING COSMIC ACCELERATION

Given the homogeneity of the SDSS-II SN dataset, we begin
our analysis by revisiting the original evidence for cosmic
acceleration in the expansion of the universe. In detail, if we
simply assume the universe is homogeneous and isotropic,
and is described by a Robertson-Walker metric with a scale
factor of a(t), then the purely kinematic deceleration param-
eter, q, is defined by

q(z) ≡ −
äa

ȧ2
, (3)

where q < 0 corresponds to acceleration (we also assume
light follows null geodesics and is therefore redshifted in the
usual way). We relate q to the Hubble parameter by

H(z) ≡
ȧ

a
= H0 exp

(
∫ z

0

1 + q(z′)

1 + z′
dz′

)

. (4)

Luminosity distance can then be calculated directly from
the expansion history via

dL(z) = c(1 + z)

∫ z

0

dz′

H(z′)
, (5)

where we have assumed a flat universe. Thus, the magni-
tudes and redshifts of any SNe can be used to constrain q(z)
without choosing a particular dark-energy model, or even a
particular theory of gravity. The assumption of flatness is
necessary in practice since constraints on q(z) degrade signif-
icantly when curvature is allowed to vary. A prior on curva-
ture from CMB measurements would, of course, strengthen
the constraint, but such a prior is based on the validity of
GR, counter to the intention of the q(z) analysis.

The simplest deceleration model we can fit is a constant,
q(z) = q0. In this case, the luminosity distance simplifies to

dL(z) =
c(1 + z)

H0q0

[

1 − (1 + z)−q0
]

. (6)

Fitting Eq. (6) to the SDSS-only SN data, we find a best
fit of q0 = −0.34 and h = 0.636. Marginalizing the joint
probability density function (PDF) over h, we find q0 =
−0.34± 0.18, or q0 < 0 with 97% probability, i.e., the SDSS
alone finds evidence for acceleration at 2σ without concerns
regarding the absolute calibration of the peak brightness of
SNIa and the relative calibration between SN surveys.

There is no reason to expect q(z) to be constant; indeed,
under ΛCDM, q evolves from 1/2 during matter domination
to −1 when vacuum energy dominates. However, we find
that including additional parameters in q(z) (e.g. by Taylor
expanding q) degrades our constraints to the point of being
uninteresting.

3.1 Principal Component Analysis

When trying to reconstruct an unknown function from noisy
data, there is the concern that particular features of the re-
construction are not indicative of the true underlying func-
tion, but an artifact of the chosen parameterization. This
concern is magnified for a function like q(z), which is re-
lated to the data µ(z) by two derivatives. Therefore, we
need a more robust way to determine if the universe has
accelerated — a way that does not depend on the naive as-
sumption of a constant q(z). A principal-component analysis

Figure 2. The principal components for q(z) derived from the
SDSS-II SN data. Each mode includes a Fisher matrix estimation
of the error bar, σ(αi), for its coefficient αi. The errors are un-
correlated, and we have ordered the modes according to the size
of their error bars. Only the first six modes are shown.

(Huterer & Starkman 2003) can be used to address this is-
sue in a parameter-independent way. Principal components
are a unique set of orthogonal basis functions (ei(z)), such
that

q(z) =
∑

i

αiei(z), (7)

which allows us to specify q(z) using the coefficients, αi.
The principal components, or “modes” ei(z), are explicitly
constructed so that the coefficients can be measured inde-
pendently of each other, i.e., they have uncorrelated error
bars. To construct these modes, we start with a piecewise-
constant parameterization of q(z) in bins of dz = 0.01, and
we use our data to calculate a Fisher matrix for this param-
eter set and the Hubble parameter H0. After marginalizing
over H0, the modes ei(z) are given by the eigenvectors of the
resulting matrix. We are free to normalize these functions
so that
∫

ei(z)ej(z) dz = δj
i , (8)

which now specifies each function up to an overall sign con-
vention. This procedure is completely general; in the limit of
dz → 0, we can specify any continuous function using these
modes. The procedure is parameter-independent in the sense
that we do not specify the modes a priori: they are deter-
mined primarily by the data. We do choose q(z) = 0 as
the fiducial model for our Fisher matrix calculation, but the
resulting modes are insensitive to this choice.

The six modes constrained best by the SDSS-only SN
data are shown in Fig. 2. Each mode is accompanied by an
estimate of the error bar on its coefficient, σ(αi), calculated
from the eigenvalues of our Fisher matrix. The first coef-
ficient, α1, has the tightest constraint, while higher mode
coefficients have increasingly larger errors and so provide lit-
tle information about the shape of q(z). Note that the first
mode does not cross zero, and we have chosen its sign to be
wholly positive. As argued by Shapiro & Turner (2006), this
mode is useful since in addition to being well constrained,
α1 can only be negative if q(z) is negative for some z. There-
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fore, if we fit the model q(z) = α1e1(z) to the data, and then
measure α1 < 0, it constitutes parameter-independent evi-
dence that the universe has accelerated at some redshift. We
need not consider additional modes since the constraint on
α1 is, by construction, independent of the constraints on the
other αi. Marginalizing over h, we find α1 = −0.155± 0.086
and determine that α1 < 0 with 96% probability. The fact
that the error bar from our fit closely matches the Fisher
matrix estimate of σ(α1) = 0.082 demonstrates consistency.
This result is comparable to our q0 fit above, while provid-
ing robust evidence for an accelerating universe regardless
of the model assumptions.

The significance of our detection could be enhanced by
combining the SDSS-II SNe with other SN datasets. This
has already been done in part by Shapiro & Turner (2006)
but could suffer from systematic uncertainties associated
with combining data from different instruments and sur-
veys. Again, the reader is referred to Kessler et al. (2009)
for a detailed description of such combinations of the SDSS-
II SN Survey with other SN datasets. We plan to repeat this
analysis with the full 3–year SDSS-II SN dataset.

4 COMPARISON OF DISTANCES

We next consider the comparison of our SDSS-II SN dis-
tances with other geometrical distance estimates over the
same redshift range. This is motivated by the original re-
sults of Percival et al. (2007) who noticed some tension (at
> 2σ) between the cosmological constraints derived from
nearby BAO measurements (z = 0.2 and z = 0.35) and
higher redshift SNe of Astier et al. (2006). The BAO pro-
vide a measure of distances in the universe by relating the
scale of the sound horizon at last scattering (rs) to the scale
of the corresponding correlations seen in the galaxy distri-
bution. One such measurement of this ratio is given by the
A-parameter in Eisenstein et al. (2005). This parameter is
frequently used in combination with SN data to derive con-
straints on w (Astier et al. 2006; Kowalski et al. 2008), e.g.,
see Kessler et al. (2009) for the combination of the SDSS-II
SN data with the A-parameter.

Here, we adopt the quantity

DV (z) =

[

D2
M

cz

H(z)

] 1

3

, (9)

defined in Eisenstein et al. (2005) where DM is the co-
moving distance. Percival et al. (2007) showed by combin-
ing measurements of rs/DV at redshifts of 0.2 and 0.35 from
both the 2dFGRS and SDSS galaxy samples, that one can
obtain the ratio of the distance between two different red-
shifts that is independent of both rs and H0. This approach
also avoids a large extrapolation between the redshift of re-
combination (zCMB = 1090, Komatsu et al. 2008) and these
intermediate-redshift measurements.

For the analysis presented in this paper, we have
adopted the latest value of DV (z = 0.35)/DV (z = 0.2) =
1.736±0.065 taken from Percival et al. (2009). The inferred
value of DV (z = 0.35)/DV (0.2) from Percival et al. (2009)
is lower than that of Percival et al. (2007), bringing it into
better agreement with ΛCDM. This change was caused by
a revised error analysis and a change in the methodology

adopted, as well as the addition of more data. In this pa-
per we do not use constraints on rs(zd)/DV (z), which de-
pend on the sound horizon at the baryon drag epoch rs(zd).
We therefore avoid including CMB data, commonly used to
model the sound horizon.

4.1 The Sliding Window Method

In Fig. 1 we show the Hubble diagram for the SDSS-II SN
data discussed in Section 2 compared with a variety of cos-
mological and non–parametric models discussed herein. We
find a scatter of 0.14 mag around these models independent
of the particular fitting method. The first non-parametric
model we consider is a “sliding window” method which al-
lows us to investigate the general shape and smoothness of
the Hubble diagram without assuming a cosmological model.
We have thus fit piecewise Hubble parameters and lumi-
nosity distances in different redshift bins using a local red-
shift window following the approach of Daly & Djorgovski
(2003). At each redshift z, we fit the SNe co-moving dis-
tances, DM (zi) = dL/(1 + zi), over a fitting window of
zi − ∆z < zi < zi + ∆z 1, by a polynomial of second order
given by:

f(zi − z) = A0 + A1(zi − z) + A2(zi − z)2. (10)

The values of Ai are determined separately via χ2-
minimisation in each redshift window, and we slide this win-
dow as a function of redshift in increments of 0.01 through-
out the entire range. The best-fit DM at z is proportional to
A0, while the best-fit c/H is proportional to A1, and DV is
related to [zA2

0A1]
1/3. Our results depend on the size of the

redshift window, with a wider window allowing less flexibil-
ity but smaller errors, and vice versa.

We show in Fig.1 the resulting non–parametric fit to
the SDSS-II SN data as an example for a window size of
∆z = 0.15 which demonstrates that the SDSS SNe data
is fully consistent with the individual BAO measurements
at z = 0.2 and 0.35 of Percival et al. (2009) (the cyan and
green shaded regions indicate the 1σ and 2σ errors, which
are highly correlated as they share the same data points in
the overlapping fitting windows). Next, we derive the ratio
DV (0.35)/DV (0.2) and determine the covariances between
the Ai values within, and between, redshift bins using the
observational errors. This is shown in Fig. 3 for different
window sizes. It is interesting to note that the sliding window
method tends to prefer large values (steeper slopes) for DV

compared to DV calculated from a q0 fit described in Section
3, or DV from the best fitting w − Ωm parametrizations
given Table 1. We also see that the sliding window method
provides values for DV which are fully consistent with the
BAO result. We also show in Fig. 3 the best-fit ratios of
DV when the SDSS-II SN data are simultaneously fit with
the BAO data. The SN constraints dominate these results
because of their smaller uncertainty.

1 We actually allow for a tapered region at both ends of this red-
shift window where the weights (i.e., the inverse-squared errors)
are reduced by a Gaussian function with a standard deviation
of σz = 0.02. This leads to a suppression of fluctuations due
to the inclusion of individual data points into the window (see
Daly & Djorgovski 2003).
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Figure 3. Upper panel: Measurements of the ratio of
DV (0.35)/DV (0.2) using different fits to the SN data, in com-
parison to or in combination with the BAO (solid circle) mea-
surement. The points labelled q0 indicate DV derived using the
fit in Section 3. Points labelled w − ΩM are derived from the
w − ΩM parameterization marginalized over 0 < ΩM < 1 and
−2 < w < 0. Points shown as triangles include the BAO measure-
ment as a prior whereas boxes are without the BAO. The points
to the right show the values derived from the “sliding window”
method as a function of the window width. The grey points are
for values of the sliding window that are comparable in size to the
redshift range of the whole SDSS data-set and therefore, approach
the global fit. The dashed line indicates ΛCDM with ΩM = 0.3
and ΩΛ = 0.7. Lower panel: Given the above-mentioned parame-
terizations, we show the best-fit value of α defined in Eq. (13).

4.2 Testing the Distance Duality Relation

In the following we use the famous reciprocity relation
(Etherington 1933; Ellis 1971), or distance duality to com-
pare the SN and BAO distance scales. In detail, the angular
diameter distance and luminosity distance are related by

dL

dA
= (1 + z)2 (11)

(for a discussion, see e.g, Bassett & Kunz 2004). This rela-
tion relies on photon conservation, but holds for any geom-
etry and any metric theory of gravity where photons follow
null geodesics. Therefore, it is a general test of our underly-
ing assumptions about the nature of our Universe.

One might have expected that the distance duality
relation has already been tightly constrained by observa-
tions of the blackbody CMB spectrum from the COBE FI-
RAS experiment (Mather et al. 1994). However, this ob-
servation does not constrain deviations from distance du-
ality as the photon number may not be conserved (either
through production or loss of photons) or more radically,
photons may not follow null geodesics. Also, a grey dust
component that absorbed photons independent of frequency
would not cause spectral distortions away from a black-
body in the CMB since all frequencies would be affected
equally. However, this grey dust would cause strong devi-

ations from distance duality since it would make the lu-
minosity distance to any objects larger while leaving the
angular diameter distance unchanged. Another way to hide
the distance duality effects from CMB observations would
be to affect photon number only at much higher or lower
frequencies than the microwave. This is, for example, what
was needed to make the axion-photon mixing proposal for
the dimming of the SNe Ia consistent with CMB constraints
(Csáki, Kaloper, & Terning 2002).

Beyond the CMB, several other analyses, using sim-
ilar data to that discussed herein, have reported evi-
dence for violations of distance duality at the ∼ 2σ level
(Bassett & Kunz 2004; Lazkoz, Nesseris & Perivolaropoulos
2008). We revisit this issue here using a methodology sim-
ilar to that outlined by More, Bovy, & Hogg (2009) and
Avgoustidis, Verde, & Jimenez (2009) that does not rely on
the absolute calibration of the distances to compute the
ratio dL(z)/(dA(z)(1 + z)2). Instead, we check the relative
behaviour of this ratio as a function of redshift by testing
the consistency of the ratio at two redshifts, z = 0.2 and
z = 0.35 where we now have updated BAO measurements
from Percival et al. (2009).

In the following we parameterize the distance duality
relation in what we call the α-model as

dL = (1 + z)2+2αdA = (1 + z)(1+α)DM , (12)

where α = 0 represents the expected distance duality rela-
tion, and therefore α 6= 0 indicates a possible violation. To
quantify the discrepancy between the two measures, we re-
place DM in Eq. (9) with dL from Eq. (12), and derive the
relation

(1 + z2)
2+2α

(1 + z1)2+2α

z1

z2
=

D3
V (z1)

D3
V (z2)

d2
L(z2)

d2
L(z1)

H(z1)

H(z2)
. (13)

On the right-hand side, DV (z1)/DV (z2) is given by the BAO
measurements, while d2

L(z2)/d2
L(z1) and H(z1)/H(z2) have

to be inferred from the SDSS-II SN data. We calculate dL

and H(z) using the two methods introduced above. First,
we use the results from the q0 fitting, and subsequently we
calculate dL(z, q0) and H(z, q0) at redshifts of 0.2 and 0.35.
The parameter α, and its error, are then calculated by Eq.
(13). We note that Eq. 13 probes the consistency of the ratio
at one redshift given the ratio at the other redshift and is
therefore not sensitive to any scaling proportional to (1+z)2

but would be sensitive to any other loss function.
For the second method, we use the sliding window tech-

nique to derive ~DV, SN ≡ [zA2
0A1]

1/3 (see Eq. (10)) and
the corresponding covariance matrix at the two redshifts
(z = 0.2 and z = 0.35) where we have BAO measurements.
The best fit and error of α is calculated by applying Bayes
theorem. In detail we model ~DV, BAO = β(1 + z)2α/3 ~DV, SN

at the two redshifts based on Eq. 13 where β is a free scale
parameter absorbing H0 and the scale of the sound horizon
rs at recombination. We then calculate the likelihood of the
BAO ~DV measurements for α and β, by integrating over all
possible SN ~DV at z = 0.2 and z = 0.35 given the gaus-
sian prior p( ~D′

V | ~DV, SN) constructed from the results of the
sliding window technique:

L( ~DV, BAO|β, α) =

∫

d ~D′
V ×
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Figure 4. Confidence intervals (68%, 95%, and 99%) in the w −

ΩM plane for a flat universe and a wCDM model derived from
the SDSS SNe (shaded blue region), the BAO DV (0.35)/DV (0.2)
ratio (filled red, upper 99% contours are off the plot), redshift-
space distortions (orange), and the ISW effect (green). In regions
where the SN contours overlap the BAO contours the latter are
indicated as red lines.

[

L( ~DV, BAO|β(1 + z)2α/3 ~D′
V ) p( ~D′

V | ~DV, SN)
]

, (14)

The covariance matrix used in L( ~DV, BAO|β(1 + z)2α/3 ~D′
V )

is taken from Percival et al. (2009). Applying this procedure
and subsequently marginalizing over β, we calculate the best
fit α and its error. The results are shown in the lower panel
of Fig. 3, along with the result from the q0 method.

For the q0 parameterization, we find α = −0.55 ± 0.45,
while for the sliding window scheme, we find that all results
agree with α = 0 within one sigma, i.e., the errors on α
are ≃ 0.5 for most of the window sizes shown in Fig. 3.
These results re-enforce our findings that the SN and BAO
distance scales are now in good agreement over this redshift
range (confirming the new findings of Percival et al. (2009)).

5 CONSTRAINING COSMOLOGICAL

PARAMETERS

In contrast to the previous sections, which focused on kine-
matic constraints of the cosmic expansion, here we inves-
tigate the constraints on standard cosmological parameters
using the SDSS SN data only in combination with dynamical
measurements, eg. from the BAO, redshift space distortions
and ISW. This will have less statistical power than using
the combination of SN datasets presented in Kessler et al.
(2009) and Sollerman et al. (2009) but our analysis is com-
plementary to these companion papers and maximizes the
impact of the homogeneity of the SDSS data (both for the
SN and BAO).

In Fig. 4, we begin by showing our constraints on w and
ΩM using only the SDSS SN data. This is achieved using the
χ2 statistic according to Eq. (1) over a three dimensional
grid of 200 bins in w, 100 bins in ΩM and 160 bins in H0

ranging from 40 to 80 km s−1Mpc−1. Subsequently, we con-
vert the χ2 into a likelihood using L = exp(− 1

2
(χ2 −χ2

min)),
where χ2

min is the minimum χ2 found in the parameter space

Figure 5. Similar to Fig. 4, but now including curvature as de-
scribed in Appendix A.

and, in our case, is by definition close to the number of SNe
in the dataset (as we have added σint). We then marginal-
ize over H0 by summing the likelihoods over the H0-bins.
The shaded blue contours show the resulting confidence lev-
els (68%, 95%, and 99%) in the w − ΩM plane under the
assumption of a flat universe (ΩΛ = 1 − ΩM ). These con-
tours include statistical errors only; systematic errors are
discussed in Section 5.2.

Fig. 5 is similar, but here - instead of assuming a flat
universe - we allow for curvature according to the CMB shift
parameter R. We do this by by calculating for a given (w,
ΩM ) combination the corresponding value of ΩΛ according
to the constraints from R (see Appendix A for more details
on the treatment of curvature). As discussed in Section 1,
we see little effect on our results from allowing curvature to
vary because of the relative small deviations from flatness
allowed by the WMAP data. For results see Table 1.

For comparison with the blue SN contours, we also pro-
vide in Fig. 4 and Fig. 5 the (red) contours for the BAO
measurements from Percival et al. (2009). The BAO mea-
surements are in reasonable agreement with the SDSS–only
SN contours but still prefer w < −1 as originally discussed
in Percival et al. (2007), although all measurements are con-
sistent with a cosmological constant. As the BAO and SN
distances have reasonable overlap, we provide in Table 1 var-
ious constraints on w and ΩM derived from combinations
of the SN data with intermediate redshift dynamical mea-
surements described in the following Sections and the BAO.
We note that the SN data dominates the width and posi-
tion in the w-direction of the likelihood contours, as they
have smaller errors compared to the BAO constraints, while
adding the BAO data helps to curtail the large values of ΩM

seen for the SDSS–only results.

5.1 Constraints from dynamical measurements

To improve the cosmological constraints, we can include a
number of other low redshift cosmological measurements
thus providing a first measurement of the cosmological
model within the local universe. In particular, we consider
constraints on w derived from measurements of the growth
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Figure 6. Confidence intervals (68%, 95%, and 99%) in the
w − ΩM plane for the combination of SDSS-II SNe with BAO
(red), redshift-space distortions (orange), ISW effect (green) and
for the combination of SN, BAO, RS and ISW (black) under the
assumption of a flat universe. Numerical results are given in Table
1.

of structure in the universe, including redshift-space distor-
tions from the 2dFGRS and the ISW effect from the SDSS
imaging survey. Both of these methods are particularly sen-
sitive to ΩM and thus provide independent and orthogonal
constraints to the SN data.

5.1.1 Redshift-Space Distortions

Under the assumption that galaxies are related to the
large scale dark-matter distribution, the anisotropy of the
redshift-space correlation function depends on the parame-
ter

β(z) = fg(z)/b(z), (15)

where b(z) is the linear bias relating the galaxies to the un-
derlying dark matter and fg(z) the growth rate of structure.
Absolute deviations between the real-space and redshift-
space correlation functions depend on the parameter combi-
nation fg(z)σ8(z), where σ8(z) is defined as the root-mean
square (rms) mass fluctuation in spheres of radius 8 h−1

Mpc, and provides a convenient way of normalising the mat-
ter fluctuations (for a recent review see Percival & White
2008).

To remove either the dependence on galaxy bias from
a measurement of β(z), or equivalently the dependence on
σ8(z) from the measurement of fg(z)σ8(z), we need fur-
ther cosmological information. In this paper, we adopt the
central value of β(z ≈ 0.15) = 0.49 ± 0.09 calculated by
Hawkins et al. (2003) from the 2dFGRS, which is an update
of the measurement given by Peacock et al. (2001). We fol-
low the procedure outlined by Guzzo et al. (2008), and con-
vert from β to fg by adding an additional uncertainty of 0.12
in quadrature to account for the uncertainty in galaxy bias,
which is estimated to be close to unity. This error includes
the cosmological dependence of the bias measurement. For
further calculations, we thus use fg(z = 0.15) = 0.49± 0.15,

Table 1. Results for w and ΩM from combinations of the SDSS-
II SN and BAO data with redshift-space distortions (RS) and the
ISW effect. We provide measurements based on the MLCS2k2
light-curve fitting method and our assumptions about curvature
(Geo.). Values for w are derived after marginalizing over ΩM and
vice versa. The given uncertainties are statistical errors only; for
an estimate of the systematic uncertainty see Section 5.2.

Dataset Geo. w ΩM

SN+BAO flat −0.74+0.17
−0.32 0.37+0.16

−0.64

SN+RS flat −0.77+0.19
−0.25 0.26+0.15

−0.12

SN+ISW flat −0.74+0.16
−0.22 0.23+0.15

−0.12

SN+RS+ISW flat −0.76+0.17
−0.19 0.23+0.10

−0.08

SN+RS+ISW+BAO flat −0.81+0.16
−0.18 0.22+0.09

−0.08

SN+BAO curved −0.99+0.30
−0.59 0.50+0.13

−0.22

SN+RS curved −0.82+0.19
−0.26 0.31+0.15

−0.12

SN+ISW curved −0.78+0.16
−0.22 0.27+0.15

−0.13

SN+RS+ISW curved −0.79+0.16
−0.20 0.27+0.10

−0.09

SN+RS+ISW+BAO curved −0.85+0.17
−0.19 0.27+0.10

−0.09

assuming the weighted median redshift of the 2dFGRS sur-
vey of z ≈ 0.15.

We adopt the parameterization given by Linder (2005),

g(a) =
δ

a
= exp

∫ a

0

d ln a[ΩM (a)γ − 1], (16)

which is related to the growth rate by

fg =
δ̇

g
, (17)

where δ = δρM/ρM describes the perturbations in the den-
sity of matter (ρm). For constant w > −1, the exponent γ
in Eq. (16) can be approximated as

γ = 0.55 + 0.05(1 + w), (18)

while for a phantom-like dark energy component (with w <
−1) the exponent is

γ = 0.55 + 0.02(1 + w). (19)

Solving Eq. (17) numerically, we derive the (orange)
contours shown in Fig. 4 and Fig. 5. In Table 1, we present
the constraints on w from the combinations of these data
with the SDSS-II SN and BAO likelihoods, marginalized
over ΩM and vice versa.

5.1.2 The Late-Time integrated Sachs-Wolfe Effect

The integrated Sachs-Wolfe (ISW) effect is caused by the
change in energy of CMB photons as they pass through a
time-varying gravitational potential (Sachs & Wolfe 1967).
In a flat, matter-dominated universe, we would not expect
to see an ISW effect as the large-scale gravitational poten-
tials do not change in conformal time. However, in a uni-
verse dominated by DE or curvature, we should detect a so
called late-time ISW effect, which provides a direct measure
of these quantities at the redshift of the changing potentials,
i.e., the effect does not depend on the previous history of the
growth of structure.

The late-time ISW effect introduces additional sec-
ondary anisotropies on top of the primary CMB fluctuations
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and is therefore hard to detect directly. However, the ISW
effect can be seen via the cross-correlation of the CMB
with tracers in the large-scale structure of the universe as
outlined by Crittenden & Turok (1996). This has now been
achieved by a number of authors using a host of differ-
ent galaxy datasets (Fosalba, Gaztañaga, & Castander
2003; Scranton et al. 2003; Boughn & Crittenden
2004; Nolta et al. 2004; Afshordi, Loh, & Strauss 2004;
Fosalba & Gaztañaga 2004; Padmanabhan et al. 2005;
Cabré et al. 2006; Giannantonio et al. 2006; Rassat et al.
2007; Ho et al. 2008; Granett, Neyrinck, & Szapudi 2008).

In this paper, we exploit the recent analysis of
Giannantonio et al. (2008) and focus on the subset of
intermediate-redshift (z < 0.4) SDSS data they used. Even
this subset of data shows a detection of the ISW effect at
the 3σ level (Giannantonio 2008a). The contours for this new
determination of the ISW effect are plotted in Figs. 4, 5, and
6. In Table 1, we present the combination of this new ISW
effect measurement with our SDSS-II SN and BAO data,
using the same procedure as discussed in Section 5.1.1.

5.2 Evaluation of SN Systematics

We provide in Table 1 measurements of w and ΩM

from various combinations of the four data-sets consid-
ered herein (SN, BAO, RS, ISW). The most stringent con-
straint comes from the combination of all the probes giving
w = −0.81+0.16

−0.18 and ΩM = 0.22+0.09
−0.08 , which is competitive

given the restricted redshift range considered in this analy-
sis. However, much of this constraint comes from the com-
bination of just the SDSS-II SNe and ISW measurements
(See Table 1). The ISW contours already include correla-
tions between different angular and redshift bins and cosmic
variance, and could therefore be considered stable (see e.g.
Giannantonio et al. 2008). Similarly the contours we use for
redshift-space distortions include the dominant uncertainty
coming from the galaxy bias (see the procedure laid out in
Section 5.1.1). Percival et al. (2009) has done several checks
and found that their result is robust against variations in
sample selection, number of redshift slices, calibration and
other potential influences. Therefore, the results presented
in Table 1 includes major uncertainties affecting the other
probes but only the statistical uncertainties from the SDSS-
SN data on the measured cosmological parameters.

As discussed in Kessler et al. (2009), the SDSS-II SN
distances also depend on the detailed choices and assump-
tions within the MLCS2k2 supernova light-curve fitting pro-
cedure, including different training vectors, priors on AV and
RV , uncertainties in zero points and the filter systems, and
selection biases. To quantify the systematic uncertainties as-
sociated with these parameter choices, we repeat our analy-
sis above for these different choices and, following the proce-
dure laid out in Kessler et al. (2009), we calculate a variation
of ∆w = ±0.15 with respect to the fiducial MLCS2k2 reduc-
tion presented in Table 1 in the case of combining all four
constraints and slightly larger values for the other cases.

Our estimates of the systematic uncertainty for
MLCS2k2 are larger than the values calculated in
Kessler et al. (2009) because they use the BAO A-parameter
from Eisenstein et al. (2005), and the added constraints
on ΩM and w derived from using the CMB R-parameter
(Komatsu et al. 2008). We reproduce their values for the

systematic uncertainties on MLCS2k2 (∆w ≈ 0.1), if we in-
clude these constraints in our analysis. However, in this pa-
per, we restrict our analysis to intermediate-redshift probes
and therefore do not include the CMB constraints, which
results in larger uncertainties.

Our analysis of the MLCS2k2 systematic uncertainties
discussed above does not include the large shift in w dis-
cussed in Kessler et al. (2009) when the rest-frame U -band
template is removed in the light-curve fitting. As seen in
Table 6 of Kessler et al. (2009), removing the rest–frame U–
band results in a −0.31 shift in w, while we find a shift of
−0.43 if we remove this data. This particular uncertainty
would therefore give rise to a bimodal result either centered
around w ≃ −0.8 (with U–band included) or w = −1.2
(without U-band), yet both consistent with w = −1 within
the errors.

We do not add the uncertainty due to excluding the
rest–frame U–band to our systematic errors because we be-
lieve it is incorrect to exclude this data from the light–curve
fitting. Even though there is evidence for diversity in the UV
spectra of SNe Ia (see Ellis et al. 2008; Foley et al. 2008), the
removal of the rest-frame U–band data from the SDSS–only
analysis results in the light curve fitter using only two filters
at z < 0.2 to constrain the colors of the SNe. This provides
significant freedom to the MLCS2k2 fitter and then the pri-
ors on the fitted parameters become important. We note
that w is only shifted by −0.1 when using the SALT light
curve fitter (see Table 8 in Kessler et al. 2009) on the SDSS–
only sample with the rest-frame U–band excluded. This is
the only noticeable difference between these two light curve
fitting methodologies when considering the SDSS–only sam-
ple; namely the error on w when the rest-frame U–band is
excluded. Finally, Kessler et al. (2009) also sees a clear jump
in the SDSS Hubble diagram at z ≃ 0.2 when the rest-frame
U–band is excluded from the MLCS2k2 analysis (see their
Section 10.1.3 and Fig. 30), indicating that a constant w
model is not a good fit in this case.

6 CONCLUSIONS

We present an analysis of the luminosity distances of Type
Ia Supernovae from the Sloan Digital Sky Survey-II (SDSS-
II) Supernova Survey in conjunction with other intermedi-
ate redshift (z < 0.4) cosmological measurements including
redshift-space distortions from the 2dFGRS, the ISW ef-
fect, and the BAO distance scale from both the SDSS and
2dFGRS. We have analyzed the SDSS-II SN luminosity dis-
tances using several ’model-independent’ methods, includ-
ing fitting the data using a q(z) parameterization, prin-
cipal components, and a non-parametric “sliding window”
method. We find consistent results between all these meth-
ods that provides evidence for an accelerating universe based
solely on the first-year SDSS-II SN data. The strongest ev-
idence we find comes when we make the strongest assump-
tions, that q0 is constant and the universe is flat which gives
probability for acceleration of > 97%.

We also compare our SDSS-II SN data with the local
BAO measurements, and find they are in good agreement.
This is in contrast with the findings of Percival et al. (2007)
which found tension between the two distance measures, but
confirms the new BAO analysis of Percival et al. (2009) who
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note that this tension has now lessened. Taking this obser-
vation further, we test the distance duality relation, i.e., for
any metric theory of gravity, we expect dL/(dA(1+z)2) = 1.
We see no evidence for a discrepancy from this relation (at
the one sigma level) in contrast to previous claims for a po-
tential violation on the 2σ level as seen in (Bassett & Kunz
2004; Lazkoz, Nesseris & Perivolaropoulos 2008). Finally,
we present a new measurement of the equation-of-state pa-
rameter of dark energy using a combination of geometrical
distances in the universe and estimates for the growth rate of
structure. Our strongest constraint comes from the combina-
tion of all four data-sets discussed herein (SDSS-II SN, BAO,
redshift-space distortions, ISW) with w = −0.81+0.16

−0.18(stat)
and ΩM = 0.22+0.09

−0.08(stat) (assuming a flat universe). How-
ever, the combination of just the SDSS-II SNe and the ISW
measurements alone is almost as powerful in constraining
these parameters (Table 1). Our results only change slightly
if we allow curvature to vary, consistent with the CMB mea-
surements (see Appendix A). We quote a systematic uncer-
tainty of ∆w = ±0.15 based on the details of the MLCS2k2
light–curve fitter (see Kessler et al. 2009 for a fuller discus-
sion).

Thus we have shown that low-redshift cosmological
probes give a self-consistent picture of the distance-redshift
relation. When combined with growth of structure and ISW
at the same epoch that picture is consistent with ΛCDM
and re-enforces the complementarity amongst other data
and analyses in the literature.
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Csáki C., Kaloper N., Terning J., 2002, PhRvL, 88, 161302
Clarkson, C., Cortês, M., & Bassett, B. 2007, Journal of
Cosmology and Astro-Particle Physics, 8, 11

Cole, S., et al. 2005, MNRAS, 362, 505
Colless M., et al., 2001, MNRAS, 328, 1039
Conley A., et al., 2008, ApJ, 681, 482
Conley A., Carlberg R. G., Guy J., Howell D. A., Jha S.,
Riess A. G., Sullivan M., 2007, ApJ, 664, L13

http://www.sdss.org/


12 H. Lampeitl et al.

Copeland, E.J., Sami, M., Tsujikawa, S., 2006., Int. J. Mod.
Phys. D15:1753-1936

Crittenden R. G., Turok N., 1996, PhRvL, 76, 575
Daly R. A., Djorgovski S. G., 2003, ApJ, 597, 9
Davis T. M., et al., 2007, ApJ, 666, 716
Dunkley, J., et al. 2009, ApJS, 180, 306
Eisenstein D. J., et al., 2001, AJ, 122, 2267
Eisenstein, D. J., et al. 2005, ApJ, 633, 560
Ellis G. F. R., 1971, in General Relativity and Cosmology,
ed R.K. Sachs (New York: Academic Press), 104

Ellis, R. S., et al. 2008, ApJ, 674, 51
Etherington I. M. H., 1933, PMag, 15, 761
Filippenko A. V., 2005, in White Dwarfs: Cosmological and
Galactic Probes, ed. E. M. Sion, S. Vennes, & H. L. Ship-
man (Dordrecht: Springer), 97

Foley, R. J., et al. 2008, ApJ, 684, 68
Fosalba P., Gaztañaga E., Castander F. J., 2003, ApJ, 597,
L89
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Figure A1. The 68% contours in the ΩΛ − ΩM plane derived
from the “scaled distance to recombination” R (see text) taken
from the WMAP-5 results, or R = 1.715± 0.021. The dot-dashed
line indicates a flat universe.
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APPENDIX A: COSMIC CURVATURE

In most parts of this paper, we assume a flat universe, or
ΩM + ΩΛ = 1. Observationally, the most robust constraints
on curvature come from the distance to the last scattering
surface of the CMB as determined by measurements of the
CMB power spectrum. In cases where we consider curvature,
allowing any combination of ΩM and ΩΛ, we include a prior
on the “scaled distance to recombination” R defined as

R =
√

ΩMH2
0

dL(zCMB)

(1 + zCMB)
, (A1)

given in Wang & Mukherjee (2007), with a value of R =
1.71 ± 0.019 from Komatsu et al. (2008). We note that R is
independent of H0 because dL scales linearly with 1/H0. For
fixed values of ΩM and w it is now possible to constrain ΩΛ

from a measurement of R. We show 68% confidence levels in
Fig. A1 calculated from Eq. (A1). As R does not depend on
the Hubble constant H0, or on the baryon density Ωbh

2, no
further assumptions are needed on these quantities. From
Fig. A1, it is obvious that using only R, a curvature of order
a few percent cannot be neglected (depending on the value
of w). We introduce the effects of curvature in the redshift-
space distortion analysis by adding an additional χ2 term
in the likelihood analysis calculated from Eq. (A1) and sub-
sequently marginalize over ΩΛ, where as for the ISW effect
we pick for a given (w, ΩM ) combination the best-fit value
of ΩΛ.

APPENDIX B: CORRELATED PECULIAR

VELOCITIES

The peculiar velocities (PVs) of supernovae (SNe) introduce
an additional scatter onto the Hubble diagram (see Eq. (2)).
However, as pointed out by Hui & Greene (2006), we expect
these PVs to be correlated, especially at low redshift, thus

leading to significant covariance between pairs of SNe, i.e., a
pair of SNe at radial positions ri, rj have a projected velocity
correlation function of ξ(ri, rj) = 〈(v(ri)· r̂i)(v(rj)· r̂j)〉. We
can calculate this function in linear theory using the matter
power spectrum, the linear growth function and its deriva-
tive. This is interesting because, if this effect is detected, it
may enable the SNe to constrain the parameters of structure
formation, in addition to the standard background expan-
sion.

The expression for the full covariance between SNe
is given by Gordon, Land, & Slosar (2007); Abate & Lahav
(2008)

Cv(i, j) =

(

1 −
(1 + z)2

HdL

)

i

(

1 −
(1 + z)2

HdL

)

j

ξ(ri, rj). (B1)

This can be compared with the standard diagonal ran-
dom errors, which are

σ(i)2 =
(

ln 10

5

)2

[σ2
m +µerr(i)

2]+

(

1 −
(1 + z)2

HdL

)

i

σ2
v , (B2)

where the intrinsic magnitude and velocity scatters σm, σv

have been introduced as usual. A numerical evaluation shows
that the two are comparable at low redshift. In particular,
for a pair of SNe at z = 0.05 and zero angular separation,
the covariance is Cv(i, j) ≃ 0.1σ(i)σ(j). This decreases at
higher redshifts and greater separations.

This effect has been detected by
Gordon, Land, & Slosar (2007) using a catalogue of 124 low
redshift SNe by Jha, Riess, & Kirshner (2007) at z̄ = 0.017,
and it has been carried further to constrain parameters
such as σ8 and the growth factor γ (Abate & Lahav 2008).

Here we repeated the analysis for the SDSS SNe, but
since our minimun redshift is z ≃ 0.05, we expect the ef-
fect of correlated PVs to be small. Indeed, we found that a
likelihood study performed by a Monte Carlo Markov chain
(MCMC) analysis of the cosmological parameters yields no
change in the results whether the full PV covariance matrix
of Eq. (B1) is included or not. For example, if we set the
intrinsic scatters σm = σv = 0, we find that the reduced
χ2/ν for the best fit cosmology decreases by only 1% when
the PV covariance matrix was included.

Therefore, we are unable to detect the correlation of SN
peculiar velocities with this data and are safe to ignore them
in further analyses. This effect will become more important
with larger samples of low redshift SNe.
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