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ABSTRACT 

We describe the calibration and data processing methods used to generate full-sky maps of the cosmic 

microwave background (CMB) from the first year of Wilkinson Microwave zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAnisotropy Probe (WMAP) 

observations. Detailed limits on residual systematic errors are assigned based largely on analyses of the 

flight data supplemented, where necessary, with results from ground tests. The data are calibrated in flight 

using the dipole modulation of the CMB due to the observatory's motion around the Sun. This consti- 

tutes a full-beam calibration source. An iterative algorithm simultaneously fits the time-ordered data to 

obtain calibration parameters and pixelized sky map temperatures. The noise properties are determined 

by analyzing the time-ordered data with this sky signal estimate subtracted. Based on this, we apply a 

pre-whitening filter to the time-ordered data to remove a low level of l/f noise. We infer and correct 

for a small (- 1 %) transmission imbalance between the two sky inputs to each differential radiometer, 

and we subtract a small sidelobe correction from the 23 GHz (K band) map prior to further analysis. No 
other systematic error corrections are applied zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto the dara. Calibration and baseline artifacts, including 

the response to environmental perturbations, are negligible. Systematic uncertainties are comparable to 

statistical uncertainties in the characterization of the beam response. Both are accounted for in the covari- 

ance matrix of the window function and are propagated to uncertainties in the final power spectrum. We 

characterize the combined upper limits to residual systematic uncertainties through the pixel covariance 

matrix. 
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1. INTRODUCTION 

The Wilkinson Microwave zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAnisotropy Probe (WMAP) has produced full-sky maps of the cosmic microwave 

background (CMB) of unprecedented precision and accuracy. On angular scales larger than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 0 3 ,  the dominant 

uncertainty is not the instrument noise but rather the “cosmic variance” inherent when analyzing a single realization 

(the observable universe) of a random process. In the cosmic variance limit, no further improvement can be made by 

reducing instrument noise, placing even greater importance on the minimization of non-random instrumental effects 

in the data. 

The WMAPdesign emphasizes control of systematic errors (Bennett et al. 2003a). The observatory was designed 

with a detailed systematic error budget in place, and a mature data analysis pipeline was written early to help inform 

many of the design decisions. Differential radiometers compare the temperature from widely-separated regions of 

the sky through back-to-back matched optics. Common-mode signals thus cancel before affecting the sky maps. 

The radiometer feed horns only illuminate a fraction of the primary mirrors, reducing the sidelobe response in the 

beam patterns. The instrument was designed to have minimal response to electrical or thermal perturbations and 

operates in an exceptionally stable environment at the second Earth-Sun Lagrange point. The observatory’s compound 

spin and precession allow rapid inter-comparison of different positions on the sky, greatly reducing the coupling of 

systematic error signals into the sky maps and effectively symmetrizing the beam response. WMAP data are calibrated 

in flight using the dipole modulation of the CMB from the observatory’s orbital motion around the Sun as a full-beam 

calibration source. We measure the beam pattern in flight using observations of the planet Jupiter. 

We characterize or limit systematic errors in the W A P  first-year data using flight data supplemented where 

necessary with results from ground tests. Systematic errors may be classified into several broad categories including 

the following: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Calibration Errors.- The time-ordered data is simultaneously fit for the calibration and sky map. An iterative 

algorithm updates the calibration solution based on the previous iteration of the sky map solution, and vice-versa. The 

most important source of error is confusion between the dipole signal and higher-order sky signal, especially bright 

Galactic foreground emission in the low frequency WAP bands. See $2.2.1. 

Map-making errors.- These are due to poor convergence in the sky map solution, or to errors in the determination 

of the spacecraft pointing. See $2.1.1 and $3.3. 

Beam Errors.- Instrument noise, background subtraction, and pointing errors can limit the in-flight measurement 

of the beam response from Jupiter. Although the beams are not symmetric, the observatory’s compound spin and 

precession effectively symmetrize the beam response. Uncertainties in both the beam solid angle and the window 

functions must be characterized. See Page et al. (2003a) for a complete discussion of beam mapping. We summarize 

and incorporate their results in $3.3.3. 

Sidelobe Response.- Sidelobe pickup of bright sources (e.g. the Galactic plane) introduces an additive signal 

dependent on the orientation of the beams on the sky. Barnes et al. (2003) discuss the sidelobe response of each 

radiometer and estimate the effect on the first-year sky maps. 

Baseline Errors.- Thermal or electrical perturbations can produce signals dominated by an additive term in the 

time domain. Slow drifts are removed as part of the calibration procedure, but signals near the spin period can couple 

to the sky maps with some efficiency. See $3.4. 

Striping.- Correlations in the time-ordered data from sources not fixed on the sky (e.g. l/f noise or post- 

detection filtering) introduce correlated noise in the sky maps. Application of a pre-whitening filter to the time-ordered 

data reduces this effect. See $2.3.2. 
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We have constructed a detailed model of the instrument that successfully reproduces all major aspects of the 

instrument performance. Software simulations using this model validate the map-making algorithm and allow us 

to assess the effect in the sky maps of various signals in the time-ordered data. Based on this, we apply a pre- 

whitening filter to the time-ordered data to remove a low level of l/f noise. We infer and correct for a small (-1%) 
transmission imbalance between the two sky inputs to each differential radiometer, and we subtract a small sidelobe 

correction from the 23 GHz (K band) map prior to further analysis. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANo other systematic error corrections are applied 
to the data. Calibration and baseline artifacts, including the response to environmental perturbations, are negligible. 

Systematic uncertainties are comparable to statistical uncertainties in the characterization of the beam response. Both 

are accounted for in the covariance matrix of the window function and are propagated to uncertainties in the final 

power spectrum. We characterize the combined upper limits to residual systematic uncertainties through the pixel- 

pixel covariance 

This paper is organized zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas follows. In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$ 1.1 we define the terms and notation used throughout the paper. In $2 we 

discuss the iterative algorithm for making maps from time-ordered data, then generalize to the case of simultaneous 

calibration and sky map estimation. (Appendix C further generalizes to map-making with polarization data.) We also 

discuss the noise properties of the time-ordered data. In $3 we discuss combined systematic error limits from calibra- 

tion and map-making. We also present the noise properties of the sky maps in terms of their pixel-pixel covariance. 

Finally, we derive upper limits to environmental perturbations and summarize the combined systematic error budget. 

In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$4 we present our conclusions. 

1.1. Notation and Overview 

Throughout this paper, we denote vectors and scalars with bold and plain lowercase letters, respectively. Matrices 

and operators are denoted with uppercase bold letters. Following Stompor et al. (2002) we denote vector and matrix 

component indices in parentheses, saving subscripts and superscripts to further identify quantities. A summary of 

the most frequently used symbols is given in Table 1. Unless otherwise stated, all temperatures are specified in 

thermodynamic units. 

W A P  measures the brightness temperature of the sky as a function of position, t(O,$) + t (p) ,  where p denotes 
the sky map pixel number, indexed from 0, in HEALPix nested format (G6rski et al. 1998). To make this measurement, 

WMAP scans the sky and measures the temperature difference between two points at time t .  The resulting time-ordered 

differential data (TOD) is denoted d. The main goal of the map-making is to obtain the minimum variance estimate of 

the sky map, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, by inverting the raw differential data. Note that i is the true sky temperature convolved with the nominal 

instrument beam, plus instrument noise. In the process of solving for the map, we calibrate the data by estimating the 

gain and baseline from the flight data itself; characterize the full instrument beam response function from observations 

of the planets; characterize the noise spectrum of the instrument, and place limits on residual systematic errors. 

In order to produce stable data with a nearly-white noise spectrum WMAP employs 20 high-electron-mobility- 

transistor (HEMT) based differential radiometers. Each radiometer measures the brightness difference between two 

inputs, one fed by an A-side beam, the other by a B-side beam approximately 14 1 “apart. A detailed description of their 

design and fabrication may be found in Jarosik et al. (2003a); a summary of their in-flight performance is presented 

in Jarosik et al. (2003b). The 20 radiometers form 10 polarization-sensitive “differencing assemblies” (DA) which 

are designated based on their frequency or waveguide band: K1, Kal, Q1, Q2, V1, V2, W1, W2, W3, W4. The two 

radiometers in a DA are sensitive to orthogonal linear polarization modes; the radiometers are designated 1 or 2 (e.g., 

K11 or K12) depending on which polarization mode is being sensed. Each of the 20 radiometers is intrinsically a 

2-channel device, with channels designated 3 and 4 in the flight telemetry, e.g., K113 or K114. [Channels 3 and 4 
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were designated left and right, respectively, in Jarosik et al. (2003a).] There are 40 such data channels in the flight 

telemetry. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs discussed below, each of the 40 channels is individually calibrated, then the 4 channels from a single 

differencing assembly are combined to form differential intensity and polarization signals as follows. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdi, be the 

calibrated differential signal from a single channel, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj ,  of radiometer i. The differential intensity data (Stokes parameter 

I )  is the average of all 4 channels zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(1) 

1 1 
d =  -(d13+d14)+2(d23+d24). 2 

The differential polarization data is obtained by taking the difference between the two radiometer signals 

(2)  , 

1 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P =  -(di3+d14)-~(d23+d24). 2 

In Appendix C on polarization map making, we relate the differential polarization signal to the Stokes parameters Q 

and U .  Kogut et al. (2003) discuss additional aspects of polarization mapping and analyze the first-year temperature- 

polarization correlation data based on these maps. Note that we can also form null channels from the data by taking 

channel differences, (di3 -di4). As discussed in $3.2, these channel combinations provide valuable consistency tests 

for the final sky maps. 

A single channel of unculibruted differential data may be modeled as 

c = g IJM. (t + &) + n] + b, (3) 

where each quantity is a function of time: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~ ( t ) :  raw differential data, in counts or digital units ("du"). 

g( t ) :  instrument responsivity (here called gain), in du mK-'. 

b(t): instrument baseline, in du. 

n(r): instrument noise, in mK. 

M. (t+&) 
includes fixed sources, t (e.g., CMB and Galactic emission) and moving sources, t, (e.g., planets). 

At(t): differential sky signal from all sources, convolved with the instrument beam, in mK. This 

In practice, the differential signal is integrated for a fixed time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT and sampled at discrete times ti, thus we may regard 

time series data as a vector with Nr observations. The integration time per observation is 128.0 ms, 128.0 ms, 102.4 

ms, 76.8 ms, and 5 1.2 ms for bands K through W, respectively. 

The differential temperature at time t is the convolution of a time-dependent mapping function, M, with the sky 

signal at timet, t+t,(t) 

At@) = dQnt M(n(r),n')(t(n')+&(n',r)). (4) I 
Here t = & + t, is the fixed sky signal consisting of CMB anisotropy, &, and Galactic foreground signals, t,, while ts 
represents all time dependent sources, especially the Sun, Earth, and Moon, which are potentialiy visible in the far 

sidelobes of the instrument. The operator M can be represented as an N,  x Np matrix where each row is the normalized, 

full-sky beam response in sky-fixed coordinates as given by the scan pattern. Several features of the mapping function 

that pertain to the data processing are discussed in Appendix A. The main beam response is mapped in flight using 

observations of Jupiter as a far-field point source (Page et al. 2003a). An important aspect of the WMAPoptical design 

(Page et al. 2003b) was to limit sidelobe pickup to negligible levels and to have the effective beam response in the final 
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sky maps be approximately circularly symmetric. We discuss each of these topics in more detail in separate papers, 

(Barnes et al. 2003; Page et al. 2003a), while this paper summarizes the main results in terms of systematic error limits 

in the sky maps. 

The instrument gain, baseline, and noise are determined from the flight data itself. This is an iterative process that 

we discuss in detail in 32.2.1. Here we provide a brief overview of our terminology in order to frame the following 

discussion of systematic errors. Let the gain and baseline measured in flight be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, respectively. The calibrated 

differential signal is then 

With calibrated data available, the sky map is obtained by evaluating the linear equation 

where W is a linear operator defined in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA52.1. The properties of W are determined by the scan strategy of the observa- 

tory and the noise properties of the time-ordered data, d. 

The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWMAP scan pattern is an integral part of the mission design (Bennett et al. 2003a). It consists of a compound 

spin and precession centered about the Sun-WMAP line, with parameters as given in Table 2. There are several 

aspects of this scan strategy that are important for high quality data: scans of a given pixel cross at many angles so 

that the effective beam response is symmetric; a given pixel is observed on many different time scales from minutes 

to months; the angular velocity of a given line of sight is nearly constant on the sky; the instrument observes a large 

fraction (>30%) of the sky each day; and the time-average of the differential data is approximately zero over an hourly 

calibration period, allowing for robust initial baseline estimation. 

2. THE MAP-MAKING PIPELINE 

A graphical overview of the WMAP data processing and analysis pipeline is shown in Figure 1 of Bennett et al. 

(2003b). The heart of the pipeline is a set of programs that bring science and housekeeping data from the Science and 

Mission Operations Center (SMOC) through to a set of calibrated full sky maps for each of the 10 M A P  differencing 
assemblies. Numerous additional programs are used to generate ancillary data products such as beam response maps, 

calibration files and analysis products. In this section we provide a high-level overview of each program in the map- 

making pipeline and provide references to later sections of this paper, or to companion papers, for further details. 

Raw telemetry data from the satellite is transferred approximately once per day through NASA’s Deep Space 

Network (DSN), to the SMOC, located at the Goddard Space Flight Center. The SMOC monitors the basic health and 

safety of the Observatory, sends all commands, and requests re-transmissions of data that were missing from a previous 

transmission. The data are then “level-0” processed into a set of time-ordered, daily files which contain science data, 

instrument housekeeping data, spacecraft data (including attitude and ephemeris data), and event message files. These 

files are then transferred to the Science Team’s processing facility, also at the Goddard Space Flight Center. 

Every time a new full day of data amves, a series of automated procedures perform the following tasks: 1) Gen- 

erate a standard set of daily plots that are archived and visually inspected; 2) Generate a reduced “trending archive”, 

which consists of subsets of the data sampled once every 10 minutes. In the case of the science data, we record the 

mean and rms of each channel in a 10 minute interval, whereas the housekeeping data are sub-sampled, once per 10 

minutes; 3) Perform a series of data quality checks that search the data for violation of pre-set range limits or excessive 

time-gradients in the telemetry signals. Limit violations are logged and notification is sent to a member of the science 

team via e-mail. (Initial limit tests are performed at the SMOC as well.) 
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At selected time intervals, the level-0 telemetry files are collated by a pre-preprocessor into a master archive of 

raw (uncalibrated) data. The major functions of the pre-processor are to: 1) collate the science and housekeeping data 

into single daily files; 2) flag data that is suspected or known to be unusable; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3)  interpolate the attitude and ephemeris 

d a 6  to times that are commensurate with the science data time stamps; and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4) apply a coarse flag to data that is within zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7' of one of the outer planets (Mars through Neptune) so that it may be rejected from the initial sky maps, but identified 

for beam mapping (Page et al. 2003a). (Only Jupiter data is used for making the final beam maps.) 

Initial sky maps and calibration data are generated from the raw archive using the iterative map-making algorithm 

first described in Wright et al. (1996), and further described in $2.1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs discussed in 52.2, the initial calibration is 

determined by fitting the raw timgordered data to the known signal produced by the CMB dipole. Because the sky 

signal contains significant higher-order power (1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> l), the calibration solution must be iteratively improved in concert 

with the initial sky map iterations. The convergence of this simultaneous fit has been demonstrated with end-to-end 

simulations, which are also described in $2.2. 

The calibration solution converges more rapidly than the sky map does, so we freeze the initial calibration solution 

after zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN 10 iterations before proceeding to convergence with the sky maps. With the initial dipole-based calibration data 

in place, a re-processor generates a refined gain and baseline solution and applies this to the data. The program also 

updates the data quality flags, as necessary, then writes the calibrated data to a new final time-ordered archive. The 
refinements to the dipole-based gain solution are discussed in Jarosik et al. (2003b) and in 52.2.1. The initial baseline 

solution is refined with a pre-whitening filter (Wright 1996) which is presented in detail in $2.3.2. 

The final sky maps are computed using the final calibrated time-ordered data as input. The first-year sky maps 

required 20 post-calibration iterations to be sufficiently converged. The map-making algorithm is fundamentally the 

same as is used in the initial estimates, but we add some refinements for this final stage of processing. These include: 1) 

correcting for a small (2 1%) loss imbalance between the A and B-side sky beams. Jarosik et al. (2003b) demonstrate 

that this effect is nearly orthogonal to the gain solution, so its inclusion after the calibration processing does not 

invalidate the gain solution. 2) We weight individual time-ordered observations by their proper statistical weight to 

account for the small change in instrument noise (< 1 %) over the course of a year due to the 0.9 K seasonal temperature 

variation experienced by the instrument cold stage. 3) We compute the planet-boresight angle for each observation to 

minimize unnecessarily conservative data loss. The criterion used for the first-year maps is a cut of radius 1 P5. 

We also generate polarization maps using a generalization of the temperature algorithm, the details of which 

are presented in Appendix C. For the first-year data processing, we have generated maps of the Stokes parameters 

Q and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU ,  but we have not yet fully characterized all of the potential systematic errors in these maps. However, 

the temperature-polarization correlation data are much less prone to systematic errors than the polarization auto- 

correlation data. Kogut et al. (2003) have analyzed the temperature-polarization data and, supported by systematic 

error limits from Barnes et al. (2003), they find a significant correlation, including the signature of a relatively early 

epoch of cosmic reionization. 

In the remainder of this paper, we present a more detailed description of each of the map-making and calibration 

procedures, including an assessment of their performance with the first-year WMAP data. We then derive detailed 

systematic error limits applicable to the time-ordered data, to the sky maps, and to the angular power spectrum. 

2.1. Map-Making with Pre-Calibrated Data 

While the process of generating the final sky maps from calibrated data comes last in the map-making pipeline, 

we discuss the algorithm first because the algebra of map-making is central to the entire data processing scheme, and 
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it helps to guide the systematic error analysis. 

We consider the problem of estimating a sky map, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt, from calibrated, differential time-ordered data, d, which is a 

linear function of the sky map 

d = Mt +n, (7) 

where M is the mapping function of the experiment, which has zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN p  columns and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN, rows, Nl, is the number of sky map 

pixels and Nt is the total number of time-ordered observations. In its simplest form, each row (observation) of the scan 

matrix contains a +I in the column (pixel) seen by the A-side beam, and a -1 in the column (pixel) seen by the B-side 

beam. This matrix can be generalized to include the effects of beam convolution, but for WMAP these refinements 

are small and are being deferred to future processing. The effects of a differential loss imbalance between the A and 

B-side beams is readily accounted for by using values different from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 1 in M. An analysis of this effect in the WMAP 
radiometers is presented in Jarosik et al. (2003b). The details of how we account for it in the pipeline are given in 

Appendices A and C. 

The noise n is assumed to have zero mean and covariance N, 

(n) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

(nn') = N. 

We defer a detailed discussion of the WMAP noise properties to $2.3.2, but for most radiometers it is reasonable to 

approximate the noise covariance as diagonal, N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaiI, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00 is the rms noise per observation and I is the identity 

matrix, though this assumption is not required for the algorithm described below to converge. 

The least-squares, or maximum-likelihood estimate of the sky map, ?, results from solving the normal equations 

?= (MTN-'M)-' . (MTN-'d). (10) 

More generally, we obtain an unbiased estimate of the sky map by choosing any symmetric matrix S in place of N-' 
(Tegmark 1997). To see this, substitute Mt+n in place of d in the above equation to get zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

z = (MTSM)-] . (MTS [Mt+ n]) = t + (MTSM)-' . (MTSn). (11)  

Thus reduces to t plus a noise term that is independent of t and has zero mean over an ensemble average. For the 
first-year processing we take S = I. To simplify notation, we define a matrix W G (MTM)-' . MT in which case the 

map solution is = Wd. 

The pixel-pixel noise covariance in the sky map solution is 

In the limit that N is diagonal and the rms noise per observation, DO, is constant, C reduces to ai (MTM)-'. For 

the WMAP scan pattern, the matrix MTM is diagonally dominant with diagonal elements nabs(p), the number of 

observations of pixel p by either the A or B-side beam. Thus, to a very good approximation, the pixel-pixel covariance 

matrix is diagonal 

Values for a0 are given by Bennett et al. (2003b). 

The leading order off-diagonal terms occur at the beam separation angle (eaarn - 141°), and are of order 0.3% of 

the diagonal elements. If the time-ordered noise N is not diagonal, then maps produced with the above algorithm will 
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have correlated noise (stripes) along the scan paths defined by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. This is a small, but not negligible, effect for some 

of the W A F '  radiometers, and is entirely negligible for others. The noise properties of the time-ordered data and sky 

maps are further discussed in $2.3.2 and $3.2, respectively. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.1.1. Iterative Map Making 

The evaluation of the sky map solution Wd requires the inversion of the N,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx Np matrix D MTM. We use the 

iterative approach introduced by Wright et al. (1996) to evaluate this expression. Briefly, suppose we have an initial 

guess for the sky map, to, which differs from the true sky map, t, by 6to = to-- t. Then Dto = D (t+6to) can be recast as 

Dah = Dh-MTd, (14) 

where we have used the fact that Dt  = MTd. As noted above, D is diagonally dominant, so a good approximate inverse 

for D is 

This leads to the approximate solution for the residual, 6h zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1: 6-' [Db - MTd], and suggests the following iterative 

solution 

t,+] = t,-at, 

= tn -D-' [Dt, -MTd] 

.. = (D-'MT)d + (I - D-'D) t,. 

The interpretation of equation (1 8) is that for each pixel the new sky map temperature is the average of all differential 

observations of that pixel (accounting for the sign of the observing beam) corrected by an estimate of the signal 

in the paired beam, based on the previous sky map iteration. The expression in equation (1 8) can be efficiently 

evaluated because the sums can be accumulated by reading through the time-ordered data from disk, each iteration, 

and accumulating data into arrays of length Np 

nobs ' tn+l(PA) + nab. tn+l@A)fWi [d(ti)+tn(P~)I nobs(PA) 4 nobs(PA)+Wi 

nabs. tn+l(pB) -+ nobs *tn+l(PB)-Wi [d(ti)-tn(P~)I nobs(PB) + nobs(PB)+wit (19) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw;  = I in the initial sky map processing and is proportional to a noise weight (equation C3 1) in the final sky 

map processing. Note that it is never necessary to store or invert an N,, x N,, matrix. 

We have tested this algorithm extensively with flight-like simulations. In this section we present results for an 

"ideal" noiseless instrument with circular beams and perfect calibration to isolate the performance of the map-making 

algorithm from other effects. More realistic data models are introduced to the simulation in subsequent sections. 

Figure 1 shows a sample residual map, to,, -ti,, generated from a one-year simulation of 42 data. The input sky 

map included realistic CMB signal with a peak-to-peak amplitude of - f 4 2 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApK,  and a Galactic signal with a peak 

brightness of -50 mK. The output sky map is recovered with an rms error of < 0.2 pK, after 50 iterations. The 

dominant structure in the residual map is a mode aligned with the ecliptic plane. The power in this mode is concentrated 

in spherical harmonic mode zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 = 4, due to a combination of the WMAP scan strategy and the beam separation angle. 

This is the mode on the sky that is least well measured by WMAP (except for the monopole!) and is thus the slowest 

to converge, though additional iterations would reduce its amplitude even further. The final first-year flight sky maps 

were effectively run for 80 iterations. Since the rms error associated with this term is very small, and since we build 

up a more realistic data model in subsequent simulations, we do not further quantify this contribution to the final 
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systematic error budget. Rather, we subsume it into an overall map-making and calibration error budget that includes 

this and other effects together. 

This iterative approach to map-making is readily generalized to polarization maps as well zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- the formalism is 

presented in Appendix C. We have tested that algorithm with the same simulations used above to test the temperature 

algorithm and find that the polarization maps converge even faster than the temperature maps. After 10 iterations, the 

map-making artifacts in a residual polarization map are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<0.05 pK peak-peak. 

2.2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACombined Calibration and Map Making 

The processing algorithm described above assumes that the data have already been calibrated. In practice, we use 

the above algorithm in the second stage of map-making, after an initial stage in which we simultaneously solve for the 

radiometer calibration and the sky map. In the initial stage of map-making, we employ the same iterative algorithm 

to solve for the map, but rather than processing straight through the time-ordered data on each iteration, we process 

the data one hour at a time, pausing to solve for the calibration in each radiometer channel, before accumulating the 

calibrated data. The calibration solution then iteratively improves as the sky model improves. The following sub- 

sections lay out the procedure in detail, and present results for the flight data with an assessment of its precision and 

accuracy based on flight-like simulations. 

2.2. I .  Instrument Calibration from the Dipole Modulation 

For a sufficiently short period of time the instrument gain and baseline can be approximated as constant, c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN 

&(At +n) + bk, where gk and bk are the gain and baseline during the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkth 1-hr calibration period. Since the sky signal 

At is dominated by the CMJ3 dipole measured by COBE, Ata, a single channel of raw data can be modeled as 

where At, is the additional dipole moment induced by the motion of WMAP relative to the solar system barycenter 
(the rest frame of the COBE dipole). 

We fit for the gain and baseline in each calibration period, k, by minimizing 

where i is a time-ordered datum index. We omit data that are flagged as unusable, and data when either the A or B-side 

beam points within a Galactic pixel mask. The mask used for this latter application is the Kp8 mask defined in Bennett 

et al. (2003c), without edge smoothing. This mask is used throughout the map-making pipeline. The fit is performed 

for each of the 40 WMAP channels independently. To minimize the covariance between the recovered gain and the 

baseline, it is necessary to have a scan strategy such that the time average of the sky signal, At, is approximately 

zero in one calibration period. The combined spin and precession of WMAP is designed to produce time-ordered data 

that satisfies this requirement. For example, in K band, which has the largest sky signal, a 1-hr running mean of the 

differential sky signal has an rms fluctuation of 14 pK, compared to a dipole signal of greater than 3 mK. After each 

hour of data is processed for the calibration solution, the data are accumulated as per equation (1 9) to develop the sky 

map solution. 
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The largest source of error in the calibration fit is due to un-modeled sky signal from the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACMB anisotropy and 

Galactic foreground emission, At, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE At-&. This projects onto the dipole signal and, as shown below, causes errors 

in the gain solution as large as 5-1076 in K band, where the Galactic signal is strongest. The calibration fit may be 

iteratively improved by subtracting an estimate of the anisotropy from the raw data prior to fitting. In particular, let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg; 
be the gain inferred for calibration period zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk from the previous iteration of the calibration fit. Then minimize 

> (22) 
[c’(ti) - cm(ti Igk 7 ~1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4 X2=C 
i E k  

and At: is the differential sky signal (less the dipole component) computed from the previous sky map iteration. This 

process is repeated until the calibration solution is sufficiently converged. 

Note that the absolute calibration is tied to the time-dependent portion of the dipole signal, At,; we use the fixed 

dipole as a short-term transfer standard only. In particular, when we update the sky model and apply the anisotropy 

correction in equation (23), any error in the fixed dipole moment, Atd, is assumed to be anisotropy, and is applied as a 

correction in the same way. For a data set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof at least one year in length (one full cycle of At,.), the error in the absolute 

calibration will be essentially orthogonal to any error in the fixed dipole 4 t d .  

2.2.2. Pedormance of the Dipole-Based Gain Solution 

As an illustration of the systematic gain error induced by higher-order (I > 1) anisotropy, Figure 2 shows an 

example of the gain solution convergence from a one-year low-noise simulation. This simulation implements the 

simultaneous calibration and sky map estimation discussed above and was run for 30 iterations. The example shown 

is for one channel of K band data (the worst case) which exhibits -7% errors after one iteration, corresponding to a 

sky model that has only a dipole component. After 30 iterations, the residual errors are <0.1% over the entire year. 

Similar, or better, performance is achieved for all other wIL2AP channels. 

In processing the final first-year maps, the combined calibration and map-making code was run for 10 iterations. 

However the initial sky model was based on an earlier “pathfinder” run of the pipeline that ran for a total of 30 

iterations of combined calibration and map-making plus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan additional 20 iterations of sky map convergence. Thus 

we conservatively estimate that the combined absolute and relative calibration errors due to incomplete calibration 

convergence to be <0.1%. We defer a discussion of the final calibration uncertainty to $3.1. 

Figure 3 shows a sample of the converged gain solution from equation (22) for two WMAP channels, K113 and 

VI 13. Note that the radiometer gains are typically drifting by a few percent over the course of the first year. As we 

show below, the dipole-based fits easily track drifts at this level. The noise in the gain solution is typically a few 

percent per hourly calibration period, though, as is readily seen in the figure, the noise level changes with time of 

year as the scan pattern sweeps around the CMl3 dipole. The V113 gain exhibits an additional modulation that is 

clearly correlated with the physical temperature of the instrument. However, the time scale of the temperature change 

is slow enough that the corresponding gain changes are well tracked by the dipole fits. Quantitative limits on thermally 

induced gain and baseline errors are discussed in Jarosik et al. (2003b) and in 53.4.1. A summary of the gain statistics 

from the flight data is given in Table 3. 
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2.2.3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe Initial Baseline Solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The bottom two panels of Figure 3 show the converged baseline solution resulting from the fit in equation (22) 

for one year of K113 and VI 13 Right data. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfits have had a mean subtracted, and have been divided by the 

gain to convert to temperature. These plots, which are representative of all 40 channels, show that the offsets of the 

radiometers are typically stable to f 5  mK over the course of the first year. Simulations demonstrate that the hourly 

baseline solution is unbiased. However, it is also clearly noisier than optimal, consistent with the flight measurements 

of the noise power spectral density (Jarosik et al. 2003b). In $2.3.2 we describe an improved baseline model that is 

based on the application of a pre-whitening filter tailored to the measured noise spectrum of each channel. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.3. Improving the Calibration Model 

The sky maps obtained with the hourly calibration are reasonable; however the noise in the calibration solution, 

particularly in the baseline, is significantly higher than optimal, and the use a piecewise continuous calibration in the 

final maps would introduce striping in its own right. In the following subsections, we present the steps undertaken to 

filter the gain and baseline solutions that enter into the final sky maps. Prior to generating the final maps, this refined 

calibration is applied to the data and written to disk as the final first year calibrated time-ordered archive. 

2.3.1. The Gain Model 

Jarosik et al. (2003b) present a physical model for the gain that is based on the W bias, or “total power” measured 

in each channel, and on the physical temperature of the instrument cold stage, which is monitored with high resolu- 

tion platinum resistance thermistors (PRTs). Each of these quantities is recorded once every 23 s in the engineering 

telemetry with a relative noise that is substantially lower than the noise in the dipole-based gain solution. Thus, if the 

model fits the dipole-based data satisfactorily, it offers a means for measuring the gain with more precision, and on 

time scales shorter than the spin period. The model for the gain, g( t ) ,  has the form 

where B is the measured RF detector bias, T ~ A  is the measured temperature of the FPA, and go, V , ,  and G are fit 

constants. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASee Jarosik et al. (2003b) for more detail. 

Figure 8 in Jarosik et al. (2003b) shows the performance of the gain model when fit to the dipole-based gain 

solution (see also Figure 7 in this paper). In $3.1 we evaluate the overall performance of the gain model and the hourly 

gain solution in the context of an end-end simulation designed to place limits on combined calibration and map-making 

errors. We will conclude that the model provides an excellent description of the radiometer gain, and here we adopt it 

as the final gain solution for further processing. The gain model fits into the data processing sequence as follows. After 

we iterate the simultaneous calibration and sky map solution long enough for the calibration to converge (10 iterations 

when starting with a good sky model), we freeze the dipole-based calibration and fit the gain model parameters in 

equation (24). All subsequent data products are produced with data calibrated using this gain solution, including the 

time-ordered archive, the final sky maps, and the Jupiter beam maps. 



- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12- 

2.3.2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABaseline Filtering 

The baseline that results from the initial calibration solution is not optimal. This is due to the fact that the initial 

baseline is sampled once per hour (0.28 mHz), while Jarosik et al. (2003b) show that the power spectral density of the 

noise has a 1 / f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAknee frequency of a few mHz, typically. If the initial baseline estimate were used in the final sky maps, 

it would generate weak stripes of correlated noise along the scan paths, as per equation (12). Even so, it is important 

to note that l/f effects are small relative to the white noise. In the worst zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWMAP radiometer, W41, the amplitude 

of the noise covariance N at small lag is -2% of the white noise variance. Thus we treat 1 / f noise iteratively in the 

data processing by first ignoring it to obtain an estimate of the gain, baseline, and sky solution. Then we subtract the 

estimated sky signal from the time-ordered data, apply a pre-whitening baseline filter to the residual noise, add the 

sky signal back in, and write the data to a final calibrated, time-ordered data archive. The approach of first subtracting 

an estimated sky signal is designed to avoid biasing the gain solution andor removing low-order power from the sky 

maps. The noise properties of maps constructed in this way must account for the filtering process. We discuss the 

map-making algebra appropriate to our filter implementation in Appendix B. 

The steps we follow to define and apply the filter are as follows. We remove an estimate of the sky signal, in du, 

from the raw differential data using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c’(t) = c(t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-g(r)At‘(r)- bkr (25) 

where bk is the hourly baseline point appropriate to the current time, g is the final gain solution from equation (24) and 

At‘ is the differential sky signal computed from the initial sky map. We then evaluate the auto-correlation function of 

c’(f) to a lag of lo4 sec. Results for representative radiometers are shown in Figure 4. This range of lags is sufficient 

to account for both the long-range correlations due to 1 / zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf noise and the correlation at a lag of 1 observation due to the 

low-pass post-demodulation filter in the Analog Electronics Unit (Bennett et al. 2003a). The baseline filters are then 

defined as follows (Wright 1996) 

1. Fit the auto-correlation function, C(At) ,  to the model defined below. 

2. Fourier transform the model correlation function to generate the power spectral density Po. 
3. Compute the Fourier space filter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwcf )  = 1/m and set w(0) = 0 to produce a zero mean output signal. 

4. Fourier transform the filter w ( f )  to generate the time domain filter w(r), normalized to 1 at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr = 0. 

By inspection, the auto-correlation functions are well modeled by a log-linear function 

At=7  
s) 7 < At < s 

Ar > s, 

where T is the integration time for a single observation, CI is the correlation at lag 7, measured from the data, and 

A and B are fit parameters. Note that A gives the typical fractional covariance at small lag, while the suppression of 
correlations at large lag (-2000 s) is dictated by the subtraction of the hourly baseline as a pre-filter. The best-fit 

parameters are given in Table 4, and fits for selected radiometers are shown ir, Figare 4. 

The derived pre-whitening filters, wcf), are plotted as a function of frequency in Figure 4. One point of particular 

interest is the filter response at the spin frequency, 7.7 mHz. As shown in Table 4, the best channels have a transmission 

of > 95%, while the worst case, W41, is just above 35%. These values indicate the amount by which the dipole 

(calibration) signal would be suppressed if the filter were applied prior to calibration and sky signal subtraction. The 

convolution of c’(t) with w(r) is performed in Fourier space using the Numerical Recipes routine zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAconvlv (Press et al. 
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1992). The number of data points convolved at any one time is chosen to be the smallest power of 2 such that the data 

span a full day with sufficient padding beyond the day to guarantee that wrap-around effects are negligible. This is 220 

for K-Q bands, and 22’ for V,W bands, which gives a minimum of 2.9 hours of padding on each end of a day. Sample 

auto-correlation functions obtained from the filtered data are shown in Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. The filtering is clearly effective at 

removing low frequency noise in the time-ordered data. Another example of filtered data is seen in Figure 5, which 

shows 1 day of W42 data, one of the worst radiometers for l/f noise, before and after filtering. These data are 

smoothed with a 46 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs window to show structure in the unfiltered data since plots of unsmoothed data before and after 

filtering are virtually indistinguishable. 

The above results are encouraging but not definitive, because the process of sky signal subtraction and re-addition 

could introduce correlated artifacts that these tests would miss. The ultimate test of a filter is its ability to “clean” the 

pixel-to-pixel covariance matrix of the final sky maps and the noise covariance of the angular power spectrum, without 

altering the underlying sky signal. The sky map noise properties are discussed in 83.2, while the noise properties of 

the power spectrum are quantified in Hinshaw et al. (2003b). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.3.3. Baseline Jumps 

Limon et al. (2003) identify 21 instances of sudden baseline jumps, or “glitches”, during WMAPs first year 

of operation. These events have been identified as small shifts in the properties of several microwave components 

resulting from sudden releases of internal mechanical stress, presumably from thermal changes. These events last for 

less than 1 s, and cause no discernible change in the radiometer gain or noise properties. 

Care must be taken in the application of the baseline filter in the vicinity of these steps to avoid ringing in the 

filtered data. Each event is initially flagged by the pre-processor for at least 1.2 hours on either side of the event. 

Since the initial hourly baseline is derived entirely in the time domain, the =t 1.2 hr flagged interval ensures that this 

baseline estimator only “knows” about data on one side of the jump or the other. Prior to convolving the raw data 

with the pre-whitening’filter, we subtract the initial hourly baseline from the data as a pre-conditioner. Thus all data 

that is input to the convolution routine has approximately zero mean. On output, the re-processor expands the flagged 

interval by 0.5 hr on either side of the event to ensure that no edge effects propagate into the usable data. In the first 

year of operation, a total of 0.13% of the data was lost to these steps. See Table 2 in Bennett et al. (2003b). 

The threshold amplitude for jump detection by visual inspection is -0.05 du, which corresponds to a jump of 
-150 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApK in the calibrated output of radiometer W12, the worst offender. To assess the effect of undetected baseline 

steps in the data, we have generated a test data set in which we take 24 hours of fiight W12 data and insert a step of 

0.05 du in each channel. We then run the data through the pre-whitening filter to see the magnitude of the transient 

response. The result is a transient baseline error with a peak magnitude of 80 p K ,  which lasts for less than one 2- 

minute spin period. The total time the baseline error exceeds 10 p K  is 22 minutes. or approximately 11 spin periods. 

We pessimistically assume that there could be as many as 40 steps at or just below the threshold of detection, and that 

half of these are in W12. If we assume these occur at random times, and note that WMAPobserves -30% of the sky in 

any given hour, then any given sky pixel is likely to “see” approximately 11 x 20 x 0.3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 66 data points with baseline 

errors greater than 10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApK. Since the sign of a given step is random, and since W11 data is combined with W12 in the 

sky maps, we estimate the residual systematic error in a given pixel of the W1 map is less than 10 p K  /2 /&6 - 1 

p K .  We emphasize that no jumps have been observed in any other W band radiometer, thus DA-DA consistency is an 

excellent test of whether any statistic is sensitive to baseline errors of this nature. We have found no evidence that the 

W1 map is “out of family” (53.2). 
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2.4. Final Sky Map Processing 

Once the calibrated, time-ordered archive has been written, final sky map processing commences based on the 

algorithm presented in $2.1. At this stage in the sky map processing, we add a few features to the algorithm that, 

for simplicity, are not present in the combined calibration and map-making code. These include: 1) Weighting each 

datum by a true weight, l/a; based on an estimate derived from the physical temperature of the instrument cold stage. 

This introduces -1% variations in the data weights over the year, since the instrument noise is a weak function of 

temperature, and the temperature varies by -1% over the year. 2) Accounting for loss imbalance, as discussed in 

Appendix A. In effect, we model each differential observation as At = (1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+xjm)f(pA) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 -xim)t@B), where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxim is the 

small loss imbalance parameter given by Jarosik et al. (2003b). 3) Computing the planet avoidance flag at run time to 

reduce the amount of data lost. In the final sky maps, a total of 0.1 1 % of the data was lost to planet avoidance. See 

Table 2 in Bennett et al. (2003b). 

The final stage of sky map processing, based on the filtered data, was zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArun for a total of 20 iterations. Convergence 

was determined by measuring the rms difference between pairs of iterations for a given differencing assembly. For 

example, the difference between the 10th and 20th iteration of the W2 sky map is 0.08 pK rms. We estimate that 

artifacts due to lack of solution convergence are ~ 0 . 1  pK rms with all of the power being in the low multipoles, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I < 10. We present a final combined estimate of sky map artifacts due to calibration and map-making errors in 43.1. 

This estimate includes the convergence limits given above. 

To assess the effect of the improved calibration model on the final sky maps, we form differences between the 

final post-filtered maps and the last iteration of the intial, pre-filtered maps. The results for DAs W3 and W4 are shown 

in Figure 6. The top panels in this Figure show the difference maps from a one-year simulation ($3.1) that included a 

realistic radiometer noise and gain model. The bottom two panels show differences from the flight data. Because these 

maps are largely based on the same data, most of the white noise drops out of these differences. The remaining “blobs” 

of white noise result from the change in the planet cut and can be ignored. The striking feature is the striping present 

in the W4 difference, but virtually absent in the W3 difference. As we show in Appendix B, this is the structure that 

has been removed from the data by the pre-whitening filter, an interpretation that is substantiated by the analysis of 

the simulation. The fact that the W3 difference is very small is an indication that the level of striping in the unfiltered 

W3 data was very small to start with. We estimate the level of residual striping in the final maps in $3.2. Images of 

the final maps at each frequency are presented by Bennett et al. (2003b). 

3. SYSTEMATIC ERROR ANALYSIS 

As discussed in the introduction, systematic errors may be classified by the nature of their source. In this section 

we place limits on the level of systematic errors in the final sky maps, using that classification to guide the analysis. 

In $3.1 we place limits on combined calibration and map-making artifacts, based largely OI! a detailed simulation of 

the first year of WMAP operation. In $3.2 we present null tests based on difference maps formed from a variety 

of data combinations, each of which should yield no sky signal. We use these maps to measure or place limits on 

correlated pixel noise (striping) in the final first-year maps. In 33.3 we discuss systematic errors relating to pointing 

and beam mapping ei7ors. We conclude by placing stringent limits on residual errors due to environmental (thernial 

and electrical) and other miscellaneous sources. 
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3.1. Calibration and Map-Making Errors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

To assess the combined errors from Calibration and map-making artifacts, we have generated a high fidelity 

simulation that includes all of the effects we believe are important for Calibration and map-making. In particular this 

simulation includes: 1) A sky model that closely mimics the statistical properties of the observed sky; 2) A realistic 

noise model for every channel, including 1 / zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf noise [see Jarosik et al. (2003b) for a tabulation of 1/ f knee frequencies]; 

3) A model for the thermal drift of the gain, baseline and offset of each radiometer, based on measured susceptibility 

coefficients, and driven by the actual temperature profile measured in flight. This simulation generates the sky signal 

using a circular beam approximation. The effects of elliptical beams are treated in a separate, noiseless simulation in 

$3.3.4. We write simulated science data to files that mimic the raw telemetry, then process the data using the same 

pipeline as was used to process the flight data. 

The top panel of Figure 7 shows the converged gain solution from the simulation for channel V113; the bottom 

panel shows the corresponding result from the first year of flight data. In both panels, the “noisy” black traces are the 

hourly gain data, binned in 2 4 4  samples to reduce the noise, and the green traces are the best-fit gain model ($2.3.1). 

For the simulation, the input gain used to generate the data is shown in grey. The absolute gain is recovered in the 

simulation to better than 0.1 % for all 40 channels. 

The dipole signal seen by an observer moving with speed v relative to the rest frame of the CMB is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATo v/c, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7’0 is the absolute temperature of the CMB, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc is the speed of light. Thus, additional sources of error that could 

affect the absolute calibration of the WMAP data include errors in the determination of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW M s  velocity with respect 

to the solar system barycenter (the point of reference for the COBE dipole) and errors in the absolute temperature of 

the CMB. The velocity of W A P  is routinely measured with respect to geocentric inertial coordinates (GCI) with an 
accuracy of < 1 cm s-’ . The velocity of the Earth is determined from the P L  ephemeris with similar accuracy. The 

combined uncertainty from velocity errors is 0.1 nK. The uncertainty in the absolute temperature of the CMB is 0.1 % 
(Mather et al. 1999). Combining these uncertainties with the results of the simulation, we conservatively estimate an 

absolute calibration error of 0.5% for the first-year WMAPdata. 

Errors in relative calibration can produce structure in the sky maps, beyond an overall normalization factor. The 

largest relative discrepancy between the dipole gain solution and the gain model in the flight data is ~ 0 . 4 %  in K 

band, and -0.2% in the other bands. Similar deviations are seen in the simulation, thus we use the simulation as our 
primary tool for placing systematic error limits due to relative calibration and map-making errors. We have generated 

residual maps from the simulated data by subtracting the known input sky signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfrom the maps produced by the 

pipeline. These residual maps exhibit no visible structure aside from the pixel noise. In order to assess the errors due 

to map-making artifacts, we compute the angular power spectrum, C,, of the residual maps and search for features 

in the spectra beyond a simple flat, white noise spectrum. The residual spectra for all 10 differencing assemblies are 

shown in Figure 8 and summarized in Table 5. In general, the spectra are consistent with white noise over a wide 

range of multipole moments, but clearly show the most variation at low zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Because of this, we specifically highlight 

these modes in Table 5, where we give C2, (Cl)3-10, and (Cl) ll-loo for each of the DA’s. For combined systematic error 

limits due to calibration and map-making, we assign twice the excess variance in each I range relative to the white 

noise plateau, oSYS G 2 \(Cl)hd- (C~),oo-looo 1. These values are also quoted in Table 5. For comparison, the average 

power in the CMB in each band is C2 - 130 pK2, ( C I ) ~ - ~ ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN 150 pK2.  and (CI) :~- ,~~ - 6 pK2.  

Because the simulation includes realistic models of 1 / f noise and long-term thermal effects, these limits also 

implicitly limit artifacts at low 1 due to these effects. As we demonstrate in subsequent section, we feel this simulation 

captures all of the important radiometric characteristics of the instrument. Potential artifacts due to optical effects, 

especially pickup through the far sidelobes, are treated in Barnes et al. (2003), and are summarized in 83.3.5. 
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3.2. Difference Maps and Noise Properties 

Difference maps are combinations of the data that, ideally, should contain no sky signal. They provide insight 

to potential systematic errors and can be used to characterize the noise properties of the sky maps. The first set of 

difference maps we generate are between DA pairs with the same frequency and beam response, namely k(Ql-Q2), 

are shown in Figure 9, along with low resolution versions of the sum (signal) maps to give a sense of the signal 

strength in each map. Aside from the pattern of the noise, which follows the sky coverage [see Figure 3 of Bennett 

et ai. (2003b)], the only visible structure in these difference maps is in the Galactic plane, especially in V band. This 

is understood to be a result of a small difference in the effective center frequency of the VI and V2 differencing 

assemblies (Jarosik et al. 2003a). In particular, the V1 map has an effective frequency approximately 1 GHz lower 

than V2. Since the spectrum of the Galaxy at V band follows zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&(v) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN v-* (Bennett et al. 2003c), we expect the Galactic 

signal to be -3% brighter in V1 than V2, which is consistent with the residual signal seen in the difference map. [A 

complete tabulation of effective center frequencies, radiometer by radiometer, is given by Jarosik et al. (2003a) for 

diffuse sources, and by Page et al. (2003a) for point sources.] Note that because the data are calibrated using the CMB 

dipole, there should be nu residual CMB signal in such a difference map. A more sensitive comparison of the single 

DA maps is afforded by comparing their angular power spectra. In that case, it is easier to compare across frequencies 

because differences in beam response are readily accounted for by deconvolution. See Hinshaw et al. (2003a) for such 

a comparison. 

z(Vl-V2), 1 and $(W12-W34), where W12 = ;(Wl+W2), and W34 = $(W3+W4). Images of these difference maps 

We generate three additional sets of difference maps using different combinations of the 4 channels within a DA. 

Specifically, we form the differences in the time-ordered data then generate maps as follows 

where + indicates the map-making 

temperature maps, Le., without attempting to demodulate the polarization signal. Since the two radiometers within 

a DA have completely independent detection chains, and since the polarization signal is weak to begin with (and is 

further suppressed by the lack of demodulation) the noise properties of the A 12 maps should be virtually identical to 

the nominal signal maps. The A34 and A1234 maps are based on channel differences, (d;3 -d;4), and since the two 

channels within a radiometer have partially correlated noise, the noise properties of these latter maps will be different 

than the maps based on (di3 +d;4). However, these maps do provide a check on the channel calibration, common-mode 

thermal effects and other potential artifacts. 

For each difference map the two-point correlation function and the angular power spectrum are calculated. The 

results are shown in Figures 10 and 11 and summarized in Table 6. Figure 10 shows the two-point function computed 

from the A12 maps for Q2, V2, and W2. The most apparent feature in each of these functions is the slight bump at the 

beam separation angle of Obeam - 141°, as expected ($2.1); the first data column of Table 6 gives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC(Ob,,)/C(O), for 

each DA. Note that, with the exception of K band, the ratio is typically 0.3%. The larger K band values arise because 

Galactic leakage in these difference maps is most severe in this band. This is also the source of the weak large-scale 

feature in the V2 two-point function in Figure 10. While this residual signal is small compared to the temperature 

signal, it is a systematic error that must be accounted for in the analysis of polarization data (Kogut et al. 2003). 

Figure 11 shows the angular power spectra of the difference maps for each of the 10 DAs, as well as for the final 

signal maps. Table 6 summarizes their statistics. Note that the white noise plateau in the 4 channel combinations per 
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DA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdivide into two families, as noted above, due to the correlations between channels 3 and 4. As a result, the null 

combinations, A34 and A123.4, cannot be used to estimate the white noise parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60 for the signal maps. However, 

the polarization channel is seen to be in excellent agreement with the temperature channel in the white noise tail, thus, 

to the extent that real polarization signals, or other systematics, such as bandpass mismatch are not important, these 

maps should provide an excellent noise model for the temperature data. Table 10 summarizes the shape of the angular 

power spectrum at low zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI in the same way Table 5 did for the simulation. We find the spectra of these difference maps 

to be remarkably flat, with residual quadrupole moments of <4 pK2 for all bands except K (in which the difference 

is dominated by bandpass mismatch) and a single combination of W3. This value is much smaller than the small 

quadrupole measured in our sky (Bennett et al. 2003b). The power in the other multipole ranges is very close to 

the white noise floor, as seen in the final columns of Table 6. Since the residual signals seen in the flight difference 

maps are somewhat lower than those seen in the simulation (Table 3, we adopt the more conservative limits from the 

simulation as systematic error limits for structure at low zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. This allows for the possibility than some of the error seen 

in the simulation comes from, e.g., common-mode calibration errors that cancel in the difference maps. 

The two-point correlation function of the A12 maps demonstrates that the angle-averaged off-diagonal terms of 

the pixel-pixel covariance matrix are less than -0.3%. However, the maps in Figure 6 indicate the potential for stripes 

along the scan directions for which the covariance can be locally higher than the angle- averaged value. In order 

to determine the magnitude of the covariance along the scan directions we perform the following computation. We 

form W band difference maps: Wi-Wi'. where i = 1-4, and Wi' is the average of the 3 other W band maps, e.g., 

W1' = +(W2+W3+W4). We then form time-ordered data from this map using the pointing appropriate to DA Wi 

and compute the auto-correlation function, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC(At), from 30 days of data. This provides a measure of the pixel-pixel 

covariance along a stripe. The results for W3 and W4 are shown in Figure 12; the top panels show the covariance, 

normalized to one at lag zero, computed from the unfiltered maps, while the bottom panels show the results for the 

filtered maps. In order to convert the time axis to angular displacement along a scan, recall that the 2."784 s-lspin 

rate translates to a 2P6 s-lrate for the beams in either focal plane (the second decimal place depends on position in 

the focal plane, and time in the precession cycle). The W3 result shows a hint of covariance (-0.1%) at lag 0.1 s, or 

OP26, prior to filtering, but none after zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(<0.05%). Prior to filtering, the W4 result shows clear covariance of up to 0.5% 

at small lag, decaying to <0.1% at lags of N 10' s, roughly one full spin. After filtering, the covariance is reduced 

by nearly a factor of two, but is still clearly detectable. This is understood to be residual covariance that survives the 

filtering process because of the fact that we subtract an estimated sky signal, based on the data, prior to filtering the 
noise, then add it back in to restore the signal. The algebra of this process is presented in Appendix B. We emphasize 

that W4 is the worst DA for l/f stripes by at least a factor of 3 (Jarosik et al. 2003b), and we limit covariance along 

scan directions to be <O. 1 % for all other WMAP first-year sky maps. 

3.3. Pointing and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABeam Determination 

3.3. I .  Spacecraft Attitude Control and Detemiination 

The spacecraft attitude is determined from a combination of two autonomous star trackers (ASTs) with boresights 

perpendicular to the spin axis (along the spacecraft f y  axes), two rate gyroscopes, and two digital sun sensors. The 

sensor outputs are combined using a Kalman filter to determine the aspect solution. The sensor noise parameters and 
offsets were initially calibrated in flight during the in-orbit checkout (IOC) period in July 2001. By the end of IOC, 

the final tables were uploaded to the spacecraft. 

Spacecraft quaternions output by the Kalman filter provide the definitive transformation from the spacecraft 

reference frame to the 52000 geocentric inertial (GCI) system. Errors in the attitude solution are estimated using the 
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residuals of the individual sensor signals and propagated to the quaternions. After the final Kalman filter parameters 

were loaded, quaternion differences show a noise-like error with a 10” rms. In addition to the sensor noise, there 

is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan apparent spin-synchronous error of - 10“ that is believed to be due to propagation errors in the Kalman filter. 

As discussed below, this error is apparently seen in the instrument boresight determination using Jupiter observations. 

Since the pointing performance exceeds the requirement of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOI9 (root-sum-square for three axes), no correction of the 

spacecraft quaternions is attempted for the first-year processing. Sufficient information exists in the raw telemetry to 

attempt a correction in the future, if it is warranted. Note that random quaternion errors are automatically accounted 

for in the flight beam response maps generated from the Jupiter observations (Page et al. 2003a). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.3.2. instrument Boresight Determination 

As mentioned above, the spacecraft quaternions provide the definitive reference frame for the spacecraft. The 

instrument boresights, 10 each on the A and B sides, are determined from the Jupiter beam maps (Page et al. 2003a), 

which are generated with respect to the spacecraft frame provided by the quaternions. The boresight is defined as the 

location of the peak of a circular Gaussian fit to the main beam. The results of this fitting are given in Table 7 as 20 

unit vectors in spacecraft coordinates. These are the values used to determine instrument pointing in the first-year data 
processing. The uncertainty in the boresight position is - 2” per beam in both spacecraft azimuth and elevation. In 

addition to statistical uncertainty in the boresight fits, there are two other potential sources of error in the boresight 

determination: changes (drifts) with time, and errors in the relative time-tagging of quaternion data and science data. 

To test stability, we note that WMAP is in a position to see Jupiter twice per year for about 45 days each time. 

We refer to each -45 day period as a Jupiter “season”. During the first season of each year, the boresights scan 

across Jupiter from roughly ecliptic north to ecliptic south, and vice-versa in the second season. As a test of boresight 

stability, we have generated beam maps from each of the first two seasons of data separately, and have fit boresight 

directions to each. We find the azimuth positions agree to better than 3” on both the A and B sides, but the elevation 

positions differ by - 10” on the A side, and a smaller amount on the B side. This difference between seasons is 

consistent with the N 10“ spin-synchronous error in the spacecraft quaternions discussed above. We ignore this small 

effect in the first year processing, and subsume the small systematic error that results into our error estimate for the 

beam transfer functions, as discussed in Page et al. (2003a). 

The relative time-tag accuracy of telemetry packets was tested on the ground. A timing computer was set up to 

simultaneously receive test pulses from both the Attitude Control Electronics (ACE) box and the Digital Electronics 

Unit (DEU), the two computers that tag the attitude and science data packets, respectively. Each of these boxes in 

turn derives its time from the main “Mongoose” computer on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWMAP (Bennett et al. 2003a). This test demonstrates 

a relative time-tag accuracy of 30 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAps between the quaternion packets and the science packets. In observing mode, the 

boresights sweep the sky at a rate of 2P6 s-l, so a 30 ps time error produces a negligible pointing error of < 0.3“ . 

Uncertainty in the spacecraft position is another potential source of boresight determination error. For the first 

year processing we use a predicted ephemeris that is uploaded to the spacecraft approximately weekly for on-board 

use by the Attitude Control System. This solution is returned in telemetry and is the basis for the ephemeris data 

supplied with the first-year release of time-ordered data. The uncertainty in these predictions are < 7 km zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin position 

and < 1 cm in velocity (3 a), relative to the Earth. An error of 7 km in M P ‘ s  position would result in error of 

-2 mas in the apparent position of Jupiter as seen from WMAP and is thus completely negligible. 
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3.3.3. Beam and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWindow Function Determination 

Along with gain calibration and noise properties, knowledge of the beam shapes and window functions are among 

the most important aspects of the instrument to characterize for accurate measurements of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACMB. Page et al. (2003a) 

describe in detail the process by which beam maps are formed from in-flight observations of Jupiter, and how those 

maps are transformed to determine the beam window functions. The primary result they derive are a set of 10 beam 

transfer functions, b1, one per zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADA, based on azimuthally-averaged beam radial profiles. These transfer functions 

are included in the first-year data release (Limon et al. 2003). In addition, they derive a full covariance matrix for 

each transfer function, E:,, , which characterizes the uncertainty in b,. Typically, the uncertainty for a single DA is 

about 1-2%, with moderate covariance in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. See Figure 5 of Page et al. (2003a). These estimates already include a 

systematic error allowance to bound the small range of results obtained from different analysis methods. As described 

in Hinshaw et al. (2003a), the window function covariance matrices are propagated into the Fisher matrix (inverse 

covariance mamx) for the final combined angular power spectrum. Thus the final power spectrum, and the parameter 

fits based on it, already include statistical and systematic window function uncertainties (Spergel et al. 2003; Verde 

et al. 2003; Peins et al. 2003). 

3.3.4. Effects froin Elliptical Beams 

The WMAP beams are moderately elliptical, so the use of azimuthally-averaged radial profiles to describe the 

beam response is an approximation. This approximation is justified in Page et al. (2003a) by noting that the WMAP 
scan pattern produces excellent azimuthal averaging of the beam response in a large fraction of the sky. They have 

placed limits on the variation of the window function across the sky by comparing the effective window function in 

the ecliptic plane, based on a full two-dimensional transform of the beam response averaged over the flight range of 

scan angles, to the fully averaged transform, bl. For the three highest frequency cosmology bands, these variations 

range from 2-3% at Q band to -1% in V and W bands. These variations are consistent with estimates of the angular 

power spectrum using data at high and low ecliptic latitudes separately (Hinshaw et al. 2003a). Since most of the 

statistical weight at high4 resides in the V and W band data at high ecliptic latitudes, the use of fully averaged beam 

transforms is appropriate, and the systematic error estimate incorporated into Cf;, should encompass any error in this 
approximation. 

Elliptical beams can also produce errors in the sky maps that are difficult to characterize in a simple way. We can 

define the sky map error due to non-circular beam response as 

Atasym zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf tobs-tcirc, (28) 

where tobs is the hypothetical noise-free sky map obtained with the actual experimental beam and scan pattern, and 

hirc is the ideal sky map obtained by convolving the true sky with the averaged beam transform, b1. For a differential 

experiment like M A P ,  there are two effects that contribute to Atasym. The first, as noted, is incomplete azimuthal 

coverage in a given pixel, which gives rise to slightly elliptical peak structure at low ecliptic latitudes (see below), 

the second is a localized effect due to echoes from bright Galactic sources propagating to other pixels in the map. 

Specifically, as a bright source is observed in different orientations, the differential signal changes with orientation. 

Since the map-making algorithm must assign one average value to the pixel with the bright source, the ring of pair 

pixels at the beam separation will see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan echo with a quadrupolar temperature distribution around the ring. We mitigate 

this effect by incorporating a bright source mask in the map-making algorithm, which is invoked as follows. If side A 
observes a pixel in the bright source mask, we only update the sky map accumulator for pixel A, but not for pixel B 

\ 

b b s  . tn+l (PA) b b s  . tn+l (PA) 4- wi [d(ti) -I- tn(PB)I b b s ( P A )  b b s ( P A )  -F zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwi 
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where the terms are as defined in after equation (19). In this way we obtain an estimate of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt ( P A ) ,  but we do not 

propagate bright echoes to the ring of neighbor pixels, of which p~ is one. The mask we use for assigning this cut is 

the same Kp8 processing mask we used for the calibration fits (92.2.1). 

We have generated a simulation to quantify the errors from both of these effects. Specifically, the simulation 

generates one year of noise-free differential sky signal which includes a model for the flight beam ellipticity. We run 

this data through the flight map-making pipeline to generate sky maps, t&. We also generate convolved maps tcac 
using the azimuthally-averaged beam transforms appropriate to the beam model. The residual map, Atasym, for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADA 
K1 is shown in Figure 13. The K band radiometers have the largest beam ellipticity of all the DAs, so this represents a 

worst case result. The general “mottling” near the ecliptic plane results from the relatively limited azimuthal coverage 

in this region producing elliptical peaks and anti-peaks which, in Atasym, are differenced with circular counterparts. 

This is especially noticeable near bright Galactic sources. The rms amplitude of these fluctuations in the Kp2 cut sky 

is 2 pK in K band, and at least a factor of 2 lower in Q-W bands. The effect of this structure in the power spectrum 

is primarily represented as a variation in the window function across the sky, as discussed above, and in Page et al. 

(2003a) and Hinshaw et al. (2003b). However, this structure also contributes to the 4-point function of the data in the 

sense that it couples power from different zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ranges. This effect is potentially important for the interpretation of any 

gravitational lensing analysis of the W A P  data. 

The figure also exhibits faint echoes of the brightest sources that evade the map-making cut discussed above. We 

limit localized features in the Kp2 cut sky to less than 10 pK in K band and less than 2 pK in Q-W bands due to a 

combination of dimmer sources and more circular beams. We estimate that such features occupy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<0.1% of the Kp2 

cut sky. 

3.3.5. Far Sidelobe Pick-up 

The W A P  optical system was designed to produce minimal pick-up from signals entering the far sidelobes. 

Barnes et al. (2003) present a complete determination of the W A P  sidelobe response by combining measurements 

from a variety of ground-based sources with in-flight measurements of the Moon. They produce response maps 

covering zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA47r sr that are included as part of the first-year data release. They then use these response maps, with the 

first-year sky maps, to estimate the systematic artifacts remaining in the first-year maps based on the well-justified 

assumption that sidelobe artifacts are small relative to the sky signal. The K band data have the largest sidelobe signal 

due both to the largest sidelobe spill, and to the brightest Galactic signal. The signal was deemed to be large enough, 

and well enough characterized, to warrant a small post-processing correction to the first-year K band map. Limits on 

remaining sidelobe induced artifacts in all the bands are presented in Table 1 of Barnes et al. (2003). 

3.4. Environmental Effects 

3.4.1. Thermal Effects 

The radiometer gain and offset are dependent on temperature. There are several aspects of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWMAP design 

that are critical to mitigating this source of systematic error (Bennett et al. 2003a). The instrument is differential, so 

thermally induced gain changes act on a relatively small offset signal. The observatory environment was designed 

to be as stable as possible, consistent with other goals. For example, all nominal thermal control is passive to avoid 
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heaters cycling on and off. The observatory is placed at the second Earth-Sun Lagrange point far from the Earth, and 

the solar panels maintain a fixed 2205 angle with respect to the Sun during normal observing mode. The instrument 

temperature is monitored with precision platinum resistance thermistors (PRTs) to verify the degree to which thermal 

stability is in fact achieved. 

Temperature variations at the spin period are the most critical since they can induce signals that couple relatively 

efficiently to the sky. However, owing to the relatively fast (129.3 s) spin period and the thermal mass of the instrument, 

any induced signals will have a very red spectrum and thus will couple only to the lowest few harmonic modes on 

the sky (I‘ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10). In the analysis below we use flight data to estimate the susceptibility of the gain and baseline to 

temperature variations of the instrument. In turn we use limits on the instrument’s physical temperature variation at 

the spin period from Jarosik et al. (2003b) to put limits on thermally induced artifacts in the time-ordered data, and 

hence the sky maps. 

Thermally induced signals can enter either through changes in the gain acting on the instrument offset or through 

changes in the offset itself. We show below that the latter are more significant for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWMAP. 

The radiometer gain model presented by Jarosik et al. (2003b) describes the gain in terms of the RF bias (“total 

power”) of the detector, and the temperature of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFPA. This model tracks thermal variations in the gain on the time 

scale of the RF bias readout (23.04 s), and the map-making algorithm updates the gain on this time scale. However, 

since this sample rate is only a few times per spin, it is possible that a systematic temperature variation at the spin 

period could induce gain changes that are not well sampled by this model. As a separate check of gain-induced 

artifacts, we infer the temperature susceptibility of the gain from data taken over a long time period where gain 

changes are measurable. Results are given in Table 8. We combine these measurements with the limits on temperature 

modulation at the spin period derived by Jarosik et al. (2003b) to place limits on gain induced artifacts, as shown in 

Table 9. We conclude that gain-induced signals at the spin period, which might be poorly tracked by the gain model, 

are <20 nK. 

The instrument baseline is the product of the gain times the offset. As described in 92.2, we get an initial estimate 

of the baseline from the dipole calibration algorithm. This gives us an estimate of the instrument baseline once per 

hourly precession period. Sample hourly baselines for channels V113 and V114 are shown as a function of time over 

the first year of operation in Figure 14. Also shown is the temperature of the instrument FPA over the same time period; 
there is a clear temperature dependence in the baseline. We measure the baseline temperature susceptibility by fitting 

the hourly baseline estimates to a model of the form b(t) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc0+cIf + c z A T p ~ ( t )  where the ci are model coefficients and 

ATPA = T F ~ A  - ( T F ~ A )  is the deviation of the FPA temperature from its mean. The most robust susceptibility results 

come from fitting a portion of the data near the time of a partial battery cell failure which occurred on day 2002:054 

(GMT) (Limon et al. 2003). In response to this event, the spacecraft bus voltage was autonomously commanded lower 

on day 2002:058 (GMT) causing the spacecraft to dissipate less power and thus cool slightly. The coefficients are given 

in Table 8. We have combined the results for the two channels in each radiometer because this is the combination that 

enters into the final sky maps. This has the effect of canceling some of the common-mode susceptibility measured in 

individual channels. As noted above, we combine these susceptibility measurements, taken over long time periods, 

with limits on the temperature variations at the spin period (Jarosik et ai. 2003b) to place limits on induced signals at 

this time scale. The results are given in Table 9. We conclude that offset-induced signals at the spin period are < 180 

nK. 

Slow drifts in the instrument temperature will be largely filtered out by the baseline pre-whitening discussed in 

$2.3.2. The steepest temperature gradient observed during the first year of observation occurred just after the above- 

mentioned battery cell failure. To assess the efficiency of the filtering process, we have analyzed the data during this 

period as follows. We applied the baseline pre-whitening filter to the temperature signal, TpA(f ) ,  to measure how much 
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the cooling gradient was suppressed by the filter. The input temperature gradient on day 2002:058 (GMT) was -1.7 

mK hr-'. Applying the K11 filter to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATFPA(r) yielded an output gradient of -0.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhr-l, while the W41 filter yielded 

an upper limit 10 times smaller. We conservatively estimate upper limits on residual drift in the filtered baseline of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
< 10 nK hr-lfor the most susceptible channels. 

3.4.2. Electrical Effects 

A variable electrical signal on board the observatory could induce an apparent signal in the radiometers. Sources 

of variable electrical signals include the reaction wheels, transponder, bus voltage fluctuations, and RF noise coupled 

to the instrument through the power bus. During the final observatory thermal vacuum test, in which the observatory 

was operating at temperatures close to those achieved in flight, searches for such electrically induced radiometric 

artifacts were conducted (Jarosik et al. 2003a). Upper limits on radiometer bus voltage susceptibility, based on ground 

tests, are given in Table 8. We combine these results with an upper limit on bus voltage variations of 3.0 mV rms, 

measured on-orbit, to conclude that electrically-induced signals at the spin period are <40 nK. See Table 9. 

3.5. Miscellaneous Effects zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.5.1. Radiometer Cross-talk 

A large signal in one radiometer could induce an erroneous signal at the output of another radiometer due to 

electrical cross talk. Such cross talk is not expected but could arise from, e.g., non-ideal amplifier behavior, or other 

parasitic effects, such as pickup in the wiring harnesses. 

A careful search was made for this effect during the instrument ground tests. Noise diodes were used to inject 

a large signal into one radiometer at a time while the input feeds of all other radiometers were covered by absorptive 

loads. The outputs of the 9 non-driven differencing assemblies were searched for any evidence of the injected signal. 

The tests were run with the amplifiers in the passive channels both on and off in order to distinguish pickup mecha- 

nisms. No pickup was found in any test. Table 10 gives 20 upper limits on the pickup by any DA due to any of the 9 

other DAs. The column labeled Electrical gives the results obtained from the test with the amplifiers turned off, and 

the column labeled Radiometric gives weaker limits from the test with the HEMTs turned on. The latter limits are 

weaker because the output noise levels are higher. 

This level of pickup is quite small and could only be of potential concern when WMAP scans across Jupiter, the 

brightest source in the sky for WMAP at L2. The values in the Table 10 are thus referred to peak Jupiter signals in 

each band. For example, the first entry indicates that when Jupiter induces a signal of 185 mK in the W1 radiometer. 

the pickup in the K1 differencing assembly is <30 pK (95% confidence) which is -26.8 dB below the peak Jupiter 

signal of 14 mK in K band. This signal occurs when the beam of the pickup channel is within a few degrees of Jupiter, 

depending on channel separation in the focal plane, and in every case is less than direct radiometric detection of Jupiter 

in the near side lobes. 

This limit on cross talk implies pickup is completely inconsequential in normal observing mode. Using the same 

Table example, a 100 pK signal in W1 could cause at most a 200 nK signal in the most susceptible the four K band 

differencing assemblies. 
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3.5.2. Source Variability 

Time variable objects are a potential source of contamination for observations of the CMB; see for example 

Sokasian et al. (2001) and references therein. One concern is that an object may grow in brighmess over the course of 

W A P ' s  observations, avoid detection during an initial source survey, and remain unmasked during subsequent data 

analysis. For example, blazars produce relatively rapid and large amplitude variability in all wavebands. Long term 

observations of such objects show that increases in flux by a factor of up to a few over a time scale of years can be 

anticipated (Flett & Henderson 1983; Ennis et al. 1982; Stevens et al. 1994; Bower et al. 1997). Observations of Zw 

2 by Falcke et al. (1999), provide an extreme example: a greater than 20-fold increase in brightness, from -0.1 Jy to 

-2 Jy, over a period of less than two years. While this object could produce a temperature response of a few hundred zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
pK in the WMAP data, such objects are rare and, if left undetected, would have a minimal effect on cosmological 

inferences. Tests for point source contamination in the WMAPdata are given by Bennett et al. (2003~) and Hinshaw 

et al. (2003b). These tests will need to be revisited on an annual basis. 

Another source of concern is that a time variable source in the WMAP data has the effect of broadcasting noise 

to the ring of - 1000 pixels which are separated from the variable source by the beam separation angle (Obea,,, - 141'). 

The point source list derived from the WAP first-year data is 98% reliable with -5 spurious detections at the -0.5 

Jy flux limit of the survey (Bennett et al. 2003~). The nominal point source sensitivity of the W telescope is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I' - 200 pKIJy, thus a noise level of -0.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApK is expected from variable sources that evade detection. 

4. CONCLUSIONS 

The processing steps used to produce the first-year WMAP sky maps include an initial simultaneous estimate of 

the sky map and the instrument calibration. The instrument gain is then refined using a model based on engineering 

telemetry, and the instrument baseline is refined by the application of a pre-whitening filter. A final archive of calibrated 

data is produced and used to generate final sky maps using a slightly refined iterative algorithm. 

We limit systematic artifacts due to calibration, map-making and environmental disturbances to less than -15 

pK2 in the quadrupole C2, with tighter limits at higher multipole moments (Table 5). Beam transfer functions are 

measured for each beam with 1-3% over the entire range of multipole moments that W A P i s  sensitive to (Page et al. 

2003a). The covariance matrix of the beam transfer function is propagated through to the final power spectrum error 

matrix. We characterize pixel-pixel covariance matrix and place limits on residual stripes in the final maps. 

All major data products from the first year of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWMAP observations are being released through NASA's new 

Legacy Archive for Microwave Background Data Analysis (LAMBDA) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat ht tp  : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 /lambda. gsf c . nasa . gov/ . 

The W A P  mission is made possible by the support of the Office of Space Sciences at NASA Headquarters and 

by the hard and capable work of scores of scientists, engineers, technicians, machinists, data analysts, budget analysts, 

managers, administrative staff, and reviewers. We acknowledge use of the HEALPix package. 
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A. THE MAPPING FUNCTION 

Equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) defines the continuous form of the mapping function, which encodes both the scan strategy of an 

experiment, and convolution due to the beam response. We can relate this to the matrix form, in equation (7) as 

follows. The mapping function evaluated at time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAti for a finite integration time T may be written in terms of the beam 

response function as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t,+T 

M(n,ri)= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 & zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[aBA(R(r)-n)-pBB(R(r).n)l, (AI) 

where BA(n) is the beam response of the A-side beam, in spacecraft coordinates, normalized to unit integral 

dfl,BA(n) E 1, (A21 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ 
similarly for the B side, and R(r) is the rotation matrix from sky-fixed (Galactic) coordinates to spacecraft coordinates 

at time t .  The terms a and ,8 in equation (Al) account for possible ohmic losses in the A and B-side optics that are 

not necessarily equal (Jarosik et al. 2003b). Since the data are calibrated using the modulation of the CMB dipole, we 

only need to parameterize the loss imbalance which, following Jarosik et al. (2003b), we parameterize as 

a I+&,, 

p 1 -xim. 

Note that loss imbalance is separate from lossless differences in the beam response function, e.g. differences in the 
solid angle of the A and B-side beams. Once the calibration is applied, the differential sky signal is a measurement of 
the form 

At@)= dfl,t(n) [(l+Xi~)BA(R(t).n)-(l -Xirn)BB(R(r).n)l, 644) 

which still includes the effects of any loss imbalance. We now separately consider how this calibrated differential data 

propagates into the sky maps and the Jupiter beam maps. 

J 

When making sky maps from the calibrated data, each datum is modeled simply as 

where P A  is the pixel observed by the A-side beam at time t i ,  and similarly for p ~ .  That is, each row of the mapping 

matrix in equation (7) has the form 

M(p, ti) = [. . . , (1 +xim), . . . , -( 1 -xim), . . .I, (A6) 

This preprint was prepared with the AAS WT& macros v5.0. 
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with non-zero entries in pixel columns zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApA and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp B  only. Upon solving for the sky map, this ideally leads to an effective 

beam resmnse of the form 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB f )  is the symmetrized beam response for the A-side beam and similarly for the B-side. For this ideal case 

to obtain, the following must hold: 1)  each pixel must be observed equally by the A and B-side beams, which is 

true to a very good approximation for WMAP, and 2)  each pixel must be observed with uniform azimuthal coverage. 

Deviations from these assumptions are considered in the text. 

The beam mapping data is compiled from calibrated observations of the bright source Jupiter. The calibrated data 

taken when side A is observing Jupiter has the form 

At zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd!& tJ(n> (1 +xim)BA(R. n) + &ky, (A81 J 
where tJ(n) is the brightness temperature of Jupiter in the direction n and Atsky is the background sky temperature 

difference, which is subtracted during processing. An analogous equation holds for the B-side data. Assuming the 

beam response is constant over the extent of Jupiter, the integral reduces to 

At= f i Q ~ ( 1  +xirn)B~(R.n~),+At,b, (-49) 

where E is the disk brightness temperature of Jupiter, and RJ is its solid angle. Beam maps are compiled by binning 

the corrected .data At - Atsky as a function of n, in spacecraft coordinates. This produces maps proportional to the 

beam response zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
TA(n> = +xirn)BA(n>, (A 10) 

and similarly for the B-side. 

Ultimately, we wish to compute the transfer function of the symmetrized beam response. This may be obtained 

from the symmetrized beam maps as 

We don't know the brightness temperature of Jupiter a priori, but since this is an overall normalization factor, we are 

free to normalize the final transfer function to 1 at 1 = 0. 

B. MAP-MAKING WITH FILTERED DATA 

$2.3.2 presents the filtering algorithm used to determine the final instrument baseline. This process included an 

estimated sky signal subtraction based on the initial sky maps produced with the hourly calibration. In this Appendix 

we derive the noise properties of sky maps produced with this filtered data. In the following, we assume the time- 

ordered data has a noise covariance N = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(nn') that includes a 1 / f component, and that we have a pre-whitening filter 

F such that 

((Fn)(FnY) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0: 1. (B1) 
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B.l. Map-making zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwith filtered signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ noise zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

We could filter the full data prior to any calibration or sky map estimation, then deconvolve the effects of the filter 

in the subsequent data processing. The input data would have the form 

d‘ = F d = FMt +F n. (B2) 

Then, in order to obtain an unbiased sky map estimate, we would need to evaluate the sky map estimator 

t‘ = (MTFTFM)-’ . (MTFTd’), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA033) 

which deconvolves the action of the filter on the sky signal. Since the l/f noise in the W A P  data is relatively small, 

implementing this estimator for the first-year sky maps was deemed unnecessary and would likely have delayed the 

release of the maps. The alternative is to filter only the noise by subtracting an estimate of the sky signal prior to 

filtering, then adding it back in to the time-ordered data prior to making new maps. 

B.2. Map-making with filtered noise 

Let to be the sky map estimated from unfiltered data, using the hourly calibration. This is related to the true sky 

signal by 

to = Wd 

= W-(Mt+n) 

= t+Wn 

034) 

035) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
036) 

where W = (MTM)-’ . MT is the map-making operator defined in $2.1, and we have used the fact that W .  M = 1. We 

use this sky map to subtract a sky signal from the time-ordered data prior to filtering, then we add it back in after 

filtering. This produces a filtered data set 

dl = F.(d-Mto)+Mh 
= F . (Mt + n- Mt- MWn) +Mt+MWn 

= Mt +Fn+ (1 -F) -MWn. 

This time series data set consists of an unbiased sky signal Mt, a white noise term Fn, and a residual noise term 

(1 -F) .MWn which is due to the off-diagonal “wings”of the filter (1-F) acting on the noise from the initial sky map 

estimate, MWn. 

We can make a map t l  from the data dl using the algorithm of $2.1 

ti = Wdl 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt+ WFn+ W . (1 -F) .MWn 

= t + WFn+ (1 - WFM). Wn 

= t+WFn+R.Wn, 

where we have again used W . M = 1 and we have defined a “residual” operator R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE (1 - WFM) which is small in the 

sense that only off-diagonal terms in F contribute to it. This is most easily seen if we recall that the filter operator is 

1 on the diagonal and has small off-diagonal terms. We can then write F G 1-E from which it follows R = WEM. 
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It follows that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtl is an unbiased estimate o f t  that includes a white noise term WFn (this noise still contains the small 

beam separation covariance), and a residual noise term, R . Wn, due to the noisy sky signal estimator used in the 

filtering process. This latter term is the “excess” noise seen in the W band single DA maps after filtering (Hinshaw 

et al. 2003a). 

The residual noise term can be reduced somewhat by iterating the filter algorithm a second time, using t 1 as a sky 

signal estimator. It is straightforward to show that, after some algebra, the resulting map is 

t2=t+WFn+R.WFn+O(R2), (B 14) 

where we have neglected a term of order R2 . Wn. The residual noise is reduced slightly since R is now acting 

on the white noise WFn instead of the full noise Wn. But since the white noise dominates, this is a relatively 

insignificant improvement. It is also clear that subsequent iterations of the filtering only contribute higher order 

corrections which are negligible. This convergence has been verified with the flight data. Another feature we have 

verified with the flight data is the fact that the excess noise term decreases with time. The reason for this is simply 

that R = (1-WFM) = WEM gets smaller with additional data because the map-making operator W gets smaller as 

more observations accumulate in its “denominator”, (MTM)-’. The first-year maps were only filtered once, as per 

equation (B13), because the improvement in noise properties was not deemed sufficient to warrant the additional 

processing time. 

C. MAP-MAKING WITH POLARIZATION 

WMAP observes the sky with two orthogonal linear polarization modes per feed, thus it is sensitive to the 3 

Stokes parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ,  Q, and U .  This Appendix outlines the algorithm with which these parameters can be mapped 

using the differential data from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. The approach is an extension of the iterative method in 52.1.1 introduced by 

Wright et al. (1996). 

C.l. Polarization Mapping with Total Power Data 

Suppose we observed the sky with a single beam, total power radiometer that is sensitive to a single linear 

polarization, denoted mode #l. In terms of the Stokes parameters, the temperature observed by the instrument at time 

t in pixel p would be 

dl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0) = i(p) +q(p)cos2y+u(p) sin2y, (C1) 

where i, q, and u are Stokes parameter maps in units of temperature, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy is the angle between the polarization axis 

of the beam and the chosen reference direction for pixel p (the choice of reference direction is discussed below). Note 

that we adopt the common convention that the instrument response reduces to the total temperature in the limit of an 

unpolarized source. 

The signal in the orthogonal polarization channel, which is fed by the other port of the ortho-mode transducer 

(OMT) and denoted mode #2, is given by 

7r 7r 
d2(t) = i(p)+ q(p)cos2(y+ - )+u(p)  sin2(y+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT )  

2 
= i(p)- q(p)cos2y-u(p) sin2y. 
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We can isolate the intensity and polarization signals by taking sums and differences 

(C4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd(t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE - (dl + d2)  = i(p) 

0) p(t) E -(dl -d2)=q(p)cos2y+u(p)sin2y. 

Given noisy data, we can estimate the intensity i(p) by averaging all the data d(ti). For the polarization we can only 

estimate a linear combination of q and u from a single observation. However, if we have several observations of pixel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p with a variety of polarization angles y, we can estimate q and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu in a given pixel by minimizing x 2 ,  defined as 

1 

2 
1 

2 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi is a time-ordered data index and the sum is over observations within pixel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ,  and y; is the polarization angle 

for the i" observation. The best-fit values for q and u are given by 

(C7) 
zi.$/c+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-C;C;S;/O? ) ( f C;c;p(ti)/ai? ) 

$ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxi si p(ti)/.? . 

2 .  
where ci = cos2yi, s; = sin2y;, and A E Cic!/a; C;s;/a?- (cic;si /a;) is the determinant of the normal equations 

matrix. The standard errors for q and u are given by the inverse of the normal equations matrix 

1 
-- Cc;s; /a$ 

A i  

In the limit of uniform azimuthal coverage and constant noise per observation (ai = ao), the matrix elements in the 
linear system reduce to 

where N is the number of observations of pixel p .  In this limit, the noise in q and u is equal and uncorrelated and 

reduces to 

Thus the noise in each polarization component is fi times noisier than in the intensity i. 

C.2. Polarization Mapping with Differential Data 

We now generalize to the case of polarization mapping with differential input data. For clarity, we first consider 

the case where the loss in the two sides A and B are equal. We generalize to the case with unbalanced loss in the next 

subsection. In the case of WMAP, one radiometer in a differencing assembly (radiometer #1) is fed from the axial 
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port of the OMT and the other (#2) is fed by the lateral port (Jarosik et al. 2003a). Following equations (Cl,C3) the 

differential signals from radiometers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 and 2 are 

and 

where ?A is the angle between the axial polarization plane and the reference direction in the pixel seen by the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA beam, 

and similarly for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYB. We take sums and differences of the two signals to isolate the unpolarized and polarized portions 

of the signal 

(C17) d( t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf -(dl +d2) =i(pA)-i(pB) 

(C18) p(f) E Z(di -d2) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq(~A)COS2~A+~(~A)s in2~~-q(~B)cos2~B-u(p~)s in2~~.  

1 

2 

1 . 

An iterative scheme for making maps of q and u follows the form used for intensity maps (52.1.1). Let q, and 

u, be the n* estimates of q and u respectively. Estimates for qn+l and u,+~ are obtained by combining the per-pixel 

fitting algorithm in equation (C6) with the iterative map-making algorithm, as follows 

“ i  iEp 

where the sum is over all observations of pixel p by either the A- or B-side beam, and p‘(t) is the polarization data 

corrected with an estimate of the signal in the opposite beam 

The best-fit solution for q,+l and U,+I is then 

where the sum on i is as defined above. The uncertainties are as given for the total power case, where ai is now the 

uncertainty per differential observation, p(t;). 

(2.3. Map Making with Unbalanced Differential Data 

We now generalize to the case of map-making with unbalanced differential input data. In this case, losses in the 

A and B-side front ends are different and the differential signal is of the form 
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where Xim,l ,xim,2 are the loss imbalance parameters in radiometers 1 and 2, respectively, as defined in Jarosik et al. 

(2003b), and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs (p ,y )  is short-hand for the linear combination of Stokes parameters 

s(p,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy) q(p)cos2y+u(p) sin2y. (C24) 

As before, we take sums and differences of the two signals to isolate the unpolarized and polarized portions of the 

signal. First, define the mean imbalance and the “imbalance in the imbalance” as 

then 

Note that the term of O(dxi,) in equation (C27) is negligible, because i >> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs, but the term in equation (C28) must be 

considered more carefully. First note that dxi, is small - from Table 3 in Jarosik et al. (2003b), the largest value is 

0.35% in W2, with most values being -0.1%. Second, the multiplier, (i(pA)+i(pB)) does not modulate with polariza- 

tion angle, y, thus it is effectively an offset term that is further suppressed by the map-making demodulation. Finally, 

the term is out of phase with the differential signal (i(pA)-i(pE)) so it does not effectively couple to the sky. The effect 

of this term in the first-year data is further considered by Kogut et al. (2003). 

i, be the nth estimate of i, then 

We generalize the differential map-making algorithm to account for loss imbalance as follows. For intensity, let 

The updated intensity map is then estimated by binning the corrected data 

where wi is the normalized statistical weight of each observation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+&J2a:/a’ beam A E p 
(1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-i&J2a:/a? beam B E p .  

wi = 

For polarization, let q, and u, be the nth estimates of q and u respectively, and define s, (p,y)  q,(p)cos2y+ 
u,(p)sin2y. Estimates for q,+l and u,+l are obtained by combining the per-pixel q and u demodulation with the 

iterative map-making algorithm. We define x2  as follows 
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where the sum is over all observations of pixel p by either the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA- or B-side beam, and 

The best-fit solution for q,+l and u,1 is then 

where the weight wi is the same as equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(C31). 

C.4. The Choice of Reference Direction 

We adopt the sign convention of Zaldarriaga & Seljak (1997) in which the polarization components are defined in 

a right-handed coordinate system with the z-axis pointed outward towards the sky. The Stokes parameters are defined 

with respect to a fiducial direction in each pixel on the sky. We adopt the convention in which the reference direction 

is aligned with the local Galactic meridian, i.e., the great circle connecting a given point to the North Galactic Pole. 

The unit vector, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAli, tangent to this great circle, pointing in the direction of the North Pole, is given by 

.. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ix f) 
i i = l x t ? = l x  - 

sin 0 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi is the unit vector along the line of sight of the current observation, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 is a unit vector pointing east from f, 2 is 

the unit vector to the North Galactic Pole, and 6 is the polar angle (co-latitude) of f. 
For reference, we give formulae for computing the factors cos27 and sin2y here. Let f be the unit vector along 

the line of sight, 6 be the unit vector pointing west from f, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAri be the unit vector pointing north from f (the polarization 

reference direction) and jj be the unit vector along the polarization plane defined by the axial port of the OMT. Then, 

for both the A and B sides, we have 

cosy = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj j .2  

cos27 = 2cos2y-1 

siny = @-6 

sin27 = 2sinycosy. 

Note that this defines a right-handed coordinate system with (x ,y ,z )  axes (& 8, f) whose z axis is oriented outward 

following the sign conventions of Zaldaniaga & Seljak (1997). 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 .- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA residual sky map, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtout - tin, from an “ideal” one-year simulation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof 4 2  data, designed to test the iterative 

map-making algorithm presented in 92.1. The input sky map included realistic CMB signal with a peak-to-peak 

amplitude of - f420 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp K ,  and a Galactic signal with a peak brightness of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-50 mK. The rms structure in this map is 

<0.2 pK, after accounting for the 0.15 p K  noise that was introduced to the simulation to dither the digitized signal. 

The map is projected in ecliptic coordinates and shows the anisotropy mode that is least well measured by WMAF’, 
due to a combination of the scan pattern and the beam separation angle. This residual level is the result of 50 iterations 
of the algorithm - more iterations would reduce it even further. 
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Fig. 2.- Convergence of the dipole-based gain solution for a selected WMAP radiometer channel (K113) based on a 

one-year simulation. This simulation was generated with an input gain of 300.0 du mK-', and minimal noise. The first 

iteration, which assumes the sky model has only a dipole component, leaves residual gain errors of up to 7%, due to 

the projection of the relatively bright Galactic emission onto the dipole model. After 30 iterations of the simultaneous 

fit described in $2.2.1, the residual errors in the gain solution are less than 0.1%. 
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Fig. 3.- The hourly gain and baseline fit described in $2.2.1 from the flight data for channels K113 and VI 13. The 

top two panels show the gain solution, the bottom two the baseline. Note that the gain is stable to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-5% over the first 

year (see also Table 3). The variable noise is due to the changing projection of the scan pattern on the CMB dipole 

over the course of a year. The instrument baselines have a typical drift of 5-10 mK over the year. The channel VI 13 

exhibits one of the clearest thermal susceptibilities of the WMAP radiometers, though we show in $3.4.1 that the 

induced systematic signal is negligible. See also Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14. 
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t 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4.- The left-hand panels show the measured auto-correlation function, C(4t>/C(O), for selected radiometers, 

of WMAP time-ordered data, after subtracting a model sky signal based on the initial sky maps. The model fits are 

indicated by an x at a lag of 1 observation and by straight lines for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAr > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT (see $2.3.2). All of the W A P D A s  except zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
W4 have a covariance of < 1 % at non-zero lag (Table 4). The anti-correlation at lag -2000 s is due to the subtraction 

of the hourly baseline as a pre-filter. The middle panels show the pre-whitening filter, in the frequency domain, that 

is applied to the time-ordered data after a model sky signal has been subtracted. The vertical dashed line indicates the 

spin frequency, 7.7 mHz, and the number indicates the fraction of power transmitted by the filter at the spin frequency. 

The right-hand panels show the measured auto-correlation function for selected channels of WMAP time-ordered data, 

after pre-whitening, on the same scale as the left panels. The apparent change in noise level at different lags in C(4r) 

is due to a step-wise change of bin size in At. 
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Fig. 5.- The time-ordered data for channel W424 before (black) and after (red) applying the pre-whitening filter. 

The data are boxcar averaged over a 46.08 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs window to show the low frequency noise in the unfiltered data. Without 

averaging, the data before and after filtering are virtually indistinguishable. Note that baseline variations in this channel 

are of order 2 mK on a one-hour time scale, as expected given the measured l/f knee frequency of this radiometer 

(Jarosik et al. 2003b). W4 is the worst differencing assembly from the standpoint of 1/ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf noise. 
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w3 w4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. 6.- Simulated and flight difference maps showing the structure that is removed from the maps by the pre- 

whitening filter. All four maps are differences between sky maps generated before and after baseline filtering. The 

maps are projected in Galactic coordinates and the temperature scale on each is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf50 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApK. The “blobs” of white noise 

along the ecliptic plane can be ignored. They arise from differences in the handling of planet flags in the two forms of 

the map-making code. The top two panels show W3 and W4 data from a one-year simulation that includes flight-like 

1/ f noise in the time-ordered data. The bottom two panels are the same for the flight W3 and W4 maps. Note the very 

different sfructure between W3 and W4, due to different 1 / f knee frequencies (Jarosik et al. 2003b). Note also that 

the Simulation captures the basic structure of the flight data very well. 
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Fig. 7.- The recovered gain solutions for channel V113 in a flight-like simulation (top) and in the flight data (bottom). 

The “noisy” black traces show the hourly baseline binned in 24-hr samples (to reduce noise) and the green traces are 

the best fit gain model ($2.3.1). For the simulation, the input gain used to generate the simulated data is shown in grey. 

In the simulation, the absolute gain is recovered to better than 0.1 % in all 40 channels, and the binned hourly gain is 

everywhere within -0.2% of the gain model, and the input gain. Gain changes are well tracked by the pipeline. 
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Fig. 8.- Angular power spectra of the 10 resdidual maps tout - ti, generated from the flight-like one-year simulation. 

In each case the spectra were evaluated in the Kp2 cut sky (Bennett et al. 2003~). Table 5 quantifies structure in these 

maps beyond flat white noise. Note that most features are restricted to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 2  25 but with an amplitude that is still much 

less than the sky signal in this range. The residual effects of 1 / f noise are seen in the gradual rise of the noise spectrum 

at low 1 in W4. See Hinshaw et al. (2003b) for further discussion of this. 
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Fig. 9.- Sum and difference maps generated from the flight Q, V, and W band data, as indicated. To reduce the noise, 

all maps have been binned in larger pixels (HEALPix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANside = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA64) and displayed with a temperature scale of & 100 p K .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As discussed in the $3.2, the only apparent structure in the difference maps is due to residual Galactic contamination 

owing to the fact that the effective frequencies of the DAs are slightly different. This does nor affect signals with a 

CMB spectrum, because the calibration source (the CMB dipole) has the same spectrum. See Bennett et al. (2003b) 

for higher resolution images of the signal maps. 
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Fig. 10.- Two-point correlation functions of A12 difference maps for three different DAs. With the exception of a 

-0.3% blip at the beam separation angle, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN 14Io, there is relatively little structure in the difference maps (see 

93.2). The two-point functions of these maps provide a good representation of the angle-averaged pixel-pixel noise 

covariance in the flight maps. 
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Fig. 1 1.- Angular power spectra of signal and noise maps for each DA. In each panel, the upper red and green traces 

are the spectra of the null maps, A34 and A1234, respectively. The lower green trace is the A12 map, and the black 

trace is the signal map. The blue curve is our best estimate of the underlying CMB signal from Hinshaw et al. (2003b). 

The pairing of white noise levels is discussed in 53.2, Table 6 presents a measure of structure in the difference spectra, 

which are remarkably flat. 
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Fig. 13.- Residual map from a K band elliptical beam simulation. The output map was generated from a one- 

year simulation of data with an elliptical beam response. The residual map shown was generated by subtracting the 

underlying sky signal convolved with the nearest effective circular beam response. This remaining structure contributes 

to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe four-point fluctuation spectrum. The scale of the color range is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 10 pK. The rms structure in the Kp2 cut sky is 

2 pK. See $3.3.4. 
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Fig. 14.- An illustration of the mild thermal susceptibility of the instrument baseline. The top panel shows the tem- 

perature of the instrument Focal Plane Assembly ( P A )  over the course of the first year. The second and third panels 

show the hourly baseline solution for channels V113 and V114, which are among the most thermally susceptible. Note 

that the thermal baseline response is mostly common-mode. The channel combination that contains sky signal is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
dz3erence between channels 3 and 4, thus most of this response cancels. On day 2002:054 (GMT) a partial battery 

cell failure led to a commanded decrease in spacecraft bus voltage with a corresponding decrease in overall power 

dissipation and spacecraft temperature. This event provides a clean measurement of the instrument baseline thermal 

susceptibility - the bottom panel shows a close-up of the V114 baseline near this event. The dashed line is a fit to 

a model including a term proportional to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdb/dTpA. The best-fit susceptibility values for all channels are given in 

Table 8. See Limon et al. (2003) for a complete discussion of W A P s  first-year thermal profile. 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. WMAPdata processing notation 

Symbol(s) Description 

Time, time of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAith observation, in s 

Integration time per observation, in s 

Number of pixels in a map, 0- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(N,, - 1) 

Number of time-ordered data points 

HEALPix pixel number 

A & B-side pixels at time r 
Separation of A & B-side beams, in degrees 

Polarization angle 

A & B-side polarization angles, at time r 
cos 27, sin 27, cos 27 . sin 2y, at time t i  

Sky map, in mK 

Sky map, Stokes parameter I ,  in mK 

Sky map, Stokes parameters Q, U ,  in mK 

Estimated sky maps, in mK 

Number of observation of pixel p 
CMB anisotropy map, in mK 

Galactic foreground map, in mK 

Time-dependent source map (Sun, Earth. Moon), in mK 

Time-ordered differential sky signal, in mK 

Time-ordered zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACOBE dipole signal, in mK 

Time-ordered local velocity dipole signal, in mK 
Time-ordered anisotropy signal, At-&, in mK 

Time-ordered raw data, single channel, in du 

Time-ordered data, radiometer i, channel j ,  in mK 

Time-ordered intensity data, co-added channels, in mK 

Time-ordered polarization data, co-added channels, in mK 

Rad. responsivity (0: gain), single channel, in du mK-' 

Rad. noise, single channel in calibration, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 co-added channels in map-making, in mK 

Rad. baseline, single channel, in du 

Hourly gain, baseline, single channel, k"precession 

rms noise, ithobservation, single channel in calibration, 

4 co-added channels in map-making, in mK 

Mean rms noise, single or co-added channels, in mK 

Loss imbalance parameter (radiometer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj )  
Auto-correlation function of noise, in mK2 

Auto-correlation function model parameters 

Pre-whitening filter, Fourier space 
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Table i r o n t i n u e d  

Symbol(s) Description zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
F 
N 
M 
W zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c 
D 

Aij 

Pre-whitening filter, time domain, Nf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx Nf matrix 

Time-ordered noise covariance, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANf x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN, matrix, in mK2 

Mapping function, Nf x Np matrix 

Map-making operator, (MTM)-' . MT, N p  x Nf matrix 

Pixel-pixel noise covariance, Np x Np matrix, in mK2 
Reduced inverse noise, (MTM) = 
Difference map from channel combination ij 

E-', N,, x N,, matrix 
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Table 2. WMAP Attitude Control System Requirements 

Parameter Requirement Performance 

Precession rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(d4 /d t )  
Spin rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(dq5/dt) 2P784s-' f 5 %  2P784s-'&0.13% 

Sun-spin angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6)  22Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf OP25 22?5 f OP023 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-0: Is-' f 6.3% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-0: Is-' & 3.6% 

Table 3. WMAPDipole-Based Gain Summary 

K11 

K12 

Kal 1 

Ka12 

Q11 

Q12 

Q21 

Q22 
VI1 

VI2 

v 2  1 

v 2 2  

w11 

w12 

w21 

w22 

W3 1 

W32 

W4 1 

W42 

-0.974 

+1.177 

t-o.849 

-1.071 

+1.015 

M.475 

-0.958 

-0.783 

4 .449  

-0.532 

-0.450 

+0.373 

4 . 3 1 1  

4 . 2 6 2  

-0.288 

4 . 2 9 3  

-0.263 

+0.226 

4 . 3 0 2  

-0.260 

7.4 0.66 

6.2 0.75 

4.7 0.75 

5.1 0.75 

4.5 0.94 

5.3 1.03 

5.8 0.94 

2.9 1.22 

4.5 1.50 

4.0 1.40 

4.7 1.22 

3.2 1.59 

5.1 2.25 

3.5 2.62 

4.6 3.09 

6.1 2.43 

3.3 2.25 

3.6 2.62 

6.0 4.40 

6.3 3.28 

t-o.997 

-1.122 

-0.858 

M.985 

-0.948 

-0.5 18 

M.986 

t-o.760 

-0.494 

+OS32 

4.443 

-0.346 

-0.332 

t-o.297 

-0.293 

M.281 

t-o.258 

-0.232 

-0.239 

-0.286 

6.8 0.66 

6.4 0.75 

5.0 0.75 

5.3 0.75 

4.4 0.94 

5.5 1.03 

6.0 0.94 

2.8 1.22 

4.5 1.50 

4.7 1.40 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5.1 1.22 
3.0 1.59 

4.1 2.43 

6.0 2.71 

3.8 2.53 

6.3 2.62 

3.8 2.34 

3.4 2.43 

5.7 4.21 

5.9 3.37 

aPeak-peak variation in the daily mean gain, indicates range of gain drift 

bMean statistical uncertainty per hour. 

during first year. 
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Table 4. Auto-correlation Model Parametersa 

Radiometer CI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB WCf,pin)b 

K11 

K12 

Kal 1 

Ka12 

Q11 

412 

Q21 

Q22 
VI 1 

v12 

v 2  1 
v22 

w11 

w12 

w 2  1 

w22 

W3 1 

W32 

W4 1 

W42 

-0.0038 

0.0008 

-0.0075 

-0.0031 

0.0044 

-0.0088 

0.0124 

0.0178 

0.0010 

0.0034 

-0.0038 

0.0087 

0.0158 

0.0048 

0.0207 

0.0167 

0.0062 

0.0077 

0.0562 

0.0393 

0.001 1 
0.001 1 
0.0015 

0.0006 

0.0018 

0.0007 

0.0088 

0.0128 

0.0001 

0.0014 

0.0010 

0.0093 

0.0062 

0.0005 

0.007 1 

0.0053 

0.0006 

0.0002 

0.0323 

0.0194 

0.00042 

0.00040 

0.00048 

0.00019 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.00053 

0.00024 

0.00282 

0.00415 

0.00005 
0.00048 

0.00033 

0.003 20 

0.0021 1 

0.00019 

0.00262 

0.00187 

0.00021 

0.00007 

0.01 152 

0.00692 

0.966 

0.963 

0.960 

0.984 

0.934 

0.978 

0.754 

0.686 

0.989 

0.925 

0.951 

0.689 

0.680 

0.950 

0.644 

0.701 

0.943 

0.975 

0.374 

0.461 

aSee equation 26 for model definition. All parameters 

bDerived filter response at the spin frequency, 7.7 mHz. 

are dimensionless. 
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Table 5. Calibration and Map-Making Error Limitsa 

K1 -21.4 0.6 

Kal 18.5 1.3 

Q1 59.6 1.2 

Q2 7.3 0.9 

v 1  3.9 0.6 

V2 -6.1 0.8 

W1 -2.6 1.4 

w 2  12.0 0.7 

w 3  4.3 0.4 

W4 -6.6 3.3 

0.08 42.9 1.1 

0.06 37.0 2.5 

0.14 118.9 2.2 

0.13 14.4 1.6 

0.21 7.4 0.7 

0.19 12.6 1.2 

0.49 6.0 2.0 

0.62 22.9 0.4 

0.65 7.3 0.4 

0.90 14.5 5.4 

0.03 

0.01 

0.01 

0.02 

0.01 

0.03 

0.10 

0.15 

0.07 

0.55 

"All values derived from a one-year simulation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWMAP data. The first zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 data columns give the mean power in the residual map zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtout zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-ti, from the 

simulation. The last 3 columns give an estimate of the systematic error due to 

calibration and map-making, as defined in $3.1. For comparison, the average 

power in the CMB in each band is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN 130 pK2, (C1)3-10 N 150 pK2, and 

(CI)11-100 6 PK2. 
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Table 6. Difference Map Statistics 

K1 

K1 

K1 

Ka 1 

Ka 1 

Kal 

Q1 

Q1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Q1 
Q2 

Q2 

Q2 
VI 

VI 

VI 

v 2  

v 2  

v 2  

w 1  

Wl 

w 1  

w 2  

w 2  

w 2  

w 3  

w 3  

w 3  

w 4  

w 4  

w 4  

A12 

A 34 

AI2 

A34 

AI2 

A34 

AI2 

A34 

A1234 

AI2 

A34 

A1234 

A12 

A34 

AI2 

A34 

AI2 

A34 

A12 

A34 

A12 

A34 

A1234 

A1234 

A 1234 

A1234 

A1234 

A1234 

A1234 

A1234 

0.160 

0.014 

0.030 

0.0057 

0.0022 

0.0028 

0.0035 

0.0032 

0.0044 

0.003 1 

0.0030 

0.0025 

0.0038 

0.0032 

0.0024 

0.0043 

0.0026 

0.0033 

0.0036 

0.0033 

0.0034 

0.0029 

0.0026 

0.0028 

0.0035 

0.003 1 

0.0039 

0.0030 

0.0025 

0.0027 

107.30 

6.43 

13.56 

2.1 1 

0.11 

0.01 

1 .os 
0.49 

0.31 

0.09 

0.28 

0.03 

4.40 

0.22 

0.26 

1.72 

0.57 

1.05 

5.45 

2.10 

0.14 

1.20 

0.12 

0.26 

4.95 

8.84 

2.91 

1 .so 
0.36 

0.73 

1.77 

0.1 1 

0.30 

0.14 

0.08 

0.09 

0.14 

0.16 
0.17 

0.14 

0.13 

0.11 

0.35 

0.35 

0.30 

0.15 

0.25 

0.38 

0.36 

0.74 

0.75 

0.5 1 

0.57 

0.56 

0.49 

0.90 

1.11 

0.44 

0.73 

0.98 

0.12 

0.06 

0.07 

0.06 

0.07 

0.07 

0.10 

0.13 

0.13 

0.09 

0.10 

0.10 

0.16 

0.28 

0.27 

0.13 

0.22 

0.23 

0.36 

0.56 

0.57 

0.44 

0.57 

0.59 

0.47 

0.75 

0.72 

0.48 

0.64 

0.65 

107.25 

6.37 

13.50 

2.06 

0.05 

0.05 

0.98 

0.37 
0.19 

0.00 

0.18 

0.07 

4.24 

0.05 

0.01 

1.59 

0.35 

0.83 

5.11 

1.56 

0.39 

0.79 

0.44 

0.3 1 
4.49 

8.12 

2.20 

1.05 

0.27 

0.10 

1.72 

0.05 

0.24 

0.08 

0.01 

0.03 

0.04 

0.03 

0.05 

0.05 

0.03 

0.01 

0.19 

0.09 

0.04 

0.02 

0.03 

0.16 

0.02 

0.21 

0.22 

0.10 

0.00 

0.01 

0.03 

0.19 

0.40 

0.00 

0.10 

0.35 

0.071 

0.003 

0.01 1 

0.002 

0.002 

0.003 

0.004 

0.003 

0.003 

0.005 

0.00 1 

0.004 

0.006 

0.016 

0.006 

0.006 

0.003 

0.008 

0.025 

0.019 

0.037 

0.021 

0.009 

0.025 

0.013 

0.039 

0.007 

0.040 

0.006 

0.02 1 

aDifference maps from linear combinations of channels within a single DA, defined in equation (27). 

bPower in difference map in excess of white noise, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ ( C I ) ~ ~ ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- (C~)7w1000 1 .  
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Table 7. WMAP Boresight Pointing Vectorsa 

DNSide zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnZ 

K1A 

KalA 

Q1A 

Q2A 
V1A 

V2A 

W1A 

W2A 

W3A 

W4A 

KlB 

KalB 

Q1B 

Q2B 
V1B 

V2B 

WIB 

W2B 

W3B 

W4B 

0.0399374 

-0.0383635 

-0.03 1571 9 

0.0319339 

-0.033 1733 

0.0333767 

-0.0091 894 

-0.0095070 

0.009 8004 

0.009808 1 

0.0379408 

-0.0400217 

0.0301434 

-0.0350363 

0.0314445 

-0.01 14732 

-0.01 15900 

0.0076818 

0.0075 14 1 

-0.0334030 

0.9244827 

0.9254372 

0.9521927 

0.952201 6 

0.94 15643 

0.9414947 

0.9394385 

0.945 8644 

0.9457678 

0.9393480 

-0.9239176 

-0.9246344 

-0.9517688 

-0.95 19277 

-0.9409454 

-0.941 1385 

-0.9388325 

-0.9453501 

-0.9454070 

-0.9388923 

-0.3791264 

-0.3769539 

-0.3037965 

-0.335 1958 

-0.3425944 

-0.3246956 

-0.3428252 

-0.3807057 

-0.3787473 

-0.3049925 

-0.3048361 

-0.3367405 

-0.303 8624 

-0.335371 1 

-0.3244228 

-0.3365553 

-0.3441 830 

-0.32585 11 

-0.3258014 

-0.344 129 1 

ageam line-of-sight unit vectors in spacecraft coordi- 

nates. Available in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfull precision in the released time- 

ordered data. 
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Table 8. Measured Gain and Baseline Susceptibilitiesa 

K11 

K12 

Kal 1 

Ka12 

Q11 

Q12 

Q2 1 

Q22 
v11 

v12 

v 2  1 

v22 

w11 

w12 

. w21 

w22 

w 3  1 

W32 

W4 1 

W42 

-0.0021 

-0.0185 

-0.0024 

0.0077 

-0.0016 

0.0086 

0.0058 

0.00 18 

-0.0045 

0.0029 

-0.0002 

0.0004 

0.00002 

0.0007 

-0.0004 

0.0003 

0.0021 

0.0006 

-0.001 1 

-0.0037 

3.52 

5.05 

-1.47 

2.00 

3.79 

-3.52 

-1 .oo 
-0.57 

57.4 

-6.23 

6.10 

-9.43 

-14.7 

-6 1.9 

-127. 

-58.1 

-20.2 

41.4 

19.9 

4.49 

0.1 

3.1 

0.2 

-3.2 

-1.1 

-1.6 

-2.1 

-4.6 

32.9 

17.2 

3.4 

-3.8 

-4.3 

-1 1.3 

-7.4 

0.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5.3 

19.0 

16.7 

8.0 

aThe thermal values are based on fits to a 10-day cooling pe- 

riod following a partial battery cell failure. See Figure 14 and 

53.4.1. 
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Table 9. Limits on Spin-Synchronous Environmental Effectsa 

Radiometer/ Gain Thermal Voltage 

Band nK nK nK 

K11 

K12 

Kal l  

Ka12 

Q11 

Q12 

Q21 

422 
v11 

v12 

v21 

v22 

w11 

w12 

w 2  1 

w22 

W3 1 

W32 

W4 1 

W42 

K 

Ka 

Q 
V 

W 

-1.2 

-11.1 

-4.2 

5.8 

-1.3 

-1.2 

31.0 

35.2 

0.7 

-6.0 

5.9 

-1.7 

4.0 

-0.1 

9.1 

-5.8 

1.1 

1.1 

21.1 

-30.1 

6.2 

0.8 

15.9 

0.3 

0.1 

22 

32 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-9 
13 

24 

-23 

-6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-4 

367 

-40 

39 

-60 

-94 

-396 

-812 

-372 

29 

265 

128 

-129 

27 

2 

2 

77 

173 

0.3 

9.3 

0.5 

-9.7 

-3.3 

-4.7 

-6.3 

-13.8 

98.8 

51.7 

10.3 

-1 1.3 

-13.0 

-33.9 

-22.3 

1.1 

16.0 

57.1 

50.1 

24.0 

4.8 

4.6 

7.0 

37.4 

9.9 

a 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo upper Limits derived from measured gain and 

baseline susceptibilities in Table 8, combined with 

upper limits on temperature and voltage fluctua- 

tions at the spin period. Sign is preserved for each 

radiometer for roll-up by band. 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10. Upper Limits on Radiometer Cross Talk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D.4 Electrical Radiometric 

dB dB 

K1 -37.7 

Kal -39.5 

Q1 -41.6 

Q2 -41.5 

v1 -43.1 

V2 -42.8 

W1 -48.8 

W2 -47.1 

W3 -38.6 

W4 -46.1 

-26.8 

-30.4 

-32.3 

-32.2 

-35.2 

-35.4 

-48.3 

-43.5 

-42.6 

-47.5 


