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ABSTRACT 

We present the angular power spectrum derived from the first-year Wlkinson Microwave Anisotropy 
Probe (WMAP) sky maps. We study a variety of power spectrum estimation methods and data combina- 

tions and demonstrate that the results are robust. The data are modestly contaminated by diffuse Galactic 

foreground emission, but we show that a simple Galactic template model is sufficient to remove the signal. 

Point sources produce a modest contamination in the low frequency data. After masking -700 known 

bright sources from the maps, we estimate residual sources contribute -3500 pK2 at 41 GHz, and -130 

pK2 at 94 GHz, to the power spectrum [l(l+ 1)C1/2~] at l = 1000. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASystematic errors are negligible com- 
pared to the (modest) level offoreground emission. Our best estimate of the power spectrum is derived 

from 28 cross-power spectra of statistically independent channels. The final spectrum is essentially inde- 

pendent of the noise properties of an individual radiometer. The resulting spectrum provides a definitive 

measurement of the CMB power spectrum, with uncertainties limited by cosmic variance, up to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 - 350. 

The spectrum clearly exhibits a first acoustic peak at l = 220 and a second acoustic peak at l - 540 (Page 

et al. 2003b), and it provides strong support for adiabatic initial conditions (Spergel et al. 2003). Kogut 

et al. (2003) analyze the CT" power spectrum, and present evidence for a relatively high optical depth, 

and an early period of cosmic reionization. Among other things, this implies that the temperature power 

spectrum has been suppressed by -30% on degree angular scales, due to secondary scattering. 
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cles: instruments 
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1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAINTRODUCTION 

The Wilkinson Microwave Anisotropy Probe (WMAP) mission was designed to measure the CMB anisotropy 

with unprecedented precision and accuracy on angular scales from the full sky to several arc minutes by producing 

maps at five frequencies from 23 to 94 GHz. The WMAP satellite mission (Bennett et al. 2003a) employs a matched' 

pair of 1.4m telescopes (Page et al. 2003c) observing two areas on the sky separated by -141 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'. A differential ra- 

diometer (Jarosik et al. 2003a) with a total of 10 feeds for each of the two sets of optics (Barnes et al. 2003; Page 

et al. 2003c) measures the difference in sky brightness between the two sky pixels. The satellite is deployed at the 

Earth-Sun Lagrange point, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL2, and observes the sky with a compound spin and precession that covers the full sky 

every six months. The differential data are processed on the ground to produce full sky maps of the CMB anisotropy 

(Hinshaw et al. 2003b). 

Full sky maps provide the smallest record of the CMB anisotropy without loss of information. They permit a 

wide variety of statistics to be computed from the data - one of the most fundamental is the angular power spectrum of 

the CMB. Indeed, if the temperature fluctuations are Gaussian, with random phase, then the angular power spectrum 

provides a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcomplete description of the statistical properties of the CMB. Komatsu et al. (2003) have analyzed the first- 

year WMAP sky maps to search for evidence of non-Gaussianity and find none, aside from a modest level of point 

source contamination which we account for in this paper. Thus, the measured power spectrum may be compared to 

predictions of cosmological models to develop constraints on model parameters. 

This paper presents the angular power spectrum obtained from the first-year WMAP sky maps. Companion 

papers present the maps and an overview of the basic results (Bennett et al. 2003b), and describe the foreground 

removal process that precedes the power spectrum analysis (Bennett et al. 2003~).  Spergel et al. (2003), Verde et al. 

(2003), Peins et al. (2003), Kogut et al. (2003), and Page et al. (2003b) discuss the implications of the WMAP power 

spectrum for cosmological parameters and carry out a joint analysis of the WMAP spectrum together with other CMB 
data and data from large-scale structure probes. Hinshaw et al. (2003b), Jarosik et al. (2003b), Page et al. (2003a), 

Barnes et al. (2003), and Limon et al. (2003) discuss the data processing, the radiometer performance, the instrument 

beam characteristics and the spacecraft in-orbit performance, respectively. 

A sky map AT(n) defined over the full sky can be decomposed in spherical harmonics 

1>0 m=-1 

with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
arm = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd% AT(n)Y,t,(n), (2) J 

where n is a unit direction vector, and Km(n) are the spherical harmonic functions evaluated in the direction n. 

Lfthe CMB temperature fluctuation AT is Gaussian distributed, then each aim is an independent Gaussian deviate 

with 

(arm) = 0, (3) 

where Cl is the ensemble average power spectrum predicted by models, and 6 is the Kronecker symbol. The actual 

power spectrum realized in our sky is 
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In the absence of noise, and with full sky coverage, the right hand side of equation (5) provides an unbiased estimate 

of the underlying theoretical power spectrum, which is limited only by cosmic variance. However, realistic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACMB 
anisotropy measurements contain noise and other sources of error that cause the quadratic estimator in equation (5) to 

be biased. In addition, while zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW A P  measures the anisotropy over the full sky, the data near the Galactic plane are 

sufficiently contaminated by foreground emission that only a portion of the sky (-85%) can be used for CMB power 

spectrum estimation. Thus, the integral in equation (2) cannot be evaluated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas such, and other methods must be found 

to estimate Cl. 

In Appendix A, we review two methods that have appeared in the literature for estimating the angular power 

spectrum in the presence of instrument noise and sky cuts. The first (Hivon et al. 2002) is a quadratic estimator that 

evaluates equation (2) on the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcut sky yielding a “pseudo power spectrum” el. The ensemble average of this quantity is 

related to the true power spectrum, Cl by means of a mode coupling matrix G p  (Hauser zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Peebles 1973). The second 

method (Oh et al. 1999) uses a maximum likelihood approach optimized for fast evaluation with WAP-l ike data. In 

Appendix A we demonstrate that the two methods produce consistent results. 

and a “cross-power” spectrum, proportional to E, ai,a::, where the aim coefficients are estimated from two indepen- 

dent CMB maps, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj .  This latter form has the advantage that, if the noise in the two maps is uncorrelated, the 

quadratic estimator is not biased by the noise. For all cosmological analyses, we use only the cross-power spectra be- 

tween statistically independent channels. As a result, the angular spectra are, for all intents and purposes, independent 

of the noise properties of an individual radiometer. This is analogous to interferometric data which exhibits a high 

degree of immunity to systematic errors. The precise form of the estimator we use is given in Appendix A. 

A quadratic estimator offers the possibility of computing both an “auto-power” spectrum, proportional to E, l a1~~1~ ,  

The plan of this paper is as follows. In $2 we review the properties of the WMAP instrument and how they 

affect the derived power spectrum. In $3 we present results for the angular power spectra obtained from individual 

pairs of radiometers, the cross-power spectra, and examine numerous consistency tests. In $4, in preparation for 

generating a final combined power spectrum, we present the full covariance matrix of the cross-power spectra. In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$5 
we present the methodology used to produce the final combined power spectrum and its covariance matrix. In $6 we 

compare the WMAP first-year power spectrum to a compilation of previous CMB measurements and to a prediction 

based on a combination of previous CMB data and the 2dFGRS data. We summarize our results in $7 and outline 

the power spectrum data products being made available through the Legacy Archive for Microwave Background Data 
Analysis (LAMBDA). Appendix A reviews two methods used to estimate the angular power spectrum from CMB 
maps. Appendix B describes how we account for point source contamination. Appendix C presents our approach to 
combining multi-channel data. Appendix D describes how the foreground mask correlates multipole moments in the 

Fisher matrix, and Appendix E collects some useful properties of the spherical harmonics. 

2. INSTRUMENTAL PROPERTIES 

The WMAP instrument is composed of 10 “differencing assemblies” @As) spanning 5 frequencies from 23 

to 94 GHz (Bennett et al. 2003a). The 2 lowest frequency bands (K and Ka) are primarily Galactic foreground 

monitors, while the 3 highest (Q, V, and W) are primarily cosmological bands. There are 8 high frequ’ency differencing 

assemblies: QI, Q2, VI, V2, and W1 through W4. Each DA is formed from two differential radiometers which are 

sensitive to orthogonal linear polarization modes; the radiometers are designated 1 or 2 (e.g., VI 1 or W12) depending 

on which polarization mode is being sensed. 

The temperature measured on the sky is modified by the properties of the instrument. The most important prop- 

erties that affect the angular power spectrum are finite resolution and instrument noise. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACy denote the auto or 
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cross-power spectrum evaluated from two sky maps, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi‘, where i is a DA index. Further, define the shorthand zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG (i, i‘) to denote a pair of indices, e.g., (Ql,V2). This spectrum will have the form 

where w: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE bf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbr p: is the window function that describes the combined smoothing effects of the beam and the finite 

sky map pixel size. Here bf is the beam transfer function for DA i, given by Page et al. (2003a) [note that they reserve 

the term “beam window function” for (bf)2], and PI  is the pixel transfer function supplied with the HEALPix package 

(Gbrski et al. 1998). Nj is the noise spectrum realized in this particular measurement. On average, the observed 

spectrum estimates the underlying power spectrum, Cl, 

(C;) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= w’; Ci + (N:) , (7) 

where (Ni) is the average noise power spectrum for differencing assembly i, and the Kronecker symbol indicates that 

the noise is uncorrelated between differencing assemblies. To estimate the underlying power spectrum on the sky, C,, 

the effects of the noise bias and beam convolution must be removed. The determination of transfer functions and noise 

properties are thus critical components of any CMB experiment. 

In 92.1 we summarize the results of Page et al. (2003a) on the WMAP window functions and their uncertainties. 

We propagate these uncertainties through to the final Fisher matrix for the angular power spectrum. In 92.2 we present 

a model of the WMAP noise properties appropriate to power spectrum evaluation. For cross power spectra (i # i‘ 
above), the noise bias term drops out of equation (7) if the noise between the two DAs is uncorrelated. These cross- 

power spectra provide a nearly optimal estimate of the true power spectrum, essentially independent of errors in the 

noise model, thus we use them exclusively in our final power spectrum estimate. The noise model is primarily used to 

propagate noise errors through the analysis, and to test a variety of different power spectrum estimates for consistency 

with the combined cross-power spectrum. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.1. Window Functions 

As discussed in Page et al. (2003a), the instrument beam response was mapped in flight using observations of 

the planet Jupiter. The signal to noise ratio is such that the response, relative to the peak of the beam, is measured to 

approximately -35 dB in W band, the band with the highest angular resolution. The beam widths, measured in flight, 

range from OP82 at K band down to OP20 in some of the W band channels (FWHM). Maps of the full two-dimensional 

beam response are presented in Page et al. (2003a), and are available with the WMAP first-year data release. The 

radial beam profiles obtained from these maps have been fit to a model consisting of a sum of Hermite polynomials 

that accurately characterize the main Gaussian lobe and small deviations from it. The model profiles are then Legendre 

transformed to obtain the beam transfer functions bf for each DA i. Full details of this procedure are presented in Page 

et al. (2003a), and the resulting transfer functions are also provided in the first-year data release. We have chosen to 

normalize the transfer function to 1 at 1 = 1 because WMAP calibrates its intensity response using the modulation of 

the CMB dipole zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 = 1). This effectively partitions calibration uncertainty from window function uncertainties. 

The bearr! processing described above provides a straightforward means of propagating the noise u n c e m t y  

directly from the time-ordered data through to the final transfer functions. The result is the covariance matrix E&/, 
for the normalized transfer function. Plots of the diagonal elements of E&,, are presented in Page et al. (2003a). 

The fractional error in the transfer functions bf are typically 1-2% in amplitude. In the end, these window function 

uncertainties dominate the small off-diagonal elements of the final covariance matrix for the combined power spectrum 

(see $4). Additional observations of Jupiter will reduce these uncertainties. 
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An additional source of error in our treatment of the beam response arises from non-circularity of the main beam. 

The effects of this non-circularity are mitigated by WAP's  scan strategy which results in most sky pixels being 

observed over a wide range of azimuth angles. The effective beam response on the sky is thus largely symmetrized. We 

estimate that the effects of imperfect symmetrization produce window function errors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< 1 % relative to a perfectly 

symmetrized beam window function (Page et al. 2003a; Hinshaw et al. 2003b). This error is well within the formal 

uncertainty given in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEL,[[,. In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA95 we infer the optimal power spectrum by combining the 28 cross-power spectra 

measured by the 8 high frequency DAs Q1 through W4. As part of this process we marginalize over the window 

function uncertainty, which automatically propagates these errors into the final covariance matrix for the combined 

power spectrum. Both the combined power spectrum and the corresponding Fisher matrix are part of the first-year 

data release. 

2.2. Instrument Noise Properties 

The noise bias term in equation (7) is the noise per arm mode on the sky. If auto-power spectra are used in the final 

power spectrum estimate, the noise bias term must be known very accurately because it exponentially. dominates the 

convolved power spectrum at high 1. If only cross correlations are used, the noise bias is only required for propagating 

errors. Our final best spectrum is based only on cross correlations, and is independent of this term. However, as an 

independent check of our results, we evaluate the maximum likelihood spectrum based on a combined Q+V+W sky 

map. The noise bias must be estimated accurately for this application. 

In the limit that the time-ordered instrument noise is white, the noise bias is a constant, independent of 1. If the 

time-ordered noise has a 1 / f component, the bias term will rise at low zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. In this subsection we estimate the noise bias 

properties for each of the high frequency WMAP radiometers based on the time-ordered noise properties presented in 

Jarosik et al. (2003b). While the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMAP radiometer noise is nearly white by design (Jarosik et al. 2003a) with 1/  f 
knee frequencies of less than 10 mHz for 9 out of 10 differencing assemblies, one of the radiometers (W41) has a 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
knee frequency of -45 mHz. The latter is large enough that the deviations of (N;) from a constant must be accounted 

for. 

The most reliable way to estimate the effects of l/f noise on the measured power spectra is by Monte Carlo 

simulation. Using the pipeline simulator discussed in Hinshaw et al. (2003b) we have generated a library of noise maps 

with flight-like properties. Specifically we have included flight-like 1 /f noise in the simulated time-ordered data, and 

have run each full-year realization through the map-making pipeline, including the baseline pre-whitening discussed 

in Hinshaw et al. (2003b). We evaluate the power spectra of these maps using the quadratic estimator described in 
Appendix A with 3 different pixel weighting schemes. (See Appendix A.1.2 for definitions of the weights, and the 1 
range in which each is used.) We define the effective noise as a function of 1 based on fits to these Monte Carlo noise 

spectra. For the analyses in this paper, we fit the spectra to a model of the form 

where the cb are fit coefficients given in Table 1, with nmax = 3 foi I < 200, and nW = 1 for 1 > 200. 

Figure 1 shows the noise spectrum derived from the simulations for each of the 8 high frequency DAs, using 

uniform weighting over the entire I range. For comparison, we also plot an estimate of the CMB power spectrum from 

35 in grey. Note that the W4 spectrum is the only one of this set to exhibit deviations from white noise in an 1 range 

where the signal-to-noise is relatively low, and we believe this simulation slightly over-estimates the 1 / f noise in the 

flight W4 differencing assembly (Hinshaw et al. 2003a). 
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2.3. Systematic Errors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Hinshaw et al. (2003a) present limits on systematic errors in the first-year sky maps. They consider the effects of 

absolute and relative calibration errors, artifacts induced by environmental disturbances (thermal and electrical), errors 

from the map-making process, pointing errors, and other miscellaneous effects. The combined errors due to relative 

calibration errors, environmental effects, and map-making errors are limited to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< 15 pK2 (2a) in the quadrupole 

moment C2 in any of the 8 high-frequency DAs. Tighter limits are placed on higher-order moments. We conservatively 

estimate the absolute calibration uncertainty in the first-year WMAPdata to be 0.5%. 

Random pointing errors are accounted for in the beam mapping procedure; the beam transfer functions presented 

by Page et ai. (2003a) incorporate random pointing errors automatically. A systematic pointing error of -10" at the 

spin period is suspected in the quaternion solution that defines the spacecraft pointing. This is much smaller than 

the smallest beam width (-12' at W band), and we estimate that it would produce <I% error in the angular power 

spectrum at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 = 1000, thus we do not attempt to correct for this effect. Barnes et al. (2003) place limits on spurious 

contributions due to stray light pickup through the far sidelobes of the instrument. They place limits of < 10 pK2 on 

spurious contributions to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACf, at Q through W band, due to far sidelobe pickup. 

A detailed model of Galactic foreground emission based on the first-year W A P  data is presented by Bennett 

et al. (2003~) and is summarized in $3.1. We show that diffuse foreground emission is a modest source of contamina- 

tion at large angular scales ( 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2'). Systematic errors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon these angular scales are negligible compared to the (modest) 
level of foreground emission. On smaller angular scale ( : 2'), the 1-3% uncertainty in the individual beam transfer 

functions is the largest source of uncertainty, while for multipole moments greater than -600, random white noise 

from the instrument is the largest source of uncertainty. 

3. THEDATA 

Figure 2 shows the cross-power spectra obtained from all 28 combinations of the 8 differencing assemblies Q1 

through W4 using the quadratic estimator described in Appendix A.l .  These spectra have been evaluated with the Kp2 

sky cut described in Bennett et al. (2003~). The spectra are color coded by effective frequency, m, where v i  is the 

frequency of differencing assembly i. The low frequency (4 1 GHz) data are shown in red, the high frequency (94 GHz) 

data in blue, with intermediate frequencies following the colors of the rainbow. The top panel shows 1(1+ 1)C1/27r in 

pK2, while the bottom panel plots the ratio of each channel to our final combined spectrum presented in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$5.  The top 

panel shows a very robust measurement of the first acoustic peak with a maximum near 1 - 220 and a shape that is 

consistent with the predictions of adiabatic fluctuation models. There is also a clear indication of the rise to a second 

peak at 1 - 540. See Page et al. (2003b) for an analysis and discussion of the peaks and troughs in the first-year WMAP 

power spectrum. 

The red data in the top panel show very clearly that the low frequency data are contaminated by diffuse Galactic 

emission at low 1 and by point sources at higher 1. The higher frequency data show less apparent contamination, 

consistent with the foreground emission being dominated by radio emission, rather than thermal dust emission, as 

expected in this frequency range. 

3.1. Galactic and Extragalactic Foregrounds 

Bennett et al. (2003~) present a detailed model of the Galactic foreground emission based on a Maximum Entropy 
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analysis of all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 WMAP frequency bands, in combination with external tracer templates. They demonstrate that the 

emission is well modeled by three distinct emission components. I )  Synchrotron emission from cosmic ray electrons, 

with a steeply falling spectrum in the WMAP frequency range: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATA(v) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0: V B  with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp < -3, steepening with increasing 

frequency. 2) Free-free emission from the ionized interstellar medium that is well traced by H a  emission in regions 

where the dust extinction is low. 3) Thermal emission from interstellar dust grains with an emissivity index - 2.2. 

The model has a Galactic signal minimum between V and W band. 

In principal we could subtract the above model from each W A P  channel and recompute the power spectrum. 

However, since the model is based on WMAP data that have been smoothed to an angular resolution of 1 PO, the 

resulting maps would have complicated noise properties. For the purposes of power spectrum analysis, we adopt a 

more straightforward approach based on fitting foreground tracer templates to the Q, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV, and W band data. The details 

of this procedure, the resulting fit coefficients, and a comparison of the fits to the Maximum Entropy model are given 

in Bennett et al. (2003~). They estimate that the template model removes -85% of the foreground emission in Q, V, 

and W bands and that the remaining emission constitutes less than -2% of the CMB variance (up to I = 200) in Q 

band, and 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 % of the CMl3 variance in V and W bands. 

The contribution from extragalactic radio sources has been analyzed in three separate ways. Bennett et al. (2003~) 

directly fit for sources in the sky maps. The result of this analysis is that we have identified 208 sources in the WMAP 

data with sufficient signal to noise ratio to pass the detection criterion (we estimate that -5 of these are likely to 

be spurious). The derived source count law is consistent with the following model for the power spectrum of the 

unresolved sources 

with A = 0.015 pK2 sr (measured in thermodynamic temperature), /3 = -2.0, and vo 45 GHz. Komatsu et al. (2003) 

evaluate the bispectrum of the WMAP data and are able to fit a non-Gaussian source component based on a particular 

configuration of the bispectrum. They find the same source model, equation (9), fits the bispectrum data. For the 

remainder of this section, we adopt this model for correcting the cross-power spectra. At Q band (41 GHz) the 

correction to &I+ 1)C1/2x is 868 and 3468 pK2 at 1=500 and 1000, respectively. At W band (94 GHz), the correction 

is only 31 and 126 pK2 at the same 1 values. For comparison, the CMB power in this 1 range is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN 2000 pK2.  Later, 

when we derive a final combined spectrum from the multi-frequency data, we adopt equation (9) as a model with A as 

a free parameter. We simultaneously fit for a combined CMB spectrum and source amplitude and marginalize over the 

residual uncertainty in A. The best-fit source amplitude from this process is consistent with the other two methods. 

Figure 3 shows the cross-power spectra obtained from the same 28 combinations as in Figure 2, this time with 

the Galactic template model and source model subtracted. The bottom panel of the Figure shows the ratio of the 28 

channels to the combined spectrum obtained in $5. The 28 cross-power spectra are consistent with each other at the 

5 to 20% level over the 1 range 2 - 500. Similar scatter is seen in Monte Carlo simulations of an ensemble of 28 

cross-power spectra with WMAPs beam and noise properties. The only significant deviation lies in the Q band data at 

low 1 which is - 10% below the higher frequency bands at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 < 20. This is consistent with the accuracy estimated above 

for the Galactic template model, see also Figure 11 of Bennett et al. (2003~) for images of the maps after Galactic 

template subtraction. Since the WMAP data are not noise limited at low I ,  we use only V and W band data in the final 

combined spectrum for 1 < 100. 

The subtraction of the source model, equation (9), brings the Q band spectrum into good agreement with the other 

cross-power spectra up to 1 - 500. At higher I ,  the Q band data contributes very little to the final combined spectrum 

because the (normalized) Q band window function has dropped to less than 5% (Page et al. 2003a). As discussed in 

$5, we marginalize over the source amplitude uncertainty, 6A, when obtaining the final power spectrum estimate and 

associated covariance matrix. Thus the uncertainty is also accounted for in subsequent cosmological parameter fits 



- 8 -  

(Verde et al. 2003; Spergel et al. 2003; Peiris et al. 2003). 

Figure 4 shows a close-up of the 28 cross-power spectra in Figure 3 up to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 100. The top panel shows the raw 

(unbinned) data which has correlations of ~ 2 %  between neighboring points is this 1 range (see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA94). These data are 

strikingly consistent with each other and support the conclusion that systematic errors at low 1 are insignificant. To 

assess the level of scatter that does exist between the spectra, we have generated a Monte Carlo simulation in which we 

compute the rms scatter among the 28 spectra at each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ,  relative to the measured power. The bottom panel of Figure 4 

shows the results of this simulation, averaged over 1000 realizations, compared to the relative rms scatter in the data. 

The agreement is excellent, indicating that the uncertainty in the measured power spectrum in this 1 range is a few 

percent and is consistent with a combination of instrument noise and mode coupling due to the 15% sky cut. 

Another striking feature is the low amplitude of the observed quadrupole, and the sharp rise in power, almost 

linear in I ,  to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 = 5. Bennett et al. (2003b) quote a value for the rms quadrupole amplitude, Qrms = ,/- = 8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
pK, where the uncertainty is largely due to Galactic model uncertainty. This is consistent with the amplitude measured 

by the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACOBE-DMR experiment, Qmlr = 10: pK (Bennett et al. 1996). The fast, nearly linear rise to I = 5 produces 

an angular correlation function with essentially no power on angular scales 2 60°, again in excellent agreement with 

the COBE-DMR correlation function (Bennett et al. 2003b; Hinshaw et ai. 1996). In the context of a standard ACDM 

model, the probability of observing this little power on scales greater than 60' is - 2 x (Bennett et al. 2003b). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATHE FULL COVARIANCE MATRIX 

In 95 we derive our best estimate of the angular power spectrum by optimally combining the 28 cross-power 

spectra discussed above. The procedure for combining spectra requires the full covariance matrix of the individual 

cross-power spectra - in this section we outline the salient features of this matrix. There are six principal sources of 

variance for the measured spectra, Cl: cosmic variance, instrument noise, mode coupling due to the foreground mask, 

point source subtraction errors, uncertainty in the beam window functions, and an overall calibration uncertainty. 

We ignore uncertainties in the diffuse foreground correction since they are everywhere sub-dominant to the cosmic 

variance uncertainty (see 93.1). 

We may write the covariance matrix as 

where the angle brackets represent an ensemble average, Cl is the true underlying power spectrum, wi is the window 

function of spectrum i, and AS' is the point source contribution to spectrum i. Here we have defined a point source 

spectral function, Si, as 

where vi, vo, and ,6 are as defined after equation (9). Note that (Cfull);, is symmetric in both (U') and (ij) 

In the process of forming the combined spectrum we will estimate a best-fit point source amplitude, A, and 

subtact the corresponding soiice contiibution from each spectrum i. We thus rewrite Cf~l l  as 

where 

will marginalize over as a nuisance parameter. 

= -A94 is the source-subtracted spectrum, and 6A s A -A is the residual source amplitude, which we 
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We may expand the covariance matrix as 

We discuss each of these contributions in more detail below. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Cosmic Variance, Noise, and Mode Coupling.- The first two terms, E,, + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEm&, incorporate the combined 

uncertainty due to cosmic variance, instrument noise, and mode coupling due to the foreground mask, 

(Ccv+Emask);, = ( [ ~ : - C l W j l [ C ~ ,  -Cp 4, I ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(14) 

where w! is fixed at its measured value. We have split this contribution into two pieces to mimic the procedure we 

actually use to compute the covariance matrix. As outlined in $5.1, we start with Ccv, then incorporate the effects of 

point source error and window function error. We do not add the effects of mode coupling, Cmsk. until the very end 

of the computation. We consider this term in more detail in Appendix D. 

Point Source Subtraction Errors.- The third term, Csrc, is due to uncertainty in the point source amplitude 

determination 

(E STc )ij zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11’ - - s i w i G 2  1 src zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ,sj, 1 (15) 

where u$?rc = ( ( A  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-A)’) is the variance in the best-fit amplitude A, and we assume that the frequency dependence, Si ,  
is perfectly known. In practice, we do not explicitly evaluate E,, as given above, rather we employ a method based on 

marginalizing a Gaussian likelihood function, C(C;,A), over a nuisance parameter A.  This process, which is discussed 

in Appendix B, effectively yields Ccv + Csrc. 

Window Function and Calibration Errors.- The fourth term, Cwin, is due to uncertainty in the beam window 

function, 4. This term arises from fluctuations in the window function which cause the measured spectrum, C; to differ 

from our estimate of the convolved spectrum, Clw;, where w: is the estimated window function. This contribution has 

the form 

(16) 

Recall from $2 that w! = bfbf p: where bf is the beam transfer function for DA i and p: is the pixel window function. 

Define zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE Abf/bf to be the fractional error in bf, then to first order in uf we have 

(Cwin)i, = Cl ( 4 ~ : .  A d , )  Cp . 

For W A P  the uncertainty in bf is uncorrelated between DAs, thus the above expression reduces to 

where we have defined 

E (ufu;,) =(bfbf,)-’ , 
and where ELcl, is the covariance matrix of the beam transfer function for DA i given by Page et al. (2003a). When 

generating the combined spectrum in the next section, we add Cxpin to the above contributions, giving Ccv + Csrc + Cwin. 

The WMAP absolute calibration uncertainty is 0.5%. We do not explicitly incorporate this contribution in the 

covariance matrix. Instead, we propagate a 0.5% uncertainty into the normalization of the final power spectrum 

amplitude (Spergel et al. 2003). 
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5. THE COMBINED POWER SPECTRUM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

In $3 we demonstrated that the three high frequency bands of WMAF’ data produced consistent estimates of 

the angular power spectrum, after a modest correction for diffuse Galactic emission and extragalactic point sources. 

It is therefore justifiable to combine these data into a single “optimal” estimate of the angular power spectrum of 

the CMB. In this section, we provide an overview of two methods we use to generate a single combined spectrum. 

The first is a multi-step process that simultaneously fits the 28 cross-power spectra presented above to a single CMB 

power spectrum and a point source model, equation (9), while correctly propagating beam and residual point source 

uncertainties through to a final Fisher matrix. This spectrum constitutes our best estimate of the CMB power spectrum 

from the first-year WMAP data. The second spectrum, which serves as a cross check of the first, is based on forming a 

single co-added sky map from the Q l  through W4 maps, and using the quadratic estimator with noise bias subtraction. 

We compare the two spectra in 95.3. 

5.1. Method I - Optimal Combination of Cross-Power Spectra 

Since this method is relatively complicated, we outline the basic procedure here and relegate the details to Ap- 

pendices, as indicated. We present the result in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA35.3. The steps are as follows. 

1. Subtract best-fit Galactic foreground templates from each of the maps Q1 through W4, using the coefficients 

given in Table 3 of Bennett et al. (2003~). 

2. Evaluate the 28 cross-power spectra from the maps Q1 through W4, where each spectrum has been evaluated 

using the quadratic estimator of Appendix A. 1 with the weighting scheme defined in Appendix A. 1.2. 

3. Collect the noise bias estimate, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(w), for each DA from $2.2. These estimates are used in the calculation of the 

covariance matrix for the combined spectrum, and in setting the relative weight of each cross-power spectrum 

in the final combined spectrum. 

4. Apply the procedure presented in Appendix B. 1 to obtain an estimate for the point source amplitude. The value 

obtained is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA = 0.0155 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 0.0017, roughly independent of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl,, in equation (B6). This value is in good agreement 

with an estimate based on the bispectrum (Komatsu et al. 2003), and on an extrapolation of point source counts 

(Bennett et al. 2003b). Subtract the point source contribution from the cross-power spectra: = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA--AS%;. 

5. Compute an approximate form of the full covariance matrix discussed in $4, &11. The procedure we use pro- 

duces a covariance matrix which includes cosmic variance, instrument noise, source subtraction uncertainties, 

and window function uncertainties. At this stage of the process, it does not yet include the effects of mode 

coupling. More details are given in $4 and Appendix B. 

6. Invert the approximate covariance matrix for use in computing the optimal spectrum. This is the most computa- 

tionally intensive step in the process. 

7. Compute the final combined spectrum from the 28 Cj as per the procedure given in Appendix C. In particular, 

assume a fiducial cosmological model (as specified in the Appendix), and use equation (C6), with E!ull zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11, = 

gi,l 
Note: for I < 100 we use a surrogate procedure for computing the combined spectrum. In order to minimize 

Galactic foreground contamination, we use only V and W band data. Moreover, because the statistics of the Cl 
are mildly non-Gaussian, and because point source contamination and window function uncertainties are small, 

This produces a final spectrum which is very nearly optimal. 
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the “optimal” machinery developed above is unnecessary. Rather we simply form a weighted average spectrum 

from the V and W band zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<. 
8. Compute the approximate inverse-covariance matrix, Q, for the combined spectrum using equation (C7). This 

matrix is approximate in two ways. 1) It does not yet incorporate the effects of mode coupling - this is added 

below. 2) It has been evaluated for a fiducial cosmological model, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ(q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9. while in a likelihood application, we 

need to evaluate Q(qh) for an arbitrary model, qh - we add this next. 

9. Introduce the dependence on cosmological model into Q as follows. Invert Q to obtain the approximate CO- 

variance matrix of the combined spectrum, 9. The off-diagonal terms of 5 are small and weakly dependent on 

cosmological model, so we expand 9 as - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C1p = D ~ d ~ p  +el/! , (20) 

where encodes the mode coupling due to window function and source subtraction uncertainties. This relation 

defines elp, which we take to be zero on the diagonal. Dl is dominated by cosmic variance and noise; in order 

to separate the two contributions, we introduce an ansatz of the form 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcd is the fiducial model used to generate the combined spectrum (see Appendix C), and Neff is the 

effective noise in the combined spectrum, which is defined by this equation. The dependence on cosmological 

model is introduced in the covariance matrix by re-computing D1 with -+ qh, leaving zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy’ fixed. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
10. Estimate the coupling induced by the foreground mask as described in Appendix D. The effect of the mask on 

the off-diagonal elements of the Fisher (inverse-covariance) matrix can be written as 

(22) 

where DI E D&&. This expression parameterizes, and defines, the off-diagonal mode coupling in the form of a 

correlation matrix, rip. Note that 

I I -112 
( C A s k ) l 1 ’  = rll’ (DlDl!) 7 

defined in Appendix D.2, is related to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq 1 8  by 4 1 8  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs du, + riff. 

11. The final Fisher (curvature) matrix, Qlp , is obtained using 

We further calibrate D; with Monte Carlo simulations. This calibration process, and a description of how the 

curvature matrix is used in a maximum likelihood determination of cosmological parameters, is given in §2 of Verde 

et al. (2003). As part of the first-year data release, we provide a Fortran 90 subroutine to evaluate the likelihood of a 

given cosmological model, qh, given the WMAP data (supplied in the routine). The code also optionally returns the 

Fisher (inverse-covariance) matrix for the combined spectrum. 

5.2. Method II - Combined Sky Map 

Our second approach is to form a single co-added map from the Q 1 through W4 maps, 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7;.’ is the sky map for DA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi with the best-fit Galactic template model subtracted, and a& is the noise per 

observation for DA i, given by Bennett et al. (2003b). We evaluate the power spectrum of this map on the Kp2 cut sky 

using the quadratic estimator in Appendix A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn effective noise model is obtained by using the same approach as 

described in $2.2: we generate co-added noise maps from the library of end-to-end simulations, evaluate their average 

spectra, then fit a noise model. The noise bias model is then subtracted from the power spectrum of the combined 

temperature map. We have performed this analysis with 3 distinct pixel weighting schemes (see Appendix A. 1.2) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 corresponding noise models. The results are shown in Figure 5 where it is seen that the three cases are virtually 

indistinguishable. 

In effect, this analysis uses both the auto- and cross-power spectra. We view this as a useful check of the more 

sophisticated procedure described in $5.1, but we do not rely on it for a final result. Uncertainties in the noise model 

only effect the fourth moment of the cross-power spectra, but they effect the second moment of the auto-power spectra 

and potentially bias the final result. The -6% sensitivity advantage gained by including auto-power spectra was not 

deemed worth the effort required to guarantee that the final result was not biased. 

5.3. Comparison of Results 

Figure 6 compares the power spectra obtained from methods I and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII above. The combined cross-power spectrum 

from 55.1 is shown in black, the auto-power spectrum obtained in 95.2 from the co-added map is shown in grey. The 

two methods agree extremely well with the only notable deviation being at the highest I range probed by the first-year 

data. This is the regime where the auto-power spectrum will be most sensitive to the noise bias subtraction. As can be 

seen in the error estimates shown in Figure 8, the deviation is less than lo. 

A separate test of robustness is to compute the angular power spectrum in separate regions of the sky to see if 

the spectrum changes. We have computed the power spectrum in two subsets of the sky - the ecliptic poles, and the 

ecliptic plane, using the quadratic estimator with the combined sky map. The results are shown in Figure 7 where the 

pole data is shown in grey and the plane data in black. The two spectra are very consistent overall, but some of the 

features that appear in the combined spectrum, such as the “peak” at I - 40 and the “bite” at 1 - 210, are not robust to 

this test, thus we consider these features to be of marginal significance. There is also no evidence that beam ellipticity, 

which would be more manifest in the plane than in the poles, systematically biases the spectrum. This is consistent 

with estimates of the effect given by Page et al. (2003a). 

6. DISCUSSION 

Our best estimate of the angular power spectrum of the CMB is shown in Figure 8. Also shown is the best-fit 

ACDM model from Spergel et al. (2003) which is based on a fit to the this spectrum plus a compilation of additional 

CMB and large-scale structure data. The W A P d a t a  points are plotted with measurement errors based on the diagonal 

elements of the Fisher matrix presented in Appendix D. The cosmic variance errors, which include the effects of the 

sky cut, are plotted as a lo band around the best-fit model. As discussed in Spergel et al. (2003), the model is an 

excellent fit to the data. The combined specbum provides a definitive measurement of the CMB power spectrum 

with uncertainties limited by cosmic variance up to I - 350. The spectrum clearly exhibits a first acoustic peak at 

E = 220.1 =k 0.8 and a second acoustic peak at 1 = 546 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 10. Page et al. (2003b) present an analysis and interpretation 

of the peaks and troughs in the first-year WMAP power spectrum. 

Figure 9 compares the first-year Wi” spectrum to a compilation of recent balloon and ground-based measure- 
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ments. In order to make this Figure meaningful, we plot the best-fit model spectrum to represent the W A P  results. 

The data points are plotted with errors that include both measurement uncertainty and cosmic variance, so no error 

band is included with the model curve. (Since individual groups report band power measurement with different band- 

widths, it is not possible to represent a single cosmic variance band that applies to all data sets.) The model spectrum 

fit to WAF’ agrees very well with the ensemble of previous observations. 

Wang et al. (2002a) have recently distilled a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACMB power spectrum from an optimal combination of the extent 

pre-WMAP data. In Figure 10 we plot their derived band power points alongside the WMAP data. To make this 

comparison meaningful, we plot the WAF’  data with cosmic variance plus measurement errors and omit the error 

band from the model spectrum. The distilled spectrum is notably lower than the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW A P  data in the vicinity of the 

first acoustic peak. In a previous version of this work (Wang et al. 2002b) the authors noted that the first peak of their 

combined spectrum was lower than a significant fraction of their input data. They attribute this to their formalism 

allowing for a renormalization of individual experiments within their respective calibration uncertainties. Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 in 

Bennett et al. (2003a) presents a similarly distilled spectrum from the data extent in late 2001 and found a first peak 

amplitude that was more intuitively consistent with the bulk of the input data, and which is now seen to be consistent 

with the W A P  power spectrum. 

Figure 1 1 shows the WMAP combined power spectrum compared to the locus of predicted spectra, in red, based 

on a joint analysis of pre-WAF’ CMB data and 2dFGRS large-scale structure data (Percival et al. 2002). As in 

Figure 8, the WMAP data are plotted with measurement uncertainties, and the best-fit ACDM model (Spergel et al. 

2003) is plotted with a la cosmic variance error band. Percival et al. (2002) predict the location of the first peak should 

occur at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI = 221.8 f 2 . 4 ,  which is quite consistent with the value reported by Page et al. (2003b) of 1 = 220.1 f0 .8 .  The 

height of the first peak was predicted to be in the range 4920 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 170 pK2, while Page et al. (2003b) report a measured 

height of 5580 f 75 pK2, about 13% higher. Unlike the position, the amplitude of the first peak has a complicated 

dependence on cosmological parameters. Percival et al. (2002) report best-fit parameters for a ACDM model that are 

mostly consistent with those reported by Spergel et al. (2003) for the same class of models. The only mildly disparate 

comparison lies in the combination of normalization, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA08 ,  and optical depth, T. Percival et al. (2002) report the product zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
b g d 7  = 0.72 f 0.03 f 0.02, where the first error is a “theory” error and the second is measurement error. While 

Spergel et al. (2003) does not report a maximum likelihood range for this explicit parameter combination, the product 

of their maximum likelihood values for 08 and T yields zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo8.P = 0.74, which is consistent with Percival et al. (2002), 

but would make the first peak a few percent higher. Small differences in nbh2, fi,h2, and n,, may also contribute to 
the difference. 

7. CONCLUSIONS 

We present measurements of the angular power spectrum of the cosmic microwave background from the first- 

year W A F ’  data. The eight high-frequency sky maps from DAs Q1 through W4 were used to estimate 28 cross- 

power spectra, which are largely independent of the noise properties of the experiment. These data were tested for 

consistency in $3, then used in $5 as input to a final combined spectrum, discussed in 56. The procedure for estimating 

the uncertainties in the final combined spectrum were discussed in $4 and in numerous Appendices. 

The combined spectrum provides a definitive measurement of the CMB power spectrum, with uncertainties lim- 

ited by cosmic variance up to E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN 350, and a signal to noise per mode > 1 up to 1 - 650. The spectrum clearly exhibits 

a first acoustic peak at 1 = 220.1 f 0.8 and a second acoustic peak at 1 = 546 f 10. Page et al. (2003b) present an 

analysis and interpretation of the peaks and troughs in the first-year WAF’ power spectrum. Spergel et al. (2003), 

Verde et al. (2003), and Peins et al. (2003) analyze the combined spectrum in the context of cosmological models. 
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They conclude that the data provide strong support adiabatic initial conditions, and they give precise measurements of 

a number of cosmological parameters. Kogut et a]. (2003) analyze the correlation between W s  temperature and 

polarization signals, the CT" spectrum, and present evidence for a relatively high optical depth, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan early period 

of cosmic reionization. Among other things, this result implies that the temperature power spectrum is suppressed by 

-30% on degree angular scales, due to secondary scattering. 

A variety of first-year zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWMAP data products are being made available by NASA's new Legacy Archive for Mi- 

crowave Background Data Analysis (LAMBDA). In addition to the sky maps and calibrated time-ordered data, we 

are providing the 28 cross power spectra used in this paper (with diffuse foregrounds subtracted), the combined spec- 

trum from $5.1, and a Fortran 90 subroutine to compute the likelihood of a given cosmological model, (the code will 

also optionally return the Fisher (inverse-covariance) mamx for the combined spectrum.) The LAMBDA URL is 

http://lambda.gsfc.nasa.gov/. 
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A. POWER SPECTRUM ESTIMATION METHODS 

For the analysis of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWMAPs first-year data, we have chosen two distinct methods for infemng the power spec- 

trum. The first is a fast and accurate quadratic method for estimating the power spectrum of a partial sky map (Hivon 

et al. 2002). We summarize the basic approach here, highlighting the aspects of the method that are especially perti- 

nent to M A P ,  and refer the reader to Hivon et al. (2002) for details. The second is a maximum likelihood method 

that provides an independent estimate of the spectrum measured by WMAP (Oh et al. 1999). 

This preprint was prepared with the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAAS LWEX macros v5.0. 
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We have applied both of these methods to the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWMAP data. The results are shown in Figure 12, which shows 

spectra estimated from the V band map, up to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 = 200, for the two methods. The maximum likelihood estimate has 

slightly lower uncertainties at low 1, because the method optimally weights the data with a pixel-pixel covariance 

C = S+N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM S where S is the covariance of the CMB signal and N is the covariance of the noise (see Appendix A.2). 

Our quadratic estimator uses uniform pixel weights at low 1 (see Appendix A.1.2) though it is clear from the Figure 

that the difference is not significant. At high zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ,  where the WMAP data are noise dominated, the two estimators give 

essentially identical results because they effectively weight the data in the same way. 

To obtain our “best” estimate of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“MAP power spectrum, we adopt the quadratic estimator because it can be 

readily applied to pairs of W A P  radiometers in a way that is nearly independent of the properties of the instrument 

noise. In 5.5 we discuss our methodology for combining spectra from pairs of radiometers and present the final 

combined spectrum. 

A.l. Quadratic Estimation 

Hivon et al. (2002) start with the full-sky estimator in equation (2), add a position dependent weight, W(n), and 

set W to zero in the regions where the sky is contaminated. In other regions, W is chosen to optimize the sensitivity of 

the estimator. A temperature map AT(n) on which a weight W(n) is applied can be decomposed in spherical harmonic 

coefficients as 

where the integral over the sky is approximated by a discrete sum over map pixels, each of which subtends solid angle 

0,. Hivon et al. (2002) then define the “pseudo power spectrum” as 

1 

IGlml2. 
- 1  
Cr = - 

21+1 
m=-1 

The pseudo power spectrum c, given by the weighted spherical harmonic transform of a map, is clearly different 

from the full sky angular spectrum, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACsb, but the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAensemble averages of the two spectra can be related by 

1’ 

where G1p describes the mode coupling resulting from the weight function W(n) (Hauser & Peebles 1973). Hivon 

et al. (2002) give the following expression for the coupling matrix, which depends only on the geometry of the weight 

function W(n) 

where the final term in parentheses is the Wipe r  3- j  symbol, and Wl is the angular power spectrum of the weight 

function 
1 2 

WI = - IwlmI 
21+1 ”, 
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Upon inverting the coupling matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG I ~  and making the identification (Csky) = CI, we obtain the following esti- 

mator of the power spectrum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Cpbs = G,f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACp . 

I' 

The computation of equation (A2) for each (1,m) up to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 = l,,, would scale as Npixl;,, if performed on an arbitrary 

pixelization of the sphere, where Npix is the number of sky map pixels. However, for a pixelization scheme with 

iso-latitude pixel centers, fast FFT methods may be employed to speed up the evaluation, so it scales like NifZAa 
(Muciaccia et al. 1997). The W A P  sky maps have been produced using the HEALF'ix layout (G6rski et al. 1998) 

which supports such fast spherical harmonic transforms. In particular, the HEALPix routine zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmap2alm evaluates 

equation (A2). 

A. I .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Auto- and Cross-Power Spectra from the WMAP Data 

For a multi-channel experiment like -Pit is quite powerful to evaluate the power spectra from different maps 

and compare results. In particular, the quadratic estimator described above may be used on 1 or 2 maps at a time by 

generalizing the expression for the pseudo power spectrum equation (A3) as 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEf,, refers to the transform of map i and c7{2 refers to map j, which needn't be the same as map i .  As discussed 

in 32, if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi # j and the noise in the two maps is uncorrelated, the estimator equation (A9) provides an unbiased estimate 

of the underlying power spectrum. 

We have tested the auto- and cross-power estimator extensively with Monte Carlo simulations of the first-year 

WlMAPdata. Selected results from this testing are shown in Figure 13. The auto- and cross-power spectra that obtain 

from the flight data are presented in detail in $3. The cross-power spectra form the basis for our final combined 

spectrum, presented in $5. 

A.1.2. Choice of Weighting 

We seek a weighting scheme that mimics the maximum likelihood estimation (Appendix A.2), which effectively 

weights the data by the full inverse covariance matrix C-' = (S+N)-'. For the combined spectrum presented in 35, we 

use three distinct weighting functions in three separate I ranges. 

1. For 1 < 200 we give equal weight to all un-cut pixels, 

where M ( p )  is the Kp2 sky mask, defined by Bennett et al. (2003~). It takes values of 0 within the mask and 1 

otherwise. 



- 18- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2. For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 > 450 we use inverse-noise weighting, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

w@> = M(p)Nobs(p) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN , b ( p )  is the number of observations of pixel p .  

3. For 200 < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 < 450 we use a transitional weighting, 

M ( p )  
w(p)= I/(Nobs)+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1/Nobs(p) 

where (Nabs) is the mean of Nabs evaluated over the cut sky. 

Verde et al. (2003) discuss the choice of weighting in more detail. 

A.2. Maximum Likelihood Estimation 

This Appendix provides a summary of the maximum likelihood approach to power spectrum estimation originally 

presented by Oh et al. (1999). If the temperature fluctuations are Gaussian, and the a priori probability of a given set 

of cosmological parameters is uniform, then the power spectrum may be estimated by maximizing the multi-variate 

Gaussian likelihood function 
exp(-imT C-' m) 

m W l  lm) = 

where m is a data vector (see below) and C is the covariance matrix of the data, which has contributions from both 

the signal and the instrument noise, C = S+N. We can work in whatever basis is most convenient. In the pixel basis 

the data are the sky map pixel temperatures, and in the spherical harmonic basis the data are the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaim coefficients of the 

map. In the former basis the noise covariance is nearly diagonal, while in the latter, the signal covariance is. 

Pixel basis: Spherical harmonic basis: 

m - + ' l ; .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm -+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaim 

s + cl ~ c l p l ( c o s e i j )  S + diag(C2,Cz ,... C3,C3 ,...) 

N -+ ~ ? 6 i j  N -+ N(rrn)(lm), (see below). 

For WMAP, the length of the data vector, Ndata, is 2,672,361, the number of 7' sky map pixels (HEALPix Nside = 5 12) 
that survive the Galaxy cut, so it is necessary to find methods for evaluating L that do not require a full inversion of 

the covariance matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, which requires 0 operations. We use an iterative method for evaluating the likelihood 

that exploits the ability to find an approximate inverse e-'. The most important features in the data that make this 

possible are that WMAPobserves the full sky and the Galaxy cut is predominantly azimuthally symmetric in Galactic 

coordinates (Bennett et al. 2003b). Of secondary importance for this pre-conditioner is that WMAPs noise per pixel 

does not vary strongly across the sky (Bennett et al. 2003a). We discuss the pre-conditioner in more detail below. 

Defining f = -2 In C and PI E, we maximize the likelihood by solving 

(A 14) 
a.f - = o = mT C-' P[ C-' m+tr(C-' PI) 
ac1 

using a Newton-Raphson root finding method that generates an iterative estimate of the angular power spectrum 
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at each step. Here is the Fisher matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 

41, = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(8' In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL / O C I ~ C ~  ) = -tr(c-' PI C-' PI, ). 

To implement the solution in equation (A15) we need a fast way to evaluate the following three components of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
cp 411 & 

I. mT C-' PIC-' m 

2. tr(c-' 9) 

3. tr(c-' P/ c-' PI!). 

We use the spherical harmonic basis in which the data vector consists of the arm coefficients of the map obtained by 

least squares fitting on the cut sky. The signal covariance is diagonal in this basis, while the noise matrix is obtained 

from the normal equations for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa!, fit 

where 

The sums are over all sky map pixels that survive the Galaxy cut, and we have assumed that the noise is uncorrelated 

from pixel to pixel. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A.2.1. Evaluation of C-' m 

The term C-'m appears repeatedly in the evaluation of equation (A15). We compute this by solving Cz = 
(S +N) z = m for z. A more numerically tractable system is obtained by multiplying both sides by S f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN-' , SO 

(-420) 
1 1  (I+sf N-' SI)SI z = sf N-'m = Sf y 

where y is the spherical harmonic transform of the map, defined in equation (A19). Note that y can be quickly 

computed in any pixelization scheme that has iso-latitude pixel centers with fixed longitude spacing. We then solve 

equation (A20) using an iterative conjugate gradient method with a pre-conditioner for the matrix A G (I+S f N-' Sf).  
We find the following block-diagonal form of A to be a good starting point 

(A21) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN-' is a block-diagonal approximation of the noise matrix discussed below. The lower-right block of occupies 

the high 1 portion of the matrix where the signal to noise ratio S 1 N-'Si is low, so a diagonal approximation is 

adequate. The upper-left block occupies the low 1 portion of the matrix where the signal dominates the noise, so we 

need a better estimate of N-' . In practice we find this split works well at 1 = 512 for the WMAP noise levels. As for 
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the approximate form of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN-', defined in equation (A19), note that the dominant off-diagonal contributions arise from 

the azimuthally symmetric Galaxy cut, which couples different 1 modes, but not m modes. Thus N-' is approximately 

block diagonal, with perturbations induced by the non-uniform sky coverage of WMAP. We therefore use a block 

diagonal form of N-' as the pre-conditioner, 

Using the pre-conditioner equation (A21) we find that the conjugate gradient solution of equation (A20) converges in 

approximately six iterations and requires only cpu-minutes of processing on an SGI Origin 2000. 

B. POINT SOURCE SUBTRACTION 

In this Appendix we describe the procedure we use to estimate and subtract the point source contribution directly 

from the multi-frequency cross-power spectra. We then show how we incorporate the source model uncertainty into 

the covariance matrix of the source-subtracted spectra by marginalizing a Gaussian likelihood function over the source 

model amplitude parameter. 

This marks the starting point of the multi-frequency analysis which will lead to the combined power spectrum, 

discussed in 55.1. In order to generate the combined spectrum, we need the full covariance matrix of the cross-power 

spectra (see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA94). Our approach to generating the full covariance is to start with the ideal, full-sky form, which only 

includes cosmic variance and instrument noise, then we incorporate additional effects step by step, as outlined in $5.1 

and in these Appendices. For an ideal experiment with full sky coverage, no point source contamination, and no beam 

uncertainty the covariance matrix is 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 i j  denotes the Kronecker symbol, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 bf bjp: is the window function, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnini'&, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= N' 

B.l. Estimating the Point Source Amplitude 

We start by assuming a Gaussian likelihood for the sky model, given the WMAP data 

-2lnL(A, C11 c) = [ c -(C[ +AS')w:] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(E-')? [ Ci - (C, +ASj)d 3, 
ij zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

where is cross-power spectrum i, w: is the window function for spectrum i, C, is the true CMB power spectrum, and 

AS' is the source model defined in equations (9) and (1 1). Here we assume the diagonal form of the covariance matrix 

in equation (B 1). 

To determine the best-fit source amplitude, A, we marginalize this likelihood over the CMB spectrum, Cl. First 

we expand equation (B2) as 

1 ij 

I ij 
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which is a quadratic form in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACl, C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0: n, exp[-f(aC:-2bCl+c)], with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

034) 

We wish to evaluate the marginalized likelihood, &,(A) = JdCrC(A,Cl). This is readily evaluated using the substitu- 

tion Cl -+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACl-b/a, giving CC, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcc nlexp[-i(c-b2/a)], where we drop a multiplicative term proportional to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, which 

is independent of A. The marginalized likelihood function is thus 

Setting dCc,(A)/dA = 0 gives the most likely point sources amplitude 

where 

The standard error on the best zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfit value of A is 

2 

For WMAP, the off-diagonal terms in the covariance matrix are small. Here, neglecting them changes the inferred 

point source amplitude by less than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1%. 

B.2. Marginalizing over Point Source Amplitude 

The source subtraction procedure discussed above is uncertain. In this section we incorporate this uncertainty 

into the full covariance matrix for the cross-power spectra. We again assume a Gaussian likelihood function of the 

form 

039) 

is the source-subtracted cross-power spectrum for DA pair i, obtained above, M J ~  is the window function for 

-2 In c = [Cj - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(e   GAS])^^ 3 (E-~);, [Cj, - (Q + b~$,)uj,, I 
ij zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11' 

where 

spectrum i, qh is now a fixed CMB model spectrum, and 6A is the residual source amplitude. 
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We can marginalize the likelihood function over the residual point source amplitude zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas follows. Expand equa- 

tion (B9) as 

- 2 1 n ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ( C ~ - C ~ ~ ~ ~ ) ( E - ' ) E , ( ~ ~ , - C ~ ~ , )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ij zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11' 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 ( 6 A ) c  (Cj-_C[h~])(C-')E,Sj~, 

ij 11' 

ij zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/I' 

which is a quadratic form in SA, C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe~p [ -~ (a (SA)~ -2b (bA)+c ) ] ,  with 

ij 11' 

c (~-crw;)(E-');,(ci, -C;!d,).  
ij 11' 

We wish to evaluate the marginalized likelihood, LA = JLd(GA). This is readily evaluated using the substitution 

SA + SA-b/a,  givini LA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc( exp[-f(c-b*/a)], where we drop a multiplicative term proportional to a, which is 

independent of c. The marginalized likelihood function is thus 

This expression may be recast in the form 

The superscript "src" indicates that the Fisher matrix so obtained includes point source subtraction uncertainty, in 

addition to whatever effects have been included in (E-')!, already, in this case only cosmic variance and noise. Note 

that equation (B15) neglects a term proportional to Indet a which has a weak dependence on cosmological parame- 

ters. In the actual calculation, as in the previous section, we assume the diagonal form of the covariance matrix in 

equation (B 1). 

C. OPTIMAL WEIGHTING OF MULTI-CHANNEL SPECTRA 

We use the 8 high-frequency differencing assemblies Q1 through W4 to generate the final combined spectrum. 

In this Appendix we show how we combine these spectra into a single estimate of the angular power spectrum. 
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The ultimate goal of the WMAPanalysis is to produce a likelihood function for a set of cosmological parameters, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
{a}, given the data, c. Specifically 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP(dlc> is the probability of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{d }  given the data, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,C(CiICfh(C)) is the likelihood of the data given the model, 

e ( d ) ,  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP ( 3  is the prior probability of the parameter set (Verde et al. 2003). To this end, we seek a combined 

spectrum, ?I, that estimates the power spectrum in our sky, Cfb, with the property that P(dl?l) = P(c?lc), and hence 

P(dlc;) = L(qCp(d))P(cq, (C1) 

aGIc)h(C)) = aqq(cq3). 
To estimate the combined spectrum, we approximate the likelihood function for the cross-power spectra as Gaus- 

(C2) 

sian 

- ~ I ~ L ( < I c ~ ~ )  = C(<-c?w:) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(C~~J: ,  (C!, -+vj,), 
ij 11’ 

where < is the spectrum with the best-fit source model subtracted, defined after equation (12), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw J  is the window 

function of spectrum i, defined after equation (6), and Cf~ll  is the covariance matrix of the 28 cross-power spectra. 

Note that the treatment in the remainder of this section does not depend on any specific property of the covariance, 

so we use generic notation for readability. However, when we generate the WMAPfirst-year combined spectrum, the 

actual form of the covariance used at this step is (%full)!,, where % indicates the approximate covariance, obtained in 

$4, that has not yet had the effects of the foreground mask accounted for. 

We seek a spectrum e1 such that 

A 

where Qlp is the inverse-covariance matrix of the combined spectrum which comes with the estimate of Cl. Suppose, 

for simplicity, that Cf,ll is diagonal, (Cf~ll):, = (ChIl)y61l,, then it is straightforward to show that the deconvolved, 

weighted-average spectrum 

with 

is the desired spectrum. Substituting equations (C4) and (CS) into equation (C3) produces equation (C2) up to a term 

which has a weak dependence on comological model, which we ignore. This combined spectrum is equivalent to the 

result we would obtain using the “optimal data compression” of Tegmark et al. (1997). 

If the inverse covariance matrix is not diagonal in I, it can be shown that the optimal combined spectrum is given 

bv 

with 

and where is a fiducial cosmological model which we take to be a flat ACDM model with nbh2 = 0.021, R,h2 = 
0.129, R,,, = 1, h = 0.68, n, = 1.2, and ‘T = 0.2. While this model has parameters values that are substantially different 

than the best-fit WMAPmodel obtained (afterwards) by Spergel et al. (2003), the parameter degeneracies are such that 

c d i s  close to the best-fit model for 1 > 100 where this estimator is actually used (see 05.1). The combined spectrum 
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is optimal if the fiducial model chosen is the correct one; otherwise it is still unbiased but slightly sub-optimal (Gupta zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
& Heavens 2002). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

D. CUT-SKY FISHER MATRIX 

The WMAP sky maps have nearly diagonal pixel-pixel noise covariance (Hinshaw et al. 2003a) which greatly 

simplifies the properties of the power spectrum Fisher matrix. In this Appendix we present an analytic derivation of 

the effect of a sky cut and non-uniform pixel weighting. In D.l, we assume that we have an optimal estimator of 

the power spectrum. In the noise dominated limit, we can obtain an exact expression, while in the signal dominated 

limit, we need to approximate the signal correlation matrix to obtain an analytic expression. In D.2, we interpolate 

the Fisher matrix between the signal and noise-dominated regimes and show that it agrees with numerical estimates. 

In D.3, we estimate the power spectrum covariance matrix from Monte Carlo simulations of the sky and calibrate the 

interpolation formula. 

D.1. Cut-Sky Fisher Matrix: Analytic Evaluation 

We equate the Fisher matrix of the power spectrum to the curvature of the likelihood function, equation (A16), 

then develop an approximate form for the covariance matrix, C = S +N, where S is the signal matrix and N is the noise 

matrix. We split the noise matrix into two pieces: a weight term and a mask term. In the limit that the pixel noise is 

diagonal, the weight term has the form 

(D1) 
(N-'). = -6.. ni = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ii zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwiaij 

where i and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj are pixel indices, ni is the number of observations of pixel i, 00 is the rms noise of a single observation, 

and, by definition, wi is the weight of pixeI i. The mask, Mi, is defined so that Mi equals 0 in pixels that are not used 

due to foreground contamination, and equals 1 otherwise. The noise matrix can then be written as the product of the 

two terms 
N-' = N - ~ M  = m-'= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA26. .  - +,.a. . 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlii = n; and Gi = w;  in the unmasked pixels, and are set to 0 otherwise. We thus define the covariance matrix over 

the full sky, which allows us to exploit the orthogonality properties of the spherical harmonics. Note that M2 = M. 

ii. 
@2) 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' I -  ' I  

W 

The inverse of the full covariance matrix can now be written as 

c-'= (S + ~ 1 - 1  = N-' (SN-' +I)-' 

= M-'(SM-'+N,)-' 

The covariance matrix has two limits. In the noise dominated limit, SN-' << I, 

C-' + N-'. 

In the signal dominated limit, SM-' << N,, only the mask alters the covariance matrix, so 

c-' + MS-IM, 

where we have set the inverse of the mask to zero where there is no data, i.e. M-' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE M. 

@3) 

034) 
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D. I .  1 .  Cut-Sky Fisher Matrix in the Noise Dominated Limit 

In the noise dominated limit, the Fisher matrix, equation (A16), is approximately zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
@7) 

1 1 

2 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4; = -tr (C-'P/C-'P/,) + -tr (N-'P,N-'Pp). 

Using 

where Bij is the angle between pixels zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj ,  Yim(pi) is a spherical harmonic evaluated in the direction of pixel i, and 

we have employed the addition theorem for spherical harmonics in the last equality. Then the Fisher matrix takes the 

form 

Now expand the weight array as 

Gi = Gln i  Km(pi) 

and substitute this into equation (D9) to yield 

Since Gi was defined over the full sky, the sum over pixels may be expressed in terms of products of Wigner 3- j  
symbols. As shown in Appendix E, we may use an orthogonality property of the 3- j symbols to reduce the expression 

for the Fisher matrix to 

4; = ~ W ' W '  1 
(21+ 1)(21'+ 1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp,, ( 0 0  I' 0 1 

47ri-l;; 

where W! E Ern l6lrnl2, and ill, is the solid angle per pixel. 

0.1.2. Cut-SQ Fisher Matrix in the Signal Dominated Limit 

In the signal dominated limit, the Fisher matrix, equation (A16), is approximately 

Substituting a normalized expression for S-' in the pixel basis, 
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into equation (D14), one obtains a term 

Since our mask cuts only zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 15% of the sky, the coupling sum, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ i M i Y , ~ m ~  (p i )v ,m, , (p i ) ,  peaks very sharply at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIl'-l''I << zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1'. Therefore, one may approximate equation (D16) with 

where, in the last equality, we have used the completeness relation for the spherical harmonics 

lm 

With this approximation equation (D 14) reduces to 

Following the same steps outlined above zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor the derivation of equation (D12) yields 

F M p  ( " ' I '  ) 1 1 (21+1)(21'+1) 

2 crcp 47r 0 0  0 
47, = - - 

where Ml zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE Em (m1m(2, and ml, is the spherical harmonic transform of the mask. Note that Mo = 47rf&, where fsb is 

the fraction of the sky that survives the mask. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D.2. Interpolating the Cut-Sky Fisher Matrix 

We can combine the two limiting cases of the Fisher matrix, obtained in the previous section, into a single 

expression 

where N[ 
previous section, f i l l  can be expressed in the low 1 (signal-dominated) and high 1 (noise-dominated) limits as 

f i p f f i / ( f i&sw[ )  is the deconvolved noise power spectrum. Using equations (D12) and (D20) derived in the 

F M l l ,  ( 0 0 0  " I" ) 2  ' 
(21 + 1)(21'+ 1) 

47r"f& 

and 

By construction, these matrices are normalized to 1 on the diagonal, 6: = 6: = 1, since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMO = 47rf& and @O = 

47rf&fi:bs/u;' 



We have computed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF;Yk directly, for selected zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 values, by evaluating zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl$mC-'K~m~ using the pre-conditioner code 

described by Oh et al. (1999). We find that deviations between the numerical and analytical results are consistent with 

numerical noise in the Fisher matrix estimate. Figure 14 shows the estimated Fisher matrix for the Kp2 cut in the noise 

and the signal dominated limits. 

We interpolate between the two regimes with the following expression: 

Note that the form of the Fisher matrix primarily depends on Al, but is weakly dependent on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI -there is more coupling 

in the noise dominated limit. 

D.3. Power Spectrum Covariance: Monte Carlo Evaluation 

As discussed in Appendix A. 1.2 we compute the C, using three different pixel weightings. The uniform weighting 

and the inverse-noise inverse weighting are optimal in the signal-dominated regime and the noise-dominated regime, 

respectively. In between these limits the transitional weighting performs better. In order to determine which ranges in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
correspond to which regimes, and to calibrate our ansarz for the covariance matrix, equation (D21), we proceed as fol- 
lows. Using 100,000 Monte Carlo simulations of signal plus noise (with WMAPnoise levels and symmetrized beams), 

we compute the diagonal elements of the covariance matrix for the three different weighting schemes, evaluated with 

the Kp2 sky cut. Denote these estimates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADr"' 

We find that the uniform weighting produces the smallest DFm below 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 200. Inverse-noise weighting is the best 

above 1 = 450, and the transitional weighting produces the lowest variance in between. In each of these regimes we 

use the resulting Dsim to calibrate our ansurz for the diagonal elements of the covariance matrix 

as illustrated in Verde et al. (2003). These calibrations produce a smooth correction to equation (D24) of at most 6%. 

No correction at all is required in the signal dominated regime. 

E. SOME zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUSEFUL PROPERTIES OF SPHERICAL HARMONICS 

The derivation of the form of the Fisher matrix in the signal and noise dominated limjts led to expressions which 

K ~ ~ m ~ ~  ( P i ) q z l ( P i ) K m ( p j )  Y l ~ ~ ~ r n ~ ~ ~  ( p j ) q y m t  ( P j I K f m )  ( P i ) ,  (El 1 

where the sum is effectively a double integral over the full sky. This can be evaluated in terms of the Wigner 3- j  
symbols, defined as 

included a term 

mm' i j  

Substituting this into equation (El) gives 

nim' 
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We simplify this using the Wigner zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3- j orthogonality condition 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS(Z, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl', zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1") =' 1 for Il-Z'I 5 1'' 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI+ I' and is 0 otherwise. This reduces equation (El) to 

(21+1)(21'+1) 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11 1" 
4TR; ( 0  0 O ) * >  

where the factor of 0; accounts for the fact that equation (El) is a double sum over pixels, instead of a double integral. 
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Fig. 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.- The effective noise as a function of I for the 8 differencing assemblies used in the combined power spectrum 

analysis. These spectra were computed from end-end simulations of noise maps, as discussed in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$2.2. For illustration, 

the spectra shown here were computed using the quadratic estimator with uniform pixel weights. The actual noise 

model uses three separate weighting schemes in three separate 1 ranges, and thus has discontinuities where the effective 

noise level changes. The weights are defined in Appendix A. 1.2. 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.- The full set of individual cross-power spectra for I < 500, computed from the 8 high frequency differencing 

assemblies Q1 through W4,28 spectra in all. The spectra were evaluated from the uncorrected sky maps (no Galaxy 

model subtracted) using the Kp2 sky cut with uniform weighting. The data are plotted in color by effective frequency 

with red corresponding to 41 GHz and blue to 94 GHz. The top panel shows a very robust measurement of the 

first acoustic peak with a maximum near zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 - 220. There is also a clear indication of the rise to a second peak at I N 540 

as discussed in $6. The bottom panel shows the ratio of each channel to the combined spectrum presented in $5. This 

clearly shows the residual foreground emission due to diffuse Galactic radio emission at low I and to point sources at 

higher I. The level of contamination, which is strongest at Q band. is consistent with the expected level of foreground 

emission. See Figure 3 for the spectra after foreground subtraction. 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.- The same set of cross-power spectra as shown in Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. Here, the foreground model discussed in $3.1 
has been subtracted from each channel. The bottom panel shows the ratio of each of the 28 cross-power spectra to 

the combined spectrum presented in $5. Aside from a -10% discrepancy in the Q band data at I < 20, the data 

are consistent with each other to the sensitivity limits of the individual spectra. Because the WMAP data are not 

sensitivity limited at low I, we use only V and W band data in the final combined spectrum for 1 < 100 (see $5) to 

minimize residual Galactic contamination. 
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Fig. 4.- The same set of cross-power spectra as shown in Figure 3, but showing the low I spectrum unbinned. The 

agreement between the individual spectra is striking. The low value of the quadrupole moment, Cz, that was first seen 

by COBE-DMR is also seen in the M A P  data. The steep, nearly linear rise in the spectrum from I = 2 to 5 translates 

to a near absence of power in the angular correlation function at separations larger than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-60° (Spergel et al. 2003; 

Bennett et al. 2003b). This was also seen in the COBE-DMR data, but it is now clear that this is not due to Galaxy 

modeling errors. The bottom panel shows the fractional rms among the 28 W A P  cross-power spectra in black, while 

the red curve shows the same statistic averaged over an ensemble of 1000 Monte Carlo realizations. Based on this we 

estimate the measurement error on the combined spectrum to be <2-5% for I < 100. 
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Fig. 5.- The auto-power spectrum of the combined Q+V+W map evaluated with the three weighting schemes defined 

in Appendix A. 1.2. In each case, the spectrum was computed over the entire zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 range, and black shows uniform weights, 

red shows inverse-noise weights, and green shows transitional weights. The agreement is excellent. 
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Fig. 6.- This figure compares the auto-power spectrum computed from the combined Q+V+W map (grey) to the 

optimally combined cross-power spectrum (black). The close agreement indicates that the noise properties of the 

first-year WMAP data are well understood 
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Fig. 7.- A comparison of the power spectrum computed with data from the ecliptic plane (black) vs. data from the 

ecliptic poles (grey). Note that some of the “bite” features that appear in the combined spectrum are not robust to data 

excision. There is also no evidence that beam ellipticity, which would be more manifest in the plane than in the poles, 

systematically biases the spectrum. This is consistent with estimates of the effect given by Page et al. (2003a). 
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Fig. 8.- The final angular power spectrum, Z(Z+ 1)C1/27r, obtained from the 28 cross-power spectra, as described in 

$5.  The data are plotted with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAla measurement errors only which reflect the combined uncertainty due to noise, beam, 

calibration, and source subtraction uncertainties. The solid line shows the best-fit ACDM model from Spergel et al. 

(2003). The grey band around the model is the la uncertainty due to cosmic variance on the cut sky. For this plot, both 

the model and the error band have been binned with the same boundaries as the data, but they have been plotted as a 

splined curve to guide the eye. On the scale of this plot the unbinned model curve would be virtually indistinguishable 

from the binned curve except in the vicinity of the third peak. 
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Fig. 9.- A compilation of recent CMB power spectrum measurements compared to the best-fit ACDM model from the 

first-year WMAPdata. The data points include noise and cosmic variance uncertainty (but not calibration uncertainty) 

thus we omit the cosmic variance band from the model curve in the Figure. On average, the pre- WMAP data agree 

well with the WMAP power spectrum. 
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Fig. 10.- The WAF'  combined power spectrum, in black, compared to a compilation of all CMB data published 

prior to WMAPfrom Wang et al. (2002a), in red. The =data are plotted with cosmic variance plus measurement 

uncertainties here in order to facilitate a comparison with the compiled data which is reported in this way. The data 

agree well on COBE scales, I < 20, (but note that the W A P  cosmic variance errors are computed from the best-fit 

model rather than the data, thus they appear larger than the COBE errors at the quadrupole). However, the overall 

normalization of the W A P  spectrum is - 10% higher on smaller scales. 
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Fig. 1 1 .- The WMAP combined power spectrum compared to the locus of predicted spectra, in red, based on a joint 

analysis of pre-WMAPCMB data and 2dFGRS large-scale structure data (Percival et al. 2002). As in Figure 8, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
WMAF' data are plotted with measurement uncertainties, and the best-fit hCDM model (Spergel et al. 2003) is plotted 

with a la cosmic variance error band. The locus of predicted spectra lie systematically below the WMAP data at 

intermediate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. 
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Fig. 12.- A comparison of two power spectra computed from a single V band map. The black points result from 

the maximum likelihood method, the red points from the quadratic estimator computed with uniform pixel weighting. 

In both cases a noise model has been assumed to treat the noise bias. At higher I, the two spectra would be nearly 

identical since both impose inverse noise weighting on the data. 
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Fig. 13.- The quadratic estimator discussed in SA.1 has been extensively tested with Monte Carlo simulations of 

first-year WMAP data. The top panel shows a model spectrum in red, and the mean of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA600 realizations of the cross- 

power spectrum, computed from the V and W band-averaged maps, in black. The red emor bars show the uncertainty 

in the mean in bins with AZ = 20. The cross-power spectrum estimator is unbiased. The bottom panel is similar, but 

with auto-power spectra computed from the W band-averaged map. Here the noise bias term was estimated directly 

from the high I tail of the computed spectrum. This simple auto-power spectrum estimator is unbiased if the noise is 

white, and is suitable for V band data, but see Figure 1 for examples of W band noise spectra. 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14.- Slices of the Fisher (or curvature) matrix normalized as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF p  / d m ,  plotted vs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 -l', from the Fisher 

matrix for the combined spectrum. Black is 1 = 30, red is 1 = 300, green is 1 = 600. 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. WMAPPower Spectrum Noise Modela 

Parameter Q1 4 2  VI v2 w1 w2  w 3  w 4  

Co(X102) -6.604 -6.971 -6.823 -6.674 -7.174 -7.439 -7.044 -7.989 

~i(x10’) 1.934 4.244 2.497 1.395 3.060 3.721 1.459 4.820 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C ~ ( X  IO4) -3.798 -8.521 -5.203 -1.483 -6.021 -6.901 -2.677 -5.870 

c3(xiO5) 2.549 5.921 3.715 0.242 4.147 4.540 1.750 2.167 

200 < I < 450 

co(x102) -6.143 -6.268 -6.320 -6.192 -6.618 -6.833 -6.768 -6.849 

c1(xIO4) -1.334 1.341 -0.800 -1.351 0.769 2.582 0.885 2.443 

I > 450 

co(X10’) -6.202 -6.167 -6.338 -6.264 -6.564 -6.704 -6.688 -6.772 

~ i ( ~ 1 0 ’ )  3.288 4.085 3.327 5.979 7.342 12.970 8.851 24.430 

aBest-fi t coeffi cients for the noise model in equation (8). The units of the output noise are md, 
thermodynamic temperature. 


