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Abstract

In the framework of quaternionic Clifford analysis in Euclidean space R4p, which constitutes
a refinement of Euclidean and Hermitian Clifford analysis, the Fischer decomposition of the
space of complex valued polynomials is obtained in terms of spaces of so–called (adjoint)
symplectic spherical harmonics, which are irreducible modules for the symplectic group Sp(p).
Its Howe dual partner is determined to be sl(2,C) ⊕ sl(2,C) = so(4,C).

1 Introduction

In 1917 Ernst Fischer proved (see [15]) that, given a homogeneous polynomial q(X), X ∈ Rm,
every homogeneous polynomial Pk(X) of degree k can be uniquely decomposed as

Pk(X) = Qk(X) + q(X)R(X)

where Qk(X) is a homogeneous polynomial of degree k satisfying the partial differential equation

q(D)Qk = 0

D being the differential operator corresponding to X through Fourier identification (Xj ↔ ∂xj
, j =

1, . . . ,m) and R(X) is a homogeneous polynomial of suitable degree. If, in particular, q(X) =
|X|2 =

∑m
j=1X

2
j = r2, then q(D) =

∑m
j=1 ∂

2
Xj

= ∆m, the Laplace operator in Rm, and Qk is
harmonic, leading to the well-known decomposition

P(Rm;C) =

∞⊕
k=0

∞⊕
p=0

r2p Hk(Rm;C) (1)

of the space P(Rm;C) of complex valued polynomials, in terms of the spaces Hk(Rm;C) of complex
valued harmonic homogeneous polynomials of degree k. This space P(Rm;C) is a module over the
special orthogonal group SO(m), its action being the regular representation

[g · P ](X) = P (g−1 ·X), g ∈ SO(m), P ∈ P(Rm;C), X ∈ Rm (2)

Each of the constituents of the decomposition (1)

r2p Hk, p ∈ N0 := N ∪ {0}, k ∈ N0
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is a subspace of P(Rm;C) which is invariant under the SO(m)–action and all SO(m)-modules
Hk(Rm;C) are irreducible and mutually inequivalent. In particular, the space Pk(Rm;C) of ho-
mogeneous polynomials of degree k, decomposes into SO(m)-irreducibles as

Pk(Rm;C) =

b k2 c⊕
p=0

r2p Hk−2p(Rm;C) (3)

The Fischer decomposition (1) may be rewritten in the triangular diagram

H0 r2 H0 r4 H0 · · ·
H1 r2 H1 · · ·

H2 r2 H2 · · ·
H3 · · ·

H4 · · ·

(4)

the vertical columns then reflecting the decomposition (3) of the spaces Pk(Rm;C), k = 0, 1, 2, . . .

It is clear that in the Fischer decompositions (1) and (3) the operators X := 1
2 r

2 and Y := − 1
2 ∆m

play a key role. Note that they correspond to each other under natural or Fourier duality, also
known as Fischer duality. They both commute with the action (2) of SO(m) on functions and on
polynomials in particular, and their mutual commutator is

[X,Y ] =

[
1

2
r2,−1

2
∆m

]
= E +

m

2

where E = r∂r =
∑m
j=1Xj∂Xj

is the Euler operator in Rm. We then put

H := E +
m

2

and find that [H,X] = 2X and [H,Y ] = −2Y . This means that {H,X, Y } generates a three–
dimensional Lie algebra isomorphic with the Lie algebra sl(2,C). The action of sl(2,C) on the
decompositions (1) and (3) is:

X : r2p Hk −→ r2p+2 Hk
Y : r2p Hk −→ r2p−2 Hk (5)

H : r2p Hk −→ r2p Hk

Taking the dimension m to be even: m = 2n, the standard complex structure I2n on R2n is
introduced as follows. Let En denote the identity matrix in Mn(C), the space of square n × n
matrices with complex entries. Let

ϕn : Mn(C) −→M2n(R)

stand for the injective homomorphism embedding Mn(C) into the space M2n(R) of square 2n×2n
real matrices. This embedding may be realized by substituting for each complex entry a+ bi, the
2×2 real matrix

(
a b
−b a

)
. In Cn multiplication by the imaginary unit i is the C–linear transformation

associated to the matrix iEn. The standard complex structure I2n then is the complex linear real
matrix

I2n = ϕn(iEn) = diag
(

0 1
−1 0

)
As expected, there holds I22n = −E2n, E2n being the identity matrix in M2n(R). Moreover I2n
belongs to SO(2n), and a matrix B ∈M2n(R) is complex linear, i.e. belongs to ϕn(Mn(C)), if and
only if B commutes with the complex structure I2n on R2n. We then have the following result (see
also [5]).
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Proposition 1. The SO(2n)–matrices commuting with the complex structure I2n on R2n form a
subgroup of SO(2n), denoted by SOI(2n), which is isomorphic with the unitary group U(n).

The introduction of the complex structure I2n allows for considering the space P(R2n;C) of complex
valued polynomials defined on Euclidean space of even dimension, as an SOI(2n) ∼= U(n)–module,
the action of SOI(2n) being

[u · P ](X) = P (u−1 ·X), u ∈ SOI(2n), P ∈ P(R2n;C), X ∈ R2n

Since each complex valued polynomial in the real variables (X1, . . . , X2n) = (x1, . . . , xn, y1, . . . , yn)
may be written as a polynomial in the complex variables (z1, . . . , zn, z1, . . . , zn), with zj = xj +
i yj , zj = xj − i yj , j = 1, . . . , n, i.e.

P (X) = P (x1, . . . , xn, y1, . . . , yn) = P̃ (z1, . . . , zn, z1, . . . , zn)

we have to determine the polynomials P̃ which are invariant under the action of SOI(2n) ∼= U(n).
As is well–known, the space of U(n)–invariant polynomials in P(R2n;C) is the space with basis(

1, r2, r4, . . . , r2p, . . .
)

where r2 can be written as:

r2 = |X|2 =

2n∑
j=1

X2
j =

n∑
j=1

x2j + y2j =

n∑
j=1

zjzj =

n∑
j=1

|zj |2

The differential operator corresponding, under Fourier duality, to the generator r2 is the Laplace
operator

∆2n =

n∑
j=1

∂2xjxj
+ ∂2yjyj = 4

n∑
j=1

∂zj∂zj

whence we are led to consider the space of harmonic polynomials in (z1, . . . , zn, z1, . . . , zn). Its
subspaceHk(R2n;C) of complex valued k–homogeneous harmonic polynomials may be decomposed
as

Hk(R2n;C) =
⊕
a+b=k

Ha,b(R2n;C)

whereHa,b(R2n;C) is the space of the complex valued harmonic polynomials which are a–homogeneous
in the variables zj and at the same time b–homogeneous in the variables zj , i.e.

Ha,b(λz1, . . . , λzn, µz1, . . . , µzn) = λa µb Ha,b(z1, . . . , zn, z1, . . . , zn)

This leads to the Fischer decomposition

P(R2n;C) =

∞⊕
k=0

∞⊕
p=0

k⊕
a=0

r2p Ha,k−a(R2n;C) (6)

where the constituents

r2p Ha,k−a, p ∈ N0, k ∈ N0, a = 0, . . . , k

are irreducible invariant subspaces under the action of U(n). In particular, the space Pk(R2n;C)
of k-homogeneous polynomials decomposes as

Pk(R2n;C) =

b k2 c⊕
p=0

k−2p⊕
a=0

r2p Ha,k−2p−a(R2n;C) (7)
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The corresponding diagram, similar to (4), looks like

H0,0 r2 H0,0 r4 H0,0 · · ·

H1,0 r2 H1,0 r4 H1,0 · · ·
H0,1 r2 H0,1 r4 H0,1 · · ·

H2,0 r2 H2,0 · · ·
H1,1 r2 H1,1 · · ·
H0,2 r2 H0,2 · · ·

H3,0 r2H3,0 · · ·
H2,1 r2H2,1 · · ·
H1,2 r2H1,2 · · ·
H0,3 r2H0,3 · · ·

H4,0 · · ·
H3,1 · · ·
H2,2 · · ·
H1,3 · · ·
H0,4 · · ·

H5,0 · · ·
H4,1 · · ·
H3,2 · · ·
H2,3 · · ·
H1,4 · · ·
H0,5 · · ·

(8)

The smallest Lie algebra of complex polynomial differential operators generated by the polynomial
r2 and its dual operator ∆2n again is sl(2,C), since

[X,Y ] =

[
1

2
r2,−1

2
∆2n

]
= E + n = H

However, there is an additional natural invariant differential operator coming into play. Indeed,
the Euler operator E decomposes as

E = Ez + E†z
with

Ez =

n∑
j=1

zj∂zj and E†z =

n∑
j=1

zj∂zj

Both these Euler operators in the complex variables are U(n)–invariant, and so is their difference,
up to a chosen constant,

E†z − Ez + n

which commutes with X = 1
2r

2, Y = − 1
2∆2n and H = Ez + E†z + n, since

[r2,Ez] = −r2, [r2,E†z] = −r2

and
[∆2n,Ez] = ∆2n, [∆2n,E†z] = ∆2n
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In this way we end up with a reductive Lie algebra which is the direct sum of the three–dimensional
Lie algebra generated by {H,X, Y }, isomorphic with sl(2,C), and the one–dimensional abelian Lie
algebra C generated by {E†z−Ez +n}. This is nothing else but the four dimensional general linear
algebra gl(2,C) with action

X : r2p Ha,b −→ r2p+2 Ha,b
Y : r2p Ha,b −→ r2p−2 Ha,b
H : r2p Ha,b −→ r2p Ha,b (9)

E†z − Ez + n : r2p Ha,b → r2p Ha,b

since also

Ez : r2p Ha,b −→ r2p Ha,b
E†z : r2p Ha,b −→ r2p Ha,b

When comparing the Fischer decompositions (1) and (6), it becomes clear that refining the
symmetry group from SO(2n) to its subgroup SOI(2n) ∼= U(n), results into the splitting of the space
Hk(R2n;C) of homogeneous harmonic polynomials, now considered as functions in the complex
variables (z1, . . . , zn, z1, . . . , zn), according to the bidegrees of homogeneity:

Hk(R2n;C) =
⊕
a+b=k

Ha,b(R2n;C)

In [5] we have established in detail the fundaments of a function theory called quaternionic Clifford
analysis (see also [1, 2, 10, 11, 13, 21]), which is a refinement of Hermitian Clifford analysis (see e.g.
[3, 4, 7, 14, 22, 23]), in its turn a refinement of Euclidean Clifford analysis. Clifford analysis (see e.g.
[9, 12, 17, 18, 19]) is, in its most basic form, a generalization to higher dimension of holomorphic
function theory in the complex plane. The fundamental group of Euclidean Clifford analysis in Rm
is the Spin(m) group, which doubly covers the SO(m) group. The fundamental group of Hermitian
Clifford analysis in R2n is the U(n) group. The corresponding Fischer decompositions in terms of
monogenic or Hermitian monogenic homogeneous polynomials respectively, are refinements of the
Fischer decompositions (1) and (6) (see also [8]). As shown in [5], the fundamental group underlying
quaternionic Clifford analysis in R4p (where the dimension now is a fourfold: m = 2n = 4p), is the
symplectic group Sp(p). In order to obtain the corresponding Fischer decomposition it is crucial to
know how to further decompose the space Ha,b(R2n;C) as a module for Sp(p). This is the problem
we tackle in the present paper.

2 The symplectic Lie group and Lie algebra

The symplectic group Sp(p) is the real Lie group of square p× p matrices with quaternion entries,
preserving the symplectic inner product

〈ξ, η〉H = ξ1η1 + ξ2η2 + · · ·+ ξpηp ξ, η ∈ Hp

where · stands for quaternionic conjugation. Equivalently, we can describe Sp(p) as

Sp(p) = {A ∈ GLp(H) : AA∗ = Ep}

Square matrices in Mp(H) may be embedded in M2p(C) by the injective homomorphism

ψp : Mp(H) −→M2p(C)
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where for each quaternion entry

z + w j = (x+ y i) + (u+ v i) j = x+ y i+ u j + v k

the 2 × 2 complex matrix
(

z w
−w z

)
is substituted. In this way it turns out that ψp(Sp(p)) is a

subgroup of SU(2p).

At the level of Lie algebra we have the following picture. The real symplectic Lie algebra sp(p)
of skew–symplectic Mp(H) matrices

sp(p) = {A ∈ GLp(H) : A+A∗ = 0}

is isomorphic with the subalgebra ψ(sp(p)) of the Lie algebra u(2p) of skew–hermitian M2p(C)
matrices. Moreover, for A ∈ sp(p), the complex matrix ψ(A) satisfies the relation

ψ(A)T I2p + I2p ψ(A) = 0 (10)

where ·T stands for the transpose and I2p is the complex structure introduced in Section 1.

On the other hand, there is the complex symplectic Lie group Sp2p(C) of complex linear matrices
preserving the standard skew–hermitian form on C2p:

Sp2p(C) = {A ∈ GL2p(C) : AT I2pA = I2p}

and its corresponding complex symplectic Lie algebra sp2p(C) given by

sp2p(C) = {A ∈ GL2p(C) : AT I2p + I2pA = 0}

This Lie algebra sp2p(C) is a subalgebra of sl2p(C); it can be decomposed into the direct sum of
its Hermitian subspace and its skew–hermitian subalgebra, both spaces being isomorphic through
multiplication by the imaginary unit i :

sp2p(C) =
(
sp2p(C) ∩ u(2p)

)
⊕ i
(
sp2p(C) ∩ u(2p)

)
In view of (10) this leads to the following result (see also [5]).

Proposition 2. The real symplectic Lie algebra sp(p) of skew–symplectic Mp(H)–matrices is iso-
morphic with the compact form sp2p(C) ∩ u(2p) of the complex symplectic Lie algebra sp2p(C):

ψ(sp(p)) = sp2p(C) ∩ u(2p)

Henceforth we will use the Lie algebra sp2p(C).

Now, let us consider the space Ha,b(R4p;C) of complex valued (a, b)–homogeneous harmonic
polynomials in the variables (z1, z2, . . . , z2p, z1, z2, . . . , z2p). Seen the surjectivity of the Laplace
operator

∆4p : Pa,b(R4p;C) −→ Pa−1,b−1(R4p;C)

we have

dimHa,b(R4p;C) = dimPa,b(R4p;C)− dimPa−1,b−1(R4p;C)

=

(
2p+ a− 1

a

)(
2p+ b− 1

b

)
−
(

2p+ a− 2

a− 1

)(
2p+ b− 2

b− 1

)
(11)

=

(
2p+ a− 1

2p− 1

)(
2p+ b− 1

2p− 1

)
−
(

2p+ a− 2

2p− 1

)(
2p+ b− 2

2p− 1

)
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In order to decompose the space Ha,b(R4p;C) into sp2p(C)–irreducibles, use could be made of
existing branching rules when restricting gl2p(C) to sp2p(C). To that end we have to know the
behaviour of Ha,b(R4p;C) as a module for gl2p(C). Let us recall that in [14] the spaces Ha,b(R4p;C)
have been identified as irreducible modules for its simple Lie subalgebra sl2p(C), with highest weight
vector

Ha,b(R4p;C) ∼= (a+ b, b, · · · , b)

of length 2p− 1. Interpreted as a representation space for gl2p(C) we have

Ha,b(R4p;C) ∼= (a, 0, · · · , 0,−b)

instead, where the highest weight vector now has length 2p. In fact this is telling us that

Ha,b(R4p;C) ∼=
(
V �a

)
�
(
V

�b)
where � stands for the Cartan product, with V ∼= C2p the fundamental representation and V its
dual. The branching rules when restricting gl2p(C) to sp2p(C) could be found in full generality in
[20], the branching multiplicities being expressed in terms of Littlewood–Richardson coefficients.
However, due to the rather simple highest weight to start with, the actual situation is not that
complicated and one obtains, for a > b

Ha,b

∣∣∣∣∣
gl2p(C)

sp2p(C)

= (a, b)s ⊕ (a+ 1, b− 1)s ⊕ · · · ⊕ (a+ b− 1, 1)s ⊕ (a+ b)s (12)

where the shorthand notation (λ)s refers to an irreducible representation for sp2p(C), and stands
for a symplectic highest weight (λ, 0, . . . , 0) of length p. Also note that if a or b equals zero then
no branching occurs, meaning that in that case Ha,b is symplectically irreducible.

In order to characterize the spaces of the form (a, b)s in terms of homogeneous polynomials
on R4p ∼= C2p, we will establish, in the next section, an alternative realization for sl(2,C) ∼=
AlgC(X,Y,H). To that end we introduce new differential operators appearing in quaternionic
Clifford analysis.

3 Quaternionic Clifford analysis: the basics

As is well–known, when establishing Hermitian Clifford analysis (see e.g. [3] ) use is made of the
projection operators

1

2
(1± i I2n)

where I2n is the standard complex structure on R2n (see Section 1), leading to the standard
Hermitian vector variables

z =

n∑
k=1

zkfk and z† =

n∑
k=1

zkf
†
k

and the Hermitian Dirac operators

∂†z =

n∑
k=1

∂zk fk and ∂z =

n∑
k=1

∂zk f
†
k
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where the Witt basis vectors
(
fk, f
†
k : k = 1, . . . , n

)
are given by

fk = −1

2
(1− i I2n) [e2k−1] and f†k =

1

2
(1 + i I2n) [e2k−1]

(e1, . . . , e2n) being an orthonormal basis in R2n.

Lemma 1. (see [6]) The Hermitian variables and Dirac operators enjoy the anti–commutation
relations

{z, z†} = |z|2

{∂z, ∂†z} =
1

4
∆2n

{∂z, z} = Ez + β

{∂†z , z†} = E†z + n− β

{∂z, z†} = 0 = {∂†z , z}

where β is the so–called spin–Euler operator given by β =
∑n
k=1 f

†
kfk = n−

∑n
k=1 fkf

†
k. They span

the odd part of the Lie super algebra sl(1|2) = g0 ⊕ g1 with

g0 = gl(2,C) = C⊕ sl(2,C) = spanC(E†z − Ez + n− 2β)⊕AlgC(E†z + Ez + n,
1

2
|z|2,−1

2
∆2n)

g1 = spanC(z, z†, ∂z, ∂
†
z)

The central notion in Hermitian Clifford analysis is that of a Hermitian monogenic function, the
definition of which is as follows.

Definition 1. A differentiable function F defined in a domain Ω of R2n and taking its values in
the complex Clifford algebra C2n or in spinor space S, is called Hermitian monogenic in Ω if it
satisfies the system {∂zF = 0, ∂†zF = 0}.

Now, taking the dimension to be a fourfold: m = 2n = 4p, a quaternionic structure on R4p is
established by introducing, next to the standard complex structure I4p, a second complex structure
J4p ∈ SO(4p) such that J24p = −E4p and I4p and J4p are anti–commuting. This second complex
structure J4p may be realized as

J4p = diag


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0


New twisted Hermitian variables and Dirac operators then are defined by

zJ = J4p[z] =

p∑
k=1

f†2k−1z2k − f†2kz2k−1

z†J = J4p[z†] =

p∑
k=1

f2k−1z2k − f2kz2k−1

∂Jz = J4p[∂z] =

p∑
k=1

f2k−1∂z2k − f2k∂z2k−1

∂†Jz = J4p[∂†z ] =

p∑
k=1

f†2k−1∂z2k − f†2k∂z2k−1
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Lemma 2. The twisted Hermitian variables and Dirac operators enjoy the anti–commutation
relations

{zJ , z†J} = |z|2

{∂Jz , ∂†Jz } =
1

4
∆4p

{∂Jz , zJ} = Ez + 2p− β

{∂†Jz , z†J} = E†z + β

{∂Jz , z†J} = 0 = {∂†Jz , zJ}

Remark 1. Note the similarity of the anti–commutation relations of the twisted Hermitian vari-
ables and Dirac operators with those for the standard ones, which, quite naturally, follows from the
fact that J4p ∈ SO(4p).

Remark 2. While the operators ∂z and ∂†z are invariant under U(2p), the four Dirac operators

∂z, ∂
†
z , ∂

J
z , ∂

†J
z , taken together, are invariant under the action of the symplectic group Sp(p).

Definition 2. A differentiable function F : R4p −→ S is called quaternionic monogenic in the
domain Ω ⊂ R4p if it is a simultaneous null–solution for the four operators ∂z, ∂

†
z , ∂

J
z , ∂

†J
z .

New operators are now arising by considering the mixed anti–commutator relations of the stan-
dard and twisted Hermitian variables and Dirac operators. Indeed we can define

E := {∂†Jz , z} =

p∑
k=1

z2k−1∂z2k − z2k∂z2k−1

E† := −{∂Jz , z†} = −
p∑
k=1

z2k−1∂z2k − z2k∂z2k−1

and there also holds

{∂†z , zJ} =

p∑
k=1

z2k∂z2k−1
− z2k−1∂z2k = −E

{∂z, z†J} =

p∑
k=1

z2k∂z2k−1
− z2k−1∂z2k = E†

These new operators enjoy the following properties.

Lemma 3. The operators E and E† are invariant under the symplectic action.

Lemma 4. One has
sl(2,C) ∼= AlgC

(
E†z − Ez, E†, E

)
these three generating operators commuting with the harmonic triplet (H,X, Y ) introduced in Sec-
tion 1.

Proof
Direct computation shows that indeed:

(i) [E†z − Ez, E†] = 2E†

(ii) [E†z − Ez, E ] = −2E
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(iii) [E†, E ] = E†z − Ez
(iv) [E†, 12 |z|

2] = [E , 12 |z|
2] = 0

(v) [E†,− 1
2∆4p] = [E ,− 1

2∆4p] = 0

As it was already shown that E†z − Ez commutes with 1
2 |z|

2,− 1
2∆4p and Ez + E†z + 2p, the proof

is complete. �

Corollary 1. One has

AlgC

(
Ez + E†z + 2p,

1

2
|z|2,−1

2
∆4p

)
⊕AlgC

(
E†z − Ez, E†, E

) ∼= sl(2,C)⊕ sl(2,C) = so(4,C)

4 Symplectic harmonics

If we consider the operators E and E† as acting between the spaces Ha,b(R4p;C) of complex valued
bi–homogeneous harmonic polynomials, we obtain

H0,b+a � · · · � Ha−1,b+1

E
�
E†
Ha,b � Ha+1,b−1 � · · · � Ha+b,0

and we define the kernel spaces

HSa,b = Ha,b(R4p;C) ∩Ker E = Pa,b(R4p;C) ∩Ker(∆4p, E) (a ≥ b)

and
HS

†

a,b = Ha,b(R4p;C) ∩Ker E† = Pa,b(R4p;C) ∩Ker(∆4p, E†) (a ≤ b)
These kernel spaces will show to be crucial in the decomposition of Ha,b(R4p;C) in terms of Sp(p)–
irreducibles. We call their elements (adjoint) symplectic harmonics. It will be shown further on (see
Corollary 4 and Proposition 4) thatHa,b(R4p;C)∩Ker E† = {0} for a > b andHa,b(R4p;C)∩Ker E =
{0} for a < b.

Remark 3. For all k, Pk,0(R4p;C) = Hk,0 = HSk,0 and P0,k(R4p;C) = H0,k = HS†0,k, since the
homogeneous polynomials in Hk,0 (respectively H0,k) do not contain the variables (z1, . . . , z2p)
(respectively (z1, . . . , z2p)).

With respect to the traditional Fischer inner product, given by

〈f, g〉 = f(∂†z , ∂z) g

∣∣∣∣
z=0

where f(∂†z , ∂z) is obtained by substituting ∂zj for zj and ∂zj for zj in f(z1, . . . , z2p, z1, . . . , z2p),

each of the spaces Ha,b(R4p;C) can be decomposed as the direct sum

Ha,b = HSa,b ⊕ (HSa,b)⊥ a ≥ b

Ha,b = HS
†

a,b ⊕ (HS
†

a,b)
⊥ a ≤ b

where the orthogonal complements (HSa,b)⊥ and (HS†a,b)⊥ are isomorphic with ImE(Ha,b) and Im†E(Ha,b)
respectively. We will now determine those orthogonal complements explicitly.

Lemma 5. With respect to the Fischer inner product, the operators E and E† are adjoint operators,
i.e. for polynomials P ∈ Pa,b and Q ∈ Pa+1,b−1 there holds

〈EP,Q〉 = 〈P, E†Q〉

10



Proof
It is clear that the Fischer inner product of two monomials is zero unless both monomials are equal
up to a constant. This observation and a straightforward calculation lead to the desired result. �

Proposition 3. For a ≥ b, the space Ha,b may be decomposed as

Ha,b = HSa,b ⊕ E†Ha+1,b−1 (13)

Proof
In fact we prove that, with respect to the Fischer inner product,

(
E†Ha+1,b−1

)⊥
= HSa,b. It is

important to note that if a function F is harmonic, then also EF and E†F are harmonic, since
the Laplace operator commutes with both operators E and E†. Let P ∈ HSa,b, then EP = 0

and so 〈P, E†Q〉 = 0 for all Q ∈ Ha+1,b−1, which means that P is orthogonal to E†Ha+1,b−1 or

P ∈
(
E†Ha+1,b−1

)⊥
. Conversely, let P ∈

(
E†Ha+1,b−1

)⊥
. Then EP ∈ Ha+1,b−1 and 〈EP,Q〉 =

〈P, E†Q〉 = 0 for all Q ∈ Ha+1,b−1. In particular, for Q = EP we find 〈EP, EP 〉 = 0 whence EP = 0
or P ∈ HSa,b. �

Corollary 2. For a ≥ b, the space Ha,b may be decomposed as

Ha,b = HSa,b ⊕ E†HSa+1,b−1 ⊕ E†2HSa+2,b−2 ⊕ · · · ⊕ E†bHSa+b,0 (14)

Proof
Consecutive application of the decomposition (13) leads to the desired result. �

Lemma 6. One has for Hα,β ∈ Hα,β

EE†kHα,β = k(α− β − k + 1)E†(k−1)Hα,β + E†kEHα,β

and in particular for HS
α,β ∈ HSα,β

EE†kHS
α,β = k(α− β − k + 1)E†(k−1)HS

α,β

and

E`E†kHS
α,β = k(k − 1) · · · (k − `+ 1)(α− β − k + 1) · · · (α− β − k + `)E†(k−`)HS

α,β

Proof
Straightforward computation based on the commutator [E , E†] = Ez − E†z (see Lemma 4). �

Corollary 3. For a ≥ b, the mappings

E : E†HSa+1,b−1 −→ HSa+1,b−1

E : E†2HSa+2,b−2 −→ E†HSa+2,b−2
...

E : E†bHSa+b,0 −→ E†(b−1)HSa+b,0

are isomorphisms, their inverses being, up to constants, restrictions of the operator E† to the
corresponding spaces.

Proof
We prove that for j = 1, . . . , b

E : E†jHSa+j,b−j −→ E†(j−1)HSa+j,b−j

11



is an isomorphism. First take g ∈ E†(j−1)HSa+j,b−j , meaning that g = E†(j−1)h with h ∈ HSa+j,b−j ,
and consider

f =
1

j(a− b+ j + 1)
E†g =

1

j(a− b+ j + 1)
E†jh ∈ E†jHSa+j,b−j

Then, using the formulae of Lemma 6, it follows that Ef = E†(j−1)h = g, and so the considered

mapping is surjective. Moreover
(
E†jHSa+j,b−j

)⊥
= HSa,b⊕E†HSa+1,b−1⊕· · ·⊕E†(j−1)HSa+j−1,b−j+1

implying that this mapping is also injective. Clearly(
E
∣∣∣∣
(E†jHS

a+j,b−j)

)−1
=

1

j(a− b+ j + 1)
E†

�

Corollary 4. For a ≥ b and j = 1, . . . , b one has

Ha+j,b−j ∩Ker E† = {0}

Proof
Take f ∈ Ha+j,b−j with E†f = 0 and hence also EE†f = 0. In view of Corollary 2, the function

f can be decomposed as f =
∑b−j
k=0 fk with fk ∈ E†kHSa+j+k,b−j−k. It then follows, in view of

Corollary 3, that EE†f = 0 implies f0 = f1 = . . . = fb−j = 0, and hence also f = 0. �

In a similar way as for the case where a ≥ b, the following results hold for the case where a ≤ b.

Proposition 4. For a ≤ b one has

(i) the space Ha,b may be decomposed as

Ha,b = HS
†

a,b ⊕ EHa−1,b+1

= HS
†

a,b ⊕ EHS
†

a−1,b+1 ⊕ E2HS
†

a−2,b+2 ⊕ · · · ⊕ EaHS
†

0,b+a (15)

(ii) the mappings

E† : EHS†a−1,b+1 −→ HS†a−1,b+1

E† : E2HS†a−2,b+2 −→ EHS†a−2,b+2
...

E† : EaHS†0,b+a −→ E(a−1)HS†0,b+a
are isomorphisms, their inverses being, up to constants, restrictions of the operator E to the
corresponding spaces.

(iii) Ha−j,b+j ∩Ker E = {0} for j = 1, . . . , a.

Corollary 5. For a ≥ b there holds

dim HSa,b(R4p;C) = dim Ha,b − dim Ha+1,b−1

= dim Pa,b − dim Pa−1,b−1 − dim Pa+1,b−1 + dim Pa,b−2

=
(2p− 1)(2p− 2)(a− b+ 1)(a+ b+ 2p− 1)(a+ 2p− 2)!(b+ 2p− 3)!

((2p− 1)!)2(a+ 1)!b!
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For a ≤ b there holds

dim HS
†

a,b(R4p;C) = dim Ha,b − dim Ha−1,b+1

= dim Pa,b − dim Pa−1,b−1 − dim Pa−1,b+1 + dim Pa−2,b
= dim HSb,a(R4p;C)

As dimHS†a,b = dimHSb,a, the spaces HS†a,b and HSb,a are isomorphic. Obviously this isomorphism
is realized by complex conjugation which, indeed, maps Ha,b and Hb,a onto each other, since the
Laplace operator is invariant under complex conjugation, and moreover the operators E and E† are
complex conjugated up to a minus sign.

There is, however, another -nice- way to express this isomorphism, which is closely related to the
quaternionic structure (I, J,K) introduced in [5] to study the fundaments of quaternionic Clifford
analysis (see Section 3). For a function F (z1, . . . , z2p, z1, . . . , z2p) consider the transformation
T , mapping F onto the function T [F ] by substituting for the variables z2k−1, z2k, z2k−1, z2k the
variables −z2k, z2k−1,−z2k, z2k−1(k = 1, . . . , p) respectively. In fact this is the transformation
associated to the second complex structure J4p ∈ SO(4p) in the quaternionic structure. If ha,b ∈
Ha,b, then T [ha,b] ∈ Hb,a since T commutes with the Laplace operator. Let us now compute the
commutation relations of T with the operators E and E†.

Lemma 7. For the transformation T introduced above, it holds

E† T = −T E and E T = −TE†

Proof
We consecutively have

E†T [F ] =

p∑
k=1

(z2k∂z2k−1
− z2k−1∂z2k)T [F ]

=

p∑
k=1

z2kT [∂z2kF ]− z2k−1T [−∂z2k−1
F ]

= T

[
p∑
k=1

−z2k−1∂z2kF + z2k∂z2k−1
F

]
= T [−EF ]

Next, taking into account that T 2 = −1, we also have

T E† T T = −T T E T or T E† = −E T

�

Corollary 6. If F is in Ker E, then T [F ] is in Ker E† and vice versa, and, consequently

T : HSa,b ←→ HS
†

b,a

is an isomorphism.

Remark 4. Taking for the operator T the operator associated with the third complex structure K4p,
which corresponds to the change of variables z2k−1 7→ iz2k, z2k 7→ −iz2k−1, z2k−1 7→ −iz2k, z2k 7→
iz2k−1, also leads to an isomorphism between the spaces HSa,b and HS†b,a. The operator associated to

the first complex structure I4p is an automorphism of both spaces HSa,b and HS†a,b.
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In the special case where a = b = k, the isomorphism between HSk,k and HS†k,k becomes the
identity. This is a special case (for j = 0) of the following lemma, the proof of which invokes the
Fischer decomposition established in the next section (see Theorems 1–2).

Lemma 8. For all j = 0, 1, . . . , k one has

(E†)jHSk+j,k−j = (E)jHS
†

k−j,k+j

Proof
Since (E†)jHSk+j,k−j and (E)jHS†k−j,k+j both are non–trivial, irreducible sp-submodules of Hk,k
with the same highest weight (k+ j, k− j)s, they coincide seen the Fischer decomposition of Hk,k.
�

Also the case where a− b = 1 is interesting, and is obtained (by taking j = 0) from the following
lemma, which also leans upon the Fische decomposition.

Lemma 9. For all j = 0, 1, . . . , k one has

(E†)j+1HSk+1+j,k−j = (E)jHS
†

k−j,k+1+j

Proof
First note that (E†)j+1HSk+1+j,k−j is not the null–space, since (E†)jHSk+1+j,k−j 6= 0 and

Ker E† ∩ Hk+1,k = 0. Similarly, also (E)jHS†k−j,k+1+j is not the null–space. Since both spaces

(E†)j+1HSk+1+j,k−j and (E)jHS†k−j,k+1+j are, non–trivial, irreducible sp–submodules of Hk,k+1 with
the same highest weight (k+1+j, k−j), they coincide seen the Fischer decomposition of Hk,k+1. �

Corollary 7. For a > b, the mappings

Ea−b : HS
†

b,a −→ HSa,b

and
E†(a−b) : HSa,b −→ HS

†

b,a

are isomorphisms.

5 Fischer decompositions

First assume that a > b and compare the decomposition (14) for Ha,b in terms of symplectic
harmonics, viz.

Ha,b = HSa,b ⊕ E†HSa+1,b−1 ⊕ E†2HSa+2,b−2 ⊕ · · · ⊕ E†bHSa+b,0

with the branching (12):

Ha,b

∣∣∣∣∣
gl2p(C)

sp2p(C)

= (a, b)s ⊕ (a+ 1, b− 1)s ⊕ · · · ⊕ (a+ b− 1, 1)s ⊕ (a+ b)s

It is then rather straightforward to conjecture that for a > b

(a, b)s ∼= HSa,b(R4p;C)

That this indeed is the case is shown in the next theorem.
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Theorem 1. One has, with a ≥ b,

(a, b)s ∼= HSa,b(R4p;C)

where (a, b)s = (a, b, 0, . . . , 0)s stands for an irreducible sp2p(C)–representation, the highest weight
being of length p, and

Ha,b(R4p;C) = HSa,b ⊕ E†HSa+1,b−1 ⊕ E†2HSa+2,b−2 ⊕ · · · ⊕ E†bHSa+b,0

is the Fischer decomposition of the space of complex valued bi–homogeneous harmonic polynomials
in terms of sp2p(C)–irreducibles of complex valued bi–homogeneous symplectic harmonic polynomi-
als.

Proof
We proceed by induction on b.
For b = 0 the result is trivial; indeed, as was already noticed in Section 2, in this case no branching
occurs and Ha,0 is symplectically irreducible.
Assuming that the theorem is true for b− 1 means that

(a+ 1, b− 1)s ∼= HSa+1,b−1(R4p;C)

and that

Ha+1,b−1(R4p;C) = HSa+1,b−1 ⊕ E†HSa+2,b−2 ⊕ E†2HSa+3,b−3 ⊕ · · · ⊕ E†(b−1)HSa+b,0

is an sp2p(C)–irreducible decomposition, as then is also the case for

E†Ha+1,b−1(R4p;C) = E†HSa+1,b−1 ⊕ E†2HSa+2,b−2 ⊕ E†3HSa+3,b−3 ⊕ · · · ⊕ E†bHSa+b,0

which in fact also reads

E†Ha+1,b−1

∣∣∣∣∣
gl2p(C)

sp2p(C)

= (a+ 1, b− 1)s ⊕ (a+ 2, b− 2)s ⊕ · · · ⊕ (a+ b− 1, 1)s ⊕ (a+ b)s

In view of the branching (12) and the decomposition (13) it follows that

(a, b)s ∼= HSa,b(R4p;C)

which finishes the proof. �

If a < b then we have to compare the decomposition (15)

Ha,b = HS
†

a,b ⊕ EHS
†

a−1,b+1 ⊕ E2HS
†

a−2,b+2 ⊕ · · · ⊕ EaHS
†

0,b+a

with the branching rule

Ha,b

∣∣∣∣∣
gl2p(C)

sp2p(C)

= (b+ a)s ⊕ (b+ a− 1, 1)s ⊕ · · · ⊕ (b, a)s

leading to the complementary conjecture for a < b:

(b, a)s ∼= HS
†

a,b(R4p;C)

which is proven in a similar way.
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Theorem 2. One has, with a ≤ b,

(b, a)s ∼= HS
†

a,b(R4p;C)

and
Ha,b(R4p;C) = HS

†

a,b ⊕ EHS
†

a−1,b+1 ⊕ E2HS
†

a−2,b+2 ⊕ · · · ⊕ EaHS
†

0,b+a

is the Fischer decompositions of the space of complex valued bi–homogeneous harmonic polynomials
in terms of sp2p(C)–irreducibles of complex valued bi–homogeneous adjoint symplectic harmonic
polynomials.

Corollary 8. With a > b, the spaces HSa,b(R4p;C) and HS†b,a(R4p;C) are isomorphic irreducible
representations for sp2p(C).

We already know the dimension of the spaces HSa,b and HS†b,a to be (see Corollary 5)

dim HSa,b = dim HS
†

b,a =
(2p− 1)(2p− 2)(a− b+ 1)(a+ b+ 2p− 1)(a+ 2p− 2)!(b+ 2p− 3)!

((2p− 1)!)2(a+ 1)!b!

Now we are able to calculate this dimension in the following alternative way. If Γλ denotes an
irreducible representation for sp2p(C) with highest weight λ = (λ1 ≥ λ2 ≥ · · · ≥ λp), then (see
[16], p. 406)

dim Γλ =
∏
i<j

`2i − `2j
m2
i −m2

j

∏
i

`i
mi

with `i = λi +mi and mi = p− i+ 1, i = 1, . . . , p. For the highest weight (a, b)s we have

m(m1, . . . ,mp) = (p, p− 1, . . . , 1)

and
`(`1, . . . , `p) = (a+ p, b+ p− 1, p− 2, p− 3, . . . , 1)

A straightforward calculation then leads to

dim (a, b)s =
(a− b+ 1)(a+ b+ 2p− 1)(a+ 2p− 2)!(b+ 2p− 3)!

(2p− 3)!(a+ 1)!b!

which is, quite naturally, the dimension of HSa,b and HS†b,a.

Let us give an illustrative example of the Fischer decompositions above. Take p = 2, and consider
the decompositions

H2,2(R8;C) = HS2,2 ⊕ E†HS3,1 ⊕ E†2HS4,0
H2,2(R8;C) = HS

†

2,2 ⊕ EHS
†

1,3 ⊕ E2HS
†

0,4

The harmonic polynomial z23z
2
1 ∈ H2,2 is decomposed as

z23z
2
1 = P1 + P2 + P3

with

P1 =
1

3
z23z

2
1 +

1

3
z22z

2
4 +

2

3
z2z3z1z4

P2 =
1

2
z23z

2
1 −

1

2
z22z

2
4

P3 =
1

6
z23z

2
1 +

1

6
z22z

2
4 −

2

3
z2z3z1z4
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The polynomial P1 belongs to HS2,2 ≡ HS
†

2,2. The polynomial P2 can be written as either

P2 = E†Q2 with Q2 =
1

2
(−z2z23z1 − z22z3z4)

or

P2 = EQ̃2 with Q̃2 =
1

2
(z3z

2
1z4 + z2z1z

2
4)

The polynomial Q2 belongs to HS3,1, while the polynomial Q̃2 belongs to HS†1,3. The polynomial P3

can be written as either

P3 = E†2Q3 with Q3 =
1

12
z22z

2
3

or

P3 = E2Q̃3 with Q̃3 =
1

12
z21z

2
4

The polynomial Q3 belongs to HS4,0 ≡ H4,0, while the polynomial Q̃3 belongs to HS†0,4 ≡ H0,4.

Corollary 9. The Fischer decomposition of the space Pa,b(R4p;C) of complex valued bi–homogeneous
polynomials in terms of irreducible symplectic modules, is given by

Pa,b =

b⊕
j=0

|z|2j Ha−j,b−j =

b⊕
j=0

b−j⊕
t=0

|z|2j E†tHSa−j+t,b−j−t (a ≥ b) (16)

or

Pa,b =

a⊕
j=0

|z|2j Ha−j,b−j =

a⊕
j=0

a−j⊕
t=0

|z|2j EtHS
†

a−j−t,b−j+t (a ≤ b) (17)

Corollary 10. The space P(R4p;C) may be decomposed in terms of irreducible symplectic modules
according to the following diagrams.

For P0(R4p;C):
HS0,0

For P2(R4p;C):
r2HS0,0

HS†0,2 E†HS2,0 HS2,0
HS1,1

For P4(R4p;C):
r4HS0,0

r2HS†0,2 r2E†HS2,0 r2HS2,0
r2HS1,1

HS†0,4 EHS†0,4 E†2HS4,0 E†HS4,0 HS4,0
HS†1,3 E†HS3,1 HS3,1

HS2,2
etc. for even degree polynomials.
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For P1(R4p;C):

HS†0,1 HS1,0
For P3(R4p;C):

r2HS†0,1 r2HS1,0

HS†0,3 EHS†0,3 E†HS3,0 HS3,0
HS†1,2 HS2,1

For P5(R4p;C):

r4HS†0,1 r4HS1,0

r2HS†0,3 r2EHS†0,3 r2E†HS3,0 r2HS3,0
r2HS†1,2 r2HS2,1

HS†0,5 EHS†0,5 E2HS†0,5 E†2HS5,0 E†HS5,0 HS5,0
HS†1,4 EHS†1,4 E†HS4,1 HS4,1

HS†2,3 HS3,2
etc. for odd degree polynomials.

6 Howe dual pair

The Fischer decomposition (1) of the space P(Rm;C) of complex valued polynomials in terms of
spherical harmonics, viz.

P(Rm;C) =

∞⊕
k=0

∞⊕
p=0

r2p Hk(Rm;C)

shows the drawback that it is not multiplicity-free: each of the SO(m)–irreducible invariant sub-
spaces Hk(Rm;C) appears with an infinite multiplicity, since all of

r2p Hk , p ∈ N0

k ∈ N0 being fixed, are isomorphic as SO(m)–modules. Expressing irreducibility with respect to
g× SO(m), g being an appropriate Lie algebra, aims at collecting the infinitely many copies of Hk
into one single irreducible representation. The so–called Howe dual pair (SO(m), g) is to be found
with respect to a bigger algebra in which so(m) and g are commuting. Seen the action (5) of the
operators X := 1

2 r2, Y := − 1
2 ∆m and H := E + m

2 , the Lie algebra g in this case is sl(2,C).
More background information is to be found in [6].

Similarly, the Fischer decomposition (6) of the space P(R2n;C) in terms of Hermitian spherical
harmonics:

P(R2n;C) =

∞⊕
k=0

∞⊕
p=0

k⊕
a=0

r2p Ha,k−a(R2n;C) (18)

is not multiplicity free since, for all a and b,

r2p Ha,b, p = 0, 1, 2, . . .

18



are isomorphic as U(n)–modules. It turns out that the Howe dual pair here is (U(n), gl(2,C)) (see
also [6]), with

gl(2,C) = sl(2,C)⊕ C
= AlgC(H,X, Y )⊕ spanC(E†z − Ez + n)

Now let us have a look at the symplectic Fischer decomposition of the space P(R4p;C). By
means of (16) and (17) we obtain

P(R4p;C) =

∞⊕
t=0

⊕
a<b

|z|2t
(
HS

†

a,b ⊕ EHS
†

a−1,b+1 ⊕ · · · ⊕ EaHS
†

0,b+a

)
⊕

⊕
a≥b

|z|2t
(
HSa,b ⊕ E†HSa+1,b−1 ⊕ · · · ⊕ E†bHSa+b,0

)
(19)

or, alternatively

P(R4p;C) =

∞⊕
t=0

⊕
a≥b

a−b⊕
s=0

|z|2t E†sHSa,b (20)

or still, interchanging the role of the operators E and E†,

P(R4p;C) =

∞⊕
t=0

⊕
a≤b

b−a⊕
s=0

|z|2t EsHS
†

a,b (21)

Clearly these decompositions are not multiplicity free. Assuming a > b, the isomorphic Sp(p)–
modules may be gathered in the following way

...
...

...
...

...
...

↑ ↑ ↑ ↑ ↑ ↑
|z|4HSa,b → |z|4E†HSa,b → · · · → |z|4E†αHSa,b

iso→ |z|4EαHS†b,a → · · · → |z|4EHS†b,a → |z|4HS†b,a
↑ ↑ ↑ ↑ ↑ ↑

|z|2HSa,b → |z|2E†HSa,b → · · · → |z|2E†αHSa,b
iso→ |z|2EαHS†b,a → · · · → |z|2EHS†b,a → |z|2HS†b,a

↑ ↑ ↑ ↑ ↑ ↑
HSa,b → E†HSa,b → · · · → E†αHSa,b

iso→ EαHS†b,a → · · · → EHS†b,a → HS†b,a

where α = ba−b2 c, and iso is either the identity if a − b is even (see Lemma 8), or the mapping
E† if a− b is odd (see Lemma 9). In this scheme the horizontal arrows represent the action of the
operator E†, while the vertical arrows correspond to multiplication by |z|2. If a < b this scheme
has to be reinterpreted ”from right to left”, the horizontal arrows, now oriented from right to left,
then corresponding to the action of the operator E . In the special case where a = b, the scheme
reduces to

...

|z|4HSa,a = |z|4HS†a,a
↑

|z|2HSa,a = |z|2HS†a,a
↑

HSa,a = HS†a,a
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Apparently the Howe dual g is generated by the operators

E , E†,E†z − Ez, |z|2,∆4p,Ez + E†z + 2p

which leads to (see also Corollary 1)

g = AlgC

(
Ez + E†z + 2p,

1

2
|z|2,−1

2
∆4p

)
⊕AlgC

(
E†z − Ez, E†, E

)
= sl(2,C)⊕ sl(2,C)

= so(4,C)

So let us decompose the Sp(p)–module P(R4p;C) under the combined action of the Howe dual
pair (sl(2,C)⊕sl(2,C))×Sp(p). For each irreducible Sp(p)–module HSa,b we choose a basis {HS

a,b;j :

j = 1, 2, . . . ,dimHSa,b}; this is a set of singular vectors, labeled by three parameters a, b and j. The

repeated action of X = 1
2 |z|

2 then generates the module Va,b;j given by

Va,b;j = spanC{XtHS
a,b;j : t = 0, 1, 2, . . .}

Each of the spaces Va,b;j is a realization of a so–called Verma module, an infinite dimensional
irreducible sl(2,C)–module, which we denote by I∞a,b. On the other hand, repeated action of E†
generates the module Wa,b;j given by

Wa,b;j = spanC{E†sHS
a,b;j : s = 0, 1, 2, . . . , a− b}

Each of the spaces Wa,b;j is a realization of a finite dimensional irreducible sl(2,C)–module, which
we denote by Ia,b. Finally, the space of (a, b)–homogeneous symplectic harmonic polynomials HSa,b
is a realization of the irreducible Sp(p)–module with highest weight (a, b)s = (a + b, 0, . . . , 0)s of
length p, which we denote by Ha,b. For all (a, b) with a > b the tensor product(

I∞a,b ⊗ Ia,b
)
⊗Ha,b

then is an irreducible (sl(2,C)⊕sl(2,C))×sp2p(C)–module. When regarded as a so(4,C)–module it
contains as many copies of I∞a,b⊗Ia,b as the dimension of Ha,b; when regarded as an sp2p(C)–module
it contains infinitely many copies of Ha,b. The symplectic Fischer decompositions (19)(20)(21) may
thus be reformulated as follows.

Theorem 3. Under the joint action of (sl(2,C) ⊕ sl(2,C)) × Sp(p), the space of complex valued
polynomials P(R4p;C) is isomorphic with the multiplicity free irreducible direct sum decomposition

∞⊕
a≥b=0

(
I∞a,b ⊗ Ia,b

)
⊗Ha,b

where I∞a,b is a Verma sl(2,C)–module with lowest weight a+ b+ 2p, Ia,b is an irreducible sl(2,C)–
module with highest weight a − b and Ha,b is an irreducible sp2p(C)–module with highest weight
(a+ b, 0, . . . , 0).
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Hermitean Clifford analysis – Part I: Complex structure, Complex Anal. Oper. Theory 1(3)
(2007), 341–365.
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[18] K. Gürlebeck, K. Habetha, W. Sprössig, Holomorphic functions in the plane and n-
dimensional space, translated from the 2006 German original, Birkhäuser Verlag, Basel,
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