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Fischer decompositions of kernels
of Hermitean Dirac operators
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Abstract. In this note we describe explicitly irreducible decompositions of kernels of the Hermitean Dirac Operators. In
[3], it is shown that these decompositions are essential for a construction of orthogonal (or even Gelfand-Tsetlin) bases of
homogeneous Hermitean monogenic polynomials.
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PRELIMINARIES OF HERMITEAN CLIFFORD ANALYSIS

Let (e1, . . . ,em) be an orthonormal basis of Euclidean space R
m and let Cm stand for the complex Clifford algebra

constructed over R
m such that

eα eβ + eβ eα = −2δαβ , α,β = 1, . . . ,m. (1)

As a basis for Cm one takes for any set A = { j1, . . . , jh} ⊂ {1, . . . ,m} the element eA = e j1 . . .e jh , with

1 ≤ j1 < j2 < · · · < jh ≤ m, together with e /0 = 1, the identity element. Euclidean space R
m is embedded in

Cm by identifying (X1, . . . ,Xm) with the Clifford vector X = ∑m
α=1 eα Xα , for which it holds that X2 = −|X |2. Any

Clifford number a in Cm may thus be written as a = ∑A eAaA, aA ∈ C and its conjugation is defined by a† = ∑A eAac
A,

where the bar notation stands for the main anti–involution for which eα = −eα , and ac
A denotes the complex

conjugation of aA. The Fischer dual of X is the vector valued Dirac operator ∂X = ∑m
α=1 eα ∂Xα , underlying the

notion of monogenicity of a function, the higher dimensional counterpart of holomorphy in the complex plane. More

explicitly, a function f defined and continuously differentiable in an open region Ω of R
m and taking values in the

Clifford algebra Cm is called (left) monogenic in Ω if ∂X [ f ] = 0 in Ω. As the Dirac operator factorizes the Laplacian:

∆m = −∂ 2
X , monogenicity can be regarded as a refinement of harmonicity. As usual, inside the Clifford algebra Cm

we can realize the Pin group Pin(m) as the set of finite products of unit vectors of R
m endowed with the Cliffford

multiplication. The group Pin(m) is a double cover of the orthogonal group O(m). For Cm-valued functions f (X), the

so-called L-action of Pin(m) is given by [L(s)( f )](X) = sP(s−1X s), s ∈ Pin(m). This is the framework for what is

sometimes called Euclidean Clifford analysis. A standard reference is e.g. [5].

The transition to Hermitean Clifford analysis consists in adding a complex structure J to the above Euclidean setting,

i.e. an SO(m)–element J for which J2 =−1 (see e.g. [1] for details). Note that a complex structure can exist only in the

even dimensional case m = 2n. In the sequel, the complex structure J is chosen to act upon the generators e1, . . . ,e2n

of C2n as J[e j] = −en+ j and J[en+ j] = e j, j = 1, . . . ,n. The projection operators 1
2
(1± iJ) associated with J produce

the main objects of the Hermitean setting by acting upon the corresponding ones in the Euclidean framework. First the

so–called Witt basis elements (f j, f
†
j)

n
j=1 for C2n are obtained:

f j =
1

2
(1+ iJ)[e j] =

1

2
(e j − i en+ j), j = 1, . . . ,n

f
†
j = −

1

2
(1− iJ)[e j] = −

1

2
(e j + i en+ j), j = 1, . . . ,n



They satisfy the respective Grassmann and duality identities

f jfk + fkf j = f
†
j f

†
k + f

†
kf

†
j = 0, j,k = 1, . . . ,n

f jf
†
k + f

†
kf j = δ jk, j,k = 1, . . . ,n

whence they are isotropic. Next, a vector in R
2n is now alternatively denoted by (x1, . . . ,xn,y1, . . . ,yn) and identified

with the Clifford vector X = ∑n
j=1(e j x j + en+ j y j), producing the Hermitean Clifford variables z and z†:

z =
1

2
(1+ iJ)[X ] =

n

∑
j=1

f j z j and z† = −
1

2
(1− iJ)[X ] =

n

∑
j=1

f
†
j zc

j

where complex variables z j = x j + iy j have been introduced, with complex conjugates zc
j = x j − iy j, j = 1, . . . ,n.

Finally, the Euclidean Dirac operator ∂X gives rise to the Hermitean Dirac operators ∂z and ∂ †
z :

∂ †
z =

1

4
(1+ iJ)[∂X ] =

n

∑
j=1

f j ∂zc
j

and ∂z = −
1

4
(1− iJ)[∂X ] =

n

∑
j=1

f
†
j ∂z j

involving the Cauchy–Riemann operators ∂zc
j
= 1

2
(∂x j

+ i∂y j
) and their complex conjugates ∂z j

= 1
2
(∂x j

− i∂y j
) in the

z j–planes, j = 1, . . . ,n. The Hermitean vector variables and Dirac operators are isotropic, i.e. z2 = (z†)2 = 0 and

∂ 2
z = (∂ †

z )2 = 0, whence the Laplacian allows for the decomposition

∆2n = 4(∂z∂
†
z +∂ †

z ∂z) = 4(∂z +∂ †
z )2

while also

(z+ z†)2 = zz† + z†z = |z|2 = |z†|2 = |X |2

Finally, a continuously differentiable function g in an open region Ω of R
2n with values in the complex Clifford

algebra C2n is called (left) Hermitean monogenic (or h–monogenic) in Ω if and only if it satisfies in Ω the system

∂z g = 0 = ∂ †
z g. As ∂X = 2(∂ †

z −∂z) h–monogenicity can be regarded as a refinement of monogenicity.

In comparison with the Euclidean setting the symmetry in the Hermitean framework is given not by the whole

group Pin(2n) but only by its subgroup PinJ(2n). The subgroup PinJ(2n) consists of elements of the group Pin(2n)
commuting with the element sJ which corresponds to the complex structure J under the double cover of O(2n) by

Pin(2n). Moreover, the group PinJ(2n) is a double cover of the group OJ(2n), the subgroup of O(2n) containing just

elements which commute with the complex structure J. Let us note that the group SOJ(2n) defined analogously can

be seen as a realization of the unitary group U(n).

In what follows, we consider spinor valued functions. Spinor space S is realized within the Clifford algebra C2n as

S = C2nI ∼= CnI where I is a suitable primitive idempotent, say I = I1 . . . In with I j = f jf
†
j , j = 1, . . . ,n. As f jI = 0,

j = 1, . . . ,n, we also have that S∼=
∧∗†

n I where
∧∗†

n stands for the complex Grassmann algebra generated by {f†
1, . . . , f

†
n}.

Hence spinor space S decomposes further into homogeneous parts as

S =
n

⊕

r=0

S
(r) with S

(r) = (
∧†

n)
(r)I = spanC

(

f
†
k1

f
†
k2
· · · f†

kr
: {k1, . . . ,kr} ⊂ {1, . . . ,n}

)

.

FISCHER DECOMPOSITIONS

Recently in [1], an analogue of the Fischer decomposition for homogeneous polynomials has been obtained also in

the setting of Hermitean Clifford analysis. From the point of view of representation theory, the Fischer decomposition

is nothing else than an irreducible decomposition of a given invariant space of polynomials. More explicitly, let us

denote by Pr
a,b the space of S

(r)-valued polynomials p in R
2n which are a-homogeneous in the variables z j and at the

same time b-homogeneous in the variables zc
j, that is,

p(λ z1, . . . ,λ zn,µzc
1, . . . ,µzc

n) = λ aµb p(z1, . . . ,zn,z
c
1, . . . ,z

c
n).



Moreover, let M r
a,b stand for the space of polynomials of Pr

a,b which are Hermitean monogenic. Then, under the

action of the group PinJ(2n), the space Pr
a,b has the following irreducible (not multiplicity free) decomposition (see

[1, Proposition 1] or [4]):

P
r
a,b = M

r
a,b ⊕

min(a,b−1)
⊕

j=0

|z|2 jz†
M

r−1
a− j,b− j−1 ⊕

min(a−1,b)
⊕

j=0

|z|2 jz M
r+1
a− j−1,b− j ⊕ (2)

⊕

min(a−1,b−1)
⊕

j=0

(z†z) j+1
M

r
a− j−1,b− j−1 ⊕

min(a−1,b−1)
⊕

j=0

(z z†) j+1
M

r
a− j−1,b− j−1.

The main aim of this note is to describe Fischer decompositions which are essential for a construction of orthogonal

(or even Gelfand-Tsetlin) bases of homogeneous Hermitean monogenic polynomials. In [3], it is explained that for the

construction it is important to know irreducible decompositions of the spaces

Ker r
a,b∂z = {p ∈ P

r
a,b| ∂z p = 0} and Ker r

a,b∂ †
z = {p ∈ P

r
a,b| ∂ †

z p = 0}.

Now we obtain such decompositions.

Theorem 1. Let 1 ≤ r ≤ n−1. Then the following statements hold:

(i) Under the action of PinJ(2n), the space Ker r
a,b∂z has the multiplicity free irreducible decomposition

Ker r
a,b∂z = M

r
a,b ⊕

min(a,b−1)
⊕

j=0

|z|2 jz†
M

r−1
a− j,b− j−1 ⊕

min(a−1,b−1)
⊕

j=0

|z|2 j(z†z+
(a− j−1+ r)

(a+ r)
z z†)M r

a− j−1,b− j−1.

(ii) Under the action of PinJ(2n), the space Ker r
a,b∂ †

z has the multiplicity free irreducible decomposition

Ker r
a,b∂ †

z = M
r
a,b ⊕

min(a−1,b)
⊕

j=0

|z|2 jzM r+1
a− j−1,b− j ⊕

min(a−1,b−1)
⊕

j=0

|z|2 j(zz† +
(b− j−1+n− r)

(b+n− r)
z z†)M r

a− j−1,b− j−1.

Remark 1. It is easy to see that Ker 0
a,b∂z = M 0

a,b, Ker n
a,b∂z = Pn

a,b, Ker 0
a,b∂ †

z = P0
a,b and Ker n

a,b∂ †
z = M n

a,b.

In order to prove Theorem 1 we need some lemmas. But first define the following Euler operators:

Ez =
n

∑
j=1

z j∂z j
, Ezc =

n

∑
j=1

zc
j∂zc

j
and β =

n

∑
j=1

f
†
j f j.

For p ∈ Pr
a,b, it is easy to see that Ez p = ap, Ezc p = bp and β p = rp. See [1] for details. Putting A = Ez + β and

B = Ezc +n−β , we have thus that, for each p ∈ Pr
a,b, Ap = (a+ r)p and Bp = (b+n− r)p. Moreover, we have that

{z,∂z} = A, {z†
,∂ †

z } = B and {z,∂ †
z } = 0 = {z†

,∂z} (3)

where {T,S} = T S +ST (see e.g. [1]). Using these relations, it is easy to prove the following ones.

Lemma 1. We have that

[∂z, |z|
2 j] = j |z|2( j−1)z†, [∂z,(z

†z) j+1] = −|z|2 jz†A, [∂z,(zz†) j+1] = |z|2 jz†(A+ j +1),

[∂ †
z , |z|2 j] = j |z|2( j−1)z, [∂ †

z ,(zz†) j+1] = −|z|2 jz B, [∂ †
z ,(z†z) j+1] = |z|2 jz (B+ j +1)

where [T,S] = T S−ST.

Lemma 2. We have that

P
r
a,b = Ker r

a,b∂z ⊕ z Ker r+1
a−1,b∂z = Ker r

a,b∂ †
z ⊕ z† Ker r−1

a,b−1∂ †
z .

Moreover, the projections P and P† of the space Pr
a,b onto the spaces Ker r

a,b∂z and Ker r
a,b∂ †

z are given by P = ∂z z A−1

and P† = ∂ †
z z†B−1, respectively.



Proof. We may refer to [2], but it is also clear from the relations (3). �

Proof of Theorem 1. Applying the projections P and P† of Lemma 2 to the Fischer decomposition (2), we easily get

the required decompositions of the spaces Ker r
a,b∂z and Ker r

a,b∂ †
z . Indeed, using the relations (3) and Lemma 1, we

have that

P(Pr
a,b) = Ker r

a,b∂z, P(M r
a,b) = M

r
a,b, P(|z|2 jz†

M
r−1
a− j,b− j−1) = |z|2 jz†

M
r−1
a− j,b− j−1

and

P((z†z) j+1
M

r
a− j−1,b− j−1) = |z|2 j(z†z+

(a− j−1+ r)

(a+ r)
z z†)M r

a− j−1,b− j−1

Moreover, the operator P vanishes on the remaining pieces |z|2 jz M
r+1
a− j−1,b− j and (z z†) j+1M r

a− j−1,b− j−1. Similar

computations are, of course, valid for the operator P†, which completes the proof. �
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