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Abstract

Timed algebraic process theories can be developed with quite different purposes
in mind. One can aim for theoretical results about the theory itself (completeness,
expressiveness, decidability), or one can aim for practical applicability to non-trivial
protocols. Unfortunately, these aims do not go well together. In this paper we take
two theories, which are probably of the first kind, and try to find out how well suited
they are for practical verifications.

We verify Fischer’s protocol for mutual exclusion in the settings of discrete-time
process algebra (ACPdt) and real-time process algebra (ACPur). We do this by trans-
forming the recursive specification into an equivalent linear specification, and then
dividing out the maximal bisimulation relation. The required mutual exclusion result
can then be found by reasoning about the obtained process graph.

Finally, we consider the ease of the verification, and ways to adapt the theory to
make it more practical. It will turn out that the theories investigated are quite unsat-
isfactory when verifying real-life protocols.
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1 Introduction

In the past decade a lot of research has been done on algebraic process theories, the three
most prominent ones being CCS [Mil89], CSP [Hoa85], and ACP [BW90]. Although these
theories are well established in their untimed version, there is no consensus regarding
versions of CCS, CSP, and ACP extended with time.

Admitted, there have been many proposals, some of them quite successful. But most
of these timed theories were geared towards theoretical results. As a consequence, a
lot of papers have been published regarding completeness results, expressivity results,
decidability results, and so on, but almost no paper (one exception is [Hil94]) gives an
actual verification of a real system, not even a toy system.

In this paper we will present such a more-or-less real system, namely Fischer’s pro-
tocol for mutual exclusion [Fis85, Lam87]. We will try to prove the correctness of this
protocol, which relies heavily on time aspects, using two timed ACP theories. First, we
do a verification in a setting of discrete time, using the theory ACPdt devised by Baeten
and Bergstra [BB92a]. Secondly, a verification is done in a setting of dense time, using
the theory ACPur. This theory was devised by Klusener [Klu93], and is closely related to
ACPρ, the standard real-time extension of ACP by Baeten and Bergstra [BB91].
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The whole point of this exercise lies in the following two questions. First, “How well
suited are the current timed extensions of ACP to verify real-life systems?”, and secondly,
“With real-life verifications in mind, what modifications to the theory are desirable?”.

2 Fischer’s protocol

In this section we give a short history of Fischer’s protocol and discuss the proof require-
ments. After that an informal description of the protocol is given, together with an in-
formal correctness argument.

2.1 History of the protocol

The protocol we examine is a mutual exclusion protocol, first proposed by Fischer [Fis85],
and later studied in [Lam87, SBM92, AL92a, JPXZ94]. None of these studies uses process
algebra to prove correctness, they all rely on some form of temporal logic or Floyd-Hoare
logic. Instead of using atomic test-and-set instructions or semaphores, as is nowadays
often done to assure mutual exclusion, Fischer’s protocol only assumes atomic reads and
writes to a shared variable (when the first mutual exclusion protocols were developed in
the late 1960s all exclusion protocols were of the “shared variable kind” [Dij65, Knu66,
dB67, Lam74], later on researchers have more concentrated on the “semaphore kind”
of protocol). Mutual exclusion in Fischer’s Protocol is guaranteed by carefully placing
bounds on the execution times of the instructions, leading to a protocol which is very
simple, and relies heavily on time aspects. This makes it an ideal candidate for the pur-
pose we have in mind, namely to try to verify (using process algebra) a not too difficult
protocol which still has quite intricate timing aspects.

2.2 Proof requirements

What does one need to prove in the case of a mutual exclusion protocol? Strange as is it
may seem, this is not all that clear. In the literature one sees requirements like:

• The actual property of mutual exclusion: only one component may be in its critical
section at any time,

• Symmetry between the components,

• No assumptions about the execution times of statements (obviously not satisfied
in our case!),

• Liveness: there should always be some process that is able to proceed,

• No starvation: it may not be that a component is permanently prohibited from en-
tering its critical section,

• Various kinds of fairness: a component should get its fair share (in various senses)
of being allowed to proceed into its critical section,

• Loosely connectedness: when one component deadlocks (outside its critical sec-
tion), this should not affect the progress of the other components,
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• Minimal overhead: the protocol should make a decision as soon it has enough in-
formation to do so,

and even more requirements. Some of these requirements are related (for example: sym-
metry guarantees most kinds of fairness), and each paper about mutual exclusion seems
to have its own favorite subset of which ones to prove.

In the case of Fischer’s protocol we choose, mostly following the earliest paper on
mutual exclusion [Dij65], to prove the following three properties:

• Actual mutual exclusion between the two critical sections,

• Symmetry between the two components,

• No starvation.

We will not try to formalize these properties algebraically, as they do not lend themselves
easily to this. This is more due to the shortcomings of the (current) algebraic approach
than it is to unwillingness on our part; note for example that the above properties can
indeed be very easily formalized using temporal logic. We will return to this subject in
our conclusions.

2.3 First informal description

We will now describe the protocol in an informal way, giving an informal correctness
argument. Assume the existence of a shared variable x, to which atomic reads and writes
are possible. Initially x equals zero. In Figure 1 we give Fischer’s protocol expressed in
pseudo-PASCAL. There are two components, running in parallel. The angle brackets (“〈”,
“〉”) denote atomicity.

Component 1: Component 2:

repeat repeat
repeat repeat

await 〈x = 0〉; await 〈x = 0〉;
〈x Í 1〉; 〈xÍ 2〉;
〈delay〉; 〈delay〉;

until 〈x = 1〉; until 〈x = 2〉;
critical section 1; critical section 2;
〈x Í 0〉; 〈x Í 0〉;

until false; until false;

Figure 1: Fischer’s protocol, first informal version.

The protocol proceeds as follows. Initially, the value of the shared variable is 0. When
component 1 observes that x is 0, it will write the value 1 to x. After that, it waits for some
time, and if x then still has the value 1, it is safe to enter the critical section. Component 2
works in a similar way (using 2 instead of 1), and both components run in parallel.
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The mutual exclusion property of the protocol is based on the following observation.
The delay operation causes component 1 to wait sufficiently long so that, if component 2
had read the value of x in its await statement before the component 1 executed its x Í 1
assignment, then component 2 will have completed the following x Í 2 statement. There-
fore, it can never happen that component 1 falls through its until statement, entering crit-
ical section 1, while component 2 is still about to execute its x Í 2 assignment. This guar-
antees mutual exclusion. By symmetry, the argument also holds the other way around.

2.4 Second informal description

Let us try to make the reasoning from the previous section a bit more solid by exactly
indicating the possible durations of the statements. First of all, the await statement may
take anywhere between 0 and∞ time units after x becomes 0. The assignments x Í i are
supposed to take between a and a′ time units, and the delay statements between d and
d′ time units, for fixed non-negative values a ≤ a′ and d ≤ d′ over some totally-ordered
time domain. Furthermore, assume that a′ < d, i.e. the delay always takes longer than an
assignment. For simplicity sake, the read actions x = i are supposed to take 0 time units,
and the critical section may take any time, including 0 time units. Writing 〈action〉t′t for
an atomic action that happens between t and t′ time units after it has been enabled, we
arrive at the protocol of Figure 2.

Component 1: Component 2:

repeat repeat
repeat repeat

await 〈x = 0〉∞0 ; await 〈x = 0〉∞0 ;
〈x Í 1〉a′a ; 〈xÍ 2〉a′a ;
〈delay〉d′d ; 〈delay〉d′d ;

until 〈x = 1〉0
0; until 〈x = 2〉0

0;
critical section 1; critical section 2;
〈x Í 0〉a′a ; 〈x Í 0〉a′a ;

until false; until false;

Figure 2: Fischer’s protocol, second informal version.

Remember we assumed that 0 ≤ a ≤ a′ < d ≤ d′ < ∞. Now we have that if compo-
nent 2 falls through its await statement, it will complete its x Í 2 assignment within at
most a′ time units. If component 1 would have happened to complete its x Í 1 assign-
ment just after component 2 fell through its await, it will take component 1 at least d
time units to complete its delay. As a′ < d, when component 1 reaches the until 〈x = 1〉
statement, component 2 will have completed its x Í 2 assignment. Therefore, the value
of x has stabilized, and component 2 can safely enter its critical section.

As a final remark: note that Fischer’s protocol can be trivially generalized to any num-
ber n > 2 of components. This generalization, however, we will not examine.
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3 A verification using discrete-time ACP

In this section we will prove the correctness of the protocol of Figure 2 on the preceding
page for the special case where a = a′ = 0 and d = d′ = 1. We will use (a subset of) the
discrete-time process algebra ACPdt as described in [BB92a]. This is the simplest special
case one can imagine. The resulting proof provides a clear illustration of all key issues,
without becoming too cluttered with technicalities.

3.1 A short note on ACPdt

First, we briefly describe the essential extensions that ACPdt has to model time. Intu-
itively, ACPdt is very much like plain ACP [BW90], with the exception that a process may
have the ability to “let time pass for one time unit”. If in an ACPdt process some compo-
nent still wants to do an action, it can, and no time passes. If however all components
agree to let time pass, one unit of time will pass (in other words: the current time slice
ends, or the clock ticks).

This willingness to let time pass is expressed with the discrete time unit delay opera-
tor σd. The expression σd(X) denotes the process that can do no action anymore in the
current time slice, but has the ability to let time pass for one time unit. If that unit of
time finally “happens” (time does not really pass in a discrete setting, it just happens!),
the process σd(X) turns into the process X. This is denoted by σd(X)

σ→ X, as if σ were
a special action denoting a tick of the clock.

In Table 1 the operational semantics of BPAdt is given. BPAdt is the subset of ACPdt

that only has ·, +, and σd as operators. For the full axiomatization and semantics of
ACPdt see [BB92a]. Besides the σd operator, we will only use one more special operator

a a→√

x a→ x′
x · y a→ x′ · y

x a→ √

x · y a→ y

x a→ x′
x+ y a→ x′, y + x a→ x′

x a→ √

x+ y a→√, y+ x a→ √

σd(x)
σ→ x x σ→ x′

x · y σ→ x′ · y

x σ→ x′, y σ→ y′
x+ y σ→ x′ + y′

x σ→ x′, y σ
3

x+ y σ→ x′, y+ x σ→ x′

Table 1: Operational semantics of BPAdt.

from ACPdt, namely the unbounded start delay of a process X, denoted by bXcω. The
expression bXcω is the process that can do exactly the same things that X can, and it is
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also always willing to let time pass. This is shown in the operational semantics in Table 2.

x a→ x′
bxcω a→ x′

x a→√

bxcω a→√ bxcω σ→ bxcω

Table 2: Operational semantics of the unbounded start delay.

3.2 Abstraction in ACPdt

Abstraction from internal actions in ACPdt is defined as expected. It is axiomized as
shown in Table 3. If A denotes the set of all possible actions, we have that I ⊆ A, a ∈
A ∪ {δ, τ}, and σ ∉ A. The variables x and y denote processes.

τI(a) = a if a ∉ I TI1

τI(a) = τ if a ∈ I TI2

τI(x+ y) = τI(x) + τI(y) TI3

τI(x · y) = τI(x) · τI(y) TI4

τI(σd(x)) = σd(τI(x)) TI8

Table 3: Axioms for the abstraction operator τI in ACPdt

There exists an operator τσ that abstracts from time steps, but we do not describe it
here because we will not need it. The non-consecutive numbering of the axioms is due
to historical reasons.

3.3 Fischer’s protocol formalized in ACPdt

Having introduced the relevant operators for ACPdt, we are now ready to give a formal
specification of Fischer’s protocol FPdt, using ACPdt in Figure 3 on the following page. As
said before, we specify the special case where a = a′ = 0 and d = d′ = 1.

This specification can be understood intuitively in the following way. There are three
processes running concurrently, namelyA, B, and V . The processesA and Bmodel “Com-
ponent 1” and “Component 2” of Figure 1 respectively, and the process V models the
variable x.

The process V can be in one of three states: V0, V1, or V2, corresponding to the pos-
sible values of x. In any state Vi, V is capable of sending the message x = i, signaling that
the value of x is currently i, after which V will continue in state Vi. Furthermore, V is in
any state Vi capable of receiving the message x Í j for any j, indicating that x is being
assigned with the value j. After such an assignment V will continue in state Vj. Finally, V
is always capable of letting time pass. The process V constructed in this way behaves as
a “variable server”: if process A or B wants to assign a value i to x it performs the action
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A = A0

A0 = br(x = 0)cω ·A1

A1 = s(x Í 1) ·A2

A2 = σd(A3)
A3 = (r(x = 0) + r(x = 2)) ·A0 + r(x = 1) ·A4

A4 = EnterCS1 ·A5

A5 = LeaveCS1 ·A6

A6 = s(x Í 0) ·A0

B = B0

B0 = br(x = 0)cω · B1

B1 = s(x Í 2) · B2

B2 = σd(B3)
B3 = (r(x = 0) + r(x = 1) · B0 + r(x = 2) · B4

B4 = EnterCS2 · B5

B5 = LeaveCS2 · B6

B6 = s(x Í 0) · B0

V = V0

V0 = (r(x Í 0) + s(x = 0)) · V0 + r(x Í 1) · V1 + r(x Í 2) · V2 + σd(V0)
V1 = (r(x Í 1) + s(x = 1)) · V1 + r(x Í 0) · V0 + r(x Í 2) · V2 + σd(V1)
V2 = (r(x Í 2) + s(x = 2)) · V2 + r(x Í 0) · V0 + r(x Í 1) · V1 + σd(V2)

γ(r(α), s(α)) = c(α) for α ∈ {x = i, x Í i | i ∈ {0,1,2} }

H = { r(α), s(α) |α ∈ {x = i, x Í i | i ∈ {0,1,2} } }

FPdt = ∂H(A ‖ B ‖ V)

Figure 3: Fischer’s protocol in discrete time (ACPdt).

s(x Í i). If it wants to check if x has the value i, it performs the action r(x = i). (The
idea to construct the variable server in this way was taken from [Nie90].)

The process A is constructed as follows. First (in state A0) it waits for an undeter-
mined amount of time till x is 0 (br(x = 0)cω). Then (in state A1) it sets x to 1 (s(x Í 1)).
After that (in stateA2), it waits till the end of the time slice (σd(A3)). When it has arrived
in state A3, it will examine the contents of x, and either jump back to A0 (if x = 0 or
x = 2), or continue with state A4 (if x = 1). Thereafter, it enters its critical section, leaves
it again, and resets x back to 0 in state A6, after which it repeats the whole procedure
over again. The process B is constructed in the same way as A is. The entire protocol,
FPdt, now consists of the processes A, B, and V running concurrently. Note that the as-
signment takes no time (a = a′ = 0) and the delay takes one time unit (d = d′ = 1).

3.4 The correctness of FPdt

In order to prove the protocol FPdt correct, we first rewrite the recursive equations of
Figure 3 into an equivalent linear system of equations (i.e. one that does not contain the
operators ‖, ∂H , or τI anymore). We arrive at the system of 32 equations given in Ap-
pendix A (where also the details of the linearization are given). Using this linear system
we then construct the process graph of FPdt given in Figure 4 on the next page (Note that
all c(. . . ) edges remain unlabelled, as labelling them would obscure the picture, and that
EnterCS1 is abbreviated to E1. The other Enter and Leave actions are abbreviated in a
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similar way).

X4 X5 X6 X7

X10

X11

X12

X24 X25 X26 X27 X28 X29 X30 X31

X23

X15

X14

X16

X18X17

X19

X20

X21

X22

X3

X0

X9

X2 X8

X13

σ

σ

σ

L2E2

E2 L2

L1 E1

L1

E1

σ

X1

σ

Figure 4: The process graph of FPdt.

Now define the set I of internal actions as:

I = { c(α) |α ∈ {x = i, x Í i | i ∈ {0,1,2} } }

(i.e. all communication actions) and rename these actions into τ, yielding the process
graph of τI(FPdt). On this graph we compute the maximal rooted branching auto bisim-
ulation, which gives us the equivalence classes XA, . . . , XH given below:

XA = {X0, X8, X17,X19, X20, X28,X29} XE = {X16, X18}
XB = {X1, X2, X3, X21,X30} XF = {X4,X9,X24, X31}
XC = {X10, X11, X22, X23} XG = {X5,X6,X25, X26}
XD = {X12, X13, X14, X15} XH = {X7,X27}
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When we divide out this equivalence relation we arrive at the reduced process graph given
in Figure 5. On this graph we will now be able to check all required properties very easily.

XB

XC

XD

XE

XHXF XG

XA

σ

E1

E2

L2

L1

σ

σ

Figure 5: The reduced process graph of τI(FPdt).

The three requirements for mutual exclusion we chose in Section 2.2 are satisfied for the
following reasons:

• Actual mutual exclusion: It can be easily seen from the graph of Figure 5 that an
EnterCS1 action is always immediately followed by a LeaveCS1 action, and the same
holds for EnterCS2 and LeaveCS2. Therefore, it cannot be the case that both com-
ponents are in their critical section at the same time.

• Symmetry: As the graph is symmetrical with respect to the paths from the root,
through the critical sections of the components, back to the root, it is clear that the
the protocol is symmetrical with respect to the components.

• No starvation: Whichever state the protocol is in, there is always a path leading to
each component’s critical section. Therefore, using fairness, it cannot be the case
that one component is permanently prohibited from entering its critical section.

This completes the proof of the correctness of FPdt.

4 A verification using real-time ACP

In this section we will prove the correctness of the protocol of Figure 2, for the almost
completely general case where 0 < a < a′ < d < d′ < 2a (this is only a very minor
restriction of the general case, but it reduces the state-space significantly). We will use
(a subset of) the real-time process algebra ACPur (“ACP with urgent actions and relative
time”) as described in [Klu93].
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4.1 A short note on ACPur

Again, we briefly describe the essential extensions that ACPur has to model time. To begin
with, every action is postfixed with a non-negative real number between square brackets.
One could have, for example, a[3], meaning “the process that performs the action a at
exactly 3 time units from now”. If the parameter is 0, e.g. a[0], it means “execute the ac-
tion immediately”. Sequential composition and the choice operator behave as expected.
So, for example, the process a[2] ·b[3] started at time 4 does a at time 6 and b at time 9.
The process a[2] + b[3] started at time 2 can either do a at time 4 or b at time 5; if at
any moment after 4 the action a has not been observed, one knows that the choice has
been made for b at time 5. While this is all very intuitive, the exact semantics of ACPur

is still quite intricate, and we will make no attempt at making it formal here. Please see
[Klu93] and [BB91].

The single most important construct in ACPur is the integral construct. It is a gener-
alized sum over an interval of time. For example,

∫ 2
v=1 a[v] denotes the process that can

do the action a at any time between 1 and 2 time units from now, inclusively. The upper
bound may be infinity:

∫∞
v=0 a denotes the process that can do a once at some time, in-

cluding right now, and all moments arbitrarily far into the future. (Please note that the
integral construct as described here is a rather crude simplification of the one given by
Klusener. This simplified one however is all we need.)

For the special cases where for an integral
∫ q
v=p P(v) we do not have 0 ≤ p ≤ q, we will

use the convention that:∫ q
v=p
P(v) =


∫ q
v=0 P(v) if p ≤ 0 and q ≥ 0

δ[0] if q < 0 or p > q

This means that every integral can be written in a normal form in the following way.∫ q
v=p
P(v) = (0 ≤ q and p ≤ q) :→

∫ q
v=max(0,p)

P(v)

Here :→ is used to form a so called guarded command. For a boolean expression φ and
a process P the guarded command is defined, dependent on the current valuation V of
the free variables, as:

φ :→ P =
P if [φ ≡ true]V
δ[0] otherwise

This normal form for integrals will be called guard-prefixed normal form. The usefulness
of this normal form lies in the fact that is immediate clear from the guard expression
whether or not the integral is empty. This will be important when defining abstraction
operators.

4.2 Abstraction operators on ACPur

We define two abstraction operators. First, a general abstraction operator :

τI : ACPur → ACPur

11



that renames actions in I into τ-actions, and secondly, a time abstraction operator :

τt : ACPur → ACP

that transforms a (timed) ACPur-term into an (untimed) ACP-term by “throwing away all
timing information”. The general abstraction operator is axiomized as shown in Table 4.
We have that I ⊆ A, a ∈ A∪{δ, τ}, v ∈ R≥0, andφ a boolean expression that may contain
free variables. The variables x and y denote processes.

τI(a[v]) = a[v] if a ∉ I TIT1

τI(a[v]) = τ[v] if a ∈ I TIT2

τI(x+ y) = τI(x) + τI(y) TIT3

τI(x · y) = τI(x) · τI(y) TIT4

τI(φ :→ x) = φ :→ τI(x) TIT5

Table 4: Axioms for the general abstraction operator τI in ACPur

The time abstraction operator is axiomized as shown in Table 5. We have that a ∈
A∪{δ, τ}, φ a boolean expression that may contain free variables, and p, q, v ∈ R≥0 with
p ≤ q. The variables x and y denote processes, and FV(x) stands for the set of all free
variables x contains.

τt(a[v]) = a TTT1

τt(x+ y) = τt(x) + τt(y) TTT2

τt(x · y) = τt(x) · τt(y) TTT3

τt(
∫ q
v=p a[v]) = a TTT4

τt(
∫ q
v=p a[v] · x) = a · τt(x) if v ∉ FV(x) TTT5

τt(
∫ q
v=p a[v] · x) = a · τt(

∫ q
v=p x) if v ∈ FV(x) TTT6

τt(φ :→ x) = τt(x) if ∃V[φ ≡ true]V TTT7

Table 5: Axioms for the time abstraction operator τt in ACPur

Axiom TTT7, where V denotes a valuation of the free variables, is formulated this way
because we do not want that τt(φ :→ x) would equal τt(x) if there is no way to satisfyφ.
On the other hand, we want that τt(φ :→ x) does equal τt(x) ifφ can be satisfied by some
valuation of the free variables, even if there are other valuations that do not satisfy φ.

4.3 Expansion theorems for ACPur

Before we are able to do the actual verification, we first need to have an expansion theo-
rem, which becomes quite intricate as real time gets involved. We start by giving a version
that assumes there is no communication at all:

12



The expansion theorem for ACPur (without communication):

‖
i=1,...,n

∫ qi
vi=pi

ai[vi] · Pi(vi)

=

∑
i=1,...,n

∫min{qj | j=1,...,n }
vi=pi

ai[vi] ·

Pi(vi) ‖ ‖
j=1,...,n
j≠i

∫ qj−vi
vj=pj−vi

aj[vj] · Pj(vj)


This theorem can be understood in the following way. We have n processes of the

form
∫ qi
vi=pi ai[vi] · Pi(vi) running in parallel, where ai is an action, and Pi(vi) is an arbi-

trary process expression in vi. The action ai is enabled in the interval [pi, qi] from the
start of the process. How does this big merge of n processes expand? Obviously, the first
thing that is going to happen is some action ai, so we sum over all those. At what time
can this action happen? No earlier than the time when it gets enabled, but also not later
than the minimum of the latest times of all other actions. This explains the bounds pi
and min

{
qj
∣∣ j= 1, . . . , n

}
on the integral preceeding ai. What remains is Pi(vi) running

in parallel with the other components, albeit that vi time units have passed; hence the
pj−vi and qj−vi bounds on the inner integrals. To make this somewhat clearer we give
the special case where n = 2:

(∫ q
v=p
a[v] · P(v)

)
‖
(∫ s
w=r

b[w] ·Q(w)
)

=∫min(q,s)

v=p
a[v] ·

(
P(v) ‖

∫ s−v
w=r−v

b[w] ·Q(w)
)
+
∫min(q,s)

w=r
b[w] ·

(∫ q−w
v=p−w

a[v] · P(v) ‖ Q(w)
)

When we allow handshaking (communication with the restriction that a|b|c is always
δ for all actions a, b, and c) we arrive at the following theorem:

The expansion theorem for ACPur (with handshaking):

‖
i=1,...,n

∫ qi
vi=pi

ai[vi] · Pi(vi)

=

∑
i=1,...,n

∫min{qj | j=1,...,n }
vi=pi

ai[vi] ·

Pi(vi) ‖ ‖
j=1,...,n
j≠i

∫ qj−vi
vj=pj−vi

aj[vj] · Pj(vj)

+
∑

1≤i<j≤n

∫min{qj | j=1,...,n }
v=max(pi,pj)

(ai | aj)[v] ·

Pi(v) ‖ Pj(v) ‖ ‖
k=1,...,n
k≠i,k≠j

∫ qk−v
vk=pk−v

ak[vk] · Pk(vk)


This theorem can be understood in much the same way as the previous one, although

this time there are extra summands, corresponding to all possible (necessarily two-way)
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communications. At what time can such a communication (ai | aj) take place? The first
possible time is when both ai and aj are enabled, so we get max(pi, pj) as the lower bound
of the integral. The upper bound is min

{
qj
∣∣ j= 1, . . . , n

}
, just as it was in the previous

theorem. Here, the special case for n = 2 is as follows:(∫ q
v=p
a[v] · P(v)

)
‖
(∫ s
w=r
b[w] ·Q(w)

)
=∫min(q,s)

v=p
a[v] ·

(
P(v) ‖

∫ s−v
w=r−v

b[w] ·Q(w)
)
+

∫min(q,s)

w=r
b[w] ·

(∫ q−w
v=p−w

a[v] · P(v) ‖ Q(w)
)
+

∫min(q,s)

u=max(p,r)
(a | b)[u] · (P(u) ‖ Q(u))

We will not give proofs for the above theorems, as that would go beyond the scope of
the paper. (Our goal is to find out which problems arise when applying existing theories,
and consequently, which adaptions to these theories are desirable. It is not our goal to
prove theorems in these theories.)

4.4 Fischer’s protocol formalized in ACPur

We are now ready to give a formally specified implementation of Fischer’s protocol FPur,
using ACPur in Figure 6 on the next page. The protocol, FPur, consists just like in the
discrete-time case of three concurrent processes: A, B, and V . The process V models the
variable x in such a way that assignments and reads can take place at any moment. The
processA is also constructed much the same as in discrete time; the only difference being
the execution time interval bounds on all actions. In state A0 we do a

∫∞
v=0 r(x = 0)[v],

meaning that we will wait at least till x is 0, but possibly longer. After that, by performing∫ a′
v=a s(x Í 1)[v] we assign the value 1 to x somewhere within the interval [a, a′], and so

on. The values a, a′, d, and d′ are positive constants such that a < a′ < d < d′ < 2a.
Note that this time the “delay actions” are explicit modelled: i1 and i2.

4.5 The correctness of FPur

Using the material from Sections 4.1 and 4.3 we are now able to rewrite the specification
for FPur in Figure 6 into an equivalent linear system of equations. The way to do this,
however, is far more complex than it was in the case of FPdt; see Appendix B for full
details.

We ultimately arrive at the linear system of 51 equations given in Section B.2. Unfor-
tunately, the process graph of FPur induced by this linearization is to complex to draw it
without obscuring most of the crucial parts, so we will not give it here. Continuing with
the verification, we define the set of internal actions as:

I = { c(α) |α ∈ {x = i, x Í i | i ∈ {0,1,2} } } ∪ {i1, i2}
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A = A0

A0 =
∫∞
v=0
r(x = 0)[v] ·A1

A1 =
∫ a′
v=a
s(x Í 1)[v] ·A2

A2 =
∫ d′
v=d
i1[v] ·A3

A3 = (r(x = 0)[0] + r(x = 2)[0]) ·A0 +
r(x = 1)[0] ·A4

A4 = EnterCS1[0] ·A5

A5 =
∫∞
v=0

LeaveCS1[v] ·A6

A6 =
∫ a′
v=a
s(x Í 0)[v] ·A0

B = B0

B0 =
∫∞
v=0
r(x = 0)[v] · B1

B1 =
∫ a′
v=a
s(x Í 2)[v] · B2

B2 =
∫ d′
v=d
i2[v] · B3

B3 = (r(x = 0)[0] + r(x = 1)[0]) · B0 +
r(x = 2)[0] · B4

B4 = EnterCS2[0] · B5

B5 =
∫∞
v=0

LeaveCS2[v] · B6

B6 =
∫ a′
v=a
s(x Í 0)[v] · B0

V = V0

V0 =
∫∞
v=0
(r(x Í 0)[v] + s(x = 0)[v]) · V0 + r(x Í 1)[v] · V1 + r(x Í 2)[v] · V2

V1 =
∫∞
v=0
(r(x Í 1)[v] + s(x = 1)[v]) · V1 + r(x Í 0)[v] · V0 + r(x Í 2)[v] · V2

V2 =
∫∞
v=0
(r(x Í 2)[v] + s(x = 2)[v]) · V2 + r(x Í 0)[v] · V0 + r(x Í 1)[v] · V1

γ(r(α), s(α)) = c(α) for α ∈ {x = i, x Í i | i ∈ {0,1,2} }

H = { r(α), s(α) |α ∈ {x = i, x Í i | i ∈ {0,1,2} } }

FPur = ∂H(A ‖ B ‖ V)

Figure 6: Fischer’s protocol in real time (ACPur).

15



i.e. all communication actions, and i1 and i2 (the “delay” actions). As we have made sure
that all guarded commands in the linearization can be satisfied, it is very easy to compute
τt ◦τI(FPur). On the process graph of τt ◦τI(FPur) we then compute the maximal rooted
branching auto bisimulation, which gives us the following equivalence classes:

XA = {X0, X1, X2, X3, X8, X19, X22, X25,X26, X27, X36,X37, X38, X39, X42}
XB = {X10,X11, X12, X13, X14,X15, X16, X17,X20, X23, X41, X44,X45, X46, X47}
XC = {X18,X21, X24}
XD = {X4, X5, X6, X9, X28, X29,X30,X31, X32, X33,X40, X43, X48,X49, X50}
XE = {X7, X34, X35}

When we divide out this equivalence relation, we arrive at the reduced process graph
given in Figure 7. On this graph we can now check all required properties, in almost

XA XD XE

XB

XC

E1

L1

E2

L2

Figure 7: The reduced process graph of τt ◦ τI(FPur).

exactly the same way as we did earlier for τI(FPdt):

• Actual mutual exclusion: It can be easily seen from the graph of Figure 7 that an
EnterCS1 action is always immediately followed by a LeaveCS1 action, and the same
holds for EnterCS2 and LeaveCS2. Therefore, it cannot be the case that both com-
ponents are in their critical section at the same time.

• Symmetry: As the graph is symmetrical with respect to the paths from the root,
through the critical sections of the components, back to the root, it is clear that the
the protocol is symmetrical with respect to the components.

• No starvation: Whichever state the protocol is in, there is always a path leading to
each component’s critical section. Therefore, using fairness, it cannot be the case
that one component is permanently prohibited from entering its critical section.

We find that all properties hold, which completes the proof of the correctness of FPur.

5 Conclusions

As we have seen Fischer’s protocol can be proven correct quite satisfactorily using alge-
braic techniques. This however does not mean too much; it is an almost trivial protocol,
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that has been solved time and time again using all kinds of formalisms. But it is not all
that bad either; see for example [SBM92] where an (incomplete) proof is given of Fischer’s
protocol. When it would be written out in full detail, that proof would be about as long
and tedious as ours is [Sch94], and the same probably holds for a detailed temporal logic
proof [Aba94].

Looking at our proof one observes that, although conceptually very clear and easy, the
inner workings required a lot of bothersome and failure-prone computations. It seems
valid to doubt whether all these calculations were really necessary. Much of their com-
plexity results from the fact that the theories we used are based on bisimulation seman-
tics, which preserves very many moments of choice, while that was not at all required for
the proof we were constructing. Furthermore, the so-called “algebraic advantage”, i.e. the
ability to calculate with processes without having to write out the entire state space, is
almost absent. This is disappointing; although the algebraic advantage manifests itself
very clearly when verifying protocols that do not exhibit much internal parallelism, such
as the Alternating Bit Protocol (see for example [BW90]), it seems to be lost in the veri-
fication of Fischer’s protocol, which has very much internal parallelism. As a result, we
get the worst of both worlds: the state explosion from naive model checking, and the
complicated term rewriting from real-time process algebra . . .

Let us however not become too pessimistic. It has become clear that algebraic theories
can indeed be applied to protocols with intricate real-time aspects. It would be unreal-
istic to expect that these theories, which were designed without much regard for their
practical application, would in their unmodified form be splendidly suited for real-life
verifications. There is a lot of room for tuning these theories towards more practicality.
We see at least three directions in which we would like to proceed, preferably in all three
at the same time.

• First of all, it would be nice to have a real-time process algebra that does not lean
on bisimulation semantics only. It is simply not always a good idea to preserve all
internal moments of choice. If we had a theory based on, say, ready semantics or
failure semantics, we would probably gain some of our algebraic advantage back.

But maybe abandoning bisimulation semantics altogether would be too crude. A
more sophisticated and subtle approach could be to abstract only from those inter-
nal moments of choice we really want to abstract from. This could be implemented
by introducing a special choice operator next to the ordinary +. For example, the
delayed choice of [BM94] or a τ-angelic choice.

• Secondly, it might be profitable to augment process algebra with a (limited) form of
temporal logic. Looking at the linearization process of FPur in Appendix B, it is clear
that much of the calculations involved are needed to manage the exact ranges of the
parameters of the variables. Or, on a conceptually higher level: the calculations get
complicated because we do not have adequate tools for denoting the precise flow
of time. When working with a hybrid process algebra-temporal logic theory (still
predominantly algebraic!), these complications would probably not have arisen. See
for example [BBB93], where this approach is investigated.

• Thirdly, we might just as well admit that real-time verifications are difficult, and
probably will remain so for some years to come. Therefore, it may be advisable
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to have computer tools at our disposal. One could for example imagine an “pro-
cess algebra calculator” which, like an ordinary arithmetic calculator, could assist
in performing complex calculations. This way we could put the human back into
the driver’s seat of the verification process, instead of having him stumble in the
dark while juggling complex process terms. Assuming we can indeed exploit our al-
gebraic advantage, this approach could be very interesting. A combination of easy
process term manipulation and powerful algebraic techniques could lead to verifi-
cations that are both short and easy to construct.

Concluding, we can say that the verification of Fischer’s protocol by algebraic means as
given in this paper is not very straightforward. But nonetheless, there are several promis-
ing directions for future research that could lead to new, algebraically oriented theories
that may perform much better for real-life verifications.

A The linearization of FPdt

A.1 Methodology

Finding a linear specification for FPdt is very easy (at least in principle): one just repeat-
edly applies the expansion theorem for ACPdt. All new states reached are numbered con-
secutively using process variables Xi. Linearizing in a depth-first fashion we arrive at
the 32 processes X0, . . . , X31 given below in Section A.2. The protocol FPdt itself corre-
sponds to the variable X0.

Please note that the equations in the following section were produced by hand, and
therefore initially had several mistakes in them. To attempt to find these, we have per-
formed several computerized sanity checks on the hand-generated data file. For example,
it is obvious that the entire system is symmetrical with respect to the A and B compo-
nent, and this can be quite easily checked. This means that if there are any mistakes left,
it must be that we have made exactly the same mistake two times over, in a symmetrical
way. Some more checks were made, exploiting similar intuitively known facts about the
process graph, and by old-fashioned human proofreading.

Finally, the data file was automatically converted to “TEX-format” by means of a com-
puter, in order to minimize the chances of mistakes in that step of the process.

A.2 The obtained linear system

FPdt = ∂H(A ‖ B ‖ V)
= ∂H(A0 ‖ B0 ‖ V0)
= X0

X0 = ∂H(A0 ‖ B0 ‖ V0)
= c(x = 0) · ∂H(A1 ‖ B0 ‖ V0) + c(x = 0) · ∂H(A0 ‖ B1 ‖ V0) +
σd(∂H(A0 ‖ B0 ‖ V0))

= c(x = 0) ·X1 + c(x = 0) ·X2 + σd(X0)
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X1 = ∂H(A1 ‖ B0 ‖ V0)
= c(x Í 1) · ∂H(A2 ‖ B0 ‖ V1) + c(x = 0) · ∂H(A1 ‖ B1 ‖ V0)

= c(x Í 1) ·X23 + c(x = 0) ·X3

X2 = ∂H(A0 ‖ B1 ‖ V0)

= c(x = 0) · ∂H(A1 ‖ B1 ‖ V0) + c(x Í 2) · ∂H(A0 ‖ B2 ‖ V2)
= c(x = 0) ·X3 + c(x Í 2) ·X4

X3 = ∂H(A1 ‖ B1 ‖ V0)
= c(x Í 1) · ∂H(A2 ‖ B1 ‖ V1) + c(x Í 2) · ∂H(A1 ‖ B2 ‖ V2)

= c(x Í 1) ·X9 + c(x Í 2) ·X10

X4 = ∂H(A0 ‖ B2 ‖ V2)
= σd(∂H(A0 ‖ B3 ‖ V2))

= σd(X5)

X5 = ∂H(A0 ‖ B3 ‖ V2)

= c(x = 2) · ∂H(A0 ‖ B4 ‖ V2)
= c(x = 2) ·X6

X6 = ∂H(A0 ‖ B4 ‖ V2)

= EnterCS2 · ∂H(A0 ‖ B5 ‖ V2)
= EnterCS2 ·X7

X7 = ∂H(A0 ‖ B5 ‖ V2)
= LeaveCS2 · ∂H(A0 ‖ B6 ‖ V2)

= LeaveCS2 ·X8

X8 = ∂H(A0 ‖ B6 ‖ V2)

= c(x Í 0) · ∂H(A0 ‖ B0 ‖ V0)
= c(x Í 0) ·X0

X9 = ∂H(A2 ‖ B1 ‖ V1)

= c(x Í 2) · ∂H(A2 ‖ B2 ‖ V2)
= c(x Í 2) ·X24
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X10 = ∂H(A1 ‖ B2 ‖ V2)
= c(x Í 1) · ∂H(A2 ‖ B2 ‖ V1)

= c(x Í 1) ·X11

X11 = ∂H(A2 ‖ B2 ‖ V1)

= σd(∂H(A3 ‖ B3 ‖ V1))
= σd(X12)

X12 = ∂H(A3 ‖ B3 ‖ V1)
= c(x = 1) · ∂H(A4 ‖ B3 ‖ V1) + c(x = 1) · ∂H(A3 ‖ B0 ‖ V1)

= c(x = 1) ·X13 + c(x = 1) ·X14

X13 = ∂H(A4 ‖ B3 ‖ V1)
= EnterCS1 · ∂H(A5 ‖ B3 ‖ V1) + c(x = 1) · ∂H(A4 ‖ B0 ‖ V1)

= EnterCS1 ·X18 + c(x = 1) ·X15

X14 = ∂H(A3 ‖ B0 ‖ V1)

= c(x = 0) · ∂H(A4 ‖ B0 ‖ V1)
= c(x = 0) ·X15

X15 = ∂H(A4 ‖ B0 ‖ V1)

= EnterCS1 · ∂H(A5 ‖ B0 ‖ V1)
= EnterCS1 ·X16

X16 = ∂H(A5 ‖ B0 ‖ V1)
= LeaveCS1 · ∂H(A6 ‖ B0 ‖ V1)

= LeaveCS1 ·X17

X17 = ∂H(A6 ‖ B0 ‖ V1)

= c(x Í 0) · ∂H(A0 ‖ B0 ‖ V0)
= c(x Í 0) ·X0

X18 = ∂H(A5 ‖ B3 ‖ V1)

= LeaveCS1 · ∂H(A6 ‖ B3 ‖ V1) + c(x = 1) · ∂H(A5 ‖ B0 ‖ V1)
= LeaveCS1 ·X19 + c(x = 1) ·X16
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X19 = ∂H(A6 ‖ B3 ‖ V1)
= c(x Í 0) · ∂H(A0 ‖ B3 ‖ V0) + c(x = 1) · ∂H(A6 ‖ B0 ‖ V1)

= c(x Í 0) ·X20 + c(x = 1) ·X17

X20 = ∂H(A0 ‖ B3 ‖ V0)

= c(x = 0) · ∂H(A1 ‖ B3 ‖ V0) + c(x = 0) · ∂H(A0 ‖ B0 ‖ V0)
= c(x = 0) ·X21 + c(x = 0) ·X0

X21 = ∂H(A1 ‖ B3 ‖ V0)
= c(x Í 1) · ∂H(A2 ‖ B3 ‖ V1) + c(x = 0) · ∂H(A1 ‖ B0 ‖ V0)

= c(x Í 1) ·X22 + c(x = 0) ·X1

X22 = ∂H(A2 ‖ B3 ‖ V1)
= c(x = 1) · ∂H(A2 ‖ B0 ‖ V1)

= c(x = 1) ·X23

X23 = ∂H(A2 ‖ B0 ‖ V1)

= σd(∂H(A3 ‖ B0 ‖ V1))
= σd(X14)

X24 = ∂H(A2 ‖ B2 ‖ V2)

= σd(∂H(A3 ‖ B3 ‖ V2))
= σd(X25)

X25 = ∂H(A3 ‖ B3 ‖ V2)
= c(x = 2) · ∂H(A0 ‖ B3 ‖ V2) + c(x = 2) · ∂H(A3 ‖ B4 ‖ V2)

= c(x = 2) ·X5 + c(x = 2) ·X26

X26 = ∂H(A3 ‖ B4 ‖ V2)

= c(x = 2) · ∂H(A0 ‖ B4 ‖ V2) + EnterCS2 · ∂H(A3 ‖ B5 ‖ V2)
= c(x = 2) ·X6 + EnterCS2 ·X27

X27 = ∂H(A3 ‖ B5 ‖ V2)

= c(x = 2) · ∂H(A0 ‖ B5 ‖ V2) + LeaveCS2 · ∂H(A3 ‖ B6 ‖ V2)
= c(x = 2) ·X7 + LeaveCS2 ·X28
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X28 = ∂H(A3 ‖ B6 ‖ V2)
= c(x = 2) · ∂H(A0 ‖ B6 ‖ V2) + c(x Í 0) · ∂H(A3 ‖ B0 ‖ V0)

= c(x = 2) ·X8 + c(x Í 0) ·X29

X29 = ∂H(A3 ‖ B0 ‖ V0)

= c(x = 0) · ∂H(A0 ‖ B0 ‖ V0) + c(x = 0) · ∂H(A3 ‖ B1 ‖ V0)
= c(x = 0) ·X0 + c(x = 0) ·X30

X30 = ∂H(A3 ‖ B1 ‖ V0)
= c(x = 0) · ∂H(A0 ‖ B1 ‖ V0) + c(x Í 2) · ∂H(A3 ‖ B2 ‖ V2)

= c(x = 0) ·X2 + c(x Í 2) ·X31

X31 = ∂H(A3 ‖ B2 ‖ V2)
= c(x = 2) · ∂H(A0 ‖ B2 ‖ V2)

= c(x = 2) ·X4

B The linearization of FPur

B.1 Methodology

Finding a linear specification for FPur is a lot more difficult than it was in the discrete-
time case. This is caused by the fact that most of the variables used in the linear recursive
system are parameterized with a time stamp v ∈ R≥0. So in order to perform calculations
on these parameterized variables, a lot of bookkeeping has to be done. There are three
things that have to be watched:

• First, when introducing new parameterized variables, one has to compute the range
the parameter might take. The range will always take the form of a non-empty
closed interval [t, t′] ⊆ R≥0. It is important that all points of this interval can actu-
ally be reached by the protocol.

For example, when expanding X3(v) (where 0 ≤ v ≤ a′) on page 24, we need to
introduce new parameterized variables X9 and X10. The summand for X9 is:

(v ≤ a′ − a) :→
∫ a′−v
u=a

c(x Í 1)[u] ·X9(u + v)

To determine the range the parameter of X9 can take, we first observe that although
0 ≤ v ≤ a′, the guarded command (v ≤ a′ − a) :→ . . . effectively limits this range
to 0 ≤ v ≤ a′ − a. As u can range from a to a′ − v, this means that u + v ranges
from a (when v = 0 and u = a) to a′ (when u = a′ − v, and v is anything between 0
and a′ −a). So, if we substitute the fresh variable v′ for u+v, the parameter range
for X9(v′) is a ≤ v′ ≤ a′. This range is indicated just above the definition of X9, on
page 25.
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• Secondly, two parameterized variables that both represent the same subprocess,
but differ in the range which their parameter may take, have to be considered dif-
ferent variables, and get different names.

This happens for example between variables X15(v) and and X47(v). Both are de-
fined as:

∂H

(∫ d′−v
w=d−v

i1[w] ·A3 ‖ B0 ‖ V1

)
but for X15(v) we have d−a′ ≤ v ≤ d′, while for X47(v) we have d−a′ +a ≤ v ≤ d′.

• Thirdly, at some points in the calculation it is crucial that the information provided
by the range of a parameter be used to simplify the equations involved. Often this
manifests itself as a guarded command evaluating to false. These steps are the
essence of the verification: the paths that are cut off because the guarded command
never evaluates to true represent paths that would violate the safety properties,
such as actual mutual exclusion, we are trying to prove.

This can be observed for example in the expansion of X9(v), where a ≤ v ≤ a′.
There we arrive at a summand:

(v ≤ a′ − d) :→
∫ a′−v
u=d

i1[u] · ∂H
(
A2 ‖

∫ a′−v−u
w=a−v−u

s(x Í 2)[w] · B2 ‖ V1

)

Because a′ < d (intuitively: a delay always takes longer than an assignment), a′−d <
0. As 0 < a ≤ v we have v > a′ − d, so the condition is always false. Therefore,
the whole summand vanishes into δ. This is just what we need, because choosing
that summand would lead us onto a path where both components could enter the
critical section simultaneously.

At this point, it becomes clear why we put in the extra restriction d′ < 2a (see
page 10). Although this restriction is irrelevant for the correctness of the proto-
col, it does ensure that d′ − d < a. This greatly reduces the size of the linear spec-
ification, as it intuitively cuts off all paths where the one component is delaying
“forever” while the other component is repeatedly entering and leaving its critical
section. See the expansion of X26(v) for an example of this.

After linearizing in a depth-first fashion we arrive at the 51 processes X0, . . . , X50 given
in Section B.2. The protocol FPur itself corresponds to the variable X0. We have made
sure to indicate exactly the range the parameters may take. Furthermore, we ultimately
put all integrals in guard-prefixed normal form.

As in the discrete-time case, several computerized sanity checks were made on the
hand-generated data. This time we also had the opportunity to exploit the information
provided by the parameter ranges. Translating the data file into “TEX-format” was again
done automatically, although some final manual editing was necessary to achieve a sat-
isfactory layout.

B.2 The obtained linear system

FPur = ∂H(A ‖ B ‖ V)
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= ∂H(A0 ‖ B0 ‖ V0)
= X0

X0 = ∂H(A0 ‖ B0 ‖ V0)

=
∫∞
v=0
c(x = 0)[v] · ∂H(A1 ‖ B0 ‖ V0) +

∫∞
v=0
c(x = 0)[v] · ∂H(A0 ‖ B1 ‖ V0)

=
∫∞
v=0
c(x = 0)[v] · X1 +

∫∞
v=0
c(x = 0)[v] ·X2

= (true) :→
∫∞
v=0
c(x = 0)[v] ·X1 + (true) :→

∫∞
v=0
c(x = 0)[v] · X2

X1 = ∂H(A1 ‖ B0 ‖ V0)

=
∫ a′
v=a
c(x Í 1)[v] · ∂H(A2 ‖ B0 ‖ V1) +∫ a′

v=0
c(x = 0)[v] · ∂H

(∫ a′−v
w=a−v

s(x Í 1)[w] ·A2 ‖ B1 ‖ V0

)

=
∫ a′
v=a
c(x Í 1)[v] ·X41 +

∫ a′
v=0
c(x = 0)[v] ·X42(v)

=
∫ a′
v=a
c(x Í 1)[v] ·X41 +

∫ a′
v=0
c(x = 0)[v] ·X42(v)

= (true) :→
∫ a′
v=a
c(x Í 1)[v] ·X41 + (true) :→

∫ a′
v=0
c(x = 0)[v] · X42(v)

X2 = ∂H(A0 ‖ B1 ‖ V0)

=
∫ a′
v=0
c(x = 0)[v] · ∂H

(
A1 ‖

∫ a′−v
w=a−v

s(x Í 2)[w] · B2 ‖ V0

)
+

∫ a′
v=a
c(x Í 2)[v] · ∂H(A0 ‖ B2 ‖ V2)

=
∫ a′
v=0
c(x = 0)[v] · X3(v) +

∫ a′
v=a
c(x Í 2)[v] ·X4

= (true) :→
∫ a′
v=0
c(x = 0)[v] ·X3(v) + (true) :→

∫ a′
v=a
c(x Í 2)[v] ·X4

For all v, 0 ≤ v ≤ a′:

X3(v) = ∂H
(
A1 ‖

∫ a′−v
w=a−v

s(x Í 2)[w] · B2 ‖ V0

)

=
∫min(a′,a′−v)

u=a
c(x Í 1)[u] · ∂H

(
A2 ‖

∫ a′−v−u
w=a−v−u

s(x Í 2)[w] · B2 ‖ V1

)
+

∫min(a′,a′−v)

w=a−v
c(x Í 2)[w] · ∂H

(∫ a′−w
u=a−w

s(x Í 1)[u] ·A2 ‖ B2 ‖ V2

)

=
∫ a′−v
u=a

c(x Í 1)[u] · ∂H
(
A2 ‖

∫ a′−v−u
w=a−v−u

s(x Í 2)[w] · B2 ‖ V1

)
+

∫ a′−v
w=a−v

c(x Í 2)[w] · ∂H
(∫ a′−w
u=a−w

s(x Í 1)[u] ·A2 ‖ B2 ‖ V2

)
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=
∫ a′−v
u=a

c(x Í 1)[u] ·X9(u + v) +
∫ a′−v
w=a−v

c(x Í 2)[w] ·X10(w)

= (v ≤ a′ − a) :→
∫ a′−v
u=a

c(x Í 1)[u] ·X9(u + v) +

(true) :→
∫ a′−v
w=max(0,a−v)

c(x Í 2)[w] ·X10(w)

X4 = ∂H(A0 ‖ B2 ‖ V2)

=
∫ d′
v=d
i2[v] · ∂H(A0 ‖ B3 ‖ V2)

=
∫ d′
v=d
i2[v] · X5

= (true) :→
∫ d′
v=d
i2[v] ·X5

X5 = ∂H(A0 ‖ B3 ‖ V2)
= c(x = 2)[0] · ∂H(A0 ‖ B4 ‖ V2)
= c(x = 2)[0] · X6

X6 = ∂H(A0 ‖ B4 ‖ V2)
= EnterCS2[0] · ∂H(A0 ‖ B5 ‖ V2)
= EnterCS2[0] · X7

X7 = ∂H(A0 ‖ B5 ‖ V2)

=
∫∞
v=0

LeaveCS2[v] · ∂H(A0 ‖ B6 ‖ V2)

=
∫∞
v=0

LeaveCS2[v] ·X8

= (true) :→
∫∞
v=0

LeaveCS2[v] · X8

X8 = ∂H(A0 ‖ B6 ‖ V2)

=
∫ a′
v=a
c(x Í 0)[v] · ∂H(A0 ‖ B0 ‖ V0)

=
∫ a′
v=a
c(x Í 0)[v] ·X0

= (true) :→
∫ a′
v=a
c(x Í 0)[v] ·X0

For all v, a ≤ v ≤ a′:

X9(v) = ∂H
(
A2 ‖

∫ a′−v
w=a−v

s(x Í 2)[w] · B2 ‖ V1

)

=
∫min(d′,a′−v)

u=d
i1[u] · ∂H

(
A2 ‖

∫ a′−v−u
w=a−v−u

s(x Í 2)[w] · B2 ‖ V1

)
+
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∫min(d′,a′−v)

w=a−v
c(x Í 2)[w] · ∂H

(∫ d′−w
u=d−w

i1[u] ·A3 ‖ B2 ‖ V2

)

=
∫ a′−v
u=d

i1[u] · ∂H
(
A2 ‖

∫ a′−v−u
w=a−v−u

s(x Í 2)[w] · B2 ‖ V1

)
+

∫ a′−v
w=a−v

c(x Í 2)[w] · ∂H
(∫ d′−w
u=d−w

i1[u] ·A3 ‖ B2 ‖ V2

)

=
∫ a′−v
u=d

i1[u] · ∂H(. . . ) +
∫ a′−v
w=a−v

c(x Í 2)[w] ·X28(w)

= (v ≤ a′ − d) :→
∫ a′−v
u=d

i1[u] · ∂H(. . . ) +

(true) :→
∫ a′−v
w=0

c(x Í 2)[w] ·X28(w)

= (false) :→
∫ a′−v
u=d

i1[u] · ∂H(. . . ) + (true) :→
∫ a′−v
w=0

c(x Í 2)[w] ·X28(w)

= (true) :→
∫ a′−v
w=0

c(x Í 2)[w] ·X28(w)

For all v, 0 ≤ v ≤ a′:

X10(v) = ∂H
(∫ a′−v
w=a−v

s(x Í 1)[w] ·A2 ‖ B2 ‖ V2

)

=
∫min(a′−v,d′)

w=a−v
c(x Í 1)[w] · ∂H

(
A2 ‖

∫ d′−w
u=d−w

i2[u] · B3 ‖ V1

)
+

∫min(a′−v,d′)

u=d
i2[u] · ∂H

(∫ a′−v−u
w=a−v−u

s(x Í 1)[w] ·A2 ‖ B3 ‖ V2

)
+

=
∫ a′−v
w=a−v

c(x Í 1)[w] · ∂H
(
A2 ‖

∫ d′−w
u=d−w

i2[u] · B3 ‖ V1

)
+

∫ a′−v
u=d

i2[u] · ∂H
(∫ a′−v−u
w=a−v−u

s(x Í 1)[w] ·A2 ‖ B3 ‖ V2

)

=
∫ a′−v
w=a−v

c(x Í 1)[w] ·X11(w) +
∫ a′−v
u=d

i2[u] · ∂H(. . . )

= (true) :→
∫ a′−v
w=max(0,a−v)

c(x Í 1)[w] ·X11(w) +

(v ≤ a′ − d) :→
∫ a′−v
u=d

i2[u] · ∂H(. . . )

= (true) :→
∫ a′−v
w=max(0,a−v)

c(x Í 1)[w] ·X11(w) + (false) :→
∫ a′−v
u=d

i2[u] · ∂H(. . . )

= (true) :→
∫ a′−v
w=max(0,a−v)

c(x Í 1)[w] ·X11(w)

For all v, 0 ≤ v ≤ a′:

X11(v) = ∂H
(
A2 ‖

∫ d′−v
w=d−v

i2[w] · B3 ‖ V1

)

=
∫min(d′,d′−v)

u=d
i1[u] · ∂H

(
A3 ‖

∫ d′−v−u
w=d−v−u

i2[w] · B3 ‖ V1

)
+
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∫min(d′,d′−v)

w=d−v
i2[w] · ∂H

(∫ d′−w
u=d−w

i1[u] ·A3 ‖ B3 ‖ V1

)

=
∫ d′−v
u=d

i1[u] · ∂H
(
A3 ‖

∫ d′−v−u
w=d−v−u

i2[w] · B3 ‖ V1

)
+

∫ d′−v
w=d−v

i2[w] · ∂H
(∫ d′−w
u=d−w

i1[u] ·A3 ‖ B3 ‖ V1

)

=
∫ d′−v
u=d

i1[u] ·X12(u + v) +
∫ d′−v
w=d−v

i2[w] ·X13(w)

= (v ≤ d′ − d) :→
∫ d′−v
u=d

i1[u] · X12(u + v) + (true) :→
∫ d′−v
w=d−v

i2[w] · X13(w)

For all v, d ≤ v ≤ d′:

X12(v) = ∂H
(
A3 ‖

∫ d′−v
w=d−v

i2[w] · B3 ‖ V1

)

= c(x = 1)[0] · ∂H
(
A4 ‖

∫ d′−v
w=d−v

i2[w] · B3 ‖ V1

)
+

(v ≥ d) :→ i2[0] · ∂H(A3 ‖ B3 ‖ V1)
= c(x = 1)[0] · X23(v) + (v ≥ d) :→ i2[0] ·X14

= c(x = 1)[0] · X23(v) + (true) :→ i2[0] ·X14

= c(x = 1)[0] · X23(v) + i2[0] ·X14

For all v, d − a′ ≤ v ≤ d′:

X13(v) = ∂H
(∫ d′−v
w=d−v

i1[w] ·A3 ‖ B3 ‖ V1

)

= (v ≥ d) :→ i1[0] · ∂H(A3 ‖ B3 ‖ V1) + c(x = 1)[0] · ∂H
(∫ d′−v
w=d−v

i1[w] ·A3 ‖ B0 ‖ V1

)
= (v ≥ d) :→ i1[0] ·X14 + c(x = 1)[0] ·X15(v)

X14 = ∂H(A3 ‖ B3 ‖ V1)
= c(x = 1)[0] · ∂H(A4 ‖ B3 ‖ V1) + c(x = 1)[0] · ∂H(A3 ‖ B0 ‖ V1)
= c(x = 1)[0] · X20 + c(x = 1)[0] ·X16

For all v, d − a′ ≤ v ≤ d′:

X15(v) = ∂H
(∫ d′−v
w=d−v

i1[w] ·A3 ‖ B0 ‖ V1

)

=
∫ d′−v
w=d−v

i1[w] · ∂H(A3 ‖ B0 ‖ V1)

=
∫ d′−v
w=d−v

i1[w] · X16

= (true) :→
∫ d′−v
w=max(0,d−v)

i1[w] ·X16

X16 = ∂H(A3 ‖ B0 ‖ V1)
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= c(x = 1)[0] · ∂H(A4 ‖ B0 ‖ V1)
= c(x = 1)[0] · X17

X17 = ∂H(A4 ‖ B0 ‖ V1)
= EnterCS1[0] · ∂H(A5 ‖ B0 ‖ V1)
= EnterCS1[0] · X18

X18 = ∂H(A5 ‖ B0 ‖ V1)

=
∫∞
v=0

LeaveCS1[v] · ∂H(A6 ‖ B0 ‖ V1)

=
∫∞
v=0

LeaveCS1[v] ·X19

= (true) :→
∫∞
v=0

LeaveCS1[v] · X19

X19 = ∂H(A6 ‖ B0 ‖ V1)

=
∫ a′
v=a
c(x Í 0) · ∂H(A0 ‖ B0 ‖ V0)

=
∫ a′
v=a
c(x Í 0)[v] ·X0

= (true) :→
∫ a′
v=a
c(x Í 0)[v] ·X0

X20 = ∂H(A4 ‖ B3 ‖ V1)
= EnterCS1[0] · ∂H(A5 ‖ B3 ‖ V1) + c(x = 1)[0] · ∂H(A4 ‖ B0 ‖ V1)
= EnterCS1[0] · X21 + c(x = 1)[0] ·X17

X21 = ∂H(A5 ‖ B3 ‖ V1)
= LeaveCS1[0] · ∂H(A6 ‖ B3 ‖ V1) + c(x = 1)[0] · ∂H(A5 ‖ B0 ‖ V1)
= LeaveCS1[0] ·X22 + c(x = 1)[0] ·X18

X22 = ∂H(A6 ‖ B3 ‖ V1)
= c(x = 1)[0] · ∂H(A6 ‖ B0 ‖ V1)
= c(x = 1)[0] · X19

For all v, d ≤ v ≤ d′:

X23(v) = ∂H
(
A4 ‖

∫ d′−v
w=d−v

i2[w] · B3 ‖ V1

)

= EnterCS1[0] · ∂H
(
A5 ‖

∫ d′−v
w=d−v

i2[w] · B3 ‖ V1

)
+

(v ≥ d) :→ i2[0] · ∂H(A4 ‖ B3 ‖ V1)
= EnterCS1[0] · X24(v) + (v ≥ d) :→ i2[0] ·X20

= EnterCS1[0] · X24(v) + (true) :→ i2[0] ·X20

= EnterCS1[0] · X24(v) + i2[0] ·X20
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For all v, d ≤ v ≤ d′:

X24(v) = ∂H
(
A5 ‖

∫ d′−v
w=d−v

i2[w] · B3 ‖ V1

)

=
∫min(∞,d′−v)

u=0
LeaveCS1[u] · ∂H

(
A6 ‖

∫ d′−v−u
w=d−v−u

i2[w] · B3 ‖ V1

)
+

∫min(∞,d′−v)

w=d−v
i2[w] · ∂H(A5 ‖ B3 ‖ V1)

=
∫ d′−v
u=0

LeaveCS1[u] · ∂H
(
A6 ‖

∫ d′−v−u
w=d−v−u

i2[w] · B3 ‖ V1

)
+

∫ d′−v
w=d−v

i2[w] · ∂H(A5 ‖ B3 ‖ V1)

=
∫ d′−v
u=0

LeaveCS1[u] ·X25(u + v) +
∫ d′−v
w=d−v

i2[w] ·X21

= (true) :→
∫ d′−v
u=0

LeaveCS1[u] · X25(u + v) + (true) :→
∫ d′−v
w=0

i2[w] ·X21

For all v, d ≤ v ≤ d′:

X25(v) = ∂H
(
A6 ‖

∫ d′−v
w=d−v

i2[w] · B3 ‖ V1

)

=
∫min(a′,d′−v)

u=a
c(x Í 0)[u] · ∂H(. . . ) +∫min(a′,d′−v)

w=d−v
i2[w] · ∂H

(∫ a′−w
u=a−w

s(x Í 0)[u] ·A0 ‖ B3 ‖ V1

)

=
∫ d′−v
u=a

c(x Í 0)[u] · ∂H(. . . ) +∫ d′−v
w=d−v

i2[w] · ∂H
(∫ a′−w
u=a−w

s(x Í 0)[u] ·A0 ‖ B3 ‖ V1

)

=
∫ d′−v
u=a

c(x Í 0)[u] · ∂H(. . . ) +
∫ d′−v
w=d−v

i2[w] ·X26(w)

= (v ≤ d′ − a) :→
∫ d′−v
u=a

c(x Í 0)[u] · ∂H(. . . ) +

(true) :→
∫ d′−v
w=0

i2[w] · X26(w)

= (false) :→
∫ d′−v
u=a

c(x Í 0)[u] · ∂H(. . . ) + (true) :→
∫ d′−v
w=0

i2[w] ·X26(w)

= (true) :→
∫ d′−v
w=0

i2[w] · X26(w)

For all v, 0 ≤ v ≤ d′ − d:

X26(v) = ∂H
(∫ a′−v
w=a−v

s(x Í 0)[w] ·A0 ‖ B3 ‖ V1

)
= (v ≥ a) :→ c(x Í 0)[0] · ∂H(A0 ‖ B3 ‖ V1) +
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c(x = 1)[0] · ∂H
(∫ a′−v
w=a−v

s(x Í 0) ·A0 ‖ B0 ‖ V1

)
= (v ≥ a) :→ c(x Í 0)[0] · ∂H(. . . ) + c(x = 1)[0] ·X27(v)
= (false) :→ c(x Í 0)[0] · ∂H(. . . ) + c(x = 1)[0] ·X27(v)
= c(x = 1)[0] · X27(v)

For all v, 0 ≤ v ≤ d′ − d:

X27(v) = ∂H
(∫ a′−v
w=a−v

s(x Í 0) ·A0 ‖ B0 ‖ V1

)

=
∫ a′−v
w=a−v

c(x Í 0)[w] · ∂H(A0 ‖ B0 ‖ V0)

=
∫ a′−v
w=a−v

c(x Í 0)[w] ·X0

= (true) :→
∫ a′−v
w=a−v

c(x Í 0)[w] ·X0

For all v, 0 ≤ v ≤ a′ − a:

X28(v) = ∂H
(∫ d′−v
w=d−v

i1[w] ·A3 ‖ B2 ‖ V2

)

=
∫min(d′−v,′d′)

w=d−v
i1[w] · ∂H

(
A3 ‖

∫ d′−w
u=d−w

i2[u] · B3 ‖ V2

)
+

∫min(d′−v,d′)

u=d
i2[u] · ∂H

(∫ d′−v−u
w=d−v−u

i1[w] ·A3 ‖ B3 ‖ V2

)

=
∫ d′−v
w=d−v

i1[w] · ∂H
(
A3 ‖

∫ d′−w
u=d−w

i2[u] · B3 ‖ V2

)
+

∫ d′−v
u=d

i2[u] · ∂H
(∫ d′−v−u
w=d−v−u

i1[w] ·A3 ‖ B3 ‖ V2

)

=
∫ d′−v
w=d−v

i1[w] · X29(w) +
∫ d′−v
u=d

i2[u] · X30(w)

= (true) :→
∫ d′−v
w=d−v

i1[w] ·X29(w) +

(v ≤ d′ − d) :→
∫ d′−v
u=d

i2[u] · X30(u + v)

For all v, d − a′ + a ≤ v ≤ d′:

X29(v) = ∂H
(
A3 ‖

∫ d′−v
w=d−v

i2[w] · B3 ‖ V2

)

= c(x = 1)[0] · ∂H
(
A0 ‖

∫ d′−v
w=d−v

i2[w] · B3 ‖ V2

)
+

(v ≥ d) :→ i2[0] · ∂H(A3 ‖ B3 ‖ V2)
= c(x = 1)[0] · X40(v) + (v ≥ d) :→ i2[0] ·X31
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For all v, d ≤ v ≤ d′:

X30(v) = ∂H
(∫ d′−v
w=d−v

i1[w] ·A3 ‖ B3 ‖ V2

)
= (v ≥ d) :→ i1[0] · ∂H(A3 ‖ B3 ‖ V2) +

c(x = 2)[0] · ∂H
(∫ d′−v
w=d−v

i1[w] ·A3 ‖ B4 ‖ V2

)

= i1[0] · ∂H(A3 ‖ B3 ‖ V2) + c(x = 2)[0] · ∂H
(∫ d′−v
w=d−v

i1[w] ·A3 ‖ B4 ‖ V2

)
= i1[0] ·X31 + c(x = 2)[0] ·X32(v)

X31 = ∂H(A3 ‖ B3 ‖ V2)
= c(x = 2)[0] · ∂H(A0 ‖ B3 ‖ V2) + c(x = 2)[0] · ∂H(A3 ‖ B4 ‖ V2)
= c(x = 2)[0] · X5 + c(x = 2)[0] ·X33

For all v, d ≤ v ≤ d′:

X32(v) = ∂H
(∫ d′−v
w=d−v

i1[w] ·A3 ‖ B4 ‖ V2

)
= (v ≥ d) :→ i1[0] · ∂H(A3 ‖ B4 ‖ V2) +

EnterCS2[0] · ∂H
(∫ d′−v
w=d−v

i1[w] ·A3 ‖ B5 ‖ V2

)
= (v ≥ d) :→ i1[0] ·X33 + EnterCS2[0] ·X34(v)
= (true) :→ i1[0] ·X33 + EnterCS2[0] ·X34(v)
= i1[0] ·X33 + EnterCS2[0] ·X34(v)

X33 = ∂H(A3 ‖ B4 ‖ V2)
= c(x = 2)[0] · ∂H(A0 ‖ B4 ‖ V2) + EnterCS2[0] · ∂H(A3 ‖ B5 ‖ V2)
= c(x = 2)[0] · X6 + EnterCS2[0] ·X35

For all v, d ≤ v ≤ d′:

X34(v) = ∂H
(∫ d′−v
w=d−v

i1[w] ·A3 ‖ B5 ‖ V2

)

=
∫min(d′−v,∞)

w=d−v
i1[w] · ∂H(A3 ‖ B5 ‖ V2) +∫min(d′−v,∞)

u=0
LeaveCS2[u] · ∂H

(∫ d′−v−u
w=d−v−u

i1[w] ·A3 ‖ B6 ‖ V2

)

=
∫ d′−v
w=d−v

i1[w] · ∂H(A3 ‖ B5 ‖ V2) +∫ d′−v
u=0

LeaveCS2[u] · ∂H
(∫ d′−v−u
w=d−v−u

i1[w] ·A3 ‖ B6 ‖ V2

)

=
∫ d′−v
w=d−v

i1[w] · X35 +
∫ d′−v
u=0

LeaveCS2[u] ·X36(u + v)

= (true) :→
∫ d′−v
w=0

i1[w] · X35 + (true) :→
∫ d′−v
u=0

LeaveCS2[u] ·X36(u + v)
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X35 = ∂H(A3 ‖ B5 ‖ V2)
= c(x = 2)[0] · ∂H(A0 ‖ B5 ‖ V2) + LeaveCS2[0] · ∂H(A3 ‖ B6 ‖ V2)
= c(x = 2)[0] · X7 + LeaveCS2[0] · X39

For all v, d ≤ v ≤ d′:

X36(v) = ∂H
(∫ d′−v
w=d−v

i1[w] ·A3 ‖ B6 ‖ V2

)

=
∫min(d′−v,a′)

w=d−v
i1[w] · ∂H

(
A3 ‖

∫ a′−w
u=a−w

s(x Í 0)[u] · B0 ‖ V2

)
+

∫min(d′−v,a′)

u=a
c(x Í 0)[u] · ∂H(. . . )

=
∫ d′−v
w=d−v

i1[w] · ∂H
(
A3 ‖

∫ a′−w
u=a−w

s(x Í 0)[u] · B0 ‖ V2

)
+

∫ d′−v
u=a

c(x Í 0)[u] · ∂H(. . . )

=
∫ d′−v
w=d−v

i1[w] · X37(w) +
∫ d′−v
u=a

c(x Í 0)[u] · ∂H(. . . )

= (true) :→
∫ d′−v
w=0

i1[w] · X37(w) +

(v ≤ d′ − a) :→
∫ d′−v
u=a

c(x Í 0)[u] · ∂H(. . . )

= (true) :→
∫ d′−v
w=0

i1[w] · X37(w) + (false) :→
∫ d′−v
u=a

c(x Í 0)[u] · ∂H(. . . )

= (true) :→
∫ d′−v
w=0

i1[w] · X37(w)

For all v, 0 ≤ v ≤ d′ − d:

X37(v) = ∂H
(
A3 ‖

∫ a′−v
w=a−v

s(x Í 0)[w] · B0 ‖ V2

)

= c(x = 2)[0] · ∂H
(
A0 ‖

∫ a′−v
w=a−v

s(x Í 0)[w] · B0 ‖ V2

)
+

(v ≥ a) :→ c(x Í 0)[0] · ∂H(A3 ‖ B0 ‖ V0)
= c(x = 2)[0] · X38(v) + (v ≥ a) :→ c(x Í 0)[0] · ∂H(. . . )
= c(x = 2)[0] · X38(v) + (false) :→ c(x Í 0)[0] · ∂H(. . . )
= c(x = 2)[0] · X38(v)

For all v, 0 ≤ v ≤ d′ − d:

X38(v) = ∂H
(
A0 ‖

∫ a′−v
w=a−v

s(x Í 0)[w] · B0 ‖ V2

)

=
∫ a′−v
w=a−v

c(x Í 0)[w] · ∂H(A0 ‖ B0 ‖ V0)

=
∫ a′−v
w=a−v

c(x Í 0)[w] ·X0
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= (true) :→
∫ a′−v
w=a−v

c(x Í 0)[w] ·X0

X39 = ∂H(A3 ‖ B6 ‖ V2)
= c(x = 2)[0] · ∂H(A0 ‖ B6 ‖ V2)
= c(x = 2)[0] · X8

For all v, d − a′ + a ≤ v ≤ d′:

X40(v) = ∂H
(
A0 ‖

∫ d′−v
w=d−v

i2[w] · B3 ‖ V2

)

=
∫ d′−v
w=d−v

i2[w] · ∂H(A0 ‖ B3 ‖ V2)

=
∫ d′−v
w=d−v

i2[w] · X5

= (true) :→
∫ d′−v
w=d−v

i2[w] ·X5

X41 = ∂H(A2 ‖ B0 ‖ V1)

=
∫ d′
v=d
i1[v] · ∂H(A3 ‖ B0 ‖ V1)

=
∫ d′
v=d
i1[v] · X16

= (true) :→
∫ d′
v=d
i1[v] ·X16

For all v, 0 ≤ v ≤ a′:

X42(v) = ∂H
(∫ a′−v
w=a−v

s(x Í 1)[w] ·A2 ‖ B1 ‖ V0

)

=
∫min(a′−v,a′)

w=a−v
c(x Í 1)[w] · ∂H

(
A2 ‖

∫ a′−w
u=a−w

s(x Í 2)[u] · B2 ‖ V1

)
+

∫min(a′−v,a′)

u=a
c(x Í 2)[u] · ∂H

(∫ a′−v−u
w=a−v−u

s(x Í 1)[w] ·A2 ‖ B2 ‖ V2

)

=
∫ a′−v
w=a−v

c(x Í 1)[w] · ∂H
(
A2 ‖

∫ a′−w
u=a−w

s(x Í 2)[u] · B2 ‖ V1

)
+

∫ a′−v
u=a

c(x Í 2)[u] · ∂H
(∫ a′−v−u
w=a−v−u

s(x Í 1)[w] ·A2 ‖ B2 ‖ V2

)

=
∫ a′−v
w=a−v

c(x Í 1)[w] ·X43(w) +
∫ a′−v
u=a

c(x Í 2)[u] · X44(u + v)

= (true) :→
∫ a′−v
w=max(0,a−v)

c(x Í 1)[w] ·X43(w) +

(v ≤ a′ − a) :→
∫ a′−v
u=a

c(x Í 2)[u] ·X44(u + v)
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For all v, 0 ≤ v ≤ a′:

X43(v) = ∂H
(
A2 ‖

∫ a′−v
w=a−v

s(x Í 2)[w] · B2 ‖ V1

)

=
∫min(d′,a′−v)

u=d
i1[u] · ∂H

(
A3 ‖

∫ a′−v−u
w=a−v−u

s(x Í 2)[w] · B2 ‖ V1

)
+

∫min(d′,a′−v)

w=a−v
c(x Í 2)[w] · ∂H

(∫ d′−w
u=d−w

i1[u] ·A3 ‖ B2 ‖ V1

)

=
∫ a′−v
u=d

i1[u] · ∂H
(
A3 ‖

∫ a′−v−u
w=a−v−u

s(x Í 2)[w] · B2 ‖ V1

)
+

∫ a′−v
w=a−v

c(x Í 2)[w] · ∂H
(∫ d′−w
u=d−w

i1[u] ·A3 ‖ B2 ‖ V2

)

=
∫ a′−v
u=d

i1[u] · ∂H(. . . ) +
∫ a′−v
w=a−v

c(x Í 2)[w] ·X48(w)

= (v ≤ a′ − d) :→
∫ a′−v
u=d

i1[u] · ∂H(. . . ) +

(true) :→
∫ a′−v
w=a−v

c(x Í 2)[w] ·X48(w)

= (false) :→
∫ a′−v
u=d

i1[u] · ∂H(. . . ) + (true) :→
∫ a′−v
w=a−v

c(x Í 2)[w] · X48(w)

= (true) :→
∫ a′−v
w=a−v

c(x Í 2)[w] ·X48(w)

For all v, a ≤ v ≤ a′:

X44(v) = ∂H
(∫ a′−v
w=a−v

s(x Í 1)[w] ·A2 ‖ B2 ‖ V2

)

=
∫min(a′−v,d′)

w=a−v
c(x Í 1)[w] · ∂H

(
A2 ‖

∫ d′−w
u=d−w

i2[u] · B3 ‖ V1

)
+

∫min(a′−v,d′)

u=d
i2[u] · ∂H

(∫ a′−v−u
w=a−v−u

s(x Í 1)[u] ·A2 ‖ B3 ‖ V2

)

=
∫ a′−v
w=a−v

c(x Í 1)[w] · ∂H
(
A2 ‖

∫ d′−w
u=d−w

i2[u] · B3 ‖ V1

)
+

∫ a′−v
u=d

i2[u] · ∂H
(∫ a′−v−u
w=a−v−u

s(x Í 1)[u] ·A2 ‖ B3 ‖ V2

)

=
∫ a′−v
w=a−v

c(x Í 1)[w] ·X45(w) +
∫ a′−v
u=d

i2[u] · ∂H(. . . )

= (true) :→
∫ a′−v
w=0

c(x Í 1)[w] ·X45(w) +

(v ≤ a′ − d) :→
∫ a′−v
u=d

i2[u] · ∂H(. . . )

= (true) :→
∫ a′−v
w=0

c(x Í 1)[w] ·X45(w) + (false) :→
∫ a′−v
u=d

i2[u] · ∂H(. . . )

= (true) :→
∫ a′−v
w=0

c(x Í 1)[w] ·X45(w)
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For all v, 0 ≤ v ≤ a′ − a:

X45(v) = ∂H
(
A2 ‖

∫ d′−v
w=d−v

i2[w] · B3 ‖ V1

)

=
∫min(d′,d′−v)

u=d
i1[u] · ∂H

(
A3 ‖

∫ d′−v−u
w=d−v−u

i2[w] · B3 ‖ V1

)
+

∫min(d′,d′−v)

w=d−v
i2[w] · ∂H

(∫ d′−w
u=d−w

i1[u] ·A3 ‖ B3 ‖ V1

)

=
∫ d′−v
u=d

i1[u] · ∂H
(
A3 ‖

∫ d′−v−u
w=d−v−u

i2[w] · B3 ‖ V1

)
+

∫ d′−v
w=d−v

i2[w] · ∂H
(∫ d′−w
u=d−w

i1[u] ·A3 ‖ B3 ‖ V1

)

=
∫ d′−v
u=d

i1[u] ·X12(u) +
∫ d′−v
w=d−v

i2[w] · X46(w)

= (v ≤ d′ − d) :→
∫ d′−v
u=d

i1[u] · X12(v + u) + (true) :→
∫ d′−v
w=d−v

i2[w] · X46(w)

For all v, d − a′ + a ≤ v ≤ d′:

X46(v) = ∂H
(∫ d′−v
w=d−v

i1[w] ·A3 ‖ B3 ‖ V1

)

= c(x = 1)[0] · ∂H
(∫ d′−v
w=d−v

i1[w] ·A3 ‖ B0 ‖ V1

)
+

(v ≥ d) :→ i1[0] · ∂H(A3 ‖ B3 ‖ V1)
= c(x = 1)[0] · X47(v) + (v ≥ d) :→ i1[0] ·X14

For all v, d − a′ + a ≤ v ≤ d′:

X47(v) = ∂H
(∫ d′−v
w=d−v

i1[w] ·A3 ‖ B0 ‖ V1

)

=
∫ d′−v
w=d−v

i1[w] · ∂H(A3 ‖ B0 ‖ V1)

= (true) :→
∫ d′−v
w=max(0,d−v)

i1[w] ·X16

For all v, 0 ≤ v ≤ a′:

X48(v) = ∂H
(∫ d′−v
w=d−v

i1[w] ·A3 ‖ B2 ‖ V2

)

=
∫min(d′−v,d′)

w=d−v
i1[w] · ∂H

(
A3 ‖

∫ d′−w
u=d−w

i2[u] · B3 ‖ V2

)
+

∫min(d′−v,d′)

u=d
i2[u] · ∂H

(∫ d′−v−u
w=d−v−u

i1[w]A3 ‖ B3 ‖ V2

)

=
∫ d′−v
w=d−v

i1[w] · ∂H
(
A3 ‖

∫ d′−w
u=d−w

i2[u] · B3 ‖ V2

)
+
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∫ d′−v
u=d

i2[u] · ∂H
(∫ d′−v−u
w=d−v−u

i1[w]A3 ‖ B3 ‖ V2

)

=
∫ d′−v
w=d−v

i1[w] · X49(w) +
∫ d′−v
u=d

i2[u] · X30(u + v)

= (true) :→
∫ d′−v
w=d−v

i1[w] ·X49(w) + (v ≤ d′ − d) :→
∫ d′−v
u=d

i2[u] · X30(u + v)

For all v, d − a′ ≤ v ≤ d′:

X49(v) = ∂H
(
A3 ‖

∫ d′−v
w=d−v

i2[w] · B3 ‖ V2

)

= c(x = 2)[0] · ∂H
(
A0 ‖

∫ d′−v
w=d−v

i2[w] · B3 ‖ V2

)
+

(v ≥ d) :→ i2[0] · ∂H(A3 ‖ B3 ‖ V2)
= c(x = 2)[0] · X50(v) + (v ≥ d) :→ i2[0] ·X31

For all v, d′ − a ≤ v ≤ d′:

X50(v) = ∂H
(
A0 ‖

∫ d′−v
w=d−v

i2[w] · B3 ‖ V2

)

=
∫ d′−v
w=d−v

i2[w] · ∂H(A0 ‖ B3 ‖ V2)

=
∫ d′−v
w=d−v

i2[w] · X5

= (true) :→
∫ d′−v
w=max(0,d−v)

i2[w] ·X5
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