

Canadian Journal of Fisheries and Aquatic Sciences Journal canadien des sciences halieutiques et aquatiques

Fish community assessment with eDNA metabarcoding: effects of sampling design and bioinformatic filtering

Journal:	Canadian Journal of Fisheries and Aquatic Sciences
Manuscript ID	cjfas-2016-0306.R1
Manuscript Type:	Article
Date Submitted by the Author:	10-Nov-2016
Complete List of Authors:	Evans, Nathan T.; Florida International University, Southeast Environmental Research Center Li, Yiyuan; University of Notre Dame, Biological Sciences Renshaw, Mark A.; Oceanic Institute at Hawai'i Pacific University Olds, Brett P.; Oceanic Institute at Hawai'i Pacific University Deiner, Kristy; Cornell University, Ecology and Evolutionary Biology Turner, Cameron R.; EcoSystem Genetics LLC Jerde, Christopher L.; University of California, Santa Barbara, Marine Science Institute Lodge, David M.; Cornell University, Ecology and Evolutionary Biology and Atkinson Center for a Sustainable Future Lamberti, Gary A.; University of Notre Dame Pfrender, Michael E.; University of Notre Dame, Biological Sciences
Keyword:	Environmental DNA, eDNA, eDNA Metabarcoding, Species Richness, Fisheries Assessment

SCHOLARONE[™] Manuscripts

1 2	Title: Fish community assessment with eDNA metabarcoding: effects of sampling design and bioinformatic filtering
3 4 5	Authors: Nathan T. Evans ^{1,2*} , Yiyuan Li ¹ , Mark A. Renshaw ^{1,3} , Brett P. Olds ^{1,3} , Kristy Deiner ^{1,4} , Cameron R. Turner ^{1,5} , Christopher L. Jerde ^{1,6} , David M. Lodge ^{1,4} , Gary A. Lamberti ¹ , and Michael E. Pfrender ¹
6 7	Affiliations: ¹ University of Notre Dame, Department of Biological Sciences and Environmental Change Initiative, Notre Dame, Indiana, USA
8 9	² Florida International University, Southeast Environmental Research Center, Miami, Florida, USA
10 11	³ Oceanic Institute at Hawai'i Pacific University, Shrimp Department, Waimanalo, Hawaii, USA
12 13	⁴ Cornell University, Department of Ecology and Evolutionary Biology and Atkinson Center for a Sustainable Future, Ithaca, New York, USA
14	⁵ EcoSystem Genetics LLC, South Bend, Indiana, USA
15 16	⁶ University of California, Santa Barbara, Marine Science Institute, Santa Barbara, California, USA
17	
18	*Correspondence: Nathan T. Evans; Telephone: 305-919-4110; Fax: 305-919-403; Email:
19	nevans@fiu.edu

20 Abstract

21 Species richness is a metric of biodiversity that represents the number of species present in a 22 community. Traditional fisheries assessments that rely on capture of organisms often 23 underestimate true species richness. eDNA metabarcoding is an alternative tool, which infers 24 species richness by collecting and sequencing DNA present in the ecosystem. Our objective was 25 to determine how spatial distribution of samples and "bioinformatic stringency" affected eDNA-26 metabarcoding estimates of species richness compared to capture-based estimates in a 2.2-ha 27 reservoir. When bioinformatic criteria required species to only be detected in a single sample, 28 eDNA metabarcoding detected all species captured with traditional methods plus an additional 29 11 non-captured species. However, when we required species to be detected with multiple 30 markers and in multiple samples, eDNA metabarcoding detected only seven of the captured 31 species. Our analysis of the spatial patterns of species detection indicated that eDNA was 32 distributed relatively homogenously throughout the reservoir, except near the inflowing stream. We suggest that interpretation of eDNA metabarcoding data must consider the potential effects 33 34 of water body type, spatial resolution, and bioinformatic stringency.

35 Introduction

Species richness is a biodiversity metric used in community ecology to describe the number of species in a given area at a given time, and has strong underpinnings in ecological theory (William 1964; MacArthur and Wilson 1967; Connell 1978; Hubbell 2001; Holyoak et al. 2005). Further, the effectiveness of human management efforts are commonly assessed using species richness metrics (Bailey et al. 2004a; Hubert and Quist 2010). Traditionally, assessment of fish species richness has relied on capture-based sampling of organisms via netting, trapping, or electrofishing (Murphy and Willis 1996; Bonar et al. 2009). However, due to difficulties related

2

to underwater sampling and the mobility of fishes, traditional capture-based sampling often
limits the accuracy of species richness estimates (Bayley and Peterson 2001; Gu and Swihart
2004; Mackenzie and Royle 2005).

46 A progressive increase in sampling effort should theoretically eventually detect all of the 47 species present in the community (McDonald 2004). However, increased effort combined with 48 multiple sampling approaches may be needed to accurately measure species richness if all 49 species in the community are not biologically or behaviorally susceptible to a single sampling 50 modality (Peterson and Paukert 2009). For example, both active and passive sample methods are 51 often required to estimate freshwater fish species richness, as passive gears such as fyke nets and 52 gill nets tend to select for mobile species (Hubert 1996) while sedentary species are more 53 susceptible to active gear types such as electrofishing and trawl nets (Hayes et al. 1996). 54 Therefore, as a result of practical limitations in cost and effort, traditional sampling methods in 55 many contexts can be suboptimal in generating estimates of species richness. A potential 56 alternative for estimating species richness is the use of environmental DNA (eDNA) 57 metabarcoding (Lodge et al. 2012). Environmental DNA metabarcoding infers taxa richness through the identification of taxa-58 59 specific DNA fragments collected in relatively small environmental samples (e.g., 250 mL of 60 water). This bioassessment technique is highly sensitive (Ficetola et al. 2008; Bohmann et al.

61 2014; Rees et al. 2014) and capable of detecting multiple species (Thomsen and Willerslev

62 2015). Although a relatively recent technological development, eDNA metabarcoding expands

eDNA analysis beyond species-specific detection and allows for *en mass* detection of

64 assemblage-level species richness.

65 Previous research has shown that eDNA can be effective in determining the identity of fish 66 species in freshwater ecosystems (Dejean et al. 2011; Goldberg et al. 2011; Jerde et al. 2011; Takahara et al. 2012; Thomsen et al. 2012; Wilcox et al. 2013). Evans et al. (2016) illustrated 67 68 that eDNA metabarcoding could effectively measure the complete fish and amphibian species 69 richness in experimental mesocosms with varying densities and relative abundances. Olds et al. 70 (2016) used eDNA metabarcoding to measure the complete fish species richness of a natural 71 stream ecosystem, and were able to identify DNA from an additional four species not captured 72 via electrofishing but likely present in the ecosystem. Similarly, Valentini et al. (2016) detected 73 at least as many fish as traditional sampling methods in 89% of 23 aquatic sampling sites which 74 included ponds, rivers, mountain lakes, streams, and ditches. Likewise, using eDNA 75 metabarcoding, Hänfling et al. (2016) detected 14 of 16 historically known fish species in a 76 1480-ha natural lake. Lastly, using eDNA metabarcoding, Shaw et al. (2016) detected all fyke-77 net captured fish species in each of two Australian river systems. To date, however, with the 78 exception of post-hoc evaluation (Ficetola et al. 2015) and the influence of water column depth 79 and shoreline proximity (Hänfling et al. 2016), studies have provided little guidance on eDNA 80 metabarcoding sampling design or bioinformatic criteria necessary to infer detection. 81 The ability to use eDNA metabarcoding as an ecological research and conservation tool 82 requires a clear understanding of the data filtering steps that occur throughout the analysis 83 process. Data filtering takes places at multiple steps in the eDNA metabarcoding process. 84 Initially, the raw sequence data is processed to remove low quality and non-target reads (Schloss 85 et al. 2011; Nguyen et al. 2015; Thomsen and Willerslev 2015). There is little consensus, across 86 studies, about what criteria constitutes a species detection. This lack of consensus is a result of 87 context dependency (influenced by total species diversity, sequencing depth, marker specificity,

etc.) and the trade-off that exists between stringency and uncertainty during the interpretation of
eDNA metabarcoding results (Fig. 1). This tradeoff in stringency versus uncertainty results from
choices about how many and what markers are used to infer detection (Fig. 1). Furthermore, the
tradeoff occurs when requirements are set on the frequency with which DNA from an organism
must be observed in a sample or across samples before it is considered detected.
A full continuum of the stringency-uncertainty tradeoff is illustrated in recent eDNA

metabarcoding studies on freshwater fish communities with each study 'defining' what
constitutes a species detection in a unique way (Supplemental Table S1). These studies exhibit
diversity in both their filtering steps and in the types and number of markers used. The studies
also demonstrate varied ways in which the detection of species can be inferred from post-filtered
results. The lack of consensus among these eDNA metabarcoding studies provides little
guidance about how to optimize filtering stringency to best define species detections during
eDNA metabarcoding.

101 The overall objective of this study was to test the effectiveness of eDNA metabarcoding to 102 estimate the fish species richness of a small freshwater reservoir by comparing species richness 103 estimates derived from capture-based sampling and eDNA metabarcoding. Specifically, we 104 investigated three research questions: (1) What species does eDNA metabarcoding detect 105 relative to traditional capture-based sampling? (2) What is the effect of sample size and the 106 spatial distribution of samples on our ability to estimate species richness using eDNA 107 metabarcoding? (3) How does the stringency of bioinformatic criteria applied to species 108 detections, in terms of samples and genetic markers, influence our ability to measure species 109 richness via eDNA metabarcoding?

110 Materials and Methods

111 *Study site*

112 Lawler Pond is a 2.2-ha surface-area reservoir contained within the Fort Custer Training Center (FCTC) of the Michigan Army National Guard located near Battle Creek, Michigan, 113 114 USA. Lawler Pond is a shallow impoundment (maximum depth \approx 3 m) created by a dirt levee 115 and containing a warm-water fish assemblage. Fish habitat within Lawler Pond is relatively 116 homogeneous with a sand-bottom and abundant submerged aquatic vegetation (predominantly *Chara* spp.) throughout the reservoir. A small 1st-order stream flows into and out of Lawler 117 Pond, which drains a watershed area of approximately 1.4 km². An approximately 2-m wide and 118 119 3-m deep channel is located along the northern edge of the reservoir beginning where the stream 120 enters the reservoir from the east and outflows in the northwest corner (Fig. 2). Prior to our 121 sampling, 26 fish species were known to inhabit aquatic ecosystems at FCTC (Michele Richard, 122 FCTC Environmental Biologist, personal communication); however, the fish assemblage of 123 Lawler Pond had not previously been surveyed.

124 *Capture-based sampling*

125 We directly assessed fish species richness in Lawler Pond using a combination of 17 126 unbaited metal minnow traps and three unbaited modified-fyke nets, a 2-m diameter cast net, and 127 handheld dip nets. Modified-fyke nets were constructed from two rectangular 91 X 183-cm steel 128 frames, four 76-cm diameter steel hoops, and 13-mm knotless nylon bar mesh. From June 2-6, 129 2014, all minnow traps and modified-fyke nets were deployed at approximately noon (1200 H), 130 emptied at approximately 1030 H the following morning, then redeployed for a total of four net-131 nights per net (n=12 total net-nights) and trap (n=68 total trap-nights). Twenty cast net throws 132 were conducted from a boat on the morning June 6 after the completion of fyke netting.

Handheld dip nets were used to target schools of small (<2 cm TL) fishes whenever they were
observed. It is important to note that we were not permitted to electrofish in Lawler Pond due to
military regulations and safety concerns (i.e., unexploded munitions). All captured fish were
identified to species based on morphological features (and knowledge of local fish fauna),
measured for total length and mass, and then returned to the center of the reservoir.

138 *eDNA sampling*

139 On June 1, 2014, one day prior to the start of our capture-based sampling, we collected one 140 250-mL water sample (Evans et al. 2016; Olds et al. 2016) from each of 30 locations distributed 141 throughout Lawler Pond (Fig. 2). In addition, we collected one 250-mL water sample from the 142 stream inflow into Lawler Pond (Fig. 2). Each water sample was collected from the surface of 143 the reservoir by a researcher in a kayak. Prior to sampling, the kayak was decontaminated via a 144 10-minute exposure to 10% bleach solution and then rinsed with reverse osmosis water as 145 recommended by Prince and Andrus (1992) to remove any viable DNA on the surface of the 146 kayak. To minimize the potential for vectoring eDNA among sampling locations within Lawler 147 Pond, samples were collected, immediately upon arriving at each sampling location, from the 148 bow of the kayak at arms-length (~ 0.5 m). Additionally, to avoid disturbing future sampling 149 locations, samples were collected starting near the Lawler Pond outflow then proceeded along a 150 single zig-zag pattern ending in the southeast corner of reservoir. The location of each sample 151 was recorded with a handheld GPS (Garmin Corp, Lenexa, Kansas, USA). Each water sample 152 (250-mL bottle) was wiped with a 10% bleach solution and immediately placed in a cooler 153 containing ice for transport back to the laboratory.

154 Sample processing and extraction

- 155 In the laboratory on that same day, water samples were vacuum-filtered onto 47-mm, 1.2 μm
- 156 pore size, polycarbonate membrane filters (EMD Millipore, Billerica, Massachusetts, USA).
- 157 Filters containing sample retentate were placed in 2.0-mL microcentrifuge tubes containing 700
- 158 µL of CTAB and stored at -20°C until extraction. DNA was isolated following a modified
- 159 Chloroform-Isoamyl alcohol (24:1, Amresco) extraction and an isopropanol precipitation.
- 160 (Renshaw et al. 2015; see full details in Appendix S1). To remove potential inhibitors,
- 161 resuspended DNA was treated with the *OneStep™* PCR Inhibitor Removal Kit (Zymo Research,
- 162 Irvine, California, USA).

163 *PCR–based Illumina library preparation and sequencing*

164 We amplified three mitochondrial gene fragments: the Cytochrome B gene (Cyt B; primer 165 set: L14735/H15149c), 12S rRNA (primer set: Am12S), and 16S rRNA (primer set: Ac16S) as 166 described in Evans et al. (2016). Amplified gene fragments were prepped for Illumina 167 sequencing following a two-step PCR-based approach as outlined in the Illumina 16S 168 Metagenomic Sequencing Library Preparation guidelines (Illumina, Inc., San Diego, CA, USA). 169 PCR products were electrophoresed through a 2% agarose gel, stained with ethidium bromide 170 then visualized on a UV light platform. Each amplified product was manually excised from the 171 gels using single-use razor blades, cleaned with the OIAquick Gel Extraction Kit (Oiagen, 172 Venlo, Netherlands), and eluted from spin columns with 30μ L of Buffer EB. We excised a band 173 from the agarose gel at the expected amplicon size for the extraction and PCR negative controls 174 and, regardless of visual confirmation of amplification, carried each through the remaining 175 library prep for subsequent Illumina sequencing per the recommendation of Nguyen et al. 176 (2015). DNA concentration of each elution was quantified via Qubit dsDNA HS Assay.

Libraries were pooled in equal molar concentrations along with 25% PhiX (v3, Illumina, San
Diego, California, USA), then paired-end sequenced on an Illumina MiSeq in a single MiSeq
flow cell by the University of Notre Dame's Genomics and Bioinformatics Core Facility
(http://genomics.nd.edu/) using a MiSeq Reagent Kit v3 (600-cycle; Illumina, San Diego,
California, USA). To ensure sufficient read depth, libraries were sequenced via two MiSeq runs
with 17 libraries per run.

183 *Positive and Negative Controls*

184 Three types of controls where used to monitor potential contamination during the filtration 185 and laboratory analysis of samples. First, a single mock community sample was constructed 186 (Schloss et al. 2011) and run in parallel from the DNA extraction step. The mock community 187 sample was composed of equal amounts of tissue derived DNA (measured with Qubit dsDNA) 188 HS Assay, Life Technologies, Carlsbad, California, USA) from six Indo-Pacific marine fishes: 189 Ocellaris Clownfish Amphiprion ocellaris, Jewelled Blenny Salarias fasciatus, Bicolor Blenny 190 Ecsenius bicolor, Twospined Angelfish Centropyge bispinosa, Dispar Anthias Pseudanthias 191 dispar, and Black Leopard Wrasse Macropharyngodon negrosensis. Second, a single extraction 192 blank was constructed by using only extraction reagents without a filter and subsequently 193 processed alongside the 31 eDNA samples for all laboratory steps. Lastly, a PCR no-template 194 control (NTC) was used for each of the three gene regions amplified and pooled as described 195 above during library preparation. The NTC consisted of sterile water that was added as template 196 during the first round of PCR amplification. A band was then excised from the agarose gel at the 197 anticipated amplicon size, cleaned, and used as template for the second round of PCR 198 amplification, which included the addition of a unique barcode.

199 Bioinformatics analysis

200 Raw sequence reads were filtered based on their quality (Q20), merged (Q0.5), and clustered 201 (97%) to species information following the procedure and parameters detailed in Olds et al. 202 (2016). In brief, to detect non-target (non-vertebrate) operational taxonomic units (OTUs), 203 usually of bacterial origin, we filtered with HMMER (Wheeler and Eddy 2013) using the same 204 parameter values as Olds et al. (2016). Centroid sequences from each OTU were assigned to 205 species with two different approaches. First, we used SAP v1.9.3 (Munch et al. 2008) to assign 206 species using the NCBI NR database (95% match to reference). Second, we used USEARCH 207 v8.0.1623 (Edgar 2010) to confirm species assignments using an in-house reference database 208 (Supplemental Table S2) of regional species (97% match to reference). Our in-house database, 209 included sequences for additional species, previously identified as present on Fort Custer, not 210 available on Genbank. Sequences for the in-house database were obtained via in-house Sanger 211 sequencing of tissue samples and have since been uploaded to Genbank (accession numbers 212 provided in Supplemental Table S2) We manually checked all OTUs that had a closely related 213 OTU (90-96.9% similarity) against NCBI Genbank.

214 Following species assignment, we assessed potential cross-sample contamination, on a per 215 marker basis, by screening for the presence of any of species detected in the 31 Lawler Pond 216 samples in the mock community, extraction blank, and NTC sample libraries. If sequence reads 217 from any species were detected in the three control libraries, we applied a threshold correction 218 (Hänfling et al. 2016; Valentini et al. 2016). For the correction, the cumulative relative 219 frequency of contaminant reads for the detected species in the control libraries functioned as a 220 minimum detection threshold. For the Lawler Pond samples, any species with a frequency of 221 occurrence (relative proportion of reads) less than that of the detection threshold were discarded

(Supplemental Table S3). This correction is similar to the procedure performed by Hänfling et
al. (2016), but is based on the false positive reads found in the negative control samples rather
than false positive reads found from their mock community species being detected in their field
samples.

226 To determine the effect of bioinformatic decisions on our ability to infer the presence of 227 fishes in Lawler Pond, we then evaluated the effect of three stringency scenarios representing 228 low, moderate, and high stringency (Fig. 1). For the low stringency scenario, a species was 229 considered detected if its eDNA was found in at least one sample using at least one marker. For 230 the moderate stringency scenario species detection required sequences in at least two samples or 231 by at least two markers from a single sample. For the high stringency scenario, sequences from a 232 species were required to be detected in both a minimum of two samples and by a minimum of 233 two markers (species were not required to be detected by the same two markers among samples).

234 Species accumulation and richness estimation

235 We estimated species richness based on the Chao II bias-corrected estimator (Chao 2005; 236 Colwell 2013). We calculated all species richness estimates and 95% confidence intervals using 237 EstimateS v9 (Colwell 2013). The number of samples necessary to measure both the total 238 observed (S_{obs} ; detected) and the estimated (Chao II) species richness were calculated via 239 rarefaction analysis with 1000 sample order randomizations for each of the three bioinformatic 240 criteria scenarios. Sample-based species accumulation curves and 95% confidence intervals 241 were analytically derived using the S_{est} 'Mao Tau' estimator in EstimateS v9 (Colwell 2013). The motivation for including both directly observed species richness (S_{obs}) and an estimator, such 242 243 as the Chao II bias-corrected, is to evaluate the effects of variable community composition, 244 sampling size, spatial sampling effort, and bioinformatics criteria have on the measured

245 uncertainty in our estimation of species richness, including those not directly observed in the 246 sampling effort.

247 Sample similarity and spatial analysis

248 Similarity in the detected species richness of each of the 31 Lawler Pond samples was 249 calculated via the Sørensen Coefficient (S_s ; Cao et al. 1997). Sørensen Dissimilarity (D_s) is 250 calculated as $1-S_s$. We express both S_s and D_s as percentages by multiplying the index scores by 251 100. We calculated the Euclidean distance between each of the samples based on GPS 252 coordinates for each of the samples. The effect of spatial separation on species richness 253 similarity was evaluated via a Mantel test of correlation between Euclidean distance and sample 254 similarity using the three bioinformatic stringency criteria used to determine species richness in a 255 sample.

256 The effect of sample spatial distribution on our ability to estimate species richness was 257 evaluated by subsampling 15 of the 30 available (stream sample omitted) Lawler Pond eDNA 258 samples using four spatial sampling designs: (1) subsampling the samples from the periphery of 259 the reservoir, (2) subsampling the samples from the interior of the reservoir, (3) subsampling the 260 upper (N) half of the reservoir relative to the inflow, (4) subsampling the lower (S) half of the 261 reservoir relative to the inflow (Fig. 2). The stream sample was excluded from the subsampling 262 as it was located outside of the analysis's scope of inference (Lawler Pond). Chao II species 263 richness estimates were calculated via rarefaction analysis of 1000 sample-order randomizations 264 for each sampling design. The resulting species richness estimates and rarefaction curves were 265 then compared across the four sampling designs and using the three bioinformatic stringency 266 criteria used to determine species richness in a sample.

267 **Results**

268 *Traditional capture-based sampling*

269 In total, we captured nine species of fishes from Lawler Pond (Fig. 3) in at least one of the 270 four deployed gear types. The majority of the species were captured in the modified-fyke nets 271 and minnow traps with most individuals being captured in the modified-fyke nets. In addition to 272 the nine captured species, we visually observed common carp (Cyprinus carpio) roaming 273 throughout Lawler Pond but were unable to capture any of the individuals. Because multiple 274 capture-based sampling gears, with differing sampling efficiencies, were deployed over a four-275 night temporal sampling regime, we were unable to estimate species richness via the Chao II 276 estimator in an equivalent fashion to the estimates derived from the spatially-collected eDNA 277 samples.

278 High-throughput sequencing (HTS) statistics and effect on species detection

279 We generated 30.3 million paired-end reads from two Illumina MiSeq runs. After primer 280 demultiplexing, 19.8 million paired-end reads were retained (Supplemental Table S4). The 281 demultiplexing rate was 71.4% for the Lawler Pond samples and 27.5% for the control samples 282 due to a large proportion of non-specific amplicons in the PCR negative controls and extraction 283 blanks. In total, 41.3% of the raw reads passed the stringent filtering criteria. USEARCH 284 analysis for OTUs on the combined pools of amplicon specific sequences and subsequent 285 HMMER modeling (to remove non-vertebrate OTUs) for each of the three markers resulted in 286 detection of 32 OTUs from the 16S fragment, 42 OTUs from the 12S fragment, and 29 OTUs 287 from the Cyt B fragment (Supplemental Table S4). Several OTUs occurred in low abundance 288 $(\leq 1\%$ of the total number of reads) and matched a reference sequence with only 90-96% 289 similarity. When manually checked, none of the low-abundance, low-similarity OTUs matched a more similar reference on NCBI Genbank. Therefore, these low-similarity OTUs were
excluded from further analysis. Species assignment (see below) further reduced the number of
OTUs included in the bioinformatic stringency analysis. Prior to subtracting potential crosslibrary contamination and removing species with only 1 read per sample, a total of 28 fish
species, two turtle species, and humans (all non-fish species were excluded from further
analysis) were detected in at least one of the 31 Lawler Pond samples with at least one marker
(Table 2).

297 *Comparison of genetic marker species assignments*

298 Based on both the initial species assignment to NCBI NR using SAP, and the secondary 299 species assignment to our in-house reference database using USEARCH, we matched 22 OTUs 300 with species-level assignments to the 16S marker (including four mock community species), 19 301 OTUs with species-level assignments to the 12S marker (including 6 mock community and 302 human), and 24 OTUs with species-level assignments to the Cyt B marker (including five mock 303 community, human, and two turtle species) (Table 2). For the 16S and 12S markers, one OTU 304 was assigned to eastern mudminnow (Umbra pygmaea), a species that is not believed to occur in 305 Michigan (Bailey et al. 2004b). However, the genetic distance of central mudminnow (Umbra 306 *limi*) and eastern mudminnow is less than 3%. Therefore, we were unable to distinguish between 307 the two species using the three markers employed in this study. We consider all *Umbra* spp. 308 detections to be central mudminnow, which is known to occur at Fort Custer. Another species, 309 chain pickerel (*Esox niger*), was detected in multiple samples by both the 16S and 12S markers; 310 however, for these two markers, no reference exists for American pickerel (Esox americanus), 311 which was captured via traditional sampling at the time of our sampling. In fact, in 15 of 16 312 samples where American pickerel were detected via the Cyt B marker, chain pickerel was

detected in the same sample with the 16S or 12S markers. Because chain pickerel is not known
to occur in inland Michigan (Bailey et al. 2004b), it is likely that these detections were a
misidentification of American pickerel due to a lack of NCBI reference data. We did not
consider chain pickerel detections to be accurate identifications and considered all chain pickerel
identifications to be American pickerel detections.

318 The number of species detected varied among the three genetic markers. No single marker 319 discovered all 21 of the eDNA-detected species under our low stringency scenario. The highest 320 number of species detected by a single marker was 16 species detected by 16S marker. Similarly 321 effective was the Cyt B marker that detected 15 species. The 12S marker was the least effective, 322 detecting just 10 species (Table 2). Of the 16 species detected by the 16S marker, five species 323 were unique to the gene region and not identified by either of the other two markers. Of the 15 324 species detected by the Cyt B marker, five species were unique to that gene region and not identified by either of the other two markers. In total, nine species were identified by all three 325 326 markers, three species were identified by just two markers, and nine species were identified by a 327 single marker (Table 2). Overall, all 21 species could be detected with just the 16S and the Cyt 328 B markers. All species detected with the 12S marker were identified by at least one of the other 329 two markers.

330 *Effects of bioinformatic stringency on species detections and richness estimation*

In our low stringency scenario, eDNA metabarcoding detected 21 species of fishes including
 the 10 species observed using traditional sampling (Table 1). Environmental DNA
 metabarcoding at this stringency level detected an additional 11 fish species. The moderate

bioinformatic stringency scenario resulted in detection of 15 fish species, including the 10

species directly observed. Our high bioinformatic stringency scenario resulted in detection of
eight fish species, including only seven of the 10 species directly observed.

337 In the low and moderate stringency scenarios, sample-specific richness ranged from 3 to 11 338 species (Supplemental Figs. S1, S2). Under the high stringency scenario sample-specific 339 richness ranged from two to seven species (Supplemental Fig. S3). In the low stringency 340 scenario, six 'singleton' species were detected in only one sample (Supplemental Table S5): 341 brook trout (Salvelinus fontinalis), brown trout (Salmo trutta), channel catfish (Ictalurus 342 *punctatus*), johnny darter (*Etheostoma nigrum*), mottled sculpin (*Cottus bairdii*), and white 343 sucker (*Catostomus commersonii*). All singleton species were excluded by the high and 344 moderate stringency scenarios as each of the six singleton species were detected by a single 345 marker (three species by 16S and three species by Cyt B). Moreover, two 'doubleton' species; 346 green sunfish (Lepomis cyanellus) and creek chub (Semotilus atromaculatus) were detected in 347 only two samples (Supplemental Table S5). Despite only being detected in two samples, both 348 green sunfish and creek chub were detected in the moderate stringency scenario (Supplemental 349 Table S6). However, neither green sunfish, creek chub, lake chubsucker (*Erimyzon sucetta*), 350 bluntnose minnow (Pimephales notatus), yellow bullhead (Ameiurus natalis), blackchin shiner 351 (*Notropis heterodon*), or least darter (*Etheostoma microperca*) were detected in the high 352 stringency scenario (Supplemental Table S7). 353 For the low stringency scenario, the mean Chao II species richness estimate using all 31 354 Lawler Pond samples (including the one upstream sample) was 25.8 species present with a 95% 355 confidence interval of 21.8 to 49.1 species compared to 10 species captured via traditional 356 sampling (Fig. 4a). For the moderate stringency scenario, the mean Chao II species richness

357 estimate for the metabarcoding approach was 15 species present with a 95% confidence interval

16

of 15.0 to 16.2 species (Fig. 4b). For the high stringency scenario, the mean Chao II species
richness estimate for the metabarcoding approach was 8 species present with a 95% confidence
interval of 8.0 to 8.3 species (Fig. 4c).

361 *Effects of sample size on estimated species richness*

362 For all three bioinformatics stringency scenarios (low, moderate, and high), the accumulated 363 number of species and the Chao II estimate of species richness varied depending on the number 364 of 250-mL samples included in the analysis. For the low-stringency scenario, the species 365 accumulation curve illustrated that the observed species richness accumulated steadily all the 366 way through inclusion of all 31 eDNA samples (Fig. 4a). The width of the 95% confidence 367 interval was relatively consistent along the length of the rarefaction curve. The mean Chao II 368 estimated richness increased steadily with the addition of samples up through the inclusion of 27 369 samples. Inclusion of the final four samples (samples 28-31) resulted in a 0.0-0.6% relative 370 decrease in the mean Chao II estimate. Corresponding to these changes in the mean Chao II 371 estimate were changes in the 95% confidence interval. The 95% confidence interval generally 372 increased in range with the addition of each sample through the inclusion of 26 samples. The 373 range of the 95% confidence interval narrowed with the addition of each sample following the 374 inclusion of 27 samples.

For the moderate-stringency scenario, the species accumulation curve illustrated that observed species richness accumulated rapidly (>2% relative increase in the estimate) up through the inclusion of eight samples (Fig. 4b). The rarefaction curve stabilized after the inclusion of nine samples and reached an asymptote of 15.0 species with the inclusion of 29 samples. Correspondingly, the 95% confidence intervals narrowed following inclusion of just three samples with the upper and lower confidence bounds converging after the inclusion of 30 381 samples. The mean Chao II estimate increased rapidly through the inclusion of eight samples. 382 Increasing the number of samples in the analysis to include between nine and 26 samples yielded 383 a mean Chao II estimate that increased slowly from 14.0 to 15.0 species. Addition of the final 384 five samples resulted in the mean Chao II estimate remaining steady at 15.0 species. 385 Corresponding to these changes in the mean Chao II estimate, the range of the 95% confidence 386 intervals began to narrow with the inclusion of six samples. 387 For the high-stringency scenario, the species accumulation curve illustrated that observed 388 species richness accumulated steadily up through the inclusion of nine samples (Fig. 4c). 389 Accumulated species richness increased slightly from 7.9 to an asymptote of 8.0 with the 390 inclusion of 17 to 22 samples. Correspondingly, the 95% confidence intervals began to narrow 391 following inclusion of just two samples with the upper and lower confidence bounds converging 392 after the inclusion of 22 samples. The mean Chao II estimate increased through the inclusion of 393 19 samples. Increasing the number of samples in the analysis beyond 19 samples resulted in the 394 same asymptotic species richness estimate of 8.0 species. Corresponding to these changes in the 395 mean Chao II estimate, the range of the 95% confidence intervals began to narrow with the 396 inclusion of only seven samples.

397 Spatial similarity of eDNA-inferred species richness and the effect of sampling design on

398 *estimated species richness*

399 Under the low-stringency scenario, Sørensen coefficients for the 435 pairwise comparisons 400 between each of the 30 Lawler Pond eDNA samples ranged from 27% to 91% with an overall 401 mean similarity of 61%. Under the moderate-stringency scenario, Sørensen coefficients for the 402 435 pairwise comparisons between each of the 30 Lawler Pond eDNA samples (excluding the 403 upstream sample) ranged from 33% to 94% with an overall mean similarity of 64%. Under the 404 high-stringency scenario, Sørensen coefficients for the 435 pairwise comparisons between each 405 of the 30 Lawler Pond eDNA samples ranged from 0% to 100% with an overall mean similarity 406 of 69%. Euclidean distance between each of the eDNA water samples ranged from 4 m to 192 407 m. We found no relationship between sample dissimilarity (D_s) and distance between the 408 samples under the low-stringency scenario (Mantel's r = -0.06, P = 0.79; Fig. 5), moderate-409 stringency scenario (Mantel's r = -0.01, P = 0.5), or high-stringency scenario (Mantel's r = -0.64, 410 P = 0.98).

411 Chao II species richness estimates varied among the three bioinformatic stringency scenarios 412 and the four spatial sampling designs (Fig. 6). Three of the six singleton species (white sucker, 413 channel catfish, and mottled sculpin) were detected in samples collected within the reservoir 414 channel. Additionally, two species (brook trout and brown trout) were not included in the 415 subsampling because they were only detected in the sample collected from the stream flowing 416 into Lawler Pond.

For the low-stringency scenario, the mean species richness estimates for each of the sampling designs ranged from 14.0 to 20.8 compared to a mean estimate of 15.9 species derived from a randomly-selected subsample of 15 samples from throughout Lawler Pond (Fig. 6a). The mean estimates of species richness for the upper, periphery, and lower reservoir sampling designs fell within the 95% confidence interval for the random-subsample estimate. The mean estimate for the interior reservoir sampling design was less than the lower 95% confidence bound of the random-subsample estimate.

The range in the mean estimates was smaller for the moderate-stringency scenario, where the mean species richness estimates for each of the sampling designs fell between 13.0 and 15.0 compared to the randomly-selected subsample mean richness estimate of 15.9 species (Fig. 6b). 427 Only the mean species richness estimates from the periphery and lower reservoir sampling

428 designs fell within the 95% confidence interval for the random-subsample estimate. The mean

429 estimate for the upper and interior reservoir sampling designs were below the lower 95%

430 confidence bound of the random-subsample estimate.

431 For the high-stringency scenario, the mean species richness estimates for each of the

432 sampling designs ranged from 6.0 to 7.0 relative to the randomly-selected subsample mean

433 species richness estimate of 8.0 (Fig. 6c). The mean species richness estimates from the

434 periphery and lower reservoir sampling designs were both equal to the random-subsample

435 estimate. The mean estimate for the upper and interior reservoir sampling designs were below

the lower 95% confidence bound of the random-subsample estimate. Under all three

437 bioinformatic stringency scenarios, the 95% confidence intervals for all the mean estimates

438 overlapped among the spatial sampling designs.

439 **Discussion**

440 *The effectiveness of eDNA metabarcoding relative to capture-based sampling*

441 The eDNA-metabarcoding approach employed in this study was able to detect all of the 442 species captured via traditional sampling. In addition, under the low-stringency scenario eDNA 443 metabarcoding detected 11 fish species that were not detected by traditional sampling. The 444 detection of coldwater species and species with lotic life histories (Table 2) may indicate that we 445 detected species that inhabit areas upstream of Lawler Pond and that eDNA from upstream 446 species is transported downstream where it can be detected in the reservoir. Previous studies 447 have illustrated that eDNA can be transported relatively long distances downstream (Deiner and 448 Altermatt 2014; Jane et al. 2015). For example, Jane et al. (2015) detected the eDNA of brook 449 trout at 239 m (the farthest distance they measured) downstream of experimentally-caged brook

450 trout. We did not sample the inflowing stream using traditional sampling and are, therefore, 451 unable to confirm the upstream presence of the additional species. However, our results indicate 452 that five of the six singleton species (all of which exhibit some degree of lotic life histories) were 453 only detected in samples collected from within the channelized portion (the primary flow 454 pathway) of Lawler Pond and thus may be the result of downstream transport of viable eDNA 455 into the reservoir. Increasing the bioinformatic stringency resulted in the lotic species not being 456 detected. In hindsight, having additional upstream eDNA samples to more fully characterize 457 species identity of the inflowing eDNA would have been ideal. This highlights an eDNA 458 transport phenomenon that needs to be accounted for adequately in eDNA sampling schemes.

459 Effect of bioinformatic stringency on species detection

As expected, increasing the stringency of our eDNA bioinformatic criteria resulted in a 460 461 decrease in the number of species detected. Our use of three markers to determine taxa presence 462 improved our assessment and the reliability of our conclusions about species richness. Similarly, 463 confidence in our species richness estimates increased with increasing bioinformatic stringency 464 (Fig. 4). However, under the high-stringency scenario, our failure to detect three species that 465 were captured by traditional sampling suggests that it is possible to underestimate species (via 466 species elimination) when bioinformatic criteria are too stringent. The magnitude of this effect 467 likely depends on the detection probabilities of the individual markers, the number of markers 468 used, and the quality of the reference database used for species identifications. For example, 469 when only a small number of markers are used, the relative effects of any differences in PCR 470 dynamics and primer binding affinity on species detection are likely to be greater. This would be 471 especially true if one of the markers has particularly good or poor species detection efficiency. 472 Although our three markers (targeting the 16S, 12S, and Cyt B gene regions) performed

similarly, with each detecting 10 to 15 fish species, eight species were detected by only a single
marker including the six singleton species that were each only detected in a single sample.
These eight species were responsible for the decrease in the number of detected species when
bioinformatic stringency was increased.

477 *Effect of sample distribution and sample size on species richness estimation*

478 Overall, we observed relatively low spatial heterogeneity in species richness among the 30 479 Lawler Pond eDNA samples. The low heterogeneity in species richness among the samples and 480 the lack of a relationship between Euclidean distance and D_s suggest that eDNA is distributed 481 relatively homogeneously in Lawler Pond. If eDNA was heterogeneously distributed throughout 482 the pond, we would expect to find a positive relationship between sample dissimilarity and 483 distance, with spatially near samples being more similar and distant samples being less similar. 484 This observed low spatial heterogeneity in eDNA distribution within Lawler Pond suggests that 485 the accumulation of water samples was more important than sample location when attempting to 486 estimate species richness in Lawler Pond.

487 The homogeneous distribution of eDNA in Lawler Pond may be the result of water column 488 mixing in this shallow reservoir. Previous research has illustrated that surface water in small 489 shallow lakes can mix rapidly due to wind-induced circulation (George and Edwards 1976; 490 Hilton 1985; Spigel and Imberger 1987). Another potential explanation for the homogeneous 491 distribution of eDNA in Lawler Pond is that fishes are dispersed throughout the reservoir 492 consistent with the relatively homogeneous habitat. While a potential, our sampling design, that 493 involved collecting samples away from the kayak immediately upon arriving at a sampling 494 location, minimizes the likelihood that the observed homogeneous distribution of eDNA in

495 Lawler Pond is an artifact of vectoring of eDNA between sampling locations during sample496 collection.

497 Despite our overall finding that eDNA is relatively homogenously distributed within Lawler 498 Pond, the spatial heterogeneity that was observed appears to be related to the distribution of 499 where the 'singleton' and 'doubleton' species were detected among the 30 Lawler Pond samples 500 and the one upstream sample. The concentration of the singleton and doubleton species 501 detections in the reservoir channel explains the observed performance differences among the four 502 sampling zones (i.e., periphery, interior, upper, and lower reservoir). The unbalanced 503 distribution of the singletons and doubletons in the periphery (the location of the reservoir 504 channel) relative to the interior of the reservoir resulted in the underestimation of species 505 richness by the interior reservoir samples. This result is similar to the findings of Hänfling et al. 506 (2016) who detected the greater fish species richness in samples collected closest to the shoreline 507 of a 1480-ha natural lake than in samples collected nearer the center of the lake.

508 Sample size effect

509 Our evaluation of the effect of sample size on our ability to estimate asymptotic species 510 richness in Lawler Pond, under the lowest bioinformatic stringency, suggests that at least 26 511 water samples must be sequenced with eDNA metabarcoding before species richness can be 512 estimated with accuracy and precision, as indicated by the flattening of the curve and decreasing 513 confidence intervals. The number of water samples decreases under the moderate-stringency (19 514 samples) and high-stringency scenarios (14 samples). These estimates of necessary samples 515 apply to Lawler Pond only and may differ from the number of samples needed to estimate 516 species richness in larger and more heterogeneous ecosystems. As noted above, Lawler Pond is 517 a small relatively homogeneous body of water making it likely that eDNA would be evenly

518 distributed. In larger bodies of water with distinct spatial structuring, eDNA may be 519 heterogeneously distributed (Hänfling et al. 2016) and an increased numbers of independent 520 samples may be required to capture the maximum eDNA signal. This outcome is consistent with 521 previous research illustrating that diversity and similarity indices tend to underestimate 522 community similarity when calculated with sample sizes that fail to subsample a relatively large 523 proportion of the community (Lande 1996; Cao et al. 1997). The actual sample size needed to 524 accurately and precisely estimate asymptotic species richness also varies according the diversity 525 of assemblage (Chao et al. 2009). It is likely that had we collected additional samples beyond 526 31, we would have observed greater precision in our species richness estimate. The decrease in 527 the 95% confidence intervals with inclusion of additional samples (e.g., samples 26 to 31 under 528 the low stringency scenario) suggests that additional samples would likely continue to increase 529 the precision of the estimate.

530 Our study illustrates that eDNA metabarcoding can be an effective means of determining 531 species richness in areas that may be difficult to sample via traditional fish-capture methods. 532 These challenging areas can include military installations, remote wilderness areas, and sensitive 533 sites where traditional sampling approaches such as electrofishing may not be feasible or 534 permitted. Our results demonstrate that eDNA metabarcoding can, relative to capture-based 535 sampling, accurately measure and estimate species richness in a small reservoir. Further, eDNA 536 was relatively homogeneously distributed at the spatial scale of Lawler Pond (i.e., 2.2 ha), 537 suggesting that the number of accumulated samples may be more important than the spatial 538 distribution of samples when attempting to quantify species richness via eDNA metabarcoding in 539 small systems. Moreover, the detection of stream-dwelling species in the impoundment suggests 540 that eDNA can also detect species from water transported into the reservoir via streamflow.

Further research on the dynamics of eDNA transport is needed to better understand how
downstream transport may affect species richness estimation in impoundments and other
downstream habitats.

544 Our results illustrate that the stringency of bioinformatic criteria can have substantial effects 545 on the conclusions about the inferred species richness of the study system. Future research 546 should focus on determining how to optimize the number of markers for estimating species 547 richness via eDNA metabarcoding in diverse ecosystem of varying complexity and size. An 548 improved knowledge of the necessary sample replication would enable the design of more 549 effective and efficient sampling protocols for fish management and conservation. Lastly, while 550 our results illustrate that eDNA metabarcoding can be used to provide robust estimates of species 551 richness, eDNA cannot provide the same types of population structure data that is readily 552 obtained with capture-based methods where fish can be handled and measured. Therefore, 553 eDNA metabarcoding should be viewed as an additional tool in the fisheries professional's 554 sampling toolbox that can provide improved sensitivity for determining species richness rather 555 than a replacement for demographic sampling via capture-based sampling. However, rapidly 556 advancing genetic and genomic technology provides the promise for even greater utility and 557 interpretive power of eDNA data in the future.

558 Acknowledgments

Funding for this study was provided by United States Department of Defense Strategic
Environmental Research and Development Program Grant W912HQ-12-C-0073 (RC-2240).

561 The authors thank Crysta Gantz and Matthew Dougherty for their assistance with field sampling

and eDNA sample processing. The authors also thank Melissa Stephens and the Notre Dame

563 Genomics & Bioinformatics Core Facility for consultation and sequencing. This research was

- 564 completed in accordance with University of Notre Dame Institutional Animal Care and Use
- 565 Protocol #16-015. This article is a publication of the University of Notre Dame Environmental
- 566 Change Initiative.

567 Literature Cited

- 568 Bailey, R.C., Norris, R.H., and Reynoldson, T.B. 2004a. Bioassessment of freshwater
- 569 ecosystems. Kluwer Academic Publisher, New York, USA.
- 570 Bailey, R.M., Latta, W.C., and Smith, G.R. 2004b. An atlas of Michigan fishes with keys and
- 571 illustrations for their identification. Museum of Zoology, Unversity of Michigan,
- 572 Miscellaneous Publications No. 192, Ann Arbor, Michigan, USA.
- 573 Bayley, P.B., and Peterson, J.T. 2001. An approach to estimate probability of presence and
- 574 richness of fish species. Trans. Am. Fish. Soc. **130**: 620-633. doi:10.1577/1548-
- 575 8659(2001)130<0620:AATEPO>2.0.CO;2.
- 576 Bohmann, K., Evans, A., Gilbert, M.T.P., Carvalho, G.R., Creer, S., Knapp, M., Yu, D.W., and
- biology and biodiversity monitoring.
- 578 Trends Ecol Evol **29**: 358-367. doi:10.1016/j.tree.2014.04.003.
- Bonar, S.A., Hubert, W.A., and Willis, D.W. 2009. Standard methods for sampling North
 American freshwater fishes. American Fisheries Society, Bethesda, MD, USA.
- 581 Cao, Y., Williams, W.P., and Bark, A.W. 1997. Effects of sample size (replicate number) on
- similarity measures in river benthic aufwuchs community analysis. Water Environ Res **69**:
- 583 107-114. doi:10.2175/106143097x125236.
- 584 Chao, A. 2005. Species richness estimation. *In* Encyclopedia of statistical sciences. *Edited by* N.
- 585 Balakrishnan, C. Read and B. Vidakovic. Wiley, New York, USA. pp. 7909-7916.

26

- Colwell, R.K. 2013. EstimateS: Statistical estimation of species richness and shared species from
 samples. http://purl.oclc.org/estimates.
- 588 Connell, J.H. 1978. Diversity in Tropical Rain Forests and Coral Reefs. Science 199: 1302-1310.
- doi:10.1126/science.199.4335.1302.
- 590 Deiner, K., and Altermatt, F. 2014. Transport distance of invertebrate environmental DNA in a
- 591 natural river. Plos One **9**: e88786. doi:10.1371/journal.pone.0088786.
- 592 Dejean, T., Valentini, A., Duparc, A., Pellier-Cuit, S., Pompanon, F., Taberlet, P., and Miaud, C.
- 593 2011. Persistence of environmental DNA in freshwater ecosystems. Plos One 6: e23398.
- 594 doi:10.1371/journal.pone.0023398.
- Edgar, R.C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics
 26: 2460-2461. doi:10.1093/bioinformatics/btq461.
- 597 Evans, N.T., Olds, B.P., Renshaw, M.A., Turner, C.R., Li, Y., Jerde, C.L., Mahon, A.R.,
- 598 Pfrender, M.E., Lamberti, G.A., and Lodge, D.M. 2016. Quantification of mesocosm fish and
- amphibian species diversity via environmental DNA metabarcoding. Mol. Ecol. Resour **16**:
- 600 29-41. doi:10.1111/1755-0998.12433.
- 601 Ficetola, G.F., Miaud, C., Pompanon, F., and Taberlet, P. 2008. Species detection using
- enivrionmental DNA from water samples. Biol. Lett. 4: 423-425.
- 603 doi:10.1098/rsbl.2008.0118.
- 604 Ficetola, G.F., Pansu, J., Bonin, A., Coissac, E., Giguet-Covex, C., De Barba, M., Gielly, L.,
- Lopes, C.M., Boyer, F., Pompanon, F., Raye, G., and Taberlet, P. 2015. Replication levels,
- false presences and the estimation of the presence/absence from eDNA metabarcoding data.
- 607 Mol. Ecol. Resour **15**: 543-556. doi:10.1111/1755-0998.12338.

George, D.G., and Edwards, R.W. 1976. The Effect of Wind on the Distribution of Chlorophyll

609	A and Crustacean Plankton in a Shallow Eutrophic Reservoir. J. Appl. Ecol. 13: 667-690.
610	doi:10.2307/2402246.
611	Goldberg, C.S., Pilliod, D.S., Arkle, R.S., and Waits, L.P. 2011. Molecular detection of
612	vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho
613	giant salamanders. Plos One 6: e22746. doi:10.1371/journal.pone.0022746.
614	Gu, W., and Swihart, R.K. 2004. Absent or undetected? Effects of non-detection of species
615	occurrence on wildlife-habitat models. Biol. Conserv. 116: 195-203. doi:10.1016/S0006-
616	3207(03)00190-3.
617	Hänfling, B., Lawson Handley, L., Read, D.S., Hahn, C., Li, J., Nichols, P., Blackman, R.C.,
618	Oliver, A., and Winfield, I.J. 2016. Environmental DNA metabarcoding of lake fish
619	communities reflects long-term data from established survey methods. Mol. Ecol.
620	doi:10.1111/mec.13660.
621	Hayes, D.B., Ferreri, C.P., and Taylor, W.W. 1996. Active fish capture methods. In Fisheries
622	techniques, 2nd edition. Edited by B.R. Murphy and D.W. Willis. American Fisheries
623	Society, Bethesda, Maryland, USA. pp. 193-220.
624	Hilton, J. 1985. A conceptual framework for predicting the occurrence of sediment focusing and
625	sediment redistribution in small lakes. Limnology and Oceanography 30 : 1131-1143.
626	doi:10.4319/lo.1985.30.6.1131.
627	Holyoak, M., Leibold, M.A., Mouquet, N., Holt, R.D., and Hoopes, M.F. 2005.
628	Metacommunities: a framework for large-scale community ecology. In Metacommunities:
629	spatial dynamics and ecological communities. Edited by M. Holyoak, M.A. Leibold and
630	R.D. Holt. University of Chicago Press, Chicago, IL, USA. pp. 1-32.

- Hubbell, S.P. 2001. The unified neutral theory of biodiversity and biogeography. Princeton
 University Press, Princeton, NJ, USA.
- 633 Hubert, W.A. 1996. Passive capture techniques. In Fisheries techniques, 2nd edition. Edited by
- B.R. Murphy and D.W. Willis. American Fisheries Society, Bethesda, Maryland, USA. pp.
- 635 157-192.
- Hubert, W.A., and Quist, M.C. 2010. Inland Fisheries Management in North America, 3rd
- 637 edition. American Fisheries Society, Bethesda, Maryland, USA.
- Jane, S.F., Wilcox, T.M., McKelvey, K.S., Young, M.K., Schwartz, M.K., Lowe, W.H., Letcher,
- B.H., and Whiteley, A.R. 2015. Distance, flow, and PCR inhibition: eDNA dynamics in two
- 640 headwater streams. Mol. Ecol. Resour **15**: 216-227. doi:10.1111/1755-0998.12285.
- Jerde, C.L., Mahon, A.R., Chadderton, W.L., and Lodge, D.M. 2011. "Sight-unseen" detection
- of rare aquatic species using environmental DNA. Conserv. Lett. 4: 150-157.
- 643 doi:10.1111/j.1755-263X.2010.00158.x.
- Lande, R. 1996. Statistics and partitioning of species diversity, and similarity among multiple
- 645 communities. Oikos **76**: 5-13. doi:10.2307/3545743.
- 646 Lodge, D.M., Turner, C.R., Jerde, C.L., Barnes, M.A., Chadderton, L., Egan, S.P., Feder, J.L.,
- 647 Mahon, A.R., and Pfrender, M.E. 2012. Conservation in a cup of water: estimating
- biodiversity and population abundance from environmental DNA. Mol. Ecol. **21**: 2555-2558.
- 649 doi:10.1111/j.1365-294X.2012.05600.x.
- 650 MacArthur, R.H., and Wilson, E.O. 1967. The theory of island biogeography. Princeton
- 651 University Press, Princeton, NJ, USA.

- 652 Mackenzie, D.I., and Royle, J.A. 2005. Designing occupancy studies: general advice and
- 653 allocating survey effort. J. Appl. Ecol. **42**: 1105-1114. doi:10.1111/j.1365-
- 654 2664.2005.01098.x.
- 655 McDonald, L.L. 2004. Sampling rare populations. *In* Sampling Rare or Elusive Species. *Edited*
- *by* W.L. Thompson. Island Press, Washington, D.C., USA. pp. 11-42.
- 657 Munch, K., Boomsma, W., Huelsenbeck, J.P., Willerslev, E., and Nielsen, R. 2008. Statistical
- assignment of DNA sequences using Bayesian phylogenetics. Systematic Biol. **57**: 750-757.
- 659 doi:10.1080/10635150802422316.
- 660 Murphy, B.R., and Willis, D.W. 1996. Fisheries Techniques, 2nd edition. American Fisheries
- 661 Society, Bethesda, MD, USA.
- Nguyen, N.H., Smith, D., Peay, K., and Kennedy, P. 2015. Parsing ecological signal from noise
 in next generation amplicon sequencing. New Phytologist 205: 1389-1393.
- 664 doi:10.1111/nph.12923.
- Olds, B.P., Jerde, C.L., Renshaw, M.A., Li, Y., Evans, N.T., Turner, C.R., Deiner, K., Mahon,
- A.R., Brueseke, M.A., Shirey, P.D., Pfrender, M.E., Lodge, D.M., and Lamberti, G.A. 2016.
- 667 Estimating species richness using environmental DNA. Ecol. Evol. 6: 4214-4226.
- 668 doi:10.1002/ece3.2186.
- 669 Peterson, J.T., and Paukert, C.P. 2009. Converting nonstandard fish sampling data to
- 670 standardized data. *In* Standard methods for sampling North American freshwater fishes.
- 671 *Edited by* S.A. Bonar, W.A. Hubert and D.W. Willis. American Fisheries Society, Bethesda,
- 672 Maryland, USA. pp. 195-215.
- Prince, A.M., and Andrus, L. 1992. PCR: how to kill unwanted DNA. Biotechniques 12: 358360.

https://mc06.manuscriptcentral.com/cjfas-pubs

675	Rees, H.C., Maddison, B.C., Middleditch, D.J., Patmore, J.R.M., Gough, K.C., and Crispo, E.
676	2014. The detection of aquatic animal species using environmental DNA - a review of eDNA
677	as a survey tool in ecology. J. Appl. Ecol. 51: 1450-1459. doi:10.1111/1365-2664.12306.
678	Renshaw, M.A., Olds, B.P., Jerde, C.L., McVeigh, M.M., and Lodge, D.M. 2015. The room
679	temperature preservation of filtered environmental DNA samples and assimilation into a
680	phenol-chloroform-isoamyl alcohol DNA extraction. Mol. Ecol. Resour 15: 168-176.
681	Schloss, P.D., Gevers, D., and Westcott, S.L. 2011. Reducing the effects of PCR amplification
682	and sequencing artifacts on 16S rRNA-based studies. Plos One 6: e27310.
683	Shaw, J.L.A., Clarke, L.J., Wedderburn, S.D., Barnes, T.C., Weyrich, L.S., and Cooper, A. 2016.
684	Comparison of environmental DNA metabarcoding and conventional fish survey methods in
685	a river system. Biol. Conserv. 197 : 131-138. doi:10.1016/j.biocon.2016.03.010.
686	Spigel, R.H., and Imberger, J. 1987. Mixing processes relevant to phytoplankton dynamics in
687	lakes. New Zealand Journal of Marine and Freshwater Research 21: 361-377.
688	doi:10.1080/00288330.1987.9516233.
689	Takahara, T., Minamoto, T., Yamanaka, H., Doi, H., and Kawabata, Z.i. 2012. Estimation of fish
690	biomass using environmental DNA. Plos One 7: e35868. doi:10.1371/journal.pone.0035868.
691	Thomsen, P.F., Kielgast, J.O.S., Iversen, L.L., Wiuf, C., Rasmussen, M., Gilbert, M.T.P.,
692	Orlando, L., and Willerslev, E. 2012. Monitoring endangered freshwater biodiversity using
693	environmental DNA. Mol. Ecol. 21: 2565-2573. doi:10.1111/j.1365-294X.2011.05418.x.
694	Thomsen, P.F., and Willerslev, E. 2015. Environmental DNA – An emerging tool in
695	conservation for monitoring past and present biodiversity. Biol. Conserv. 183: 4-18.
696	doi:10.1016/j.biocon.2014.11.019.

- 697 Valentini, A., Taberlet, P., Miaud, C., Civade, R., Herder, J., Thomsen, P.F., Bellemain, E.,
- Besnard, A., Coissac, E., Boyer, F., Gaboriaud, C., Jean, P., Poulet, N., Roset, N., Copp,
- 699 G.H., Geniez, P., Pont, D., Argillier, C., Baudoin, J.M., Peroux, T., Crivelli, A.J., Olivier, A.,
- Acqueberge, M., Le Brun, M., Moller, P.R., Willerslev, E., and Dejean, T. 2016. Next-
- 701 generation monitoring of aquatic biodiversity using environmental DNA metabarcoding.
- 702 Mol. Ecol. **25**: 929-942. doi:10.1111/mec.13428.
- Wheeler, T.J., and Eddy, S.R. 2013. nhmmer: DNA homology search with profile HMMs.
 Bioinformatics 29: 2487-2489.
- 705 Wilcox, T.M., McKelvey, K.S., Young, M.K., Jane, S.F., Lowe, W.H., Whiteley, A.R., and
- Schwartz, M.K. 2013. Robust detection of rare species using environmental DNA: the
- importance of primer specificity. Plos One 8: e59520. doi:10.1371/journal.pone.0059520.
- William, C.B. 1964. Patterns in the balance of nature: and related problems in quantitative

- 710
- 711

⁷⁰⁹ ecology. Academic Press, London, UK.

Table 1. Species observed (capture-based) and detected (eDNA) in Lawler Pond, Fort Custer Training Center, Michigan, under each of the three bioinformatic stringency scenarios: low stringency (Low), moderate stringency (Moderate), and high stringency (High). Black blocks indicate species detected via traditional sampling and/or eDNA metabarcoding. Gray blocks indicate eDNA metabarcoding false negative detections (i.e., species captured via traditional sampling but not detected with eDNA). White blocks indicate species not detected with either traditional sampling or eDNA metabarcoding.

Species	Capture-based	Low	Moderate	High
American Pickerel (Esox americanus)	Х	Х	X	Х
Blackchin Shiner (Notropis heterodon)	Х	Х	X	
Bluegill Sunfish (Lepomis macrochirus)	X	Х	X	X
Bluntnose Minnow (Pimephales notatus)		Х	X	
Brook Trout (Salvelinus fontinalis)		Х		
Brown Trout (Salmo trutta)		X		
Central Mudminnow (Umbra limi)	Х	Х	X	Х
Channel Catfish (Ictalurus punctatus)		Х		
Common Carp (Cyprinus carpio)	X	Х	X	X
Creek Chub (Semotilus atromaculatus)		Х	X	
Green Sunfish (Lepomis cyanellus)	Х	Х	X	
Iowa Darter (Etheostoma exile)		Х	X	X
Johnny Darter (Etheostoma nigrum)		Х		
Lake Chubsucker (Erimyzon sucetta)		Х	X	
Largemouth Bass (Micropterus salmoides)	X	Х	X	X
Least Darter (Etheostoma microperca)		Х	X	
Mottled Sculpin (Cottus bairdii)		Х		
Pumpkinseed Sunfish (Lepomis gibbosus)	X	Х	X	X
Warmouth Sunfish (Lepomis gulosus)	X	Х	X	Х
White Sucker (Catostomus commersonii)		Х		
Yellow Bullhead (Ameiurus natalis)	X	Х	X	
Cumulative Species Richness	10	21	15	8

719 Table 2. Species identified with OTU species assignment for each marker under the low bioinformatic stringency scenario. Primary

720	habitats for	each species	were identified	based on in:	formation	available at	www.natureserve.	org.
								~ ~ ~ ~

Fish Species	Primary Habitat	168	128	Cyt B
American pickerel	Lentic & Lotic (warm-water)	Х	Х	Х
Blackchin shiner	Lentic & Lotic (warm-water)		Х	Х
Bluegill	Lentic & Lotic (warm-water)	Х	Х	Х
Bluntnose minnow	Lentic & Lotic (warm-water)	Х		
Brook trout	Lentic & Lotic (cold-water)			Х
Brown trout	Lentic & Lotic (cold-water)	Х		
Central mudminnow	Lentic & Lotic (warm-water)	Х	Х	Х
Channel catfish	Lentic & Lotic (warm-water)			Х
Common carp	Lentic & Lotic (warm-water)	Х	Х	Х
Creek chub	Lotic (warm-water)	Х		
Green sunfish	Lentic & Lotic (warm-water)	Х	Х	
Iowa darter	Lentic & Lotic (warm-water)	Х	Х	Х
Johnny darter	Lotic (cool-water)			Х
Lake chubsucker	Lentic (warm-water)	Х	Х	Х
Largemouth bass	Lentic & Lotic (warm-water)	Х	Х	Х
Least darter	Lentic & Lotic (cool-water)			Х
Mottled sculpin	Lotic (cool-water)	Х		
Pumpkinseed	Lentic & Lotic (warm-water)	Х	Х	Х
Warmouth	Lentic & Lotic (warm-water)	Х	Х	Х
White sucker	Lentic & Lotic (cool-water)	Х		
Yellow bullhead	Lentic & Lotic (warm-water)	Х		Х
Mock Community Species				
Ocellaris clownfish (Amphiprion ocellaris)	marine	Х	Х	Х
Twospined angelfish (<i>Centropyge bispinosa</i>)	marine	Х	Х	
Bicolor blenny (Ecsenius bicolor)	marine		Х	Х
Black leopard wrasse (Macropharyngodon negrosensis)	marine		Х	Х
Dispar anthias (Pseudanthias dispar)	marine	Х	Х	Х
Jewelled blenny (Salarias fasciatus)	marine	Х	Х	Х
Non-fish Vertebrate Species				
Human (Homo sapien)	Terrestrial		Х	
Common snapping turtle (Chelydra serpentina)	Lentic & Lotic (warm-water)			Х
Spiny softshell turtle (<i>Apalone spinifera</i>)	Lentic & Lotic (warm-water)			Х

721 Figure Captions

Fig. 1. Conceptual diagram illustrating the relationship between bioinformatic

stringency and strength of certainty about the presence of eDNA metabarcoding-

724 detected species.

Fig. 2. Aerial photograph of Lawler Pond (Michigan, USA) illustrating the collection

126 location of each eDNA water sample taken from the impoundment and the inflowing

stream (US) as well as the location of the deeper channel (shaded). The 15 samples

included in each of the four spatial subsampling designs are indicated by the

following symbols: circle (upper samples), asterisk (periphery samples), triangle

730 (lower samples), square (interior samples). Each sample was included in two spatial

sampling designs as indicated by the two symbols per sample.

Fig. 3. Proportional catch of the nine species captured from Lawler Pond, Fort Custer Training

733 Center, Michigan. Number of fishes captured by each method is indicated above each bar.

734 Sampling effort consisted of 12 modified-fyke net-nights, 76 minnow trap-nights, 20 Cast net

throws, and three targeted dip-net dips. Sampling was conducted June 3-6, 2014. In addition to

nine species physically captured, common carp were visually observed.

Fig. 4. Mean species accumulation curve (eDNA detected; grey circles) and mean Chao II

738 species richness estimator curve (Chao estimated; black diamonds) derived from rarefaction

analysis of the 31 Lawler Pond eDNA samples libraries under the (a) low stringency scenario,

(b) moderate stringency scenario, and (c) high stringency scenario. Error bars represent 95%

741 confidence intervals.

742 Fig. 5. Euclidean distance (m) between eDNA water samples versus Sørensen dissimilarity (D_s) . 743 Each point represents one of the 435 pairwise comparisons between all 30 Lawler Pond samples 744 (upstream sample excluded) under the low-stringency scenario. The dashed line in each plot, 745 illustrates the generally expected negative relationship (slope < 0) if sample dissimilarity were 746 predicted by distance, however, no significant relationship was found between Euclidean 747 distance and D_s (Mantel's r = -0.06, P = 0.79). 748 Fig. 6. Mean Chao II species richness estimator curves derived from rarefaction 749 analysis of the eDNA samples selected via each of the four 15-sample spatial designs 750 (upper, lower, periphery, interior) and from a randomly-selected subset of all 30 751 available samples (random) under the (a) low-stringency scenario, (b) moderate-752 stringency scenario, and (c) high-stringency scenario. Error bars represent 95% 753 confidence intervals of the randomly-selected samples. 754 Fig. S1. Species detection by sample for all three markers combined using the low 755 stringency bioinformatic criteria. 756 Fig. S2. Species detection by sample for all three markers combined using the

- 757 moderate stringency bioinformatic criteria.
- Fig. S3. Species detection by sample for all three markers combined using the high
- 759 stringency bioinformatic criteria.

High uncertainty

Low uncertainty

- Detected by a single marker
- Detected in a single sample
 - Detected by multiple markers OR in multiple samples
 - Detected by multiple markers AND in multiple samples
 - Greatest certainty when species
 physically captured

Low stringency

High stringency

https://mcoo.manuscriptcentral.com/cjras-pubs

https://mc06.manuscriptcentral.com/cjfas-pubs

ouppremental rubic	DI. Diointornade int	ening steps used i	in epitit i metabaleode stadaes on	nsireoninunues				Bioinformatic filtering step				
Study	Habitat type	Sample type	Read quality control	Primer trimming	Merged reads	Abundance removal	Clustering of OTUs	Removal of non-target sequences	Taxonomic assignment method	Post-filter for contamination	Genetic marker used	# sequences to establish s presence in a sample post filtering
Valentini et al. 2015	5 River, stream, pond	varied by habitat see referance	Average quality: none stated Minimum read length: 20	2 mis-matches	yes, no min overlap length given	less than 10 reads & reads assessed as PCR error based on OBICLEAN	all samples run independent, 98% similarity to reference sequence	assignment less than 98% similarity with self-made references and public database (EMBL)	ECOTAG using self-made reference database from EMBL	sequences with frequency of occurance at 0.3% per taxon (calculated as proportion of all sequence reads in the sample)	128	none reported less than 12 sequences
Shaw et al. 2015	River, wetland	30 cm below surface	Average quality: 20 phred Minimum read length: 80 bp	100% match	no parameters given	less than 20 reads	all samples run independent, 97% similarity	assignment bit score below 120 or less than 98% similar with top hit in NCBI nr/nt database	blast using NCBI's nucleotide database	no parameters given	128, 168	none reported less than 20 sequences for either gene
Hänfling et al. 2016	5 Lake	surface water, & at depths of 2, 10 & 20 m	Average quality: 30 phred Minimum read length: 90 bp for 12S & 100 bp for CytB	yes, no parameters given	no parameters given	less than 3 reads & chimeric removal using usearch	unstated pooled or separate, 100% similarity	assignemnt bit score below 80 or less than 100% (12S) /95% (CytB) similarity with self-currated database	lowest common ancester approach using self-made database from NCBI	sequences with frequency of occurance at 0.1% (12s) and 0.2% (CytB) per taxon and based on mock community false positives (calculated as proportion of all sequence reads in the sample)	12S, CytB	greater than zero sequences in either gene
Olds et al. 2016	River	surface water	Average quality: 20 phred Minimum read length: 50 bp	100% match	overlap: 16 bp	singletons	all samples pooled, 97% similarity	HMMER filter using self- made reference database for each gene	SAP using NCBI's nucleotide database	based on probability (p = 0.95) of presence using statistical model built from appearance of reads in negative controls	16S, 12S, CytB	greater than two sequences in two markers

atal Table S1. Riginformatic filtaring stars used in aDNA matcheroods studies on fich a

Supplemental Table S2. List of species included in the in-house reference sequence database. Reference sequences taken from previously existing GenBank records are highlighted in blue; reference sequences generated in-house are highlighted in green.

Species	165	128	Cyt B
Acris crepitans	AY843559	AY843559	·
Acris crepitans blanchardi			EF988145
Ambonlitas runastris	KM282450	KM282304	KM523260
Amboputes_rupestris	NC006220	NC006220	NC006220
Ambystoma_idieraie	INC000330	11000330	KM522262
Ambystoma_maculatum	NCOOCOOF	NCIAACOOT	KIVI525205
Ambystoma_tigrinum	NC000887	NC000887	NC000887
Ameiurus_natalis	AY4588/2		AY184265
Amphiprion_ocellaris	NC009065	NC009065	NC009065
Bufo_americanus	AY680206	AY680206	AF171190
Bufo_fowleri	AY680224	AY680224	
Catostomus_commersonii	KM282461	KM282400	KM523268
Centropyge_bispinosa	NC028287	NC028287	NC028287
Cottus_bairdii	KM282462	KM282401	KM523269
Cyprinus_carpio	KM282467	KM282406	KM523272
Ecsenius bicolor	NC028295	NC028295	NC028295
Erimvzon sucetta	KM282468	KM282408	KM523274
Esox americanus vermiculatus			AY497430
Etheostoma caeruleum	KM282469	KM282409	KM523275
Etheostoma_exile	KM282471	KM282411	KM523277
Etheostoma nigrum	KM282474	KM282412	KM523280
Etheostoma_radiosum	NC005254	NC005254	NC005254
Hamidaatulium soutatum	DO282120	DO282120	NC005254
Hemiaaciyiiam_sculaiam	DQ203120	DQ203120	NC000342
Hyla_chrysoscelis	EF 500949	EF 500949	1 370 420 20
Hyla_versicolor	A Y 843682	A Y 843082	A Y 843928
Lepomis_cyanellus	KM282484	KM282423	KP013087
Lepomis_gibbosus	KM282485	KM282424	KM523290
Lepomis_gulosus	AY742526		
Lepomis_macrochirus	KM282486	KM282426	KM523292
Lepomis_megalotis	AY742533		AY828977
Lepomis_microlophus	AY742535		JF742834
Macropharyngodon_negrosensis	NC028289	NC028289	NC028289
Micropterus_dolomieu	NC011361	KM282429	KM523294
Micropterus_salmoides	KM282489	KM282430	KM523295
Necturus_maculosus			DQ283412
Necturus maculosus maculosus	KM282431	KM523296	
Notemigonus crysoleucus	KM282490	KM282432	KM523297
Notophthalmus viridescens	EU880323	EU880323	EU880323
Notropis anogenus	2000020	2000020	KF744334
Notropis heterodon	KM282401	KM282434	KM523208
Notropis_straminaus	KM282492	NC008110	KM523290
Or a series shuse multise	KM202472	KM282441	KM522206
Oncornynchus_mykiss	KW1202499	KW1202441 WM202442	KW1525500
Perca_flavescens	KW1282501	KW1282443	KIVI525508
Phoxinus_eos	NC015364	NC015364	NC015364
Pimephales_notatus	AY216556	AY216556	U66606
Pimephales_promelas	KM282503	KM282445	KM523310
Plethodon_cinereus_cinereus	NC006343	NC006343	NC006343
Pomoxis_nigromaculatus	AY742557	KM282446	KM523311
Pseudacris_crucifer			AY210883
Pseudacris_crucifer_crucifer	AY843735	AY843735	
Pseudacris_triseriata	AY843738	AY843738	KJ536224
Pseudanthias_dispar	NC028286	NC028286	NC028286
Rana catesbeiana	KM282504	NC022696	KM523312
Rana_clamitans	KM282506	DO283185	KM523314
Rana palustris	AY779228	• • • • •	
Rana piniens	DO283123	DO283123	
Rana subjects	DQ203123	DQ203123	A V083271
Runa_sylvanca	A E028405	DQ203307	A1003271
Kninichinys_airaillius	AF 030495	VM202447	IV / / 200 /
Kninichinys_odiusus	A D004471	A D004451	JA442984
Salarias_Jasciatus	AP004451	AP004451	AP004451
Salmo_trutta	KM282510	KM282448	KM523316
Semotilus_atromaculatus	KM282512	AF023199	KM523318
Umbra_limi	KM282516	KM282453	KM523322
Umbra_pygmaea	NC022456	NC022456	NC022456

Supplemental Table S3. Relative frequency distribution	ns of species rea	ids in each of t	the 31 La	wler Pond samples for each	of the three markers. Species with relative frequencies less than that of the cur	nulative relat	ive frequ	ency of conta	minant read	ls in the nega	ative contro	ol libraries w	ere discarde	ed (red). Onl	y species	with relative f	frequencies	greater than	the cumula	tive relative	frequency (of negative	control read	is were retai	ned (green)).									
10.5 Species	MC	EB	NTC	Sum of MC, EB, NTC	Cumulative Relative Frequency of Negative Control Reads (Threshold)	FC27 10	FC27	1 FC27 13	FC27 14	FC27 15	FC27 17	7 FC27 18	FC27 19	9 FC27 2	FC27 2	20 FC27 24	FC27 29	FC27 30	FC27 31	FC27 4	FC27 8	FC28 1	FC28 12	FC28 16	FC28 21	1 FC28 2	E FC28 2	3 FC28 25	FC28 26	FC28 27	FC28 28	FC28 3	FC28 5	FC28 6 F	C28 7 FC28 9
Mottled Sculpin (Cottus bairdii)	0	0	2	2	0.037%	0.000%	0.0009	0.000%	0.000%	0.000%	16.667%	0.000%	0.000%	0.000%	0.000%	6 0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000% 0	1000% 0.000%
Green Sunfish (Lepomis cyanellus)	0	0	4	4	0.075%	0.000%	0.0009	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	6 0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.427%	0.000%	0.000%	0.000% 0	.000% 0.000%
Lake Chubsucker (Erimyzon sucetta)	0	0	0	0	0.000%	0.000%	0.0009	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	6 0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000% 0	.000% 0.015%
Rainbow Trout (Oncorhynchus mykiss)	0	0	2	2	0.037%	0.000%	0.0009	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	6 0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000% 0	.000% 0.000%
Brown Trout (Samo India) Bhearill Sunfish & monis mosmochines)	21	5	124	124	2.321%	0.000%	0.0009	0.000%	0.000%	0.000%	0.000%	60 200%	67.374%	0.000%	0.000%	0.000%	0.000%	0.000%	0.160%	0.000%	0.000%	0.000%	0.000%	97.449%	0.000%	75.6199	0.000%	0.000%	77 204%	0.000%	95.0776	40.000%	0.000%	0.000% 0	.000% 0.000%
Largemouth Bass (Microsterus solmoides)	0	3	237	240	4.497%	65.699%	49 751	6 35 266%	90.611%	7 714%	0.000%	26 188%		13.648%	34 5129	1 134%		3 22956		41 314%	5 569%	99.949%	6 991%	2 092%	11 340%	9.921%	1 2000	7 392%	19755%	0.433%	1 891%	46.978%	52 878%	50 541%	
Pumpkinseed Sunfish (Lepomis gibbosus)	10	ō	936	946	17.705%	0.002%	0.0009	2.681%	0.023%	0.962%	0.000%	0.036%	2.035%	17.342%	23,465%	0.643%	99.912%	0.400%	0.196%	0.128%	0.000%	0.000%	32.855%	8.328%	0.028%	7.531%	0.002%	2.467%	0.000%	0.099%	1.644%	1.796%	0.439%	0.921%	021% 2.406%
American Pickerel (Esox americanus)	0	0	30	30	0.561%	0.013%	15.875	0.000%	3.978%	4.807%	0.000%	0.012%	8.381%	2.860%	0.063%	1.066%	0.001%	0.000%	13.279%	1.793%	0.000%	0.004%	1.977%	0.153%	9.824%	0.160%	0.935%	0.000%	0.000%	0.000%	0.000%	0.231%	0.081%	0.000%	.003% 17.625%
Central Mudminnow (Umbra limi)	0	0	59	59	1.104%	1.169%	2.5839	0.089%	0.943%	1.564%	0.000%	4.310%	0.013%	3.718%	0.051%	5.499%	0.002%	0.238%	0.893%	5.487%	1.497%	0.000%	0.280%	2.075%	51.333%	0.070%	0.000%	0.005%	0.000%	0.000%	0.203%	1.093%	0.055%	0.309%	4.998% 1.410%
Bluntnose Minnow (Pimephales notatus)	0	0	43	43	0.805%	0.004%	0.0009	0.000%	0.006%	6.684%	0.000%	0.036%	0.042%	0.000%	40.747%	0.000%	0.001%	0.433%		0.003%		0.003%	2.759%	4.887%	9.911%	2.098%		0.000%	2.851%	0.892%	0.223%	0.000%	0.282%	0.582% 0	003% 3.888%
Common Carp (Cyprinus carpio)	2	0	454	456	8.535%	1.688%	0.0009	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	2.874%	0.000%	6 0.000%	0.002%	14.750%	0.075%	0.000%	0.745%	0.000%	0.000%	0.000%	0.000%	4,300%	0.002%	0.000%	0.000%	2.920%	0.000%	0.000%	0.000%	0.000%	1728% 0.001%
Tellow Bullhead (Amenurus natalis)	0	0	2	2	0.03/%	0.000%	0.0059	0.000%	0.019%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000% 0	.000% 15.624%
Warmouth Sunfish (Lenowis sulosus)	0	0	6	6	0.112%	0.000%	0.0005	0.279%	0.000%	0.000%	0.000%	0.020%	0.000%	0.000%	0.000%	0.176%	0.000%	0.174%	0.000%	0.175%	0.409%	0.000%	0.950%	0.015%	3,638%	0.220%	0.000%	0.000%	0.000%	0.000%	0.534%	0.000%		0.0105	000% 0.000%
Creek Chub (Semotilus atromaculatus)	0	0	0	0	0.000%	0.000%	0.0009	0.000%	0.000%	0.000%	22 222%	0.000%	0.000%	0.000%	0.000%	6 0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.007%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000% (000% 0.000%
White Sucker (Catostomus commersonii)	ő	ő	6	6	0.112%	0.000%	0.0039	0.000%	0.000%	0.000%	16.667%	0.000%	0.000%	0.000%	0.000%	6 0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000% r	1000% 0.000%
				1 otat Reads	5.543	108424	78696	17904	125503	3/4311	18	84485	30761	1/3792	25472	110181	243948	167393	58687	57152	438252	74357	41784	250794	63334	153547	198410	36677	.36437	23318	54311	54911	43264	40.599	7729 210083
125																																			
Common name	MC	EB	NTC	Sum of MC, EB, NTC	Cumulative Relative Frequency of Negative Control Reads (Threshold)	FC27_10	FC27_0	1 FC27_13	FC27_14	FC27_15	FC27_17	7 FC27_18	FC27_19	9 FC27_2	FC27_2	20 FC27_24	FC27_29	FC27_30	FC27_31	FC27_4	FC27_8	FC28_1	FC28_12	FC28_16	FC28_21	1 FC28_2	FC28_2	3 FC28_25	FC28_26	FC28_27	FC28_28	FC28_3	FC28_5	FC28_6 F	C28_7 FC28_9
Human (Homo sapien)	0	0	0	0	0.000%	3.254%	0.0009	0.000%	0.000%	0.000%	7.607%	0.000%	0.000%	0.000%	0.000%	6 0.000%	0.000%	0.000%	0.000%	0.005%	0.000%	0.000%	0.011%	0.000%	0.039%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%
Mottled Sculpin (Cottus bairdii)	2	0	3	5	1.259%	0.000%	0.0009	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	6 0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000% 0	.000% 0.000%
Blackchin Shiner (Notropis heterodon)	0	0	0	0	0.000%	0.000%	0.0009	0.000%	0.002%		0.000%	0.000%	0.007%	0.000%	12.653%	0.000%	0.000%	0.004%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.048%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000% 0	.000% 0.000%
Bluegill Sunfish (Lepomis macrochirus)	0	2	285	287	72.292%	50.865%	19,316	6 62.034%	10.107%	70.313%	0.064%	58.320%	45.526%	65.042%		5 72.838%	63.957%	88.386%		52.075%	87.313%	0.562%		80.832%	44.549%	86.4679	85.2739	6 86.083%	84.158%	94.795%	85.651%	28.591%	42.960%	1 227% 4	2.101% 61.169%
Largemouth Bass (Microphenis salmoides) Amarican Dickard (Ecox amaricanus)	0	0	65	65	10.573%	37.861%	39,893	< 10CTS	14 280%	20.641%	92.305%	36.501%	30.713%	23,462%	48 1009	S 0.000%	35.142%		47.126%	41.603%		0.027%	5.105%	0.000%	25.259%		0.0009	0.000%	0.000%	0.0628	4 11956	0.00005	0.000%	0.000%	109% 12 97%
Pumpkinseed Sunfish (Lenomis oilhhosure)	0	0	6	6	1 \$11%	2.759%	4 8789	0.000%	0.004%	3 793%		0.000%	4 790%	9.187%	0.005%	0.000%	0.000%	0.000%	0.000%	0.005%			18 364%	6.061%	3.589%	7.057%	3 874%	0.000%	0.000%	1.805%	5 137%	3.434%	0.786%	1.47.3%	076% 7.446%
Central Mudminnow (Umbra limi)	0	0	5	5	1.259%	0.846%	11.804	0.000%	0.002%	3.470%		0.742%	0.510%	0.005%		6 0.270%	0.005%	0.227%	14.455%	2.421%			0.000%	1.208%	23.295%	0.366%	0.000%	0.000%	0.000%	0.000%	0.000%	0.368%	0.087%	0.000%	0.466% 2.520%
Warmouth Sunfish (Lepowis gulosus)	0	0	6	6	1.511%	3.032%	0.0179	0.000%	0.000%	0.000%	0.000%	0.000%	3.534%	0.000%	0.000%	6 3.550%	0.000%	0.457%	0.000%	0.005%			2.896%	0.702%	0.000%	0.772%	0.000%	0.000%	0.000%	0.555%	0.000%		1.655%	5.848%	5.174% 6.282%
Green Sunfish (Lepomis cyanellus)	0	0	3	3	0.756%	0.000%	0.0009	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.003%	0.000%	0.005%	0.000%	42.029%	0.000%	0.000%	0.000%	0.000%	0.000%	0.003%	0.000%	0.000%	0.000%	0.000%	0.138%	0.000%	0.450%	0.244%	0.000% 0	1000% 0.000%
Iowa Darter (Etheostoma exile)	0	0	6	6	1.511%	0.007%	8.7759	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.007%	4.643%	0.000%	1.526%	0.000%	0.000%	0.005%	0.008%	0.000%	0.000%	0.010%	0.644%	5.617%	0.000%	0.000%	0.004%	0.000%	0.000%	0.000%	1.392% 0	043% 0.010%
Lake Chubsucker (Erimyzon sucetta)	0	0	0	0	0.000%	0.000%	0.0009	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	6 0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.006%	0.678%	0.347%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000% 0	.000% 1.076%
Common Carp (Cyprinus carpio)	0	0	0	0	0.000%	0.000%	0.0009	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	5 0.000%	0.000%	0.144%	0.000%	0.000%	0.039%	0.000%	0.000%	0.000%	0.000%	0.010%	0.145%	0.000%	0.000%	0.004%	0.000%	0.000%	0.025%	0.000% 0	.000% 0.000%
				Total Reads	397	29653	42130	44406	160506	55051	112575	56588	30020	36126	59909	41522	41056	69546	45402	40805	61955	35608	53070	99050	67002	30577	37870	93276	71466	80168	92756	20674	117329	77158	30446 19245
Cut P																																			
Cyr B Common name	MC	FR	NTC	Sum of MC. FR. NTC	Complative Relative Frequency of Negative Control Reads (Threshold)	EC27_10	EC27	1 EC27 13	EC27_14	EC27 15	EC27_15	7 EC27 18	EC27 19	FC27.2	EC27.2	0 EC27 24	EC27 29	EC27 30	EC27 31	EC27 4	EC27-8	EC28-1	EC28 12	EC28 16	EC28 21	EC28.2	EC28 2	3 EC28 25	EC28 26	EC28 27	EC28-28	EC28-3	FC28_5	EC28 6 1	C28 7 FC28 9
Human (Homo savien)	0	9457	0	9457	99.474%	0.004%	0.0029	0.000%	0.002%	0.032%	0.0275	10.445%	0.000%	0.044%	0.003%	6 0.002%	0.004%	0.000%	0.000%	0.000%	0.007%	0.074%	63.886%	0.000%	2.418%	3.857%	0.149%	4.112%	0.000%	0.003%	0.0075	57.826%	0.003%	0.002%	0035 0.0145
Spiny Softshell Turtle (Apalone spinifera)	0	0	0	0	0.000%	10.294%	0.0009	0.000%	0.000%	0.000%	0.005%	0.000%	0.000%	10.439%	0.002%	0.000%	96.351%	0.000%	0.000%	0.000%	0.004%	0.015%	0.002%	0.000%	4.294%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	2.051%	0.000%	0.000%	.003% 0.010%
Common Snapping Turtle (Chelydra serpentina)	0	0	0	0	0.000%	0.000%	0.0009	0.000%	0.002%	0.000%	0.069%	0.004%	13.165%	0.000%	0.001%	0.000%	0.000%	0.008%	14.490%	0.000%	1.151%	0.000%	0.000%	0.005%	0.000%	0.000%	0.000%	0.000%	0.000%	3.201%	0.004%	0.000%	0.000%	0.000%	197% 0.000%
Channel Catfish (Ictalurus punctatus)	0	0	0	0	0.000%	0.000%	0.0009	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	6 0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.407%	0.000% 0	.000% 0.000%
Johnny Datter (Etheostoma nigrum)	0	0	0	0	0.000%	0.000%	0.0009	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.002%	0.000%	5 U.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000% 0	.000% 0.00%
Durckenin Shiner (Notropis helerodon) Dhaqill Sunfish & anonis masrochime)	0	15	12	28	0.00%	25.0526	0.0009	0.000%	0.000%	0.000%	0.000%	26 220%	28.016%	0.000%	0.000%	0.000%	0.000%	72 171%	0.000%	0.000%	71.005%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.110%	0.000%	0.000%	0.000% 0	.000% 0.000%
Central Mudminnow (Umbra limi)	0	4	5	20	0.095%	40 114%	59 711	0.000%	79.910%	20.425%	0.113%	53 193%	0.000%	65 258%	0.012%	13 183%	0.004%	0.00155	14 488%	19 980%	3 1 59%	7 341%	0.007%	15.612%	78 105%	1 576%	0.0025	0.000%	0.000%	0.000%	2 423%	6 149%	1.146%	0.000%	023% 44 118%
Least Darter (Etheostoma micronerca)	0	0	2	2	0.021%	0.003%	4.9829	0.000%	19.689%	4.174%	98.257%	0.004%	18,406%	0.005%		\$ 9.916%	0.000%	0.482%	0.000%	2.076%	1.238%	0.015%	0.000%	2.481%	0.009%	0.639%	1.638%	0.000%	0.000%	0.000%	0.000%	0.000%	1.059%	0.000%	003% 7.423%
Largemouth Bass (Micropterus salmoides)	0	ō	0	0	0.000%	2.436%	0.0409	25.950%	0.126%	0.083%	0.983%	0.115%	29.178%	4.478%	2.480%	6 0.198%	0.012%	0.605%	0.000%	3.663%	21.795%	0.059%	0.069%	0.131%	0.200%	1.610%	0.433%	0.068%	0.000%	0.000%	0.028%	22.342%	0.801%	0.004%	.913% 0.695%
Lake Chubsucker (Erimyzon sucetta)	0	2	2	4	0.042%	20.280%	0.0009	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	6 0.000%	0.046%	0.012%	34.759%	0.000%	0.003%	0.015%	0.000%	0.000%	0.005%	0.000%	0.000%	0.000%	0.000%	0.411%	0.007%	0.000%	0.000%	0.002%	005% 0.026%
Common Carp (Cyprinus carpio)	0	0	0	0	0.000%	0.000%	0.0009	0.000%	0.002%	0.000%	0.000%	0.000%	0.000%	0.025%	0.002%	6 0.001%	0.000%	26.679%	0.000%	0.017%	0.000%	0.096%	0.000%	0.000%	0.000%	0.195%	0.002%	0.000%	0.001%	1.454%	0.005%	0.005%	1.122%	43.700% C	.000% 0.000%
American Pickerel (Esox americanus)	0	0	0	0	0.000%	0.019%	0.0009	0.000%	0.216%	0.003%	0.072%	0.000%	11.235%	3.198%	0.000%	6 0.053%	1.941%	0.003%	10.431%	14.064%	0.006%	0.015%	0.000%	0.000%	0.000%	0.000%	0.000%	0.015%	0.000%	0.000%	0.004%	0.000%	0.000%	0.000% 0	.000% 0.006%
Yellow Bullhead (Ameiurus natalis)	0	0	0	0	0.000%	0.000%	0.0009	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.007%	0.000%	6 0.000%	0.008%	0.000%	0.000%	27.641%	0.000%	0.030%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000% 0	.000% 0.000%
rumpunseed Suntish (Leponus gaboosus)	0	0	0	0	0.00%	0.244%	0,4199	0.0000	0.003%	2.232%	0.000%	0.000%	0.000%	2.167%	0.000%	0.000%	0.000%	0.000%	0.000%	0.0000	0.283%	0.1716	0.000%	4.434%	0.200%	0.437%	0.000%	0.000%	0.000%	0.348%	2.000%	0.000%	0.0000	0.000%	095% 3.239%
warmoun Suntsn (Lepowis gittosus) Jowa Datter (Etheostomo erile.)	0	0	0	0	0.00%	0.000%	0.6179	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	6 0.000≈	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	1016% 0.047%
Mottled Sculpin (Cottus bairdii)	ő	5	ő	5	0.053%	0.000%	0.0009	0.000%	0.000%	0.000%	0.000%	0.001%	0.000%	0.000%	0.001%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.003%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000% (1000% 0.000%
Brook Trout (Salvelinus fontinalis)	0	2	ö	2	0.021%	0.000%	0.0009	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	6 0.000%	0.000%	0.007%	25.806%	0.000%	0.000%	0.000%	0.002%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.003%	0.000%	0.000%	0.000% 0	1000% 0.000%
				Total Reads	9507	178519	18189	219867	152183	71940	66504	199839	181792	98190	178636	6 342184	52076	134497	192439	97349	122538	13486	117335	41230	43015	38009	120060	197772	165028	125219	75740	62885	146761	130431	114954 72532

ar,

Supplemental Table S4	Number	of reads fro	m each sam	ple (i.e. libra	iry) run on i	the Illumin	a MiSeq pl	latform for	each step o	f the bioinfo	rmatic pipel	ine.																												
	FC27_10	FC27_11	FC27_13	FC27_14	FC27_15	FC27_17	7 FC27_1	8 FC27_1	9 FC27_2	FC27_20	FC27_24	FC27_29	FC27_30	FC27_31	FC27_4	FC27_8	FC28_1	FC28_12	FC28_16	FC28_21	FC28_22	FC28_23	FC28_25	FC28_26	FC28_27	FC28_28	8 FC28_3	FC28_5	FC28_6	FC28_7	FC28_9		FC28_32 Extraction Blank	FC27_33 Mock Community	FC28_34 PCR Negative Control	Total Number of Reads After Quality Filtering	Unique Reads	Unique Reads (abunda nce>1)	# OTUs before HMMer	after r HMMe
Raw data	784,956	900,597	753,690	1,046,078	1,129,135	727,933	819,859	746,354	664,130	1,095,999	1,199,104	804,502	758,534	801,170	743,727	1,202,782	873,977	768,830	1,013,274	720,539	665,194	791,803	808,073	684,380	630,655	699,014	605,841	1,029,107	827,812	827,521	974,189	26,098,759	343,922	617,978	3,197,888					
Demultiplexing rate	83.85%	76.39%	83.91%	77.72%	85.09%	48.85%	79.61%	75.65%	102.25%	43.68%	76.52%	63.37%	84.55%	78.69%	78.00%	80.78%	57.32%	62.65%	70.52%	60.61%	67.07%	69.37%	67.75%	66.16%	71.57%	70.46%	67.11%	66.42%	62.39%	62.86%	70.58%		11.57%	81.46%	18.79%					
Merging rate	66.60%	56.82%	61.91%	64.27%	69.18%	37.11%	62.46%	56.73%	84.75%	34.55%	61.38%	52.12%	73.75%	59.69%	53.93%	70.86%	37.86%	46.67%	57.89%	42.26%	57.47%	61.01%	58.86%	57.53%	56.22%	50.20%	46.26%	51.12%	50.17%	45.78%	54.55%		6.99%	62.90%	2.79%					
Quality Filtering rate	48.01%	37.99%	42.20%	49.54%	54.53%	26.25%	44.83%	37.70%	65.23%	24.66%	44.22%	42.24%	58.67%	40.25%	32.61%	56.24%	27.45%	30.82%	46.13%	29.27%	45.89%	47.11%	44.79%	43.03%	39.60%	36.19%	27.56%	37.83%	36.21%	31.00%	39.99%		3.27%	44.94%	1.63%					
Ac16S	215 570	150 025					102.020	-7.005	200 720	12.015	173.005	202 212	270 224	04.730	122.010		201.001	01.071	102 001	100 407	2/2 205	222.004				05.041	102.001	100 155	00.050	100 000				10 (01	202.442	268,945	114,943	14,985	44	39
Matching F primer	215,579	150,035	31,121	256,692	002,100	50	137,072	67,325	388,728	43,045	172,985	392,703	279,320	94,738	132,018	609,389	294,594	91,961	462,694	133,037	302,785	327,490	84,084	//,214	42,044	95,901	127,034	100,455	90,950	125,602	442,880		67	48,081	397,447					
Matching K primer	214,515	147,782	38,003	261,186	654,917	52	130,032	67,339	387,325	40,856	1/2,288	381,403	2/8,453	89,047	130,020	648,082	254,421	80,185	404,796	115,988	315,219	280,834	73,445	65,791	30,784	83,822	110,591	87,748	79,425	108,782	383,000		6.5	42,257	3/1,435					
Paired reads	207,645	142,377	30,419	247,947	0.30,390	50	132,327	64,821	3/5,438	38,488	100,883	352,068	209,309	80,325	125,814	628,291	245,756	77,580	390,483	109,359	303,339	2/2,4/5	/1,150	63,572	35,405	81,085	106,617	84,/10	/0,305	105,251	3/2,544		51	40,635	291,858					
Merged reads	187,576	128,028	33,140	223,296	578,318	43	121,5/1	58,800	342,297	33,220	152,738	290,669	248,941	/0,308	109,025	576,801	222,296	/1,339	360,944	99,805	2/8,08/	254,009	65,911	58,959	32,083	/5,415	96,216	77,910	68,617	90,935	343,749		39	37,403	88,272					
After quanty filtering	155,051	103,439	27,303	185,200	+72,020	32	101,430	+7,302	285,089	27,100	123,923	244,032	210,392	01,049	18,095	+70,930	185,102	39,194	298,123	81,040	230,928	211,222	34,207	40,472	20,448	02,422	70,312	04,991	33,900	19,830	280,330	4,422,042	24	31,319	31,117					
Am128																																				504.913	143 813	27.466	30	25
Matching F primer	39.868	56 984	63 254	206.834	76.676	149 44 1	72 734	52.013	49 949	71.691	55.067	50.892	98.025	59 380	65.836	80 295	54 307	78 953	161 161	96 142	43 104	53 251	144 267	107.412	119 344	136 231	34 980	210.251	135.086	59.932	28 387		4	104 572	36.437					
Matching P primer	39.185	54 897	61 513	202.239	74 644	152 725	75 398	50 347	48 759	70 592	53.012	49 310	95.026	57 995	63 188	77 112	46 326	66 134	134.439	83 509	36.451	44 994	121 220	89 545	99.677	114 266	29 334	177 360	113 450	50.881	24.005		3	97.438	37.028					
Paired reads	38,101	53,786	60,383	198,391	73.201	141.389	69,684	49,184	47,902	68,840	52,157	48,412	93.289	56,800	61,966	75,427	45,352	65.016	132.182	79,205	35,766	44.064	118,955	88,030	97,858	112,153	28,767	174.277	111.597	49,776	23,439		3	95.624	29,626					
Merged reads	37 427	52 498	59 159	194 304	71.845	138.062	68,430	48.060	47 032	66.983	51 103	47 550	91 730	55 243	60 327	74 015	42 967	64.087	130 260	77 741	35 236	43.406	117 377	86 963	96.465	110 472	28 212	171 433	109 533	48 747	23.076		3	93.057	958					
After quality filtering	34.462	47 937	54 274	178 312	65.916	124 350	63.070	43 656	43.417	60.967	46 696	43,600	85.033	50 738	53 260	67 574	39 548	59 841	120.851	72 070	32 672	40 366	109 212	80.961	89 188	102 837	25 7 55	158 286	100 747	45.071	21.633	2 162 300	3	85.022	921					
· · · · · · · · · · · · · · · · · · ·													011000				0.10	0.710.11															-		,					
L14735/H15149c																																				1,114,112	81,442	21,860	44	43
Matching F primer	440,755	556,935	572,524	392,877	267,705	234,563	479,756	485,664	273,016	397,305	743,829	116,809	297,284	514,874	422,762	288,157	262,044	436,134	242,396	310,105	135,877	295,465	447,816	382,929	402,625	373,921	347,347	550,192	426,639	457,312	364,471		50,916	389,829	334,948					
Matching R primer	445,937	534,303	557,553	432,645	261,579	311,274	469,718	503,232	280,491	388,196	726,974	249,787	289,602	508,388	429,371	320,331	260,019	392,632	225,524	287,973	132,598	256,126	371,371	313,398	330,021	310,768	285,421	466,563	343,447	428,590	303,734		131,897	386,369	295,364					
Paired reads	412,428	491,837	535,594	366,684	250,978	214,159	450,698	450,592	255,723	371,361	698,485	109,306	278,697	487,329	392,351	267,841	209,889	339,107	191,916	248,190	107,023	232,726	357,379	301,187	318,114	299,314	271,222	424,515	328,299	365,128	291,609		39,739	367,169	279,421					
Merged reads	297,779	331,198	374,306	254,725	131,016	132,055	322,083	316,516	173,514	278,456	532,126	81,119	218,727	346,675	231,732	201,398	65,605	223,360	95,394	126,970	68,393	185,017	292,310	247,771	225,395	165,050	155,859	276,691	237,126	233,135	164,577		23,988	258,250	103					
After quality filtering	186,776	190,797	236,303	154,685	77,820	66,701	203,003	190,364	104,076	182,165	357,629	52,140	149,615	210,110	111,190	131,871	17,282	117,935	47,800	57,158	41,685	121,425	198,510	165,052	134,130	87,680	64,686	166,001	143,075	131,644	81,356	4,180,664	11,210	161,388	50					
																																0.412502602				185,400	26,112	5,839	18	18

															Sa	mple Libr	ary														
Detected Species	FC27_10	FC27_11	FC27_13	FC27_14	FC27_15	FC27_17	FC27_18	FC27_19	FC27_2	FC27_20	FC27_24	FC27_29	FC27_30	FC27_31	FC27_4	FC27_8	FC28_1	FC28_12	FC28_16	FC28_21	FC28_22	FC28_23	FC28_25	FC28_26	FC28_27	FC28_28	FC28_3	FC28_5	FC28_6	FC28_7	FC28_9
American Pickerel (Esox americanus)	х			х	х	х		х	х		х	х	х	х	х	х	х						х			х					х
Blackchin Shiner (Notropis heterodon)				х	х			Х		Х			х							Х						Х					
Bluegill Sunfish (Lepomis macrochirus)	Х	Х	х	Х	Х	Х	Х	Х	х	Х	х	Х	Х		Х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х	Х	х	Х	Х
Bluntnose Minnow (Pimephales notatus)					Х					Х						Х		Х	Х	Х	Х			Х	Х						Х
Brook Trout (Salvelinus fontinalis)														Х																	
Brown Trout (Salmo trutta)														Х																	
Central Mudminnow (Umbra limi)	Х	Х		х	х	Х	Х		х		Х			Х	х	Х	х		Х	Х	Х					Х	Х	х		Х	Х
Channel Catfish (Ictalurus punctatus)																												х			
Common Carp (Cyprinus carpio)				х					х	Х	Х		х		х	Х	х				Х	Х		Х	х	Х	Х	х	х	Х	
Creek Chub (Semotilus atromaculatus)						х												х													
Green Sunfish (Lepomis cyanellus)														х												Х					
Iowa Darter (Etheostoma exile)		Х							Х		Х		х									Х							х	х	Х
Johnny Darter (Etheostoma nigrum)									х																						
Lake Chubsucker (Erimyzon sucetta)	х											X		х			х	х	х						х						х
Largemouth Bass (Micropterus salmoides)	х	х	х	х	х	х	Х	х	х	х	х	X	х		х	Х	х	х	х	х	х	х	х	х	х	Х	х	х	х	х	х
Least Darter (Etheostoma microperca)		х		х	х	х		х		х	х		х		х	Х			х		х	х						х			х
Mottled Sculpin (Cottus bairdii)						х																									
Pumpkinseed Sunfish (Lepomis gibbosus)	х	Х	х	х	х	х		х	х	Х		X			х	X	х	Х	х	х	x	х			X	X	х	х		х	X
Warmouth Sunfish (Lepomis gulosus)	х	х	х		х			х			х		х		х	Х	х	х	х	х	х				х	Х	х	х	х	х	х
White Sucker (Catostomus commersonii)						х																									
Yellow Bullhead (Ameiurus natalis)									х			х			х		х	х													x
Total Species Richnes	s 7	7	4	8	9	9	3	7	9	7	8	6	8	6	9	9	9	8	8	7	8	6	3	4	7	9	6	8	5	7	11

Supplemental Table S5. Species detection by sample for all three markers combined using the low stringency bioinformatic criteria. The 31 Lawler Pond samples libraries were randomly divided among two Illumina MiSeq runs: FC27 and FC28.

	Sample Library																														
Detected Species	FC27_10) FC27_11	FC27_13	FC27_14	FC27_15	FC27_17	FC27_18	FC27_19	FC27_2	FC27_20	FC27_24	FC27_29	FC27_30	FC27_31	FC27_4	FC27_8	FC28_1	FC28_12	FC28_16	FC28_21	FC28_22 FC	C28_23	FC28_25	FC28_26	FC28_27	FC28_28	FC28_3	FC28_5	FC28_6	FC28_7	FC28_9
American Pickerel (Esox americanus)	х			х	х	х		х	х		х	х	х	х	х	х	х						х			х					х
Blackchin Shiner (Notropis heterodon)				Х	Х			Х		Х			Х							х						Х					
Bluegill Sunfish (Lepomis macrochirus)	х	Х	х	Х	Х	Х	Х	Х	х	Х	х	Х	Х		х	х	х	х	х	х	X	Х	х	Х	х	Х	х	Х	х	Х	х
Bluntnose Minnow (Pimephales notatus)					Х					Х						х		х	х	х	X			Х	х						Х
Central Mudminnow (Umbra limi)	х	Х		Х	Х	Х	Х		х		х			Х	х	х	х		х	х	X					Х	х	Х		Х	х
Common Carp (Cyprinus carpio)				Х					Х	Х	х		х		Х	Х	х				X	Х		Х	х	Х	Х	Х	Х	Х	
Creek Chub (Semotilus atromaculatus)						Х												Х													
Green Sunfish (Lepomis cyanellus)														Х												Х					
Iowa Darter (Etheostoma exile)		Х							х		х		Х									Х							х	Х	х
Lake Chubsucker (Erimyzon sucetta)	Х											Х		Х			х	Х	Х						х						х
Largemouth Bass (Micropterus salmoides)	Х	х	х	Х	Х	Х	Х	Х	Х	Х	х	Х	х		Х	Х	х	Х	Х	Х	X	Х	Х	Х	х	Х	Х	Х	Х	Х	х
Least Darter (Etheostoma microperca)		Х		Х	Х	Х		Х		Х	Х		Х		Х	Х			Х		X	х						Х			Х
Pumpkinseed Sunfish (Lepomis gibbosus)	Х	х	х	Х	Х	Х		Х	Х	Х		Х			Х	Х	х	Х	Х	Х	X	Х			х	Х	Х	Х		Х	х
Warmouth Sunfish (Lepomis gulosus)	Х	х	х		Х			Х			х		х		Х	Х	х	Х	Х	Х	X				х	Х	Х	Х	Х	Х	х
Yellow Bullhead (Ameiurus natalis)									х			х			х		х	х													х
Total Species Richnes	is 7	7	4	8	9	7	3	7	8	7	8	6	8	4	9	9	9	8	8	7	8	6	3	4	7	9	6	7	5	7	11

Supplemental Table S6. Species detection by sample for all three markers combined using the moderate stringency bioinformatic criteria. The 31 Lawler Pond samples libraries were randomly divided among two Illumina MiSeq runs: FC27 and FC28.

https://mc06.manuscriptcentral.com/cjfas-pubs

Supplemental Table 37. Species detection t	by sample.	ioi an unc	c markers (comonica	using the	ingi sunig	citey bioin	formatic ci	nena. In	C JI Lawie	a i onu sai	inpics nora	ines were i	indonny d	ivided and	ng two m	unnina ivii	Seq runs r	C27 and I v	J20.										
															Sa	mple Libr	ary													
Detected Species	FC27_10	FC27_11	FC27_13	FC27_14	4 FC27_15	5 FC27_17	7 FC27_18	8 FC27_19	FC27_2	FC27_20	FC27_24	4 FC27_29	FC27_30	FC27_31	FC27_4	FC27_8	FC28_1	FC28_12	FC28_16	FC28_21	FC28_22	FC28_23 FC28	25 FC28	_26 FC28_	27 FC28_28	B FC28_3	FC28_5	FC28_6	FC28_7	FC28_9
American Pickerel (Esox americanus)		х		х	х			х	х		х			х	х			х							х					х
Bluegill Sunfish (Lepomis macrochirus)	х	х	х		х	х	х	х	х	х	х	х	х		Х	Х	х	х	х	х	х	X X	X	Х	х	Х	х	х	х	Х
Central Mudminnow (Umbra limi)	х	х			х		х		х		х			х	Х	Х			х	х									х	Х
Common Carp (Cyprinus carpio)													Х								Х	X		Х			Х			
Iowa Darter (Etheostoma exile)		Х									х											X								Х
Largemouth Bass (Micropterus salmoides)	Х	Х	х	Х	х	Х	х	х	Х	х	х	Х	х		Х	Х	х	х	Х	Х	Х	X X	X		Х	Х	х	Х	Х	Х
Pumpkinseed Sunfish (Lepomis gibbosus)	Х	Х			х				Х			Х						х	Х	Х	Х			Х	Х					Х
Warmouth Sunfish (Lepomis gulosus)	Х										Х					Х	х	Х		Х									Х	Х
Total Species Richness	s 5	6	2	2	5	2	3	3	5	2	6	3	3	2	4	4	3	5	4	5	4	4 2	2	3	4	2	3	2	4	7

Supplemental Table S7. Species detection by sample for all three markers combined using the high stringency bioinformatic criteria. The 31 Lawler Pond samples libraries were randomly divided among two Illumina MiSeq runs FC27 and F