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Abstract—The fish farming industry is becoming widespread
all over the world. By 2039 most of the fish we eat will come
from the fish farming industry. In this work, we propose an
autonomous robotic solution for indoor fish farming biomass
estimation. Our proposed system moves silently on top of the tank
borders using differential wheels and a structured light vision
system (SLS). The SLS system is composed by a camera and two
line lasers (projectors) equipped with a line beam that allows
to obtain the fish depth profile present in the tank to perform
biomass estimation. Results in laboratory and in real aquaculture
environment with live fish are presented.

Keywords—Underwater vision system, Camera, Line laser,
Structured light vision system, Fish Farming Calibration, Biomass
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I. INTRODUCTION

The growth rate of world population 1.14% per year [1],
making a total of 7.3 billion people in the world today and
raising up to 10 billion in 2050. This growth is putting lots of
pressure in the renewal of the planet natural food resources.

The United Nations FAO organization [2] issues regulation
that address fisheries management and development, by taking
into account the knowledge and uncertainties about biotic and
human components of marine ecosystems. The sole purpose
of this approach is to plan, develop and manage fisheries in
such a way that it can cope with human society needs, but
also keep the full range of goods and services provided by
marine ecosystems. Due to increasing demand for fish and
fish proteins, fish farming has become a widespread activity
all over the world. Already considered as a solid alternative
to cover fish market demands, and according to a world bank
report [3] it will be 2/3 of all world fish supplies by year 2030.

We can roughly divide fish farming activities into two
categories: extensive aquaculture or intensive aquaculture.
While extensive aquaculture is usually related to outdoor fish
farming, the intensive and semi-intensive aquaculture is more
dedicated to indoor fish tank systems. In these kinds of fish
growth systems, fish production per unit of surface is key,
and companies try to maximize this key production item by
mixing three fundamental elements: oxygen, fresh water and
food. The way to do so, is by setting a very well structured
fish tank production environment with controlled illumination,
a continuous fresh water supply, and conducting periodical bio-
logical/chemical tests of all elements present in the production
environment. They also conduct regular biomass and fish size
evaluation procedures in order to check fish growth, a process
denoted as biomass estimation.

The biomass estimation process is very labour intensive and
increases the cost of production. On the other hand the density

and biomass estimates are crucial for evaluating fish growth
during its growth cycle. The statistical value is fundamental for
fish farmers to estimate and adjust fish food dosage, medicine
dosage, early detection of fish loss, but most importantly
growth rates and food conversion factor appraisal to decide
when is the best time to conduct financial transactions.

Nowadays, most of biomass estimation procedures in the
fish farming industry are performed manually. Individual fish
samples are collected from the indoor tanks to be measured
and weighted. This procedure induces high fish mortality,
illness, also causes fish stress affecting the fish biorhythm thus
inducing a more slow growth rate.

In this paper we propose a novel robotic solution for indoor
fish farming biomass estimation. Our solution is composed
by two main physical components: First a robotic mechanical
platform, that is placed on top of the borders of the under-
water tank. The platform moves autonomously on top of the
tank using differential wheels with encoder information. The
information is then coupled with position lasers that measure
platform travelled distance to a fixed target, usually placed
at end of the tank; Second component is a mobile platform
that moves on top of the mechanical platform and contains a
structured light vision system (SLS), equipped with two lasers,
a camera and a processing unit that performs 3D underwater
mapping of the tank bottom using the triangulation principle
[4], in an u-shape type movement.

This novel system was already tested in laboratory, and in a
fish farming indoor production tank using live fish specimens.
The obtained results allows us to conclude that our proposed
solution is able to measure the biomass volume and the fish
weight fare better than current solutions that are only based
on manual samples collected by humans. The prototype is
currently being upgraded to low its current weight and will
start to work on a regular basis shortly.

The outline of this paper is the following, in section II
a brief related work will be presented. Section III describes
the robotic mechanical solution, the SLS system and its main
components. Section IV contains tests results in laboratory
environment and also in a real fish farm facility. Finally, in
section V we discuss the conclusions and present some of our
ideas to improve the system in future work.

II. RELATED WORK

The use of computer vision techniques for biomass estima-
tion started in the mid 90s [5], [6], [7]. However, these systems
still were equipped with low level of automation and required
intense activity from operators. In early work, Foster et al. [5]
used an underwater camera and image analysis tool to detect
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and count left over pellets. Petrell et al. [6] developed a system
for estimating the mass of fish using stereo video cameras. In
[7] the authors propose a video system for measuring the size
and swimming speed in cages and tanks with a non-intrusive
and offline system.

Most of the methods were applied to fix structures and
only average biomass estimations were obtained. Furthermore
at the time, there was no real time processing of the video
images. Instead, video images were collected and its image
content analysed in post-processing. As for instance, in [8]
Lines et al. develop automatic techniques for identifying good
images of fish in video frames and determine the outline of
the fish in 3D space.Thereunto, they used a stereo vision
system to extract linear dimensions of salmons and estimate
their mass. Preliminary tests showed that the mean mass
measurement error was 18% with a standard deviation of only
9%. In other work, Costa et al. [9] tested a dual underwater
camera system for counting and estimating fish length, while
the fish was being transferred, the system reported length
estimation calibration errors of less than 13% and biomass
estimation error of roughly 50%. The same authors, in [10]
used a submersible dual camera module connected through
two frame grabbers to a PC, the system used filtered and
segmented images with a fixed threshold to obtain binary
images. Image segments were analysed for area, major axis
length and circularity. Afterwards, feature points in each stereo
image pair are used to obtain their geometry. Fish-length
estimation error, based on a single measurement of a model
fish, was approximately 2%.

In [11], [12] Martinez et al. develop a biomass estimation
system using computer vision and robotic techniques, but the
biomass estimation for indoor aquaculture was conducted over
the water surface using pure visual based methods. With the
increase in automation and machine vision systems, the com-
bination of laser systems with visual methods for inspection
tanks become widespread.

In [13] it was proposed a method to evaluate the spatial
distribution of flat fish in raceway tanks using a laser and a
digital camera. The aim of the system was to improve tank
design and fish management. In [14] a laser scanning system
is used to recover the biomass inspection of a fish tank. The
SLS system, does not process the line laser images in real-time
and the platform is not fully automatized, instead its manually
pushed.

On the contrary, our system proposes a fully autonomous
solution without human in the loop for obtaining 3D under-
water mapping of an indoor Raceway tank system (RAS).
With this solution and based on conservative estimates of an
average fish density, is possible to obtain real-time estimates
of the biomass in each tank. Moreover, the system can perform
multiple scans and transform what is a painful manual process
into a automatized simply process that can be executed several
times per day, with much less measurement uncertainty.

III. SYSTEM ARCHITECTURE

Our system was designed to address the challenge of inten-
sive biomass estimation in indoor RAS tanks. We developed
a robotic platform that is mechanically adaptable to the RAS
tanks. In Fig. 1, we can see our fish farming calibration system
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Fig. 1. Hardware Architecture Fish Farming Autonomous Calibration System

hardware architecture. It has two main components, the robotic
platform (described in Section III-A) includes DC motors,
sensors for providing odometry information and a processing
unit. The structured light vision system (described in Section
III-B) includes line lasers, camera and also a processing unit.
The two components communicate between each by Wi-Fi
network.

A. Robotic Platform

The robotic platform incorporates the following compo-
nents:

• Omron PLC

• Mechanical Platform Position Lasers

• Brushless DC Motors with encoder information

• On-board Processing Unit

• LifePO4 batteries

• Wifi communications 2.4 GHz module

For the remaining of the paper, we will use the tank
reference frame: XX is to the right, YY is to front and ZZ
is down.

In Fig. 2, an image of the robotic platform is displayed. The
platform moves in the plane XY, parallel with the water plane.
The platform movement in the ZZ axis is manual calibrated
and its adjustable with the water column. The RAS tanks are
very shallow depth ( between 15 - 25 cm). The traction wheels
are actuated using Brushless DC Motors that allow to perform
movement in YY axis.

Fig. 2. Mechanical Platform.
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Fig. 3. Mechanical Platform Architecture.

The SLS is placed in a mobile frame that moves in XX
axis, through a system with a DC Motor that operates with
a ”timing belt” mechanism. The SLS contains a processing
unit synchronized with the PLC that is controlling the robotic
platform, and communicates using the Wi-Fi network.

In order to obtain the global platform position in the tank
reference frame, position lasers were installed in the robotic
platform and artificial targets are placed at end of tank. This
sensing mechanism allows us to keep track of the total travel
distance of the robotic platform in the tank, the lasers are
placed on the sides of the robotic platform. The position
lasers allow traction control in YY axis and avoid other
situations such as slipping wheel. In this situation the system
tries to compensate the motion or stops the scan. The PLC
is responsible for receiving lasers and encoders information,
control the platform movement in XX and YY axis and send
odometry information to the SLS processing unit.

The robotic platform operation in automatic mode can
be described by: The robotic platform is placed in a initial
reference point with the SLS on the side of the tank. A scan
is performed, by moving the SLS in XX axis until it reaches
the other side of the tank. The SLS continuously captures and
process the images while receiving odometry information from
the PLC. Then, a movement is performed in the YY axis with
a predetermined step, which is constant through out the length
of the tank. Followed by a scan is while the SLS is moving
in the opposite direction. This procedure, based on a u-shape
movement is repeated until it scans the entire tank.

The robotic platform is mechanically built using aluminium
and stainless steel to prevent corrosion caused by the hostile
environment on fish farming industries. As for the SLS unit
its built using waterproof housings.

B. Structured Light Vision System

The mobile structured light vision system (SLS), contains
the following components:

• NUC Intel i5 2.70 GHz processing unit

• IDS UI-3240C 1.3Mp

• 2 Global Lyte Mv Lasers 635nm wavelength (red)
5mW power with waterproof Housing

• LifePO4 batteries

• Wifi communications 2.4 GHz module

(a) Structured Light Vision System -
Camera and red lasers.

(b) Snapshot Structured Light Vision
Image, red laser line deformation in
the presence of a fish.

Fig. 4. Structured Light Vision System.

The SLS unit consists of: one camera and two red line
lasers, both with waterproof housings, see in Fig. 4(a). The
processing unit is responsible for acquiring and processing the
2D images, receive odometry information and compute the
triangulation for obtaining all points of the line laser in 3D
reference coordinates.

C. Calibration

One of the critical issues that needed to be solved in order
for the SLS system to work, was the calibration between the
laser projectors and the camera. In [15] we proposed two SLS
calibration methods, one based on the cross-ratio principle,
while the other was based on the robust estimation of the laser
line projection in the camera reference frame. The methods
were tested both in dry and underwater environments and the
line projection method achieved 2x times smaller errors than
the cross-ratio method. The results obtained show that error
for the line projection method is about 1mm, see [15] results
section.

D. 3D Modelling

The SLS allows us to obtain 3D information from the
flats fish present in an rectangular indoor tank. In Fig.5 we
can see the SLS software architecture. The main purpose
is to obtain synchronized time stamp images with dual line
laser projection information. Flatfish species are not prone to
sudden movements, the fish usually stays in the bottom of the
tank in layers. Therefore, with a SLS constantly submerged
underwater performing u-shaped laser scans is possible to
capture the fish profile layer in the tank.
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Fig. 5. SLS Software Architecture



(a) Original image. (b) Image with all pixels
with red component.

(c) Snapshot of some
image lines - Gaussian
Kernel result.

Fig. 6. SLS - Line laser detection.

Prior to be able to use the SLS for obtaining accurate 3D
underwater measurement, there is the need to perform a global
system calibration. So, in this step we need to load the camera
intrinsic parameters and the plane of each projector position in
camera reference frame, obtained in calibration step. Initially,
it may be necessary to define configuration parameters such
as: frame rate, exposure time or a threshold value for the color
segmentation.

The method which allows to obtain the 3D point cloud
is the following. First, we start image acquisition procedure
followed by an image segmentation method where only the
red component is preserved. The next step concerns the
detection of line lasers in the 2D image, as shown in Fig.
6(b). Using a Gaussian Kernel is possible to obtain the pixel
with greater color intensity for each horizontal line of the
image, as shown in Fig. 6(c).

After obtaining the line laser in the 2D image frame and
previously knowing the camera/laser calibration parameters,
is possible to obtain 3D point information, using the triangu-
lation principle between the camera viewpoint and the light
projector. For more detail please see our previous work [16].
For computing the 3D point cloud in the tank reference frame
is necessary to use odometry information. The profile layer
gives us fish height in the tank reference frame, compared to a
previously known measure of the profile tank height only with
water. Having determine this profile we can then estimate the
biomass volume of the fish present in the tank.

IV. RESULTS

A. Laboratory Experiment

For testing our fish farming autonomous calibration system
we started by performing some laboratory experiments. A fish
tank measuring 3x1m with depth variations between 12 cm
and 15 cm, was used in the experiments. In Fig.7 is possible
to see an image of the experimental setup.

For this experiment we used two different types of fish:
flounder and turbot. The working principle consisted on first
do the 3D underwater mapping of the tank only with water.
Then we placed dead fish and perform the 3D mapping of
the fish using the SLS. Based on the comparison between
both measures is possible to extract the fish biomass volume
contained in the tank.

In the first test, a sample with 4 flounder with 0,956 kg of
weight was used. In Fig.8, is possible to see the fish sample,
as well as, the corresponding 3D point cloud result.

Our system measures the overall biomass volume present
in a given tank. However a potential client/producer, is actually
interested in knowing the overall fish biomass weight (M)
present in the tank. Therefore, is necessary to relate the actual
fish weight with his density. For doing so, we collected a fish
sample, and use a container with known dimensions and known
volume of the water column. We placed all the fish samples
inside of the container in order to measure the difference of
water column height to calculate the density of the fish.

Afterwards, the weight of this sample is obtained using
equation (1), where M represent the biomass weight, V the
biomass volume, measured by the system and ρ the biomass
density.

ρ =
M

V
(1)

The results presented in Table I, show that our approach
has about 5% of relative error in estimate the biomass weight.

TABLE I. COMPARISON OF THE TOTAL BIOMASS WEIGHT

MEASUREMENTS BETWEEN THE MANUAL CALIBRATION AND THE SCAN
SYSTEM IN INESC TEC LABORATORY - FLOUNDER

Number of fish 4

Biomass density (kg/m3) 1020

Weight (kg)
Absolute

Error (kg)

Relative Er-

ror (%)

Manual Calibration 0,956 - -

SCAN 0,907 0,049 5,125

Analogously, the same tests were performed for other type
of flat fish, the turbot. For this test, we use a sample of 5 turbot
weighing about 4,850 kg. In Fig. 9 is shown the fish sample
used and the corresponding 3D point cloud result. The results
presented in Table II, show that our approach has about 8%
of relative error in estimating the biomass weight.

In Fig. 10 a result of 3D scan of the fish turbot is presented.
In this image is possible to see that the tank was about 125
mm and the fish maximum thickness is approximated 40 mm.

B. Indoor Fish Farm Experiment

The fish farming calibration system was experimented in
a live indoor aquaculture farming industry. For this purpose a

Fig. 7. Experimental Setup Laboratory Tank



Fig. 8. Point cloud 3D scan result of the fish farming calibration in laboratory
tank

Fig. 9. Point cloud 3D scan result of the fish farming in laboratory tank.

TABLE II. COMPARISON OF THE TOTAL BIOMASS WEIGHT

MEASUREMENTS BETWEEN THE MANUAL CALIBRATION AND THE SCAN
SYSTEM IN INESC TEC LABORATORY - TURBOT

Number of fish 5

Biomass density (kg/m3) 1200

Weight (kg)
Absolute

Error (kg)

Relative Er-

ror (%)

Manual Calibration 4,850 - -

SCAN 4,470 0,380 7,833

Fig. 10. Point cloud 3D scan result of the fish turbot.

section of a large 40x3.5m tank, with 2.80x3.50m was selected.
In Fig.11 we can see the system operating in a RAS production
tank.

Fig. 11. Experimental Setup Indoor Tank.

The amount of biomass available in the tank was manually
calibrated for ground-truth estimation purposes. In this test,
performed in an actual aquaculture environment, we used 209
flounders with 69,700 kg of total weight. Having such a large
quantity of fish it was impossible to know the real mean value
of its biomass density.

Therefore, the biomass weight was estimated using density
values, between 1200 kg/m3 and 1300 kg/m3. Even not being
to thorough, since these are indicative values for live fish
individuals, it allows us to have an approximated idea of
the measurement errors associated, see Table III. The results
show that our approach has between 10% and 17% of relative
error in biomass volume in real aquaculture environment.
These results will have to be further validated in future work,
taking into consideration the amount of fish present in a given
tank and their growth during their life cycle. Also in the
future, the mean value for biomass density will be estimated
using statistical databases. The database will be generated by
multiples scans of the same individuals in the same tank for
estimate an approximate real biomass density value, and also
by weighing all the fish in the tank priory to their sale.

In Fig. 12 is displayed the final result of the 3D point cloud
of the fish farming indoor tank experiment.

TABLE III. COMPARISON OF THE TOTAL BIOMASS WEIGHT

MEASUREMENTS BETWEEN THE MANUAL CALIBRATION AND THE SCAN
SYSTEM IN THE FISH FARMING FACILITY

Number of fish 209

Biomass density (kg/m3) 1200

Weight (kg)
Absolute

Error (kg)

Relative Er-

ror (%)

Manual Calibration 69,700 - -

SCAN 57,749 11,950 17,146

Biomass density (kg/m3) 1300

Weight (kg)
Absolute

Error (kg)

Relative Er-

ror (%)

Manual Calibration 69,700 - -

SCAN 62,562 7,138 10,241

V. CONCLUSION

The aquaculture industry is turning rapidly into a billion
dollar industry. Therefore is important to maintain standards
that allow fish to grow in a sustainable manner. Currently there
are lots of interests in optimizing the growth with parameters
like food, water quality, temperature and oxigen in the tank.



Fig. 12. PointCloud 3D scan result of the fish farming indoor tank experiment

The biomass estimation procedure is usually performed man-
ually, originating fish mortality, illness, and causing fish stress
that induces a slow growth.

In this work we have presented an autonomous system
for indoor fish farming biomass estimation. Our robotic me-
chanical platform that is placed and moves on the borders
of a RAS tank contains a moving platform with our custom
designed structured light vision system. The 3D underwater
laser scanning technique is a promising tool for estimating the
biomass weight, and is an alternative to the common manual
measured system.

For proof concept our system was tested in laboratory
experiments, and in these tests we use two different types of
fish: flounder and turbot. In laboratory experiments, the results
show that our approach has a maximum 8% of relative error
in estimating the biomass weight. The fish farming calibration
system was also experimented in a live indoor aquaculture
farming industry and the results show that our approach has
about 15% error in overall biomass weight in real aquaculture
environment.

In future work, there is need to integrate an inertial
measurement unit in the SLS system to reduce the position
and attitude errors of the robotic mechanic platform. One of
the error sources is for not taking into consideration the robotic
platform attitude in the tank. Also mechanical redesign towards
a weight reduction of the all system is currently under way,
to allow an easy assembly and mobility inside the indoor fish
farm.
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