
The fish industry is very competitive.
Fleet owners are very interested in
filling their boats as fast as possible

with the fewest and most qualified per-
sonnel, thus reserving maximum occu-
pancy for their refrigerated storage. Dur-
ing an expedition, which can last between
one to two weeks, the fish processing
machinery operates around the clock (fig-
ure 1). Typically, fishes are brought on the
boat and dropped into metal pockets that
convey them through cleaning, cutting,
and filleting machines. Anomalies, which
must be detected at the beginning of the
chain, include a fish of the wrong species
or a damaged fish. Such anomalies must
be rejected immediately. In addition, the
presence of more than one fish in a pock-
et or the improper orientation of a single
fish must be detected quickly to avoid
jamming the cutting or filleting machines.
This type of real-time inspection is not
easy to deploy with conventional image-
processing tools since the size, shape, and
scales of fishes are difficult to model math-
ematically. Their features can also change
depending on the location of the expedi-
tion as well as the season of the year. Fig-
ures 2–4 depict well-positioned and dam-
aged fish. Finally, and most importantly,
the inspection system must be very easy
for crew members to use, since there is no
room on board for a software programmer
to fix a software bug or change an image-
processing algorithm. 

Several attempts have been done by
Pisces Industries to solve this problem
with traditional combinations of cameras,

frame grabbers, PCs, and image-process-
ing software. None of these attempts have
led to a usable offshore system because of
the high nonlinearity of the problem.

A neural network approach was the
only possible way to deliver a system that
could be both adaptive and trainable by
the fishers themselves. A hardware neural
network was the best way to deliver a reli-
able and fast system that featured both a
small footprint and affordable cost. Typi-
cal fish species to be recognized include
ill-defined herrings or mackerels.

Silicon Neural 
Network Justification

Due to the highly variable aspect of a fish,
mathematical modeling was not an
option. In addition all the “by catch”
(which are random species) must be reject-
ed, but random species cannot be learned
due to the infinite number of shapes and
textures. In order for the inspection sys-
tem to operate properly, the concept of
“uncertain” and “unknown” was critical.
In addition, due to exacting conditions at
sea, providing reliable continuous opera-
tion within a minimum space and without
mechanical components (such as a PC fan)
was mandatory. Speed was also essential—
360 to 600 fishes per minute. Computer-
ized statistical analysis was not a viable
solution because of the need for a small
footprint, high speed, and low cost. In
real-life situations, the key is not necessar-
ily to have the absolutely best classifier but
instead to have a solution that can solve
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Fish Inspection System Using 
a Parallel Neural Network Chip 

and the Image Knowledge 
Builder Application
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■ A generic image learning system,
CogniSight, is being used for the
inspection of fishes before filleting off-
shore. More than 30 systems have
been deployed on seven fishing vessels
in Norway and Iceland over the past
three years. Each CogniSight system
uses four neural network chips (a total
of 312 neurons) based on a natively
parallel, hard-wired architecture that
performs real-time learning and non-
linear classification (RBF). These sys-
tems are trained by the ship crew using
Image Knowledge Builder, a ”show
and tell” interface that facilitates easy
training and validation. Fishers can
reinforce the learning anytime when
needed. The use of CogniSight has sig-
nificantly reduced the number of crew
members needed on the boats (by up to
six persons), and the time at sea has
been shortened by 15 percent. The fast
and high return of investment (ROI) to
the fishing fleet has significantly
increased the market share of Pisces
Industries, the company integrating
CogniSight systems to its filleting
machines.
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the problem at hand at a reasonable cost. In 2003
the ZISC1 was the only available neural network
chip that could meet these constraints. Its restrict-
ed coulomb energy (RCE) (Reilly, Cooper, and
Elbaum 1985) feed-forward network offered a high-
ly nonlinear classifier and allowed for unknown
and uncertainty detection.

Learning and Reinforcement
An important feature of the system was its ability
to refine the learning “on board,” since a fishing
vessel can stay out for more than two weeks with-
out ever going ashore (figure 5). An additional
requirement was the ability to adjust the “through-
put versus accuracy” of the recognition engine by
increasing or decreasing the severity on the fish’s
quality depending upon the situation or season.
This was achieved in CogniSight by editing a sin-
gle parameter, the value of the maximum influ-
ence field of the neurons, which controls their lev-
el of conservatism during the learning process. The
higher this value, the more liberal is the recogni-
tion; the smaller the value, the more conservative
is the recognition.

The Solution
The CogniSight system (figure 6) is composed of a
vision sensor, a silicon neural network, and a
recognition engine on a field-programmable gate
array (FPGA) acting as the glue logic that extracts a
feature vector from each video frame and reads the
response of the network after the broadcast of each
signature. CogniSight is mounted in a waterproof
enclosure above the pocket conveyor just before
the filleting machine.

The autonomy of the recognition relies on the
parallel neural network, which is capable of learn-
ing by example and generating models automati-
cally. The neural network can recognize patterns
that are identical or similar to the models stored in
the neurons. It produces three types of responses:
(1) a status response that indicates whether the
classification is identified, uncertain, or unknown;
(2) a global response, which is the category of the
first neuron with the best match, if any, to an exist-
ing model (that is, with the smallest distance to the
input vector); and (3) a detailed response that is
the category and distance value of all the “firing”
neurons read in increasing order of distances. The
detailed response of the network can be useful in
building hypothesis and leveraging uncertainties.
In the case of the fish inspection, the global
response has proven to be sufficient because the
teaching was done easily but thoroughly on many
examples, thanks to the Image Knowledge Builder
tool that was delivered with the system. As a result,
the system produces few uncertainties, and the
best match response gives 98 percent accuracy.
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Figure 1. The Engey (Iceland). 

This boat is operating seven CogniSight systems.

Figure 2. A Well-Positioned Mackerel.

Figure 3. A Well-Positioned Herring.



On the filleting line, the number of classifica-
tions is limited to four categories: accept, reject,
recycle, or empty. However, categories can include
multiple visual criteria. An “accept” is a pocket
containing a fish of the right species (herring for
example) that is not damaged and is in the proper
position to enter the filleting machine. A “reject”
is a fish of the right species but damaged or a fish
of the wrong species. A “recycle” is a pocket show-
ing a fish of the right species, not damaged, but
improperly oriented. A “recycle” might also be a
pocket with more than one fish of the correct
species. The idea of the “recycle” category is to
eject the fish on a vibrating table so it goes back to
the beginning of the line to be dropped into a new
pocket. When teaching the system, crew members
must know only to which category a fish belongs.
They do not have to worry about describing the
rules for a decision. They simply have to reinforce
learning by clicking the appropriate button on the
touch-screen panel if they see that the camera is
making mistakes (figure 7). 

The ease and freedom with which tutoring is
done was a key selling point of the system. The
neural network learns the examples and builds the
decision space accordingly, whether highly non-
linear or not. The possible drawback of too much
freedom in tutoring is that a fish that looks dam-
aged to one fisherman might pass as acceptable to
another fisherman (or the same fisherman, but on
another day). Such contradictions deteriorate the
knowledge by creating “degenerated” neurons. To
circumvent this risk, CogniSight is delivered with
a software tool for training and validation that
allows teaching on many images collected with the
sensor and reviews the consistency of the recogni-
tion. This software is called Image Knowledge
Builder. It features a very simple and practical user
interface that can test the accuracy and through-
put of the recognition on many images before
loading it into the sensor.

Image Knowledge Builder runs a simulation of
the silicon neural network. It can save the contents
of the neurons into an image knowledge file for-
mat readable by CogniSight. This file transfer is
equivalent to a knowledge transfer. Once the sili-
con neurons are loaded with reference patterns
and associated categories, CogniSight can then
execute the same recognition as Image Knowledge
Builder, only at full speed on live images with no
connection to a PC. The recognized category is
transmitted to output lines that indicate whether
the content of the pocket is an “accept,” “reject,”
“recycle” or “empty.” This signal is sent to a pro-
grammable logic controller (PLC), which itself con-
trols two brushes sending the fishes to a reject or
recycle bin as applicable.

CogniSight can be connected to an Ethernet
local-area network installed on the boat for four
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Figure 4. A Damaged Mackerel to Be Ejected.
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Figure 5. Classification Moderation in CogniSight.

Figure 6. The CogniSight System Installed on the Filleting Line.



types of operations: (1) view the images on screen
to adjust the camera settings at the time of instal-
lation; (2) collect images to proceed with the train-
ing of the neural network with Image Knowledge
Builder; (3) load an image knowledge file (IKF file)
into the neural network of the camera; and (4) view
statistics accumulated on the camera and report the
number of acceptable and nonacceptable fishes

Use of AI Technology
Feature extraction is executed by a field-program-
mable gate area (FPGA), which converts the pixel
values received from the charge-coupled device
(CCD) sensor (640 x 480 pixels) into a feature vec-
tor of 256 bytes. It is calculated over a region of
interest specified in the video frame, which can
range from 16 x 16 pixels to the full frame. This
transform is a spatial and gray-level integration
based on a “best fit” function of 256 blocks within
the selected region. The resulting 256 components
are transmitted to the neurons, and the response is
read back before the next frame starts (figure 8).

RBF Classifier with Automatic 
Model Generator
The incoming feature vector is broadcast to a hard-
ware neural network of 312 neurons. This network
is composed of four semiconductor chips (ZISC)
with 78 neurons per chip connected in parallel.
The neurons “react” to the incoming feature vector
by evaluating the similarity with their reference
vector (stored in their memory during the train-
ing). Their network implements a radial basis func-
tion (RBF) classifier, derived from the compound
classifier (Batchelor 1974) and the RCE (figure 9).

When committed (or trained), a neuron evalu-
ates whether an incident pattern is similar enough
to its stored pattern (for example, a model) by cal-
culating an L1 distance. If similar, it will output its
response to the global response bus. The similarity
domain of a neuron is self-mapped during the

training process and does not require manual
adjustment. If many neurons respond to the same
stimuli, a winner takes all (WTA) patented scheme
allows retrieval, in a fully parallel manner, of the
best responses of these neurons. The classification
can then be determined as either positively identi-
fied or uncertain. If all the neurons firing with the
same smallest distance value are in agreement with
the identified category, the classification is said to
be “identified.” If, on the contrary, these firing
neurons return different category values, the clas-
sification is possible, but with some level of uncer-
tainty. Uncertainty can be waived using different
methods, but in the case of the fish inspection, a
conservative training scheme has allowed good
accuracy by simply reading the response of the first
neuron on the list (figure 10).

Generation of Portable Knowledge
The neural network embedded in CogniSight is eas-
ily trained using the Image Knowledge Builder soft-
ware. This application features batch utilities to
automatically extract feature vectors from annotat-
ed images and broadcast these features to the neu-
ral network repetitively until the knowledge is sta-
ble. Stability is achieved when the learning of the
vectors no longer creates any new neuron. Report-
ing utilities help identify difficult or complex clas-
sifications, pinpoint possible erroneous or incon-
sistent annotations, and evaluate compromises
between throughput and accuracy (figure 11). 

An image knowledge file (IKF) can either be
stored for use on the same boat during a next fish-
ing trip or transferred for use on other CogniSight
systems installed on other boats running the same
type of expeditions. Currently, Pisces has installed
systems on a fleet fishing for herrings. The knowl-
edge file for these systems has been built over sev-
eral expeditions taking place throughout the year.
The accumulated knowledge can be labeled as
“year-around” knowledge. It is composed of fewer
than two hundred models and has already inspect-
ed several million herrings. In addition, when new
conditions are encountered during a fishing cam-
paign, the crew can perform reinforcement learn-
ing to refine the knowledge.

Introducing Silicon 
Neural Networks (SNN)
Neural networks have been extensively discussed
since their appearance in the late 1980s. DARPA’s
(DARPA/TTO 1988) recommendation after con-
ducting an extensive survey at that time was to “go
silicon.” As neural networks are inherently a group
of elements with the same basic behavior, they are
indeed candidates for massively parallel architec-
ture. While it has been claimed by many that neu-
ral networks benefit from being parallel, most
development has been done on standard comput-
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Figure 7. Control Panel for Online Learning and Additional Tools.



ers, which suffer three basic limitations. First, they
execute one instruction at a time (sometimes four,
if the computer has quad cores). Second, a good
part of their data bandwidth is dedicated to fetch-
ing and decoding instructions before actually exe-
cuting them. Third, data is routed through a single
bottleneck: the memory bus, which, in most cases
(except for Harvard RISC), is also the vehicle for
the instructions. As a result, a neural network
implemented by software on a standard computer
cannot be defined as parallel. 

Going forward using the massively parallel
architecture concept demonstrated that, in the
case of multiple programmed processors, synchro-
nization between them could become a serious
hurdle. The way to overcome these limitations
was to design a neuron entity with all the “genet-
ic” material to learn and recall without the need of
running program code. In addition, this architec-
ture would have to be fully distributed (no super-
vising unit) and have theoretically unlimited
expansion capability. Another constraint was to
have a fast and constant learning recognition
time, regardless of the number of connected neu-
rons. This was achieved by the ZISC architecture,
which was described by the coauthor and jointly
developed and patented2 with IBM. The first SNN
was the ZISC36 in 1993, followed by the ZISC78.
Connections of up to 5,000 neurons (on a multi-
ple peripheral connect interface [PCI] board archi-
tecture) were demonstrated. Today the CogniMem
chip (that is, cognitive memory), successor of the
ZISC, contains 1024 neurons in parallel with a
memory size extended from 64 bytes to 256 bytes.
The cascadibility of multiple chips is easily made
through a bus of 27 wires, and we can envision the
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design of a system with 10,000 neurons fitting in
a Rubix cube.

The Parallel Digital Neuron
The digital neuron consists essentially of a memo-
ry storing the learned pattern prototype (or ker-
nel), a hardwired distance evaluation unit, a learn-
ing logic, and an associative logic. Depending
upon its content, the neuron has three different
states: (1) idle (does not participate), (2) ready to
learn (next in line to learn a pattern), and (3) com-
mitted (learned a pattern associated to a category,
and has an influence field) (figure 12).

Neuron Memory: While the first neurons used 64
bytes of memory, advances in semiconductor tech-
nology now allow 1024 neurons with 256 bytes
each. The information the new 256 bytes of mem-
ory contains is indeed richer than previously and
tends to reduce the number of neurons needed for
a given problem. For the inspection of herrings,
the original knowledge was composed of 300 neu-
rons of 64 bytes. That has been reduced to 120
neurons of 256 bytes and achieves a similar accu-
racy. The learned pattern is called a prototype, as it
is a significant representation of one model of the
population.

Distance Evaluation Unit: The distance evaluation
unit computes the L1 distance (accumulation of
absolute differences) between the incoming vector
(up to 256 components) and the stored pattern.
This occurs in parallel for all the committ ed neu-
rons at each feeding of a vector component. 
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Associative Logic: The associative logic triggers
the output of the category if the evaluated dis-
tance falls into the influence field of the neuron.

Learning logic: The learning logic enables a com-
mitted neuron to autonomously reduce its influ-
ence field (generalization capability) to accom-
modate the creation of a new neuron if ap -
plicable. This is self-adaptation. If no committed
neuron identifies the taught category, the ready-
to-learn (RTL) neuron automatically commits and
adjusts its influence field to the distance to its
closest neighbor (K-nearest neighbor [KNN]). All
these operations occur inside the neuron and are
not under control of an external logic.

Network behavior: While each neuron is fully
independent during the learning and the recogni-
tion process, all the neurons can “see” the global
results. The “search and sort” patented method
allows it to find the closest distance, “winner takes
all,” among all the responding neurons in 19 clock
cycles (that is, less than one microsecond) regard-
less of the number of neurons. This provides the
unique ability to learn without the need of pro-
gram instruction. The hardware network topology
is illustrated in figure 13.

Use and Payoff
Pisces Industries,3 manufacturer of fish process-
ing equipment, has presently installed more than
30 systems on five different fleets in Norway, Ice-
land, Scotland, and Denmark. So far, most expe-
ditions have been for herrings and mackerels.
The camera inspects at a speed of 360 pockets per
minute on the herring lines, but can go faster. An
accuracy of 98 percent was verified for the classi-
fication of 16 tons of fishes with knowledge
based on 80 neurons. Inspection is a tedious job
for a human operator, especially considering that
he or she must also supervise multiple noisy
heavy machinery stations such as feeders, ejec-
tors, vibrating tables, the filleting machine, and
so on. The use of the CogniSight systems for
inspection has helped shorten the duration of
the expeditions. As a result, a boat can fill its car-
go in five days instead of seven days. Fishers
appreciate these shorter expeditions, and also
don’t mind sharing bigger catches with fewer
coworkers. 

Maintenance and Upgrades
Over the past three years, no maintenance has
been requested. Tuning of the image recognition
for different types of expeditions has been han-
dled by the crews. Except for possible electrical
failure of the camera, the only serious problem
envisioned is an insufficient number of neurons.
This might occur if the fleet decides to teach a

more complex or extended image knowledge file,
such as one capable of sorting multiple species
during the same expedition or an image knowl-
edge file sorting damaged fishes into different sub-
categories so they can be diverted towards differ-
ent recycling processes. If and when this occurs,
the new generation of CogniSight cameras (figure
14) has a flexible architecture that allows neuron
expansion cards to be added at will, in increments
of 1024 neurons. Existing knowledge files can be
loaded on the new model and expanded as long as
neurons are available. Figure 14 depicts a new
trainable sensor.

Conclusion and Perspectives
It has been proven with this application that AI
can provide high return on investment for small
entities unrelated to the field. The evolution of
hardware neural networks toward a 1000-neuron
chip allows significant cost and size reduction for
the present installation. At this time, AI has
become a “commodity” for Norwegian fishers. The
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size and cost reduction of the next CogniSight sys-
tems should enable additional control points. 

The key to the widespread use of these systems
is cost reduction (to less than US$500), robustness
(the ability to be deployed in harsh and changing
conditions), and ease of training (of the operator of
the machine). The hardware neural network allows
for a dramatic footprint reduction (close to the size
of a matchbox) providing the speed of multiple
workstations in parallel. After this first success sto-
ry, there is a strong possibility that the CogniSight
technology connected with Image Knowledge
Builder will make a significant contribution toward
turning AI into a commodity in many domains
related to vision machine learning.

Notes
1. ZISC (zero instruction set computer) is a regis-
tered trademark of IBM Corporation.
2. U.S. patent numbers 5,621,863; 5,701,397,
5,710,869; 5,717,832; 5,740,326; 6,606,614; Euro-
pean patents 694854; 694853; 694856; 694855;
and equivalent patents in Japan, Canada, and
Korea.
3. Pisces Industries, www.pisces-ind.com.
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