
Fisher and VLAD with FLAIR

Koen E. A. van de Sande1 Cees G. M. Snoek1 Arnold W. M. Smeulders12

1 ISLA, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
2 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

Abstract

A major computational bottleneck in many current al-

gorithms is the evaluation of arbitrary boxes. Dense lo-

cal analysis and powerful bag-of-word encodings, such

as Fisher vectors and VLAD, lead to improved accuracy

at the expense of increased computation time. Where a

simplification in the representation is tempting, we exploit

novel representations while maintaining accuracy. We start

from state-of-the-art, fast selective search, but our method

will apply to any initial box-partitioning. By representing

the picture as sparse integral images, one per codeword,

we achieve a Fast Local Area Independent Representation.

FLAIR allows for very fast evaluation of any box encoding

and still enables spatial pooling. In FLAIR we achieve exact

VLADs difference coding, even with ℓ2 and power-norms.

Finally, by multiple codeword assignments, we achieve ex-

act and approximate Fisher vectors with FLAIR. The results

are a 18x speedup, which enables us to set a new state-of-

the-art on the challenging 2010 PASCAL VOC objects and

the fine-grained categorization of the CUB-2011 200 bird

species. Plus, we rank number one in the official ImageNet

2013 detection challenge.

1. Introduction

For object detection, action recognition, fine-grained im-

age categorization and many other current topics, the trend

is towards evaluating many candidate boxes in the image

for the best result. This paper introduces a data structure,

FLAIR, for which it is as efficient to evaluate one box as it

is many boxes.

In spatial pyramids for image categorization the pre-

ferred number of boxes is 30 [24], due to the large com-

putational load reduced to 17 in [5]. In the selective search

algorithm for state-of-the-art object detection [24], the num-

ber of boxes is 2,000 per image. Ideally, including the 30

fine spatial pyramids leading to 60,000 boxes per image. In-

evitably, computation has become the critical factor. Rather

than re-computing the same facts many times, once per box,

we reconsider the data structure of the image in order to

Image Descriptors with codeword index

Codebook

Decompose over codewords

……

…

Integral image

∑
Box feature encoding

Figure 1. Fast Local Area Independent Representation. Given

an initial box-partitioning, we represent a picture as sparse integral

images, one per codeword dimension. FLAIR allows for very fast

evaluation of any box encoding and still enables spatial pooling. In

FLAIR we achieve exact VLADs difference coding, even with ℓ2

and power-norms, as well as exact and approximate Fisher vectors.

compute evaluations once per image by a new representa-

tion of the data, FLAIR, the Fast Local Area Independent

Representation (Figure 1).

In object detection, HOG has proven to be successful

in combination with the part-based model by Felzenszwalb

et al. [10]. It models object shape templates and scans

the image with boxes at multiple scales. Because more

than 100,000 boxes need to be inspected per object type

and aspect ratio, the analysis must be restricted to the low-

dimensional HOG features or to simple histograms. Re-

cently, Dean et al. [8] report an impressive speed-up for

object detectors based on HOG part-templates, but they

still require exhaustive scanning. Simple histograms can

be efficiently computed with multi-dimensional integral im-

ages [19], but use prohibitive amounts of memory at higher

dimensionalities. Sub-window search [15] and selective

search [24] opened the door to the use of locality with

BoW, which is computationally more expensive than HOG

[8] but superior in the quality of the semantic interpretation

[15, 27, 12, 24, 25, 5]. Dean et al. achieve a speedup factor

20,000 at the cost of a drop in accuracy, we do a speedup

factor of 18 but enabling an accuracy increase for the state-

of-the-art in object detection.

The encoding of the appearance of points in the image to

words has evolved from hard [7] and soft [26] coding to one

cluster center, to VLAD [14], super vectors [33], and Fisher

vectors [18, 22], which encode the difference between the

point descriptors and the nearest cluster center(s). The last

three representations have outperformed straight encodings.

Difference codings impose an even heavier computational

demand, as it requires a dimension-by-dimension compar-

ison of the points in the bounding box. In FLAIR, we de-

sign the representation of the point appearances such that

the Fisher vector and VLAD encoding becomes equal in

speed with the straight BoW encoding, and gain their supe-

rior performance at no extra computational cost.

The advantage of the localized encoding is evident

in fine-grained object detection [32], where Fisher with

FLAIR greatly propels the likelihood of finding proper ob-

ject correspondences between small, but often similar de-

tails, amidst the many distracting other details.

We start from the state-of-the-art selective search algo-

rithm for object detection [24], but our method will apply

to any initial box-segmentation of the image [1]. Our first

novelty is an integral-image, area-independent representa-

tion, allowing for the fast evaluation of any set of boxes, in-

cluding box candidate evaluation, and spatial pyramid pool-

ing [16] (Section 3). Then, as the second novelty, we embed

VLADs difference coding, ℓ2 and power-norm into FLAIR,

by introducing a multi-dimensional integral image per code

word (Section 4). As third novelty we include descriptor

assignment to multiple code words, enabling FLAIR also to

Fisher vectors and other multiple word assignments (Sec-

tion 5). The results are a gain of a factor 18 in algorith-

mic speed with the same accuracy. The speedup enables

Fisher vectors with fine spatial pyramids for object detec-

tion, setting a new state-of-the-art on the challenging PAS-

CAL VOC 2010 [9] as well as the CUB-2011 detection task

of two hundred bird species [30] and it won the ImageNet

2013 detection challenge (Section 6).

2. Related Work

In many current algorithms in computer vision, the eval-

uation of many boxes in one image is the key to a high-level

semantic interpretation of the image. Fidler et al. [11] start

from supervised second order pooling [3]. The method is

promising as the evaluation of the boxes leads to excellent

detection results on PASCAL VOC 2010, (be it that it re-

quires an additional round of annotations over the PASCAL

annotation). We aim at a substantial improvement in the

time it takes to evaluate boxes, to be able to evaluate more

sophisticated features.

Faster ways to partition the image in overlapping boxes

have been described in [1, 20], but their gain in speed comes

with a loss in quality. Recently, Uijlings et al. [24] propose

selective search, which combines multiple hierarchical divi-

sions and five different criteria to arrive at a good set of can-

didate boxes. Selective search is fast, assures high-recall,

and leads to an overlap with the object comparable with

[10], but the algorithm is considerably more efficient than

the reference. Selective search results in 2,000 boxes per

image where [10] has 100,352. Moreover, selective search

finds the boxes without any prior knowledge of the object

type it searches for as in [11]. We select selective search

as the method of box selection, but any other box-selection

method can be applied in FLAIR as well.

Van de Sande et al. [25] further improves selective

search by adding VLAD [14]. Recently, Cinbis et al.

[5] achieves state-of-the-art detection on PASCAL VOC

2010 using selective search in combination with reweighted

Fisher vectors [18]. In [5], the main computational bottle-

neck for detecting objects is the expensive encoding step

for each box in the image. Moreover, in the references,

Fisher and VLAD are shown to benefit from ℓ2 or power-

normalization, which implies that the feature vector of a box

can no longer be merged from two smaller boxes. Hence

in [25, 5] a brute-force approach is applied, made more

efficient by the application of product quantization [13].

In contrast, FLAIR allows for fast encoding for VLAD or

Fisher vectors on arbitrary boxes, while leaving the possi-

bility intact to benefit from the recent advances in normal-

ization [18, 14] and the advantages offered by fine spatial

pooling [25, 21].

FLAIR enables the efficient evaluation of Fisher in many

boxes and hence can be applied on the challenging problem

posed in [30], where an uncropped bird image must be as-

signed to one of 200 bird species. Not only do we achieve

automatic localization for this task, but in addition also a

considerable improvement of the accuracy.

FLAIR rests on integral images and decomposition. In-

tegral images allow for computing any sum of a rectan-

gular area in constant time [29]. Apart from fast descrip-

tor computation as applied in [20, 11], we note that the

integral image is naturally suited for efficiently summing

codeword counts inside a bounding box. In [19] integral

images are extended to multiple dimensions so they effi-

ciently construct histograms over rectangular regions. How-

ever, naively applying multi-dimensional integral images

to VLAD and Fisher leads to prohibitive memory usage

(>14GB) and datastructure creation time (minutes per im-

age). In [15, 28], integral images have been used by a de-

composition only suited for BoW and unnormalized fea-

tures. The recent Fisher vector decomposition of Chen et

al. [4] into its point-wise contributions is achieved by rep-

resenting each point as a sparse vector of codeword-indices.

The image is seen as a point-wise confidence map in which

the most likely object location is searched for later [17].

Neither the integral representation of [15, 28], nor the point-

wise representation in [4] allow for ℓ2- and power-norms,

and they do also not allow for the use of fine spatial pyra-

mids. In all cases, this results in a considerable loss of accu-

racy compared to using them [18]. FLAIR achieves a large

improvement in computation times while maintaining the

state-of-the-art accuracy for local box-driven and fine spa-

tial pyramids using VLAD and Fisher normalized vectors.

3. BoW with FLAIR

FLAIR enables fast construction of feature vectors for

arbitrary boxes in the image. Given an image partitioning,

which provides B bounding boxes, we first extract N de-

scriptors in the full image. Since the state-of-the-art relies

on dense sampling of descriptors [25, 5], N is proportional

to the number of pixels in the image. The descriptor has di-

mensionality D. We first discuss box encoding with BoW.

Box Encoding with BoW BoW assigns the descriptor at

location ~vn to the closest word ~ck in the codebook with size

K within the Euclidian space:

φ(~vn,~ck) =

{

1 if k is the closest codeword for ~vn

0 otherwise
(1)

The cost of computing the Euclidian distances between K

codewords and N descriptors (size D) is O(KND).
The K-dimensional feature vector of BoW stores the

number of descriptors hard assigned to each codeword k:

Fk =

N
∑

n=1

φ(~vn,~ck). (2)

By looping over the N descriptors and counting for all

codewords simultaneously in a single loop, this results in

a complexity O(N). The extension of Equation 2 to boxes

is done by adding a membership test for the descriptor co-

ordinates against the box coordinates. An algorithm for fea-

ture vector construction will loop through all descriptors for

each box. Hence, for B boxes in an image, with a spatial

pyramid per box consisting of S cells, it will have a com-

plexity O(NBS). This means that constructing the feature

vector for a box depends on the size of the full image, which

imposes a serious bottleneck.

To improve the efficiency, one could consider to first sort

the feature vectors on their (y, x) coordinates. Then, only

the rows within the box have to be considered. The size of

the feature vector grows with the area of the box. In worst

case, the box equals the image. Therefore, presorting does

not change the upper bound of the complexity: O(NBS).

Fast Local Area Independent Representation The key

insight for FLAIR is that assignment of a descriptor to one

of the codewords affects only a specific part of the feature

vector. For BoW with hard assignment, each descriptor af-

fects only one codebook element. Therefore, if we are in-

terested in constructing the part of the feature vector corre-

sponding to one codeword k, we only need to consider the

descriptors for which k is the closest codeword. This al-

lows us to decompose the problem of constructing the full

feature vector into K smaller subproblems, where K is the

size of the codebook. For each subproblem we compute

Equation 2 for a single k. Concatenating the solutions to

these subproblems will give us the full feature vector. From

an algorithmic point of view, the decomposition over the

words of the codebook is optimal in terms of the number of

visits to the data [6].

An integral image restricts the number of visits to the

data to two, sufficient to find the sum over a row. When an

algorithm relies on evaluating the sum over (many) boxes,

the complexity can be made independent of the area of the

box, as illustrated in Figure 2. The value at coordinate (x, y)
in the integral image is the sum of all the items above and

to the left of (x, y):

I(x, y) =
∑

x′<x,y′<y

i(x, y), (3)

with i(x, y) the number of descriptors at (x, y) that is clos-

est to codeword k. Construction of the integral image is

done in a single pass over the entire image using the fact

that the value at (x, y) is simply:

I(x, y) = i(x, y)+I(x−1, y)+I(x, y−1)−I(x−1, y−1).
(4)

Let W be the width of the image and H the height.

Then, the complexity of this pass is O(WH), which is

approximately O(N), proportional to the number of pix-

els. As illustrated in Figure 2, evaluating any rectangle

(x1, y1, x2, y2) requires just 4 operations with an integral

image:

I(x2, y2)− I(x1, y2)− I(x2, y1) + I(x1, y1). (5)

With integral images the complexity of evaluating a box is

reduced to O(1).
We have decomposed the problem of feature vector cre-

ation into K subproblems, one for each codeword. For

every codeword we need to construct an integral image.

These two components together form FLAIR: Fast, Local,

Area Independent Representation. After codeword assign-

ment, the cost of constructing FLAIR for BoW is O(NK).
FLAIR allows for creating feature vectors independent of

the bounding box area: in each of the K integral images,

Codebook

0 0 0

0 1 1

1 2 21 2 2

1 1 2

2 2 4
Point feature Codeword index

2 2 4

2 3 5

Integral imDecomposition

 0 1

 1 2

2 32 3

2 2

4 4

(2 0 2) (1 0 1)

4 4

5 5

al image

Box feature encoding

Figure 2. BoW with FLAIR. The key insight for FLAIR is that assignment of a descriptor to one of the codewords affects only a specific

part of the feature vector. For BoW with hard assignment, each descriptor affects only one codebook element. This allows us to decompose

the problem of constructing the full feature vector over codebook elements. For each individual codeword we construct an integral image,

which counts the number of assigned points inside a bounding box. Computing the number of assigned points in an arbitrary box is

just four operations (Equation 5). Concatenating the solutions to these subproblems will give us the full feature vector, with or without

normalization (not shown). If one of the rows or columns in the decomposition is empty (e.g., column three of the green codeword), then

its values are simply a copy of the row or column to the left or above. For BoW, FLAIR will not help that much in practice. In this case, the

gain of fast evaluation does not outweigh the fixed overhead of constructing the integral images. However, for more complex evaluations,

as required for VLAD and Fisher vectors, FLAIR is advantageous.

we need just constant time. Evaluating all boxes and spa-

tial pyramid cells with FLAIR has complexity O(KBS).
ℓp normalization of the feature vectors is simply included

in FLAIR: sum the feature vector of a box and divide all

elements by this sum. In summary, the computational com-

plexity for creating BoW feature vectors has been lowered

from O(NBS) to O(NK +KBS). With FLAIR, we have

created a representation, which makes evaluating a box in-

dependent of its image area, while still allowing for normal-

ization.

For BoW, FLAIR will not help that much in practice. In

this case, the evaluation per box is relatively simple and the

gain does not outweigh the fixed overhead of constructing

the integral images. However, for more complex evalua-

tions per pixels as required for VLAD and Fisher Vectors,

FLAIR is advantageous, as we will discuss next.

4. VLAD with FLAIR

Similar to BoW, in VLAD descriptors are assigned to

the closest codeword. In contrast to BoW, however, VLAD

encodes the difference between the descriptor and the code-

word. Hence, the descriptor ~v will affect D elements in the

feature vector corresponding to the codeword k:

~Fk =

N
∑

n=1

(~vn − ~ck)φ(~vn,~ck). (6)

Similar to traditional BoW, we decompose the VLAD fea-

ture vector into K subproblems. For constructing the fea-

ture vector corresponding to codeword k, we need the de-

scriptors for which k is the closest codeword. We use the

same scheme, FLAIR, as discussed above, now extending

the scalar integral image to multi-dimensional integral im-

ages, with xn and yn the coordinates of the n-th descriptor:

~I(x, y) =

N
∑

n=1, subject to xn<x, yn<y

(~vn − ~ck)φ(~vn,~ck), (7)

The extension of Equation 4 and 5 is trivial. The extension

gives us VLAD with FLAIR.

Complexity analysis The computational complexity

to constructing a multi-dimensional integral image is

O(KWHD) or O(KND), where K is the number of

codewords. N is proportional to the number of pixels and

D is newly added to hold the dimension of the descriptor.

Evaluating any rectangle requires four operations on vec-

tors with D elements, i.e., O(D). The total cost of eval-

uating all boxes and pyramid cells in VLAD with FLAIR

is O(KDBS). This compares favorably with the ordinary

evaluation of VLAD as we will discuss below.

Power and ℓp normalization Power and ℓ2 normaliza-

tion [14] are important for good recognition accuracy with

VLAD. Power normalization combines easily with FLAIR,

as the computation requires a read-out of all dimensions of

the feature vector one by one, readily provided by the dif-

ference integral image. It is applied after a box is evaluated

with the multi-dimensional integral image, i.e., it does not

depend on the solutions to other subproblems k. To also in-

clude ℓ2 normalization in FLAIR requires more effort. As

it is an important extension, we have nevertheless devised

an extension to FLAIR to achieve that. As before, the com-

putation of the ℓ2 norm is decomposable into K subprob-

lems. For a given part of the feature vector ~Fk, the con-

tribution to the ℓ2 norm will be (~Fk)
T ~Fk. Summing over

all k and taking the square root gives the ℓ2 norm of the

full feature vector. Extensions to other ℓp norms are trivial.

The complexity to create part of the ℓp norm is O(D), the

same as evaluating a box in the multi-dimensional integral

image. Therefore, including ℓp and power-normalization of

the feature vector in VLAD with FLAIR yields the same

complexity.

Exploiting sparsity for memory efficiency The mem-

ory usage of difference integral images is θ(WHD) com-

pared to θ(WH) for their scalar version. With an im-

age of 500x375 pixels, D = 80, and K = 256, these

datastructures use 57MB of memory for each k, equal to

14.3GB per image. Multi-dimensional integral images [19]

have the same prohibitive memory usage. However, the

memory requirements for FLAIR can be reduced signifi-

cantly by skipping void rows and columns. When an image

row or column contains no points to be included in the inte-

gral image, the values above or to the left in the integral im-

age can be reused, see the example in Figure 2. If we let the

number of rows with at least one point be Ĥ and the number

of columns with at least one point to be Ŵ , then a tighter

bound on the computational complexity for constructing a

multi-dimensional integral image is O(Ŵ ĤD). In addi-

tion, by reusing void rows and columns through pointers,

the memory per integral image decreases from θ(WHD)
to θ(Ŵ ĤD). On average, 79% of rows and columns is

void and memory usage drops to 1.0GB per image. With

FLAIR, VLAD can be evaluated independent of the area

of the boxes, requiring O(KŴĤD + KDBS) time and

θ(KŴĤD) memory.

5. Fisher with FLAIR

Where VLAD encodes just the descriptor differences,

i.e., the first order moments of a descriptor assigned to a

codeword, the Fisher vector encoding includes first order

and second order moments. The Fisher encoding is the nor-

malized gradient of the log-likelihood of the data under a

mixture of Gaussians distribution p(~v) with diagonal co-

variance matrices. The gradients for the k-th codeword,

represented by a Gaussian with mean ~µk, standard devia-

tions ~σk and mixing weight πk against all descriptors are

given by:

∆ ln p

∆~µk

=
1

N

N
∑

n=1

p(k|~vn)√
πk

(

~vn − ~µk

~σk

)

, (8)

∆ ln p

∆~σk

=
1

N

N
∑

n=1

p(k|~vn)√
πk

(

(~vn − ~µk)
2

~σ2

k

− 1

)

, (9)

where we abuse notation by defining all operations on vec-

tors to be element-wise. The Fisher encoding assigns a de-

scriptor to multiple codewords. However, because the as-

signment of a descriptor to one of the codewords k affects

only specific parts of the feature vector, the decomposition

into subproblems as done for VLAD is still possible. Con-

sider:

S0(k) =

N
∑

n=1

p(k|~vn), (10)

~S1(k) =

N
∑

n=1

p(k|~vn)~vn, (11)

(12)

~S2(k) =
N
∑

n=1

p(k|~vn)~v2n. (13)

With these functions we rewrite Equations 8 and 9:

∆ ln p

∆~µk

=
1

N
√
πk~σk

(

~S1(k)− ~µk · S0(k)
)

, (14)

∆ ln p

∆~σk

=
1

N
√
πk

(

~S2(k)− 2~µk
~S1(k) + ~µ2

k · S0(k)

~σ2

k

− S0(k)

)

.

(15)

The scalar integral image for S0(k) and the multi-

dimensional integral images for S1(k) and S2(k) are sup-

plemented by a scalar integral image holding the number of

descriptors N in an area. With these four integral images

the gradients for a single codeword evaluate in O(D) and

independent of the box area, similar to VLAD.

Complexity analysis The complexity to construct Fisher

with FLAIR, i.e., K times the four integral images is

O(KND). As with VLAD, Fisher with FLAIR creates

feature vectors for B boxes with S cells in O(KDBS).
Power and ℓp normalization are included the same way as

for VLAD with FLAIR. The computational complexity for

Fisher has changed from O(NDBS) in standard Fisher to

O(KND +KDBS) with FLAIR. With sparsity exploita-

tion, as in VLAD, the order goes to O(KŴĤD+KDBS).

Approximate Fisher (with FLAIR) In Fisher with

FLAIR each descriptor is included in all of the K subprob-

lems. Practical implementations of the Fisher encoding in-

clude a descriptor ~v for codeword k only if the posterior

p(~v|k) is higher than a threshold (typically 10−4). Empiri-

cally, we find that a descriptor is assigned to on average 9.5
codewords for this threshold if K = 256. We can control

the level of sparsity if we put a maximum T on the number

of codewords to assign to. Up to this point all our solu-

tions are exact, but this assignment limit introduces our first

approximation: Approximate Fisher with FLAIR. In our ex-

periments we will evaluate different T in terms of speed and

accuracy.

6. Experiments

Experiment 1: VLAD with FLAIR Speedup In this ex-

periment, we measure the average speed for creating fea-

ture vectors for boxes with standard VLAD and VLAD with

FLAIR. The implementations run on a single core of a Xeon

E3-1270 CPU. The codebook size K = 256 and the de-

scriptor has dimensionality D = 80, common values in the

literature. To measure precisely the speedup provided by

FLAIR, the time for finding the closest codewords (0.55s

per image) is excluded from our timings.

Figure 3(a) shows the speedup of VLAD with FLAIR for

a varying number of boxes. For 30,000 boxes, equivalent to

(a) VLAD Encoding Speed (b) Fisher Encoding Speed (c) Approximate Fisher Encoding Speed

0 5000 10000 15000 20000 25000 30000
Number of boxes and cells

0

10

20

30

40

50

60

70

80

T
im

e
 (

s
)

VLAD

VLAD with FLAIR

0 5000 10000 15000 20000 25000 30000
Number of boxes and cells

0

50

100

150

200

250

300

350

400

T
im

e
 (

s
)

Fisher

Fisher with FLAIR

0 5000 10000 15000 20000 25000 30000
Number of boxes and cells

0

5

10

15

20

25

30

35

40

T
im

e
 (

s
)

Fisher

Fisher with FLAIR

Approx Fisher with FLAIR (T=1)

Approx Fisher with FLAIR (T=2)

Approx Fisher with FLAIR (T=5)

Figure 3. Experiments 1 and 2: FLAIR speedups (a) VLAD with FLAIR is 18.0x faster at 30k boxes, (b) Fisher with FLAIR is 18.7x

faster at 30k boxes, (c) Approximate Fisher with FLAIR reduces the overhead cost of FLAIR construction for an image.

selective search [24] with a 1x1 and 4x4 spatial pyramid,

VLAD with FLAIR is 18.0x faster than standard VLAD:

Where regular VLAD requires 73s per image to create fea-

ture vectors, VLAD with FLAIR needs only 4.0s. VLAD

with FLAIR does have a fixed cost of 0.6s for construction

of the representation. However, as soon as the number of

boxes to analyze is larger than 150 per image, a number

that is easily achieved in practice, it is faster to use VLAD

with FLAIR.

Experiment 2: Fisher with FLAIR Speedup Figure 3(b)

shows the speedup of Fisher with FLAIR. Again, we ex-

clude the time for codeword assignment (6.2s). For 30,000

boxes, FLAIR is 18.7x faster than standard Fisher: it takes

21s per image to create vectors instead of 6.5 minutes. As

soon as the number of boxes is larger than 140, the con-

struction time of Fisher with FLAIR (6.0s) is offset by the

more efficient feature vector creation.

Approximate Fisher with FLAIR limits the number of

codeword assignments per descriptor to T . This approx-

imation increases the sparsity in the descriptor coordinates

and thereby decreases the construction time for FLAIR. Fig-

ure 3(c) shows the FLAIR construction timings at the inter-

section with the Y-axis: for T = 1 of 2.2s, for T = 2 of

3.0s and for T = 5 of 4.4s, compared to 6.0s for the exact

version. Approximate Fisher with FLAIR does not reduce

the time per box further, but it reduces the fixed overhead

cost of FLAIR by several seconds.

Experiment 3: Overall Object Detection Speedup and

Accuracy So far our experiments measured the speed

of feature encoding with and without FLAIR. However, in

a complete object detection pipeline, there are many ad-

ditional steps: determining boxes to use, extracting de-

scriptors, finding the closest codewords and applying ob-

ject models. These steps take time and their implementation

choice determines the overall accuracy of the object detec-

tion pipeline.

Here, we use fast selective search [24] for partitioning

the image into bounding boxes. As descriptor we use dense

SIFT, sampled at every 2 pixels at 3 scales. The dimension-

ality of SIFT is reduced to D = 80 with PCA. The spatial

pyramid is 1x1 and 4x4 after [5]; leaving out the spatial

pyramid decreases accuracy by 40%. For each object we

Time (s)

Standard with FLAIR Speedup mAP

BoW [24] 47.9 - - 32.3

VLAD [14] 34.3 7.8 4.4x 28.2

Fisher [18] 120.0 32.5 3.7x 33.3

Approx Fisher (T = 1) 82.2 28.1 2.9x 22.8

Approx Fisher (T = 2) 86.0 29.1 3.0x 30.3

Approx Fisher (T = 5) 99.8 30.8 3.2x 33.3

Table 1. Experiment 3: Overall object detection speedup and

accuracy for a complete detection pipeline with 2,000 boxes per

image and a spatial pyramid of 1x1 and 4x4, timings per image.

With FLAIR, a VLAD pipeline is 4x faster and a Fisher pipeline

is 3x faster overall. By approximating Fisher, the time per image

is reduced by several seconds, with no loss in mAP for T = 5 on

the PASCAL VOC 2007 test set. Compared to BoW, Fisher with

FLAIR is better and faster.

train a linear SVM classifier, where the positive examples

come from ground truth annotations. The initial set of nega-

tive examples are selective search boxes which overlap 20%

to 50% with the ground truth boxes. The set of negative ex-

amples is extended through hard negative mining [10]: the

trained model is applied to the training set, and from each

image one box is added to the negative set (provided it does

not overlap more than 30% with a ground truth box). We

perform two rounds of hard negative mining.

As a dataset for this comparative experiment of encoding

methods we use the PASCAL VOC 2007 dataset with 20

object classes and 10,000 images [9]. To measure accuracy,

we use mean Average Precision (mAP) over 20 classes,

which is the standard object detection setup on this dataset.

In Table 1, we report the object detection speedup and

accuracy. FLAIR makes the entire pipeline 4.4x faster for

VLAD, and 3.7x for Fisher: creating the feature vectors for

boxes was a substantial computational bottleneck. VLAD is

faster than Fisher, partly because the Fisher vector is twice

as long. However, in terms of accuracy the Fisher encoding

is clearly better: 33.3% mAP versus 28.2% mAP. For ref-

erence, a BoW encoding achieves 32.3% mAP. BoW uses

a larger codebook size 4,096 and a non-linear Histogram

Intersection Kernel, without them the accuracy is signifi-

cantly lower. Approximate Fisher lowers the execution time

per image by several seconds. However, assignment to just

1 or 2 descriptors results in lower accuracy: 22.8% mAP or

System plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mAP

[10] 52.4 54.3 13.0 15.6 35.1 54.2 49.1 31.8 15.5 26.2 13.5 21.5 45.4 51.6 47.5 09.1 35.1 19.4 46.6 38.0 33.7

[24] 56.2 42.4 15.3 12.6 21.8 49.3 36.8 46.1 12.9 32.1 30.0 36.5 43.5 52.9 32.9 15.3 41.1 31.8 47.0 44.8 35.1

[5] 61.3 46.4 21.1 21.0 18.1 49.3 45.0 46.9 12.8 29.2 26.1 38.9 40.4 53.1 31.9 13.3 39.9 33.4 43.0 45.3 35.8

NLPR 53.3 55.3 19.2 21.0 30.0 54.4 46.7 41.2 20.0 31.5 20.7 30.3 48.6 55.3 46.5 10.2 34.4 26.5 50.3 40.3 36.8

[31] 65.0 48.9 25.9 24.6 24.5 56.1 54.5 51.2 17.0 28.9 30.2 35.8 40.2 55.7 43.5 14.3 43.9 32.6 54.0 45.9 39.7

This paper 61.3 52.3 27.8 25.7 21.3 54.0 45.6 54.0 15.5 32.6 33.3 41.8 47.9 57.8 37.3 24.3 41.8 35.8 50.4 47.3 40.4

Table 2. Experiment 4: Comparison on the Pascal VOC 2010 detection task, comparing the approach from this paper to others without

context rescoring. We improve the state-of-the-art, and perform best for 9 objects.

Figure 4. Qualitative object detection results on PASCAL VOC

2010 for birds. The airplane on the bottom-left is a false positive.

30.3% mAP. Descriptors should be assigned to 5 codewords

to maintain accuracy and still save 1.7s per image compared

to exact Fisher with FLAIR. Compared to object detection

with BoW, Fisher with FLAIR is better and faster.

Experiment 4: Comparisons to state-of-the-art We now

switch to evaluations on the PASCAL VOC 2010 dataset to

compare to the state-of-the-art in object detection. Based

on the above experiments, we use Fisher with FLAIR due to

its accuracy. Color features are commonly used in state-of-

the-art systems [5, 24], therefore we include OpponentSIFT

and C-SIFT in our system in addition to intensity SIFT.

We focus on the box encoding and do not consider post-

processing by context rescoring [23, 5]. Because evaluat-

ing multiple boxes is computationally cheap in Fisher with

FLAIR, we increase the spatial pyramid to 30 cells (1x1,

2x2, 3x3 and 4x4) from the previously used 17. In Table 2,

we compare our results to 5 representative state-of-the-art

detectors. By exploiting the speedup offered by Fisher with

FLAIR for inclusion of color and fine spatial pyramids we

obtain the best results for 9 objects and the best overall

mAP. This system does not use any context rescoring. We

highlight qualitative detection results for the bird category

in Figure 4. We also submitted the same system to the on-

line leaderboards of the VOC 2012 dataset (40.6 mAP); de-

tailed results are available online.

We also evaluate Fisher with FLAIR on the fine-grained

species categorization task specified in the CUB-2011

dataset containing two hundred birds [30]. For each of

the bird species there are 30 training images and 30 test-

ing images. We use the standard training/test split provided

by the authors. Following the standard evaluation proto-

col, we mirror the train images to double the size of the

training set. Note that in this task one should evaluate for

System Accuracy

No test boxes With test boxes

[30] 10.3 17.3

[32] 28.2 -

[2] - 56.8

This paper 52.2 55.5

Table 3. Experiment 4: Comparison on the CUB-200-2011 bird

species categorization task, comparing our Fisher with FLAIR to

the state-of-the-art. We improve the state-of-the-art by over 20%

in mean accuracy for the real-world task where there are no ground

truth bounding boxes on the test set. Fisher with FLAIR opens

doors to fine-grained object detection without domain-specific fea-

ture optimization.

uncropped images, similar to [32], without using the pro-

vided box annotations at test time. We do not use any bird-

specific optimizations, we just rely on the same implemen-

tation as before, but without C-SIFT. We report the stan-

dard evaluation metric, that is the mean accuracy over all

the 200 species, in Table 3. Compared to the baseline and

the best known number in the literature, we nearly double

the mean accuracy. A considerable improvement. Fisher

with FLAIR opens doors to fine-grained object detection.

Although popular, we consider using the human provided

bounding boxes of the CUB-2011 test set to be an unrealis-

tic scenario. As in practice these bounding boxes will not be

availabe. With these bounding boxes our accuracy increases

to 55.5% where [2] achieve 56.8% with boxes. Please note,

in contrast to [2] who use domain-specific knowledge by de-

sign, we use no form of domain-specific feature optimiza-

tion. Our fine-grained categorization results from generic

object detection, which also detects fine-grained objects

when bounding box annotations on the test set are absent (!).

Fisher with FLAIR opens doors to fine-grained object de-

tection in real-world scenarios.

Finally, we evaluate Fisher with FLAIR on the Ima-

geNet 2013 detection challenge over 200 classes. Results

for the validation set and a comparison with other methods

is shown in Table 4. In the ImageNet 2013 challenge, Fisher

with FLAIR was the number one system submitted, achiev-

ing 22.6 mAP on the test set.

7. Conclusion

FLAIR is the new data representation which enables fast

encoding of arbitrary boxes in an image with the power-

ful VLAD and Fisher vectors. FLAIR splits an image over

binary and integral images, one per code value in the code-

book. Once an image is represented in FLAIR, the evalua-

tion of VLAD and Fisher is independent of the area of the

System mAP

[10] from [31] 10.0

[31] 14.7

This paper 18.3

This paper (with context) 21.9

Table 4. Experiment 4: Comparison on the ImageNet 2013 de-

tection challenge validation set over 200 categories. On the test

set, Fisher with FLAIR was the best system submitted to the chal-

lenge with 22.6 mAP.

box, and restricted to four additions. The method rests on

the linear sum over the pixels of these methods, but an ex-

tension of FLAIR allows also for the sum of squares for the

important ℓ2-norm.

FLAIR can be used for the gain in speed as we demon-

strate in this paper to be a factor 18 in the state of-the-art

VLAD [14] and Fisher vector [18, 22] encodings. By evalu-

ating a large number of relevant boxes, selected by selective

search [24], we set a new state-of-the-art for object detec-

tion on the challenging PASCAL VOC 2010 and achieve

the top rank in the ImageNet 2013 detection challenge. Al-

ternatively, FLAIR can be used to increase the number of

boxes in an evaluation, which would otherwise be prohib-

ited by the computational effort. For fine-grained object cat-

egorization and localization we are able to evaluate 2,000

boxes and still use 30 pyramids in each box as the evalua-

tion of many boxes is cheap in FLAIR. As a result, without

any further knowledge of the birds [30], their pose [32] or

location [2] we obtain an accuracy of 55.5%.

We conclude that the computational efficiency of FLAIR

opens the door to modern yet computationally expensive

techniques for object categorization and localization in

large image collections, video archives, as well as for mo-

bile visual recognition.

Acknowledgments This research is supported by the STW

STORY project and the Dutch national program COMMIT.

References

[1] B. Alexe, T. Deselaers, and V. Ferrari. Measuring the objectness of

image windows. TPAMI, 34(11):2189–2202, 2012.

[2] T. Berg and P. N. Belhumeur. POOF: Part-Based One-vs-One Fea-

tures for fine-grained categorization, face verification, and attribute

estimation. In CVPR, 2013.

[3] J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu. Semantic

segmentation with second-order pooling. In ECCV, 2012.

[4] Q. Chen, Z. Song, R. Feris, A. Datta, L. Cao, Z. Huang, and S. Yan.

Efficient maximum appearance search for large-scale object detec-

tion. In CVPR, 2013.

[5] R. G. Cinbis, J. Verbeek, and C. Schmid. Segmentation driven object

detection with fisher vectors. In ICCV, 2013.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduc-

tion to Algorithms. The MIT Press, 2009.

[7] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray. Visual

categorization with bags of keypoints. In ECCV Statistical Learning

in Computer Vision, 2004.

[8] T. Dean, M. A. Ruzon, M. Segal, J. Shlens, S. Vijayanarasimhan,

and J. Yagnik. Fast, accurate detection of 100,000 object classes on

a single machine. In CVPR, 2013.

[9] M. Everingham, L. Van Gool, C. Williams, J. Winn, and A. Zisser-

man. The PASCAL Visual Object Classes (VOC) Challenge. IJCV,

88(2):303–338, 2010.

[10] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan.

Object detection with discriminatively trained part based models.

TPAMI, 32:1627–1645, 2010.

[11] S. Fidler, R. Mottaghi, A. Yuille, and R. Urtasun. Bottom-up seg-

mentation for top-down detection. In CVPR, 2013.

[12] H. Harzallah, F. Jurie, and C. Schmid. Combining efficient object

localization and image classification. In ICCV, 2009.

[13] H. Jégou, M. Douze, and C. Schmid. Product quantization for near-

est neighbor search. TPAMI, 33(1):117–128, 2011.

[14] H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez, and

C. Schmid. Aggregating local image descriptors into compact

codes. TPAMI, 34(9):1704–1716, 2012.

[15] C. H. Lampert, M. B. Blaschko, and T. Hofmann. Efficient subwin-

dow search: A branch and bound framework for object localization.

TPAMI, 31(12):2129–2142, 2009.

[16] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features:

Spatial pyramid matching for recognizing natural scene categories.

In CVPR, 2006.

[17] V. Lempitsky and A. Zisserman. Learning to count objects in im-

ages. In NIPS, 2010.

[18] F. Perronnin, J. Sánchez, and T. Mensink. Improving the fisher ker-

nel for large-scale image classification. In ECCV, 2010.

[19] F. M. Porikli. Integral histogram: A fast way to extract histograms

in cartesian spaces. In CVPR, 2005.

[20] E. Rahtu, J. Kannala, and M. Blaschko. Learning a category inde-

pendent object detection cascade. In ICCV, 2011.

[21] O. Russakovsky, Y. Lin, K. Yu, and L. Fei-Fei. Object-centric spatial

pooling for image classification. In ECCV, 2012.

[22] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek. Image

classification with the fisher vector: Theory and practice. IJCV,

105(3):222–245, 2013.

[23] Z. Song, Q. Chen, Z. Huang, Y. Hua, and S. Yan. Contextualizing

object detection and classification. In CVPR, 2011.

[24] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M.

Smeulders. Selective search for object recognition. IJCV,

104(2):154–171, 2013.

[25] K. E. A. van de Sande, J. R. R. Uijlings, C. G. M. Snoek, and

A. W. M. Smeulders. Hybrid coding for selective search. In ECCV

PASCAL VOC, 2012.

[26] J. C. van Gemert, C. J. Veenman, A. W. M. Smeulders, and J. M.

Geusebroek. Visual word ambiguity. TPAMI, 32(7):1271–1283,

2010.

[27] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman. Multiple

kernels for object detection. In ICCV, 2009.

[28] S. Vijayanarasimhan and K. Grauman. Efficient region search for

object detection. In CVPR, 2011.

[29] P. Viola and M. Jones. Rapid object detection using a boosted cas-

cade of simple features. In CVPR, 2001.

[30] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The

Caltech-UCSD birds-200-2011 dataset. Technical report, 2011.

[31] X. Wang, M. Yang, S. Zhu, and Y. Lin. Regionlets for generic object

detection. In ICCV, 2013.

[32] N. Zhang, R. Farrell, and T. Darrell. Pose pooling kernels for sub-

category recognition. In CVPR, 2012.

[33] X. Zhou, K. Yu, T. Zhang, and T. S. Huang. Image classiffication

using super-vector coding of local image descriptors. In ECCV,

2010.

