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Fisher information and Shannon entropy calculations for two-electron systems 

1*Ibraheem Nasser and 1#Afaf Abdel-Hady
1Department of basic Science, Faculty of Engineering, Egyptian Chinese University, Cairo, Egypt.

Abstract: Fisher information is calculated for the ground state of He-isoelectronic series, in 
position ( ) space. The results are given, and discussed, as a function of the nuclear charge ( ) r Z
and the screening parameter ( ) in the case study of Yukawa potential. Simple and explicit one, 
two and three-correlated terms of Hylleraas wave function are used to focus on extracting the most 
characteristic physical features of the results. The numerical values of Fisher information are given 
in 1- and 2-electron charge densities, and their ratio of 2- to 1-electron densities results are defined 
and analyzed. To enable a comparison with others, the Fisher-Shannon information products, that 
measure the electron-electron correlation’s strength, are calculated in 1- electron density. The 
calculations of Fisher information, the ratio, and the Shannon-information products for two-
electron systems in the presence of Yukawa potential are carried out for the first time in this 
literature.

Key words: Hylleraas coordinates, non-Coulombic helium, Yukawa potential, Fisher 
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1. Introduction

Knowing the continuously charged electronic states’ density , the Fisher ( )r r

information’s value, , is defined as [1] :F

                                 (1) 
 2

( )
,  

( )

r
F dr

r





 

r r
r

r

where is the volume element in the respected coordinates. Fisher information, which is the d rr

gradient functional of , indicates a local measure of the intrinsic accuracy or localization of ( )r r

the electron density distribution. The larger the value of  is, the more concentrated the electronic F
states’ density, i.e. more localized distribution. Moreover, the gradient term in makes it quite F
sensitive to even small localized perturbations of . ( )r r

Another important, and complementary, quantity with Fisher information, is Shannon 
entropy, defined as [2]:

.           (2) ( ) ln ( )S r r dr  
r r r

gives a global measure of the overall randomness, or delocalization, of the electron in the S
corresponding density distribution. Unlike ,  is not too sensitive to large localized F S
perturbations in . The smaller the value of  is, the more concentrated the wave function of ( )r r

S

Page 1 of 15

https://mc06.manuscriptcentral.com/cjp-pubs

Canadian Journal of Physics

mailto:ibraheemmnasser@gmail.com
mailto:afaf.abdelhady@gmail.com


For Review Only

12/10/2019

2

the state, i.e. more localized distribution. The complementary nature of Shannon entropy and 
Fisher information accounts for their observed variation with respect to Z, with the definition of 
Fisher-Shannon information product  [3,4], in 3D as:" "P

 .                                                               (3)  2 / 31 1 1
3 2

SP F e
e

 

The product, , measures the spatial delocalization of the electron cloud and is considered as an P
appropriate measure of electron-electron (el-el) correlations. In the following study, we will use 
the abbreviation “el” for electron.  

From the above two paragraphs, we conclude that: for larger values of Fisher information, 
the distribution is more localized. On the contrary, with a rise in Shannon entropy, the distribution 
becomes more diffused. In quantum mechanics, such a conclusion can only be drawn when the 
distribution is nodeless. But, there are cases where both Fisher information and Shannon entropy 
may rise simultaneously; see for example the application of Morse potential in diatomic molecules 
[5]. Actually, Fisher information is a local quantity and it measures the fluctuation in a given 
distribution, whereas Shannon entropy is an expectation value of uncertainty. 

As an application of Fisher information, let us recall few articles that are related to one and 
two-electron systems. Recently Fisher information has been discussed and applied in different 
atomic systems [6-12], such as: confined hydrogen-like ions [6], confined isotropic harmonic 
oscillator [7], some central potentials [8], for elementary chemical reactions [9], in D-dimensional 
single-particle systems with central potentials [10], for dipole polarizability in atoms [11], and in 
quantum phase transition with the Dicke model [12]. Because Fisher information and Shannon 
entropy are considered as complementary quantities, they can give complete descriptions of the 
localization-delocalization characters of the atomic system. The literatures combining them are 
vast and wealthy [13-16]. For example, for parity-restricted harmonic oscillator [13], for a 
hydrogen atom under soft spherical confinement [14], for the exponential-cosine screened 
Coulomb potential [15] and Hulthén potential [16]. In addition to Shannon entropy and Fisher 
information, there are many other entropies such as Rényi [17] and Tsallis [18, 19]. For a 
comprehensive account of  Rényi and Tsallis entropies, we refer the reader to the recent literatures 
[20-25].

It was noticeable that most of the Fisher information’s published literatures are for one 
electron with different potentials. Unfortunately, due to the presence of the gradient in , the F
Fisher information literatures for He-isoelectronic series are scarce [3,4,26-29]. This shortage of 
literatures for Fisher information has motivated us to study and use it for 2-electron systems.  
Accordingly, in this article, our objectives are the following: 1- Calculate numerically the values 
of and  in r-space, and in 1- and 2-el densities; 2- Discuss the behavior of and as a F S F S
function of the nuclear charge and the screening parameter  using  the effective screened Z 
Coulomb potential, Yukawa potential, in the form [30]: 

 .                                                             (4)YP ( )
r

Z
eV r

r



 

Eq. (4) arises, for instance, from a Thomas-Fermi approximation to the electron gas; in 
plasma physics it is known as the Debye-Hückel potential [31]. In , is given a different YP ( )V r 
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expression, depending on the problem considered. 3- Define and examine the ratio of 2- to 1- 
electron densities of Fisher information, and product ,  that measure the el-el correlation’s P
strength. The procedure will be done using the Ritz’s variational principle [20-22] for different 
values of , where . is defined as the critical value of  above which only one- c  c 
electron bound  state exists. For example, it was found that for helium, ,  for Yukawa 2.06c 
potential. To the best of our knowledge there is no previous attempt to evaluate the  integrals F
for these systems using Yukawa potential. 

The outline of this article is as follows. In Section 2, we present the basic equations for 
computing for 2-el systems. Also, we explain 1- and 2-el charge density approaches for F
calculating and , and define their corresponding ratio and . We devote Section 3 to F S FR SR
present our numerical results of Fisher information for the 1s2- state of atoms from helium to neon 
and thus try to shed some light regarding the effect of el-el correlation on ,  and . The F P FR

dependent behavior of ,  and with , and ,  is discussed.  Finally, concluding remarks F P R Z 
of our outcomes are accessible in Section 4. All results in this paper are expressed in atomic units 
(a.u.).

2. Theoretical Background
The Hylleraas coordinates are expressed in terms of the two electrons, defined by 1  , ,s t u

and 2, interparticle coordinates  relative to an infinitely heavy nucleus  as:   1 2 12, ,r r r 1 2 ,s r r 

 and , with the conditions that   and 1 2t r r  12u r ,u t u   0 u s   
 is the volume element.  Accordingly, in Hylleraas coordinates, the non-2 2 2( )d s t u du d s dt  

relativistic Hamiltonian of He-like sequence with a given potential , is written as:V

  (5)

 

2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2

( ) ( ) 4 4ˆ 2 2
( ) ( ) ( ) ( )

2 ( )(( ) / 2) (( ) / 2)

s u t t s u s tH
s t u u s t s u u s t t u s t s s t t

V uV s t V s t
u u Z

         
                     


     


and the used 3-parameter wave function is:

                                       (6)2( , , , , , ) (1 )a ss u t a b c A e bu ct     
where is the normalization constant, and , , and are the variational parameters. A a b c
Substituting into Eq. (5), and searching for the minimum energy expectation value, , one  E

finds the optimal values of , , and .a b c
To study the effect of the el-el correlation, and for the sake of comparative study, we will 

use the following wave functions [20]:

                                                            (7)1 1( , ) ,a ss a Ae 
and
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.                                           (8)2 2( , , , ) (1 )a sas u b A e bu    
Note that,  allows us to calculate and in both spherical and Hylleraas coordinates. 1 F S

The present calculations have been done using two distinctive approaches. The first is done 
by means of the 2-el density: 

 ,                                                          (9)
2( , , , ) ( , , , )s u t s u t L L

and its unity-normalized:
                                                         (10)( , , , ) 1;    s u t d   L

then we can calculate  with the help of the gradient in Hylleraas coordinates (See Appendix A):F

  .                                                      (11)ˆˆ ˆ2 2s t u
s t u

  
   

  
The second approach is done by means of the 1-el density. In this method we start by marginalizing 
(integrating out) some degrees of freedom. For example  , according to [32] as:2r

   (12)
1 2 1 1 2 1 2

1 2 1 2 1 2 1

2 2 2
1 2 2 12 12 2 2 12 12 2 2 12 12

1 10 0

2 2( )

( )

r r r r r r r

r r r r r r r

r r dr r dr r dr r dr r dr r dr
r r

r

    



   

  

 
    

 


     

with testing the normalization condition:
 .                                               (13)24 ( ) 1r r dr  

Then, using the gradient  in spherical coordinates, Fisher’s integral in Eq. 1 could be solved 
r




numerically. This method of integrating out some degrees of freedom is important in discussing 
the quantum entanglement [31, 33-37].

In the following sections, we are going to use the subscript 1 or 2 on  or to differentiate F S
between 1-el  and 2-el values of the entropy, respectively. The superscript   or  on  "co" "uc" F
or  will be used to differentiate between correlated and uncorrelated - and - values, S F S
respectively. Also, we use the superadditivity of Fisher information [3] to define the ratio of 2-el  
to 1-el  of Fisher information calculations as:

,                                                               (14)2

1
F

FR
F



that can be used to measure the el-el correlation’s strength. In our case, the ratio  fulfills the FR
inequality:

.                                                         (15)2FR 

The inequality condition (15) is opposite to subadditivity of Shannon’s criteria [3] , SR N
where  is the number of electrons [3,24,40]. The equality, in both cases, holds if the wave N
function is a Hartree product; that is, if the electrons are assumed to be independent and 
uncorrelated [3, 37]. Using the simple wave functions in Eqs. (6-8) allows us to calculate and F S
in 1- and 2-el densities. 

Page 4 of 15

https://mc06.manuscriptcentral.com/cjp-pubs

Canadian Journal of Physics



For Review Only

12/10/2019

5

3. Results and discussion

Before we start extracting the most characteristic physical features of our results, we would 
like to stress on the following points: 1- Although the energies, and Shannon entropy in 2-el 
density, are discussed in details in our previous work [20-22], we are going to retrieve few of them 
here for completeness. 2- To reach our objectives, and to enable the comparison of the published 
results [3,23, 32-37, 42-45], we are going to use one, two and three-correlated terms wave 
functions given by Eqs. (6-8) rather than an extensive electronic wave function [3,23, 32-37, 42-
45]. 1

The wave functions, Eq. (6-8) are used to calculate: and  in 1- and 2- electron charge F S
densities. We present in Table 1 the average energy, Fisher information’s results of 1s2-state for 
helium and 8 members of its isoelectronic ions, from lithium to neon. For uncorrelated Slater’s 
type wave function, , one can find  and , 1( , )s a Z   uc 2

1 4F a Z Z  uc 2
2 ( ) 8F a Z Z 

with the exact ratio of . In Table 1, the following comments were found: 1- Compared to 2FR 
the available literatures [40, 42,43], our energies are in good agreement up to three digits at , 2Z 
and increases to 4 digits as Z increases. To facilitate comparison with the available literature, the 
results in [40, 42,43] have been truncated to six digits;  2- For He, due to the el-el interaction,  it 
was found that the difference in the average energy between   and   is less than 1.5%, but the 1 2
difference in F  ( ) increases by more than 15%. As the el-el interaction decreases co uc

2 2 2 1( ) ( )F F 
with increasing Z, the difference in F decreases too; 3- All  values are positive and smaller than F
the Slater type values; 4-  increases as  increases. This implies that the electronic density will F Z
be more localized with increasing ; 5- The criteria  is fulfilled in all cases and decreases Z 2FR 
with increasing , i.e. it is  dependent. The equality holds if the electrons are assumed to be Z Z
uncorrelated, which is the case of . As  increases, the ratio decreases, which means that 1 Z FR
as  increases the el-el interaction decreases and can be neglected, which is a known fact; 6- At Z
fixed , the values are the same, up to three digits, for the three wave functions. This means Z 1F
that the el-el interaction is not significant in 1-el density calculated values; 7- The effect of the 
el-el interaction is responsible for the increase in ( ) by a factor more than 2F co uc

2 2 2 1( ) ( )F F 
20% in 2-el density calculation; 8- The effect of the variational parameter “c”, in Eq. 6, is 
responsible for the decrease in , since , by a factor less than 5%.co

2F co co
2 2 2( ) ( )F F 

The last row in Table 1 provides the fitting equations of  as a function of  and its F Z
associated correlation coefficient  [39]. The values of  show the strong correlation between 2R 2 1R 

 and . Due to the variational calculation it is found that , where the exponent . F Z F Z  2 
The results of Ref. [28] are given for comparison, although they do not use any type of Hylleraas 
wave function. 
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Table1: The mean energy, Fisher information results and  for 1s2-state of helium and 8 members of its isoelectronic ions using FR
Coulomb potential.

1 2 Z
E uc

2F uc
1F FR E co

2F co
1F FR E co

2F co
1F FR

2
2.8477 22.7812 11.3906

13.3096a

2
2.8911 27.6255 11.4189

12.1287a

2.4193 2.9024
2.90337b,c

2.90372a

26.6721 11.4552 2.3284

3
7.2227

57.7812
28.8906
31.7643a

2 7.2682 65.5555 28.9121
28.4294a

2.2674 7.2780
7.27948
7.27991b,c

64.2324 28.9476 2.2189

4
7.2227 57.7812 54.3906

58.0412a

2 13.6441 119.4399 54.4091
  53.845627

2.1952
13.653
13.6556d

117.7414 54.4446 2.1626

5
21.9727

175.7812
87.8906
92.8915a 

2 22.0195 189.3011 87.9075
86.5378a

2.1534
22.028
22.0309d

187.2251 87.9430 2.1289

6
13.5977 108.7812 129.3906

135.1810a 

2 32.3949 275.1496 129.4065
126.2190a

2.1262
32.403
32.4062d

272.6951 129.4421 2.1067

7
44.7227

357.7812
178.8906
185.3460a

2 44.7701 376.9905 178.9059
173.4250a

2.1072
44.778
44.7814d

374.1568 178.9415 2.0909

8
21.9727 175.7812 236.3906

243.3420a

2 50.7686 494.8265 236.4054
227.8750a

2.0931
59.153
59.1566d

491.6134 236.4411 2.0792

9
75.4727

603.7812
301.8906
309.2030a

2 75.5203 628.6591 301.9051
264.5170a

2.0823
75.528
75.5317d

625.0663 301.9408 2.0702

10
32.3477 258.7812 375.3906

382.9400a

2 93.8954 778.4894 375.4048
359.2810a

2.0737
93.904
93.9068d

774.5168 375.4406 2.0630
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Fitting uc 2.1624
2

uc 2.1624
1

5.2931 (0.9996)
2.6466 (0.9996)

F Z
F Z





co 2.07
2

co 2.1624
1

6.6979   (0.9999)
2.6533 (0.9996)

F Z
F Z





co 2.0872
2

co 2.1624
1

6.4251 (0.9999)
2.6625 (0.9997)

F Z
F Z




aRef. [28],  bRef. [40],  cRef. [42],  dRef. [43]
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For completeness and to facilitate comparison with others [3, 24,2 8, 40], we have to 
compute the Fisher-Shannon information product, . Table 2, shows the Shannon entropy of 1-P
el density results of 1s2- state for helium and 8 members of its isoelectronic ions for Coulomb 
potential using our three wave functions. In table 2, our products are in good agreement with the 
published literatures [3,22], up to 5 digits at . The small differences in the results are 10Z 
mainly due to the different wave functions that we used. The criteria in Eq. 3 is fulfilled for each 
wave function. For non-correlated wave function, , the value of  is constant and has the 1 P
asymptotic value  1.237333 [3]. For the other two wave functions, decreases  Z   P
monotonically with increasing Z to reach the asymptotic value. Note that, the wave functions in 
Refs. [3, 24, 40] have more than 200 terms, compared to ours, which are 1-, 2- and 3-term. 

Table2: Shannon entropy and Fisher-Shannon information product for 1s2- state for helium and 8 
members of its isoelectronic ions with Coulomb potential. 

1 2 Z

S P S P S P
2 2.5750

2.4323a
1.2373 2.6016

2.6004a
1.2626 2.6946 

2.705102 85b
1.3476
1.35866d

3 1.1789
1.0989 a

1.2373 1.2014
1.2391a

1.2570 1.2518
1.2552726c

1.3015
1.30511d

4 0.2299
0.1812 a

1.2373 0.2483
0.3099a

1.2531 0.2824 1.2827
1.28441d

5 -0.4900
-0.5361a

1.2373 -0.4745
-0.4165a

1.2504 -0.4489 1.2724
1.27341d

6 -1.0701
-1.1041a

1.2373 -1.0569
-0.9892a

1.2484 -1.0364 1.2659

7 -1.5560
-1.5812a

1.2373 -1.5444
-1.4702a

1.2470 -1.5274 1.2615

8 -1.9741
-1.9922 a

1.2373 -1.9638
-1.8833a

1.2459 -1.9493 1.2582

9 -2.3409
-2.2534a

1.2373 -2.3310
-2.2467a

1.2455 -2.3190 1.2557

10 -2.6678
-2.6758a

1.2373 -2.6595
-2.5748a

1.2443 -2.6482 1.2538
1.25398d

aRef. [28],  bRef. [24],  cRef. [40],  dRef. [3]

To study the screening effect on Fisher information of Helium atom, we displayed the  F
results for 1s2-state of helium as a function of in Table 3. The following observations were 
noticed: 1- Compared to Ref. [42], our energies are in good agreement up to four digits at small 
values of , and decrease to 2 digits as we approach the continuum. 2- , and it is 2FR  
independent.  stays constant up to three digits for all values of  ; 3- The values of are a FR  F
decreasing function of , which implies that the electronic density will be more delocalized 
(more spreading) with increasing . 4- The values are the not affected by the el-el  1F
interaction. The values are constant, up to three digits, for the three wave functions. 5- The effect 
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of the el-el interaction is more pronounced in 2-el density calculations, since . 5- The co uc
2 2F F

effect of the variational parameter “c”, in Eq. 6, is responsible for a small decrease in , since co
2F

. 6- The last row provides the fitting equations and their associated co co
2 2 2( ) ( )F F 

correlation  as a function of  and correlation coefficient . The values of  show the 2R  2R 2 1R 
strong correlation between  and . F 

To complete our goals of the present study, we showed  results for 1s2 of three elements F
of He-like ions, as a function of using the correlated wave function  in Table 4. The following  
notes were found: 1- An analysis of the results shows that for the values of  considered, our 
energies are in good agreement, up to three digits, with the published literatures Refs.  [42-46], 
even though the number of terms in our wave functions are 3-term. 2- For fixed ,  and  2FR 
decreases with increasing ,  which means that as  increases the el-el interaction decreases and Z Z
could be neglected, as we have mentioned earlier. 3- For each ion,  is independent and stays FR 
constant up to two digits. 4- The values of decrease as increases, which implies that the F 
electronic density will be more delocalized (more spreading) with increasing . 5- For fixed ,  
the values of  increase as increases, which implies that the electronic density will be more F Z
localized with increasing .Z

Conclusion:

We have conveyed our numerical outcomes, of our Fisher information’s studies, for the 
1s2-state of helium and helium-like ions that interrelate with Yukawa potential, in r-space. Fisher 
information’s calculations have been done by employing the Hylleraas wave functions with 1-, 2-, 
and 3-parameter, and in 1- and 2-el densities. It was found that Fisher information is an increasing 
function of , at fixed , and a decreasing function of , at fixed . This means that the Z   Z
electronic density will be more localized with increasing and decreasing . For our system, Z 
the el-el interaction becomes appreciable only for 2-el density calculations. The Fisher 
information’s 1-el density calculations are not sensitive to the el-el interaction, and this is mainly 
due to the gradient in the F expression. We have also defined the el-el correlation ratio and FR
found that the ratio satisfies the inequality , which is opposite to the Shannon’s criteria 2FR 

. The equality, in both cases, holds if the electrons are assumed to be independent and 2SR 

uncorrelated. It is found that is  dependent, but not . So, not only is the Fisher-Shannon FR Z 
information product an appropriate measure of el-el correlations, but also too. We believe the FR
presented data for Fisher information studied using Yukawa  potential will be of valuable reference 
and will inspire further research on information-theoretic quantities of atomic and molecular 
systems.

Page 9 of 15

https://mc06.manuscriptcentral.com/cjp-pubs

Canadian Journal of Physics



For Review Only

12/10/2019

10

Table3
Fisher information results 1s2- state of He atom as a function of using the three wave functions. 

1 2 
E uc

2F uc
1F FR E co

2F co
1F FR E co

2F co
1F FR

0.2 2.2903 22.4583 11.2291 2 2.3330 27.2333 11.2627 2.4180
2.3455

2.34666a 26.2252 11.2932 2.3222
0.4 1.8099 21.6063 10.8031 2 1.8508 26.2027 10.8484 2.4154 1.8662 25.0738 10.8644 2.3079

0.6 1.3967 20.3466 10.1733 2 1.4351 24.6867 10.2333 2.4124
1.4549

1.45816a 23.4126 10.2275 2.2892

0.8 1.0434 18.7573 9.3786 2 1.0788 22.7839 9.4550 2.4097
1.1042

1.10973a 21.3720 9.4216 2.2684

1.0 0.7444 16.8903 8.4452 2 0.7766 20.5603 8.5391 2.4078
0.8085

0.81599b 19.0499 8.4769 2.2473

1.2 0.4953 14.7778 7.3889 2 0.5239 18.0574 7.5021 2.4070
0.5629

0.57487a 16.5258 7.4189 2.2275
1.4 0.2928 12.4304 6.2152 2 0.3175 15.2916 6.3508 2.4078 0.3634 13.8678 6.2713 2.2113
1.6 0.1345 9.8197 4.9099 2 0.1549 12.2386 5.0758 2.4112 0.2060 11.1318 5.0571 2.2012
1.8 0.0198 6.7863 3.3932 2 0.0352 8.7533 3.6183 2.4192 0.0878 8.3410 3.7903 2.2006

Fitting
uc 2

2
uc 2

1

3.9394 1.8343   22.781 (0.9995)

1.9697 0.9171   11.391 (0.9995)

F

F

 

 

   

   

co 2
2
co 2

1

4.5456 2.3727   27.626 (0.9994)

1.9326 0.9015   11.419 (0.9995)

F

F

 

 

   

   

co 2
2
co 2

1

3.3990 4.0806   26.672 (0.9974)

1.6558 1.2810   11.455 (0.9984)

F

F

 

 

   

   

aRef. [42],  bRef. [45]
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Table4: The mean energy and Fisher information results for 1s2- state of , and  as a function of using . Li 2Be  3B   

Li+ Be2+ B3+


E co

2F co
1F FR E co

2F co
1F FR E co

2F co
1F FR

0.2
6.3273

6.3292677b 63.7622 28.7583 2.2172 12.3054 117.2648 54.2419 2.1619 20.2821 186.7462 87.7326 2.1286

0.4
5.4677

5.470082144 62.4959 28.2424 2.2128 11.0556 115.9495 53.6789 2.1601 18.6383 185.4039 87.1401 2.1277

0.6
4.6903

3.66896a 60.5947 27.458 2.2068 9.8963 113.9303 52.8084 2.1574 17.0901 183.3135 86.2131 2.1263

0.8 3.9881 58.173 26.4462 2.1997 8.8208 111.3087 51.6702 2.1542 15.6317 180.5656 84.989 2.1246

1.0

3.3553
3.3626607b

3.3612745 55.3175 25.2380 2.1918
7.8239

7.82958c 108.1642 50.2952 2.1506
14.2582

14.26312c 177.2336 83.4977 2.1226

1.2
2.7871

2.79753a 52.0969 23.8577 2.1837 6.9008 104.5613 48.7085 2.1467 12.9651 173.378 81.7643 2.1205

1.4 2.2792 48.5675 22.3255 2.1754 6.0476 100.5534 46.9309 2.1426 11.7486 169.0501 79.8096 2.1182

1.6 1.8282 44.7772 20.6584 2.1675 5.2606 96.1857 44.9798 2.1384 10.6052 164.2935 77.6515 2.1158

1.8
1.4307

1.45791a 40.7674 18.8716 2.1603 4.5367 91.4973 42.8702 2.1343 9.5318 159.1464 75.3055 2.1133

2.0

1.0840
1.1230701b

1.09117c 36.5749 16.9787 2.1542
3.8729

3.89558c 86.5222 40.6153 2.1303
8.5256

8.54251c 153.6423 72.7851 2.1109

2.4 0.5325 27.7687 12.9264 2.1482 2.7157 75.8288 35.7141 2.1232 6.7047 141.6780 67.2678 2.1062

2.8 0.1557 18.5173 8.5803 2.1581 1.7707 64.3094 30.3557 2.1185 5.1240 128.6024 61.1807 2.1020

3.0
0.0289

0.01946d 13.5834 6.2475 2.1742 1.3728 58.2922 27.5262 2.1177
4.4187

4.44331d 121.7002 57.9444 2.1003

3.4     0.7181 45.8190 21.6014 2.1211 3.1698 107.2549 51.1217 2.0980

3.8     0.2419 32.7429 15.3299 2.1359 2.1258 92.0511 43.8718 2.0982

4.0     
0.0684

0.05425d 25.7962 11.9942 2.1507 1.6773 84.1928 40.0991 2.0996

4.4         0.9210 67.9868 32.2728 2.1066

4.8         0.3462 51.0214 24.0404 2.1223

5         
0.1256

0.10753d 42.0473 19.6896 2.1355
aRef. [42],  bRef. [44],  cRef. [45],  dRef. [46]
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Appendix A

The gradient in Hylleraas coordinates

This appendix is devoted to derive the gradient expression in Hylleraas coordinates. In 
tensor notations [41], using:

and 1 2 3, , ;u s u t u u      1 2 3/ 2, / 2, ;x s t x s t x u    
one can determine the scale factors as follows:

3 3 3

11 22 331 2 3
1 1 1

1 1, , 1,
2 2

k k k

k k k

x x xg g g
u u u  

       
                 

  
then the gradient in Hylleraas coordinates is:

.
11 22 33

1 1 1ˆ ˆˆ ˆ ˆ ˆ2 2s t u s t u
s t u s t ug g g
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