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FISHER INFORMATION AND STATISTICAL INFERENCE
FOR PHASE-TYPE DISTRIBUTIONS

BY MOGENS BLADT, LUZ JUDITH R. ESPARZA AND BO FRIIS NIELSEN

Abstract

This paper is concerned with statistical inference for both continuous and discrete phase-
type distributions. We consider maximum likelihood estimation, where traditionally
the expectation-maximization (EM) algorithm has been employed. Certain numerical
aspects of this method are revised and we provide an alternative method for dealing with
the E-step. We also compare the EM algorithm to a direct Newton–Raphson optimization
of the likelihood function. As one of the main contributions of the paper, we provide
formulae for calculating the Fisher information matrix both for the EM algorithm and
Newton–Raphson approach. The inverse of the Fisher information matrix provides the
variances and covariances of the estimated parameters.
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1. Introduction

Phase-type distributions have played an important role in the modeling of complex stochastic
phenomena in recent decades. They are mathematically tractable and often allow for exact
solutions to functionals of interest, such as, e.g. the ruin probability in risk theory or waiting
time distributions in queueing theory. Such solutions are typically explicit or given in terms of
some deterministic equations which may require some standard numerical procedure for their
evaluation.

Phase-type distributions [8] can be defined for both discrete and continuous distributions.
A continuous (discrete) phase-type distribution is the time until absorption of a Markov jump
process (Markov chain) with finitely many states, one of which is absorbing and the remaining
being transient. It is the Markov jump (Markov chain) structure underlying the absorption
times that makes the phase-type distributions tractable, and most manipulations with phase-
type distributions use this underlying structure directly in establishing probabilistic arguments.

Estimation and statistical inference for phase-type distributions is of considerable importance
when consolidating its role in applications. The paper by Asmussen et al. [2] was the first
to establish a general approach to maximum likelihood estimation of continuous phase-type
distributions. In spite of being mathematically tractable due to their probabilistic interpretation,
this very interpretability complicates the estimation and inference for phase-type distributions
considerably: there are serious issues concerning identifiability and overparameterization.

One of the main reasons for using phase-type distributions is their tractability in many areas
of applied probability. Many of the key functionals of interest, such as ruin probabilities in
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278 M. BLADT ET AL.

insurance risk and the waiting time distributions in queueing theory, are invariant under different
equivalent representations of the same phase-type distribution.

The main contributions of this paper are methods for calculating the Fisher information
matrix for discrete and continuous phase-type distributions, and we provide formulae which re-
late to both the expectation-maximization (EM) algorithm and the Newton–Raphson approach.
The Fisher information matrix is then employed to find confidence regions for the estimated
parameters. We also review some necessary background concerning the EM algorithms for
the discrete and continuous cases, and we will suggest an alternative method for calculating
matrix exponentials and related integrals appearing in the E-step, where originally (see [2])
a Runge–Kutta method was employed. Our method will speed up the execution of the EM
algorithm considerably for small- and medium-sized data sets, while the Runge–Kutta method
may outperform our method for large amounts of data.

While the problem concerning overparameterization in general persists, we will only con-
sider distributions which have a unique representation. Confidence regions for parameters in
models which are overparameterized or nonunique are not well defined.

The remainder of this paper is organized as follows. In Section 2 we provide some relevant
background on phase-type distributions, while in Section 3 we analyze the maximum likelihood
estimation of these distributions via the EM algorithm and a Newton–Raphson method. In
Section 4 we present methods for obtaining the Fisher information matrix. A simulation study
is provided in Section 5. Finally, the work is summarized in Section 6.

2. Some basic properties of phase-type distributions

Let {Xt }t∈I be a Markov chain (Markov jump process) with I = {0, 1, 2, . . .} (I = [0, ∞))
and state space E = {1, . . . , p, p + 1}, where the states 1, . . . , p are transient and the state
p + 1 is absorbing. Let πi = P(X0 = i) be the initial probabilities, and define the row
vector π = (π1, . . . , πp). Let tij denote the transition probabilities (transition rates) between
the transient states. The transition rates for continuous-time processes are the entries of the
intensity matrix. Let T = {tij }i,j=1,...,p denote the transition matrix (intensity matrix) restricted
to the transient states. Finally, let t = (t1, . . . , tp)� be the vector of exit probabilities (exit
rates). With e being a p-dimensional column vector of 1s, we have t = e−T e (t = −T e). We
say that τ = inf{t ∈ I | Xt = p + 1} has a phase-type distribution with representation (π , T ),
and write τ ∼ PHp(π , T ). Throughout this paper, the acronyms DPH and CPH are used for
the discrete and continuous phase-type cases, respectively.

Sometimes it is convenient to allow for an atom at 0 as well, in which case we let πp+1 > 0
denote the probability of initiating in the absorbing state. If πp+1 = 0, the probability mass
(density) function of τ is f (x) = πT x−1t , (πeT x t), x > 0. We will initially assume that the
phase-type distributions under consideration do not have an atom at 0.

3. Maximum likelihood estimation of phase-type distributions

Consider M independent observations y1, . . . , yM from a PHp(π , T ) distribution, where
throughout the paper the order of the distribution p is assumed to be known. We may use
the Akaike information criterion [1] for estimating p, but this matter will not be pursued here.
Let y = (y1, . . . , yM). We observe only the times until absorption and have no information
about the underlying Markov chains (jump processes). We may consider this as a situation of
incomplete data since ideally we would be able to observe all the underlying Markov chains
(jump processes) which generate the absorption times.
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Let θ denote a vector containing the parameters (π , T , t). The incomplete data likelihood
functions are given by

L(θ; y) =
M∏

k=1

πT yk−1t for the DPH, L(θ; y) =
M∏

k=1

πeT yk t for the CPH.

The log-likelihood function is defined as �(θ; y) = log L(θ; y).

3.1. EM algorithm

One approach to maximizing the incomplete likelihood function is via the EM algorithm [5]
for which we will need the full data or complete likelihood function, Lf . Let x = (x1, . . . , xM)

denote the full data for the M absorption times. Thus, the xis are trajectories of the underlying
Markov chains (Markov jump processes) up to the time of absorption. The full data likelihood
is given in terms of sufficient statistics, i.e.

Lf (θ; x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p∏
i=1

π
Bi

i

p∏
i,j=1

t
Nij

ij

p∏
i=1

t
Ni

i for the DPH,

p∏
i=1

π
Bi

i

p∏
i,j=1
i �=j

t
Nij

ij e−tij Zi

p∏
i=1

t
Ni

i e−tiZi for the CPH,

where Bi is the number of Markov chains (Markov jump processes) initiating in state i, Nij is
the number of transitions from state i to state j , Ni is the number of chains (processes) jumping
from state i to the absorbing state, and Zi is the total time the processes spent in state i.

The full log-likelihood function �f is therefore given by

�f (θ; x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p∑
i=1

Bi log(πi) +
p∑

i,j=1

Nij log(tij ) +
p∑

i=1

Ni log(ti) for the DPH,

p∑
i=1

Bi log(πi) +
p∑

i,j=1
i �=j

Nij log(tij ) +
p∑

i=1

Ni log(ti)

−
p∑

i,j=1
i �=j

tijZi −
p∑

i=1

tiZi for the CPH.

The full likelihood is easily maximized by applying, e.g. the method of Lagrange multipliers,
attending the constraints. We find that the maximum likelihood estimators of π , T , and t are
given by

π̂i = Bi

M
, t̂ij = Nij

Ji

, and t̂i = Ni

Ji

, for the DPH,

π̂i = Bi

M
, t̂ij = Nij

Zi

, and t̂i = Ni

Zi

, for the CPH,

where Ji is the total number of jumps out of state i (DPH), and t̂ii = 1 − ∑
j �=i t̂ij − t̂i (DPH)

and t̂ii = − ∑
j �=i t̂ij − t̂i (CPH).
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The EM algorithm works as follows. Let θ0 = (π0, T0, t0) be (in principle) any choice of
initial parameters.

1. Calculate h : θ �→ Eθ0(�f (θ; x) | y).

2. Maximize h. Let θ̂ = (π̂ , T̂ , t̂) denote the point which maximizes h.

3. Set θ0 = θ̂ and go to step 1.

Since the log-likelihood function is linear in the sufficient statistics Bi , Nij , and Ni , it is straight-
forward to calculate its conditional expectation if the corresponding conditional expectations of
the sufficient statistics are known. To this end, consider one data point y (time until absorption).
The general case with more than one data point then follows by summing up the conditional
expectations over all data points y1, . . . , yM .

First, we consider the discrete case (see also [3]). We note that Bi = 1{X0=i} and, hence,

E(Bi | τ = y) = P(X0 = i | τ = y) = P(τ = y | X0 = i) P(X0 = i)

P(τ = y)
= e�

i T y−1t

πT y−1t
πi.

Here ei denotes a p-dimensional column vector with 1 in the ith entry and 0s elsewhere.
Concerning Nij , if τ = y we have

Nij = 1{y≥2}
y−2∑
k=0

1{Xk=i, Xk+1=j} .

Thus,

E(Nij | τ = y) = 1{y≥2}
y−2∑
k=0

P(Xk = i, Xk+1 = j | τ = y)

= 1{y≥2}
y−2∑
k=0

P(τ = y | Xk+1 = j) P(Xk+1 = j | Xk = i) P(Xk = i)

P(τ = y)

= 1{y≥2}
y−2∑
k=0

e�
j T (y−(k+1)−1)tπT kei

πT y−1t
tij .

Similar calculations yield

E(Ni | τ = y) = πT y−1ei

πT y−1t
ti .

Finally, E(Ji) = ∑p
j=1 E(Nij ) + E(Ni). The final EM algorithm for the discrete case then

translates into the following.

0. Let θ0 = (π0, T0, t0).

1. Under θ0, calculate the three conditional expectations Eθ0(Bi | y), Eθ0(Nij | y), and
Eθ0(Ni | y). Let E(Ji | y) = ∑p

j=1 E(Nij | y) + E(Ni | y).

2. Let π̂i = Eθ0(Bi | y)/M , t̂ij = Eθ0(Nij | y)/Eθ0(Ji | y), and t̂i = Eθ0(Ni | y)/

Eθ0(Ji | y).

3. Set θ0 = (π0, T0, t0) = (π̂ , T̂ , t̂) and go to step 1.
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The EM algorithm for the CPH is similar, changing only the formulae for the conditional expec-
tations, which can be found in [2]. As a curiosity, in the derivation of the conditional expectation
of Nij given discrete data in continuous time, Asmussen et al. [2] used a discretization argument
where they approximated the continuous process by the corresponding Markov chain formula
derived above.

The corresponding formulae for the CPH (see [2]) are given by

E(Bi | τ = y) = e�
i eT y t

πeT y t
πi,

E(Nij | τ = y) =
∫ y

0 πeT ueie
�
j eT (y−u)t du

πeT y t
tij ,

E(Ni | τ = y) = πeT yei

πeT y t
ti ,

E(Zi | τ = y) =
∫ y

0 πeT ueie
�
i eT (y−u)t du

πeT y t
.

If 0 is contained in the data, we also need to include an atom of a certain size at 0 in
the specification of the phase-type distribution. Allowing for πp+1 > 0, we may recalculate
conditional expectations and maxima as above. However, it is immediately seen that the
estimation procedure can be split into the following components. (i) Let π̂p+1 denote the
proportion of 0s in the data set. (ii) Eliminate the 0s from the data. (iii) Fit a phase-type
distribution PHp(π̂ , T̂ ) to the remaining data. This procedure, indeed, produces a maximum
likelihood estimator for the full model which contains an atom at 0.

The EM algorithm always converges to a (possibly local) maximum. The convergence is
known to be quite slow. Various random initiations of the algorithm may be needed in order to
support the hypothesis that the local maxima reached represents a global maximum. Also, it is
important to initiate the algorithm with a representation of full dimension. If we, for example, in
the discrete case decided to initiate with tij = 1/(p + 1) and πi = 1/p, p being the dimension
of the representation, then this is equivalent to a geometric distribution and it is not difficult to
see that all subsequent iterations will again give geometric distributions. Hence, the maximum
likelihood estimator will also satisfy the condition that all elements of the transition matrix
are equal. If some parameter tij is set to 0 initially then all subsequent values of tij through
the iterations will remain 0. This makes it possible to estimate subclasses of general discrete
phase-type distributions by adequately specifying 0s of certain transition probabilities from
the beginning. If other subclasses or reparameterizations, such as, e.g. letting all remaining
tij depend only on i, are to be considered then we need to intervene directly in the likelihood
function and calculate new expressions for the maximum likelihood estimators. The conditional
expectations, however, still remain valid.

The evaluation of the E-step in the CPH version of the EM algorithm can be numerically
challenging. In [2] the authors proposed using a Runge–Kutta method. Another, and by now
standard, method for the evaluation of the matrix exponential is uniformization. This method
can also be applied in the evaluation of E(Nij | τ = y). The advantage of uniformization is
the higher numerical precision. In most cases we found uniformization to be superior in terms
of efficiency too; although, for a very high number of observations, our implementation was
outperformed with respect to speed by the Runge–Kutta implementation of [2].

We now describe the EM algorithm for the CPH using uniformization. In standard uni-
formization (see [6]) we let K = (1/c)T + I , where c = max{−tii : 1 ≤ i ≤ p} and I is the

https://doi.org/10.1239/jap/1318940471 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1318940471


282 M. BLADT ET AL.

identity matrix of appropriate dimension p × p. We have

eT y =
∞∑

r=0

e−cy (cy)r

r! Kr .

Also, for y ∈ {y1, . . . , yM}, we have to evaluate the integral J (y) = ∫ y

0 eT (y−u)tπeT u du for
which we will use uniformization. Here

J (y) =
∫ y

0

(
e−c(y−u)

∞∑
k=0

(cK(y − u))k

k!
)

tπ

(
e−cu

∞∑
j=0

(cKu)j

j !
)

du

= e−cy
∞∑

j=0

∞∑
k=0

(∫ y

0

(cu)j

j !
(c(y − u))k

k! du

)
Kj tπKk

= e−cy
∞∑

j=0

∞∑
k=0

(cy)j+k+1

j ! k!
j ! k!

(j + k + 1)!K
j 1

c
tπKk

= e−cy
∞∑

s=0

(cy)s+1

(s + 1)!DJ (s), (1)

where DJ (s) = ∑s
j=0 Kj tπKs−j /c, which may be calculated recursively. The matrix J (y)

has the following probabilistic interpretation. The (i, j)th entry of the matrix is the probability
that a phase-type renewal process with interarrival distribution PHp(π , T ) (CPH) starting from
state i has exactly one arrival in [0, y] and is in state j by time y. From this interpretation we
derive the following recursive formula:

J (x + y) = eT xJ (y) + J (x)eT y.

With this formula we can calculate J (x + �x), using previous terms, improving the efficiency
considerably.

One of the strengths of the uniformization method is the exact upper bound that can be given
on the absolute truncation error, owing to the role of the weighting factors as the terms in the
Poisson probability mass function.

A similar exact upper bound can be given when determining an upper limit for the truncation
of the sum involved in calculating J (y). To see this, we will consider the distribution

qi = iλi

λi! e−λ, i = 0, 1, 2, . . . ,

or

qi = λi−1

(i − 1)!e−λ, i = 1, 2, . . . ,

that is, the size-biased distribution derived from the Poisson distribution with the probabilistic
interpretation that it tells what is the fraction of the mean contributed by observations of exactly
size i. It is a nice property to see that in a sense the Poisson distribution is closed under size
biasing, albeit a shift to the right. If we consider the factors DJ (s) in the expression for J (y),
we see that all row sums of DJ (s) are bounded by s + 1 and, thus, we can obtain the upper
bound for the truncation from the size-biased distribution of the Poisson distribution, which
happens to be the truncation limit for the standard uniformization factor plus 1.
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3.2. Newton–Raphson maximization

The EM algorithm is a numerical method for optimizing the incomplete likelihood function.
It uses the underlying probabilistic structure of the model and convergence is guaranteed. As
an alternative, we will explore a state-of-the-art Newton–Raphson algorithm, and compare its
performance to the EM algorithm.

The Newton–Raphson method is based on the idea of approximating a function with its
first- or second-order Taylor expansion. Thus, we need to calculate the gradient vector of the log-
likelihood function. This is computationally demanding, particularly if the dimension is large.
However, the cost of calculating the gradient could be compensated for by fewer iterations.
The method is not designed to work with boundary conditions. While the calculation of the
gradient is rather straightforward, the task of making an efficient numerical implementation of
the formulae is by no means trivial.

Using the idea given by Nielsen and Beyer [9], we want to work with an unconstrained
system, and use a package for unconstrained optimization written by Madsen et al. [7]. Their
program, as well as many other standard routines available for unconstrained optimization,
finds the maximum of a given function using the gradient vector. Since we want to find the
maximum of the log-likelihood function, we calculate the gradient vector based on the parameter
transformation which provides the unconstrained optimization problem. We will refer to this
method as the direct method (DM) since it does not use the underlying probabilistic structure.

The DM we employ assumes that the parameters are unbounded. This is obviously not the
case for the phase-type intensities, so we consider a reparameterization τ of the parameters.
We also need to provide the gradient at a given point of the transformed parameters,

g = ∂�(θ; y)

∂τ
=

(
∂�(θ; y)

∂τm

)
m=1,...,p2+(p−1)

.

Let θ = (θ1, . . . , θp2+(p−1)). By the chain rule, this vector can be obtained as

∂�(θ; y)

∂τ
= ∂�(θ; y)

∂θ

∂θ

∂τ
, (2)

where ∂�(θ; y)/∂θ is a (p2 + (p − 1))-dimensional row vector and ∂θ/∂τ is the Jacobian
matrix. Taking the derivative of the log-likelihood function with respect to θ yields

∂�(θ; y)

∂θ
=

M∑
k=1

1

f (yk)

∂f (yk)

∂θ
,

where f is the density of the phase-type distribution parameterized by θ . Thus, the problem
reduces to finding the derivative of f with respect to the original parameters. To do this, we
introduce

�(y) =
{

T y−1 for the DPH,

eT y for the CPH.

By substituting π = ∑p−1
j=1 πje

�
j +(1−∑p−1

j=1 πj )e
�
p , the density of the phase-type distribution

evaluated at y is given by

f (y) =
p−1∑
j=1

πje
�
j �(y)t +

(
1 −

p−1∑
j=1

πj

)
e�
p �(y)t,
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and its partial derivatives with respect to the original parameters are given by

∂f (y)

∂πm

= e�
m�(y)t − e�

p �(y)t,

∂f (y)

∂tmn

= π
∂�(y)

∂tmn

t, m �= n,

∂f (y)

∂tm
= π�(y)em + π

∂�(y)

∂tm
t .

In order to compute the partial derivatives of � with respect to θm for m ∈ {1, . . . , p2 +
(p − 1)}, we will need the derivatives of T r for r ≥ 1, and the derivative of eT y . In general,
we have

∂T r

∂θm

=
r−1∑
k=0

T k ∂T

∂θm

T r−1−k, r ≥ 1, (3)

where [∂T /∂tij ]ij = 1, [∂T /∂tij ]ii = −1, and [∂T /∂ti]ii = −1.
Concerning the derivative of eT y , we will use a uniformization argument similar to (1). We

obtain
∂eT y

∂θm

= e−cy
∞∑

s=0

(cy)s+1

(s + 1)!Dm(s) + ∂c

∂θm

yeT y(K − I ), (4)

where Dm(s) = ∂Ks+1/∂θm, which is calculated as in (3). Since eT (x+y) = eT xeT y , we can
obtain a recursive version of (4) given by

∂eT (x+y)

∂θm

= eT x ∂eT y

∂θm

+ ∂eT x

∂θm

eT y.

In order to deal with unconstrained parameters in the optimization, we propose the following
transformation. For m = 1, . . . , p2 + (p − 1), let −∞ < τm < ∞ be such that

πi = exp(τi)

1 + ∑p−1
s=1 exp(τs)

, i = 1, . . . , p − 1, πp = 1

1 + ∑p−1
i=1 exp(τi)

,

and, for i, j = 1, . . . , p, i �= j ,

tij = exp(τip+(j−1))

1 + ∑p
s=1 exp(τip+(s−1))

and ti = exp(τip+(i−1))

1 + ∑p
s=1 exp(τip+(s−1))

for the DPH,

tij = exp(τip+(j−1)) and ti = exp(τip+(i−1)) for the CPH.

The elements in the diagonal of T are defined as tii = 1 − ∑p
j=1,j �=i tij − ti in the DPH, and

as tii = − ∑p
j=1,j �=i tij − ti in the CPH. Note that 0s for πi and tij are not a possibility in this

reparameterization. However, we can choose to bound tij or ti to 0 with obvious changes for
the τms.

The Jacobian matrix is constructed as follows. For i, j = 1, . . . , p − 1, the (i, j)th element
of this matrix is given by

∂πi

∂τj

= πj 1{j=i} −πiπj .
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For i, j = 1, . . . , p and m = p, . . . , p2 + (p − 1), the (ip + (j − 1), m)th element of the
matrix is given by ∂tij /∂τm if i �= j and ∂ti/∂τm if i = j , where

∂tij

∂τm

=

⎧⎪⎨
⎪⎩

tij 1{m=ip+(j−1)} −tij

p∑
r=1

(ti 1{i=r} +tir 1{i �=r}) 1{m=ip+(r−1)} for the DPH,

tij 1{m=ip+(j−1)} for the CPH,

∂ti

∂τm

=

⎧⎪⎨
⎪⎩

ti 1{m=ip+(i−1)} −ti

p∑
r=1

(ti 1{i=r} +tir 1{i �=r}) 1{m=ip+(r−1)} for the DPH,

ti 1{m=ip+(i−1)} for the CPH.

4. Fisher information

Fisher information is a key concept in the theory of statistical inference and essentially
describes the amount of information data provided about unknown parameters. It has applica-
tions to finding the variance of an estimator, as well as in the asymptotic behavior of maximum
likelihood estimates, and in Bayesian inference.

We present formulae for the Fisher information matrix for a general phase-type distribution.
Frequently, we may consider subclasses, such as generalized Erlang or hyperexponential distri-
butions, where several intensities are assumed to be 0. The corresponding Fisher information
is then calculated with the same formulae, but summing over indices where the parameters are
different from 0. We present methods for calculating the Fisher information matrix for both the
EM algorithm and the Newton–Raphson method.

Throughout, we will assume that the parameters are freely varying and not linked to each
other through some common parameters or formulae.

4.1. Fisher information via the EM algorithm

The EM algorithm also allows for extracting information concerning the Fisher information
matrix, as noted in [10]. Considering L, the incomplete data likelihood which is maximized
by the EM algorithm, the Fisher information matrix is given by

∂2L(θ; y)

∂θ2 =
{

∂2Q(θ̂ | θ)

∂ θ̂2
+ ∂2Q(θ̂ | θ)

∂θ∂ θ̂

}
θ̂=θ

, (5)

where
Q(θ̂ | θ) = Eθ (�f (θ̂; x) | y). (6)

Define

Ui =
M∑
l=1

e�
i �(yl)t

f (yl)
, (7)

Wi =
M∑
l=1

π�(yl)ei

f (yl)
, (8)

Vij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

M∑
l=1

1{yl≥2}
1

f (yl)

yl−2∑
k=0

e�
j T yl−k−2tπT kei for the DPH,

M∑
l=1

1

f (yl)

∫ yl

0
e�
j eT (yl−u)tπeT uei du for the CPH.

(9)
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Then (6) becomes

Q(θ̂ | θ) =
p−1∑
i=1

log π̂iUiπi + log

(
1 −

p−1∑
s=1

π̂s

)
Up

(
1 −

p−1∑
s=1

πs

)

+
p∑

i=1

p∑
j=1, j �=i

log t̂ij Vij tij +
p∑

i=1

SiVii +
p∑

i=1

log(t̂i )Witi ,

where

Si =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1 −

p∑
j=1, j �=i

tij − ti

)
log

(
1 −

p∑
j=1, j �=i

t̂ij − t̂i

)
for the DPH,

−
p∑

j=1, j �=i

t̂ij − t̂i for the CPH.

The elements of the Fisher information matrix (5) are given as follows. For i, j = 1, . . . ,

p − 1, the (i, j)th element is given by

∂Ui

∂πj

− ∂Up

∂πj

;

for m = 1, . . . , p − 1 and i, j = 1, . . . , p, the (ip − 1 + j, m)th element is given by

∂Um

∂tij
− ∂Up

∂tij
if i �= j,

∂Um

∂ti
− ∂Up

∂ti
if i = j ;

the (m, ip − 1 + j)th element is given by

∂Vij

∂πm

− ∂Vii

∂πm

if i �= j,
∂Wi

∂πm

− ∂Vii

∂πm

if i = j ;

and, finally, for i, j, m, n = 1, . . . , p, the (ip − 1 + j, mp − 1 + n)th element is given by

∂Vij

∂tmn

− ∂Vii

∂tmn

if i �= j, m �= n,
∂Vij

∂tm
− ∂Vii

∂tm
if i �= j, m = n,

∂Wi

∂tmn

− ∂Vii

∂tmn

if i = j, m �= n,
∂Wi

∂tm
− ∂Vii

∂tm
if i = j, m = n.

The explicit formulae of the above derivatives are given in Appendix A.

4.2. Newton–Raphson estimation

To obtain the Fisher information matrix using the DM, we take the second derivative of (2),
which at the optimum gives

∂2�(θ; y)

∂ τ̄∂τ
= ∂θ

∂τ

∂2�(θ; y)

∂ θ̄∂θ

∂ θ̄

∂ τ̄
,

where ∂2�(θ; y)/∂ θ̄∂θ is a square matrix of second-order partial derivatives. For this, we need
the second derivatives of the density f with respect to the original parameters (seeAppendix B).
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For m, n ∈ {1, . . . , p2 + (p − 1)}, and taking the second derivative of (3), we obtain

∂2T r

∂θn∂θm

=
r−1∑
k=0

T k ∂T

∂θm

∂T r−1−k

∂θn

+ ∂T k

∂θn

∂T

∂θm

T r−1−k. (10)

In the same way, from (4) we have

∂2eT y

∂θn∂θm

= e−cy
∞∑

k=0

(cy)k+1

(k + 1)!
∂2Kk+1

∂θn∂θm

+ ∂c

∂θm

y

(
eT y ∂K

∂θn

+ ∂eT y

∂θn

(K − I )

)
,

where ∂2Kr/∂θn∂θm can be calculated as in (10).
The quasi-Newton method presented in [9] gives an approximate value of the Hessian matrix

for the transformed parameters τ used in the optimization. This can be transformed into an
approximation for the inverse Fisher information matrix using

∂2�(θ; y)

∂ θ̄∂θ
= ∂τ

∂θ

∂2�(θ; x)

∂ τ̄∂τ

∂ τ̄

∂ θ̄
.

5. Simulation results

The phase-type representation of a given distribution is, in general, nonunique and nonmin-
imal. Hence, we explore a subclass of phase-type distributions for which the representation
is an acyclic graph (APH). Cumani [4] has shown that a canonical representation for the APH
subclass exists, and this representation is unique, minimal, and has the form of a Coxian model
with real transition rates. This representation is called a canonical form.

The canonical form representation is given by

π = (1, 0, . . . , 0), T =

⎛
⎜⎜⎜⎜⎜⎝

t11 t12
t22 t23

. . .
. . .

tp−1,p−1 tp−1,p

tpp

⎞
⎟⎟⎟⎟⎟⎠ , t =

⎛
⎜⎜⎜⎜⎜⎝

t1
t2
...

tp−1
tp

⎞
⎟⎟⎟⎟⎟⎠ .

In this section we present the results of an estimation study considering simulated data
from discrete and continuous phase-type distributions. The discrete phase-type distribution has
the distribution of a shifted negative binomial random variable, 1 + N , where N is negative
binomially distributed with parameters (3, 0.2). The phase-type representation is given by

π = (1, 0, 0), T =
⎛
⎝1 − p1 (1 − p1)p1 (1 − p1)p

2
1

0 1 − p1 (1 − p1)p1
0 0 1 − p1

⎞
⎠ , t =

⎛
⎝p3

1

p2
1

p1

⎞
⎠ .

Its equivalent canonical representation is given by

π = (1, 0, 0), T =

⎛
⎜⎜⎝

1 − p1 (1 − p2
1)p1 0

0 1 − p1 p1 − 2p2
1

1 + p1
0 0 1 − p1

⎞
⎟⎟⎠ , t =

⎛
⎜⎜⎝

p3
1

2p2
1

1 + p1
p1

⎞
⎟⎟⎠ .
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For the continuous case, we consider a mixture of three exponential distributions with
parameters λ1 = 1.0, λ2 = 0.1, and λ3 = 0.01. This distribution is also called hyperex-
ponential, and has a phase-type representation given by

π = (π1, π2, π3), T =
⎛
⎝−λ1 0 0

0 −λ2 0
0 0 −λ3

⎞
⎠ , t =

⎛
⎝λ1

λ2
λ3

⎞
⎠ ,

where π1 = 0.9, π2 = 0.09, and π3 = 0.01. Its equivalent canonical form is given by

π = (1, 0, 0), T =
⎛
⎝−λ1 λ1 − t1 0

0 −λ2 λ2 − t2
0 0 −λ3

⎞
⎠ ,

t =

⎛
⎜⎜⎝

π1λ1 + π2λ2 + π3λ3

π2λ2(λ1 − λ2) + π3λ3(λ1 − λ3)

π2(λ1 − λ2) + π3(λ1 − λ3)
λ3

⎞
⎟⎟⎠ .

The method to obtain the canonical form is given in [4]. All estimation is performed using the
canonical form.

After finding the maximum likelihood estimator, the Fisher information (FI) matrix was
obtained considering only the nonzero parameters. As the inverse of the FI is the empirical
variance–covariance matrix, we could obtain the standard deviation of the parameters (see
Tables 1 and 2). The corresponding correlations are given in Tables 3 and 4.

Table 1: Maximum likelihood estimators (MLEs) and standard deviations (SDs) of the shifted negative
binomial(3, 0.2), considering 10 000 observations.

EM DM
Parameter True value

MLE SD MLE SD

t̂1 0.0080 0.0094 0.0009 0.0094 0.0009
t̂12 0.1920 0.1939 0.0426 0.1939 0.0455
t̂2 0.0667 0.0592 0.0118 0.0591 0.0125
t̂23 0.1333 0.1440 0.0387 0.1441 0.0408
t̂3 0.2000 0.2033 0.0426 0.2032 0.0450

Table 2: Maximum likelihood estimators (MLEs) and standard deviations (SDs) of the hyperexponential,
considering 20 000 observations.

EM DM
Parameter True value

MLE SD MLE SD

t̂1 0.9091 0.9160 0.0080 0.9248 0.0080
t̂12 0.0909 0.0934 0.0037 0.0923 0.0037
t̂2 0.0902 0.0922 0.0040 0.0921 0.0040
t̂23 0.0098 0.0136 0.0015 0.0152 0.0017
t̂3 0.0100 0.0115 0.0009 0.0121 0.0010
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Table 3: Correlations of the shifted negative binomial(3, 0.2).

Parameter t̂1 t̂12 t̂2 t̂23 t̂3

t̂1 1.0000 −0.0118 −0.1855 0.0677 0.0103
t̂12 −0.0118 1.0000 −0.9336 −0.2623 −0.4973
t̂2 −0.1855 −0.9336 1.0000 0.1916 0.4512
t̂23 0.0677 −0.2623 0.1916 1.0000 −0.6842
t̂3 0.0103 −0.4973 0.4512 −0.6842 1.0000

Table 4: Correlations of the hyperexponential.

Parameter t̂1 t̂12 t̂2 t̂23 t̂3

t̂1 1.0000 0.3451 0.2418 0.0591 0.0429
t̂12 0.3451 1.0000 0.5777 0.1874 0.1148
t̂2 0.2418 0.5777 1.0000 0.4171 0.2300
t̂23 0.0591 0.1874 0.4171 1.0000 0.4887
t̂3 0.0429 0.1148 0.2300 0.4887 1.0000

6. Concluding remarks

The paper by Asmussen et al. [2] provided the statistical framework for obtaining maximum
likelihood estimates of continuous phase-type distributions using the EM algorithm. In this
paper we have demonstrated how one can obtain uncertainty estimates of the parameters in
cases where the phase-type distribution is not overparameterized. The development is done for
discrete as well as for continuous phase-type distributions. We have discussed two different
ways of analytically obtaining the Fisher information matrix in such cases. One of these
methods is based on a direct calculation of second derivatives of the log-likelihood function,
while the other method is based on a paper by Oakes [10] where the partial derivatives are
made using a split of the log-likelihood function as in the EM algorithm. The methods are
quite similar with respect to the actual analytical and numerical calculations. In particular, the
truncation error of the algorithm can in both cases be controlled exactly in the same way as for the
uniformization method. In turn, we suggest a technical alternative based on uniformization for
the calculation of matrix exponentials and certain integrals in the continuous version of the EM
algorithm. The main advantage of using the uniformization-based approach is the possibility
of controlling the numerical error during the successive iterations. We also demonstrated how
one could alternatively obtain maximum likelihood estimates by a direct approach using an
up-to-date (quasi) Newton–Raphson method.

We have demonstrated our results using a couple of numerical examples, one for the discrete
case and one for the continuous case. The two algorithms gave the same result for the Fisher
information, a result that was verified by the approximate information on the Hessian matrix
provided by the quasi-Newton–Raphson method.

Our implementations did not provide significant evidence that one of the two optimization
methods should be preferred over the other. In most cases our implementations were competitive
with the Runge–Kutta-based approach also in terms of efficiency.

In the future we will modify our approach to be able to handle cases with fewer free parame-
ters in the phase-type representations. For example, we may consider phase-type distributions in
arbitrary dimensions where certain transition rates are equal or proportional to each other. In this
case we need to provide alternative formulae for the EM algorithm and the Fisher information.

https://doi.org/10.1239/jap/1318940471 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1318940471


290 M. BLADT ET AL.

Another topic for future study is to improve the efficiency of the algorithms. Many matrix–
matrix and matrix–vector products are used a number of times throughout. It might thus be
possible to optimize our implementations further with different strategies for calculating and
storing intermediate results.

Appendix A. Fisher information matrix using the EM algorithm

Let Ri(u) = π�(u)ei and Qi(u) = e�
i �(u)t . Then, their derivatives are given by

∂Ri(u)

∂πm

= e�
m�(u)ei − e�

p �(u)ei ,
∂Qi(u)

∂πm

= 0,

∂Ri(u)

∂tmn

= π
∂�(u)

∂tmn

ei , m �= n,
∂Qi(u)

∂tmn

= e�
i

∂�(u)

∂tmn

t, m �= n,

∂Ri(u)

∂tm
= π

∂�(u)

∂tm
ei ,

∂Qi(u)

∂tm
= e�

i �(u)em + e�
i

∂�(u)

∂tm
t .

Then Ui , Wi , and Vij (see (7), (8), and (9)) become

Ui =
M∑
l=1

Qi(yl)

f (yl)
, Wi =

M∑
l=1

Ri(yl)

f (yl)
,

Vij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

M∑
l=1

1{yl≥2}
1

f (yl)

yl−2∑
k=0

Qj(yl − k − 1)Ri(k + 1) for the DPH,

M∑
l=1

1

f (yl)

∫ yl

0
Qj(yl − u)Ri(u) du for the CPH.

Hence, for n ∈ {1, . . . , p2 + (p − 1)}, the derivatives with respect to θn are given by

∂Ui

∂θn

=
M∑
l=1

1

f (yl)2

(
f (yl)

∂Qi(yl)

∂θn

− Qi(yl)
∂f (yl)

∂θn

)
,

∂Wi

∂θn

=
M∑
l=1

1

f (yl)2

(
f (yl)

∂Ri(yl)

∂θn

− Ri(yl)
∂f (yl)

∂θn

)
,

∂Vij

∂θn

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M∑
l=1

1{yl≥2}
yl−2∑
k=0

1

f (yl)2

[
f (yl)

(
Qj(yl − k − 1)

∂Ri(k + 1)

∂θn

+∂Qj (yl − k − 1)

∂θn

Ri(k + 1)

)

−∂f (yl)

∂θn

Qj (yl − k − 1)Ri(k + 1)

]
for the DPH,

M∑
l=1

1

f (yl)2

[
f (yl)

∫ yl

0

(
Qj(yl − u)

∂Ri(u)

∂θn

+∂Qj (yl − u)

∂θn

Ri(u)

)
du

−∂f (yl)

∂θn

∫ yl

0
Qj(yl − u)Ri(u) du

]
for the CPH.
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Concerning the computation of ∂Vij /∂θn for the CPH, we define the integrals

J1(y; M) =
∫ y

0
eT (y−u)MeT u du = e−cy

∞∑
s=0

(cy)s+1

(s + 1)!DJ1(s),

J2(y; θn, M) =
∫ y

0
eT (y−u)M

∂eT u

∂θn

du = e−cy
∞∑

s=0

(cy)s+2

(s + 2)! (DJ2,1(s, θn) + DJ2,2(s, θn)),

J3(y; θn, M) =
∫ y

0

∂eT (y−u)

∂θn

MeT u du = e−cy
∞∑

s=0

(cy)s+2

(s + 2)! (DJ3,1(s, θn) + DJ3,2(s, θn)),

where M is a p × p matrix and

DJ1(s) =
s∑

j=0

Kj 1

c
MKs−j ,

DJ2,1(s, θn) =
s∑

j=0

Kj 1

c
M

∂Ks−j+1

∂θn

,

DJ2,2(s, θn) =
s∑

j=0

Kj (s + 1 − j)
1

c2

∂c

∂θn

M(K − I )Ks−j ,

DJ3,1(s, θn) =
s∑

j=0

∂Ks−j+1

∂θn

1

c
MKj ,

DJ3,2(s, θn) =
s∑

j=0

Kj (j + 1)
1

c2

∂c

∂θn

(K − I )MKs−j .

Then

∂Vij

∂πm

=
M∑

k=1

1

f (yk)2

[
f (yk)(e

�
j J1(yk; te�

m)ei − e�
j J1(yk; te�

p )ei )

− ∂f (yk)

∂πm

e�
j J1(yk; tπ)ei

]
,

∂Vij

∂tmn

=
M∑

k=1

1

f (yk)2

[
f (yk)(e

�
j J2(yk; tmn, tπ)ei + e�

j J3(yk; tmn, tπ)ei )

− ∂f (yk)

∂tmn

e�
j J1(yk; tπ)ei

]
,

∂Vij

∂tm
=

M∑
k=1

1

f (yk)2

[
f (yk)(e

�
j J2(yk; tm, tπ)ei + e�

j J1(xk; emπ)ei + e�
j J3(yk; tm, tπ)ei )

− ∂f (yk)

∂tm
e�
j J1(yk; tπ)ei

]
.

A proper truncation of the infinite sums involved in Ji , i = 1, 2, 3, can be obtained using the
same approach as for J discussed at the end of Section 3.1. The row sums of the matrix DJ1(s)
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are like those for DJ (s) bounded by s + 1, while the row sums of DJ2,1(s, ·), DJ2,2(s, ·),
DJ3,1(s, ·), and DJ3,2(s, ·) are bounded by 1

2 (s + 1)(s + 2). Thus, to find a proper level for
truncation, we can restrict ourselves to the scalar sum

∞∑
s=0

e−cy (cy)s+2

(s + 2)!
1

2
(s + 1)(s + 2) = −1

2

∞∑
s=2

e−cy (cy)s

s! s + 1

2

∞∑
s=2

e−cy (cy)s

s! s2,

which represents the summation of the first- and second-order moment distributions of the
Poisson distribution.

As in Section 3.1, the truncation level is thus the standard uniformization level plus 1 and
plus 2, respectively.

Appendix B. Hessian matrix for the Newton–Raphson method

Taking the second derivative of the log-likelihood function yields

∂2�(θ; y)

∂ θ̄∂θ
=

M∑
k=1

1

f (yk)2

[
f (yk)

∂2f (yk)

∂ θ̄∂θ
− ∂f (yk)

∂ θ̄

∂f (yk)

∂θ

]
,

where the second derivatives of the density with respect to the initial probabilities are 0, i.e.

∂2f (y)

∂πn∂πm

= 0.

While, with respect to the elements of the matrix T , the second derivatives are given by

∂2f (y)

∂tmn∂tij
= π

∂2�(y)

∂tmn∂tij
t, m �= n, i �= j,

and, with respect to the exit probabilities, they are given by

∂2f (y)

∂tm∂ti
= π

∂�(y)

∂tm
ei + π

∂�(y)

∂ti
em + π

∂2�(y)

∂tm∂ti
t .

Finally,

∂2f (y)

∂πm∂tij
= ∂2f (y)

∂tij ∂πm

= e�
m

∂�(y)

∂tij
t − e�

p

∂�(y)

∂tij
t, i �= j,

∂2f (y)

∂πm∂ti
= ∂2f (y)

∂ti∂πm

= e�
m�(y)ei − e�

p �(y)ei + e�
m

∂�(y)

∂ti
t − e�

p

∂�(y)

∂ti
t,

∂2f (y)

∂tmn∂ti
= π

∂�(y)

∂tmn

ei + π
∂2�(y)

∂tmn∂ti
t, m �= n,

∂2f (y)

∂ti∂tmn

= π
∂�(y)

∂tmn

ei + π
∂2�(y)

∂ti∂tmn

t, m �= n.
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