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FISHER INFORMATION IN WEIGHTED DISTRIBUTIONS

ABSTRACT

Standard inference procedures assume a random sample from a population with den-

sity fµ(x) for estimating the parameter µ. However, there are many applications in which

the available data are a biased sample instead. Fisher modeled biased sampling using a

weight function w(x) ¸ 0, and constructed a weighted distribution with a density f w
µ (x)

that is proportional to w(x)fµ(x). In this paper, we assume that fµ(x) belongs to an ex-

ponential family, and study the Fisher information about µ in observations obtained from

some commonly arising weighted distributions: (i) the kth order statistic of a random

sample of size m, (ii) observations from the stationary distribution of the residual lifetime

of a renewal process, and (iii) truncated distributions. We give general conditions under

which the weighted distribution has greater Fisher information than the original distrib-

ution, and specialize to the normal, gamma, and Weibull distributions. These conditions

involve the distributions' hazard rate and the reversed hazard rate functions.

Key words and phrases: exponential family, hazard rate function, meta-analysis, order

statistics, residual lifetime, reversed hazard rate function, selection model.

AMS 1991 subject classi¯cations: 62B99, 62F10.

Running head: INFORMATION IN WEIGHTED DISTRIBUTIONS



1. Introduction

Let a random variable X have probability density function (pdf) fµ(x), where µ is

an unknown parameter taking on values in the parameter space £. The usual inference

procedures assume that a random sample is drawn from a population with pdf fµ(x).

However, there are many situations in which the available data are a biased sample instead.

Using a weight function, w(x) ¸ 0, to model ascertainment bias, Fisher (1934) constructed

the weighted distribution corresponding to fµ(x), and having the form

fw
µ (y) =

w(y)fµ(y)
Eµ fw(X)g ; (1)

where the expectation in (1) is assumed to exist. For example, in meta-analysis w(x) =

I fjxj ¸ 1:96g models an extreme form of publication bias, in which only statistically

signi¯cant results are reported: see Hedges (1992), and Iyengar and Greenhouse (1988).

In reliability theory, w(x) = x models size-biased sampling for lifetime distributions. In

general, the weight function may also depend upon another parameter, and upon µ itself.

Rao (1965, 1985) presented a uni¯ed theory of weighted distributions, identifying various

sampling situations which can be modeled using them.

Several studies have compared the information about µ in an experiment yielding

a random sample from fµ(x) with that in an experiment yielding a random sample of

the same size from fw
µ (x). Patil and Taillie (1987) calculated the Fisher information for

certain exponential families, focusing primarily on w(x) = x for nonnegative random vari-

ables. Bayarri and DeGroot (1987a, 1987b) and Bayarri et al. (1987) investigated Fisher

information when observations are obtained only from selected portions of the underlying

population, which was assumed to belong to an exponential family. They gave some ex-

plicit results for the normal and gamma distributions; for the gamma distribution, they

noticed the role played by the hazard rate function when studying the Fisher information.

In this paper, we study Fisher information for two commonly arising classes of weighted

distributions, which are conventionally not regarded as weighted distributions: the kth

order statistic from a random sample of size m from fµ(x), and observations from the

stationary distribution of the residual lifetime from a renewal process, when fµ(x) belongs

to a certain exponential family. We also extend the results of Bayarri et al. (1987) on
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selection samples to other distributions, and selection sets.

After establishing our notation in Section 2, in Section 3, we compare the Fisher

information in the kth order statistic, X(k), in a sample of size m from fµ(x) with the

information in a single observation from fµ(x). At ¯rst blush, this comparison may not

seem to be a fair one; however, there are many instances in which it is fair. For example,

in order to reduce costs, many industries have curtailed their statistical testing. As a

result, the availability of test data on the lifetimes of individual components of interest

is reduced. Instead, the available data are lifetimes of systems that are made up of

those components. If a system with identical working components is con¯gured in series

(parallel) the lifetime of the system corresponds to the ¯rst (last) order statistic. In

general, if it is a k-out-of-m system, the lifetime of the system is the (m ¡ k + 1)th order

statistic. In a medical setting, the measurements of a patient's physical attributes such

as the total breath volume for lung capacity are measured several times, with only the

best measurement recorded. And in ballistic experiments, observations are obtained from

experiments in which several projectiles are ¯red at a target; often only the worst shot,

as measured by distance from the target, is used for further analysis. In this section, we

¯rst note that the pdf of X(k) is a weighted version of the pdf of X. We then provide a

general condition for X(k) to have greater Fisher information than X , and illustrate the

result using the normal location family, and the gamma and Weibull scale families.

In Section 4, we express the stationary distribution of the residual lifetime of a com-

ponent as a weighted version of the lifetime of the component, with the weight function

being the reciprocal of the hazard rate function of that component. If a renewal process

is in operation for a long time, the remaining lifetime of an existing component may be

regarded as an observation from the stationary residual lifetime distribution. In this sec-

tion, we study the Fisher information about the unknown scale parameter of the gamma

and Weibull distributions when the observations are drawn from a stationary residual

distribution.

Bayarri et al. (1987) studied the Fisher information in selection models, in which

w(x) = I(x 2 S), and S is the selection set. Such models arise in meta-analysis, where S

represents statistically signi¯cant results. For positive random variables, selection in the
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lower tail S = fx : x < ag also arises when a manufacturer decides to burn in the items

for a units of time before sending them to market. Other examples of selection models are

given in Bayarri and DeGroot (1987a), and Rao (1985). In Section 5, we extend the study

of Bayarri et al. (1987) to selection samples from the gamma, Weibull, and exponential

distributions.

There are, of course, many other applications of weighted distributions, most notably

in sampling (see Rao, 1985) and nonresponse (see Little and Rubin, 1987). We do not

pursue these matters here; we do note, however, that our results on selection samples

below apply to the truncation problems discussed in Rao (1985).

2. Preliminaries

Under standard regularity conditions, the Fisher information IX(µ) based on an ob-

servation X with pdf fµ(x) is

IX(µ) = Eµ

(
¡d2 logfµ(X )

dµ2

)
;

and the Fisher information in a random sample X1; : : : ; Xn from fµ(x) is nIX(µ). We

assume that the pdf fµ(x) belongs (perhaps after reparametrization) to the following

exponential family of distributions,

fµ(x) = a(x) expfµT (x) ¡ C(µ)g ; (2)

in which case IX(µ) = C00(µ). For the weight function wµ(y), let Y have the weighted

distribution with pdf

fwµ
µ (y) =

wµ(y)a(y) expfµT (y) ¡ C(µ)g
Eµ fwµ(X)g :

Then

IY (µ) = C00(µ) + d2

dµ2
log Eµ fwµ(X )g ¡ Eµ

(
d2

dµ2
log wµ(Y )

)

= IX(µ) +
d2

dµ2 log Eµ fwµ(X)g ¡ Eµ

(
d2

dµ2 log wµ(Y )
)

: (3)

Two quantities that arise in our study are the hazard rate and reversed hazard rate

functions. For a random variable X with pdf fµ(x), cumulative distribution function (cdf)
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Fµ(x), and ¹Fµ(x) = 1 ¡ Fµ(x), its hazard rate function is

¸µ(x) =
fµ(x)
¹Fµ(x)

=
fµ(x)

1 ¡ Fµ(x)
;

for all x such that Fµ(x) < 1, and its reversed hazard rate function is

¹µ(x) =
fµ(x)
Fµ(x);

for all x such that Fµ(x) > 0. Both of these functions are important in reliability theory

and survival analysis. For positive random variables, ¹Fµ is known as the survival func-

tion, and in survival analysis the reversed hazard rate function is better known as the

retrohazard rate function. For nonnegative random variables, Fµ is called an IFR (DFR)

distribution if its hazard rate, or failure rate function is increasing (decreasing) on its

interval of support; it is called a DRHR distribution if its reversed hazard rate function

is decreasing on its interval of support. These monotonicity properties of the hazard rate

and reversed hazard rate functions play a role in each of the sections below. For further

discussion of these functions, see Anderson et al. (1993), Barlow and Proschan (1975),

Block et al. (1998), and Shaked and Shantikumar (1994).

3. Order Statistics

Let X1; : : : ; Xm be independent and identically distributed observations with pdf fµ(x)

which has the exponential form in (2). Then the pdf of the kth order statistic, Y = X(k),

is (see David, 1970)

gµ(y) = k

0
B@

m

k

1
CA Fµ(y)k¡1 ¹Fµ(y)m¡kfµ(y):

Notice that gµ(y) is a weighted version of fµ(y), with weight function

w(y) = wµ(y) = Fµ(y)k¡1 ¹Fµ(y)m¡k

depending on µ, and that the normalizing constant Eµfwµ(X )g is independent of µ. From

(3), the Fisher information about µ in Y is

IY (µ) = IX(µ) ¡ Eµ

"
d2

dµ2

n
(k ¡ 1) log Fµ(Y ) + (m ¡ k) log ¹Fµ(Y )

o#
:

Thus, we have the following theorem and examples illustrating its use.
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Theorem 3.1 Let X1; : : : ; Xm be i.i.d. observations with pdf fµ(x) which has the

exponential family form in (2). Let Y = X(k) be the kth order statistic from that sample.

Then IY (µ) ¸ (·)IX(µ) if for every y the function

(k ¡ 1) logFµ(y) + (m ¡ k) log ¹Fµ(y) (4)

is a concave (convex) function of µ. The inequality is strict if in addition, for each µ the

function in (4) is strictly concave (convex) for y in a set of positive probability under gµ .

Example 3.2: Normal. When fµ(x) has the form (2) and is also a location family

fµ(x) = f0(x ¡ µ), f0 must be a normal pdf. This fact follows from methods similar to

those used to prove Theorem 8.5.1 of Kagan et al. (1973); we omit the proof. We assume

that the variance, ¾2, is known; setting ¾ = 1, the second derivative of (4) is

d2

dµ2

n
(k ¡ 1) log Fµ(y) + (m ¡ k) log ¹Fµ(y)

o
= (k ¡ 1)¹0

0(y ¡ µ) ¡ (m ¡ k)¸0
0(y ¡ µ);

where ¹0 and ¸0 are the reversed hazard rate and hazard rate functions, respectively, of

the standard normal distribution with cdf ©. Because of symmetry of the normal pdf,

the hazard rate and reversed hazard rate functions are related thus:

¹0(x) =
Á(x)
©(x)

=
Á(¡x)

1 ¡ ©(¡x)
= ¸0(¡x) =

1
M (¡x)

;

where M (x) = 1=¸(x) is Mills' ratio for the standard normal distribution. It is known

that M is a strictly decreasing function for all x: see Iyengar (1986). Thus, ¹0 is strictly

decreasing, and ¸0 is strictly increasing everywhere. Therefore, the kth normal order

statistic of a random sample of size m > 1, 1 · k · m always gives greater Fisher

information about the mean than an individual observation.

Example 3.3: Gamma. For a positive random variable, if fµ(x) has the exponential

form (2) and is also a scale family fµ(x) = µf1(µx) for all µ > 0 and x > 0, then f1 must

be a gamma pdf; as before, this fact follows from from methods similar to those used to

prove Theorem 8.5.2 of Kagan et al. (1973); we omit the proof. Thus, let

fµ(x) =
1

¡(®)
µ®x®¡1e¡µx for x ¸ 0: (5)
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In this case,

d2

dµ2

n
(k ¡ 1) log Fµ(y) + (m ¡ k) log ¹Fµ(y)

o
= (k ¡ 1)y2¹0

1(µy) ¡ (m ¡ k)y2¸0
1(µy)

where ¹1 and ¸1 are the reversed hazard rate and hazard rate functions for F1, respectively.

From Theorem 3.1, we then have the following results. If F1 is IFR, IX(1) (µ) ¸ IX(µ) for

all µ; if F1 is DRHR, IX(m)(µ) ¸ IX(µ) for all µ; and if F1 is both IFR and DRHR, for

2 · k · m ¡ 1, IX(k)(µ) ¸ IX(µ) for all µ. The gamma is an IFR (DFR) distribution

if ® > (<)1, and it reduces to the exponential distribution for ® = 1: see Barlow and

Proschan (1975). Since Block et al. (1998) have shown that f1 is DRHR for every ®,

Theorem 3.1 then yields the following results for the gamma:

(i) For ® = 1 and all µ, IX(1)(µ) = IX(µ), and IX(k)(µ) > IX(µ) for 2 · k · m ¡ 1.

(ii) For ® < 1 and all µ, IX(1)(µ) < IX(µ).

(iii) For all ® and µ, IX(m)(µ) > IX(µ).

(iv) For ® > 1 all µ , IX(k) (µ) > IX(µ) for 1 · k · m ¡ 1.

Example 3.4: Weibull. Let X be a Weibull random variable with unknown scale

parameter µ and known shape parameter ®. The pdf of X is

fµ(x) = ®µ®x®¡1e¡(µx)® for x > 0: (6)

If ® > (<)1 the Weibull has an IFR (DFR) distribution, and for ® = 1, it reduces to the

exponential: see Barlow and Proschan (1975). This pdf does not belong to the exponential

family (2); however, after the reparametrization ¯ = µ®, the Weibull pdf becomes

h¯(x) = ®¯x®¡1e¡¯x® for x > 0;

which does belong to (2). In general, if the pdf of a random variable Z is written pµ(z) =

q¯(z), where ¯ = ¯(µ), the Fisher information transforms thus (see Lehmann, 1983):

IZ(µ) = I¤
Z(¯(µ))

Ã
d¯
dµ

!2

; (7)

where IZ(µ) and I¤
Z(¯) denote the Fisher information about µ and ¯, respectively, based

on Z. Comparisons of the Fisher information about µ between two experiments can thus

be recast as comparisons of the Fisher information about ¯ because the term (d¯=dµ)2
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cancels out. For the Weibull case, I¤
X(¯) = 1=¯2, and IX(µ) = ®2=µ2. Now, the pdf of the

kth order statistic Y = X(k) from a sample of size m is

g¯(y) = k

0
B@

m

k

1
CA ®¯y®¡1(1 ¡ e¡¯y®)k¡1e¡(m¡k+1)¯y® for y > 0:

The Fisher information about ¯ in X(k) is

I¤
X(k)

(¯) = E¯

"
¡d2 log g¯fX(k)g

d¯2

#
=

1
¯2 ¡ (k ¡ 1)E¯

(
d

d¯
X®

(k)

e¯X®
(k) ¡ 1

)
: (8)

Since 1=(e¯x® ¡ 1) is a decreasing function of ¯ for all x > 0, Theorem 3.1 together with

(7) and (8) yields the following results for the Weibull with known shape parameter ®:

(i) For k = 1, IX(1) (µ) = IX(µ) for all µ and ®.

(ii) For 1 < k · m, IX(k)(µ) > IX(µ) for all µ and ®.

In contrast to the gamma distribution, the ¯rst order statistic from a sample from a

Weibull distribution provides the same Fisher information about the scale parameter as

does a single observation, regardless of the value of ®.

In this Section, we have not addressed the problem of computing how much more (or

less) Fisher information is contained in certain order statistics; this knowledge would be

useful for planning purposes, for example to pick out the most informative order statistic

when a choice is available. Such a study will involve a numerical investigation of IX(k)(µ)

for speci¯c models, such as the related work of Park (1996), who derived recurrence

relations for the Fisher information in sets of consecutive order statistics.

4. Residual Lifetime of a Stationary Renewal Process

Consider a renewal process where a component with lifetime X ¸ 0 is replaced upon

failure by an identical new component. For successive lifetimes X1; X2; : : :, let N(t) denote

the number of renewals up to time t, and let

Rt = X1 + ¢ ¢ ¢ + XN(t)+1 ¡ t

denote the residual lifetime of the component that is working at time t. The limiting

distribution of Rt as t ! 1 exists when X has a ¯nite mean. If X has pdf f(x), cdf

F (x), survival function ¹F (x) = 1 ¡ F (x), and mean º, then this stationary distribution

7



has pdf

g(y) =
¹F (y)

º
for y > 0:

Since

g(y) =
f(y)
º¸(y)

for y > 0;

where ¸(y) is the of the hazard rate function of X, g(y) is a weighted version of f (y) with

weight function w(y) = 1=¸(y).

In this section, we investigate the Fisher information in a sample from this stationary

residual distribution about the scale parameter, µ, of the gamma and Weibull distrib-

utions. In both cases, we assume that the shape parameter ® is known. In brief, our

results are the following. Let X denote the component lifetime, and let Y denote the cor-

responding residual lifetime, with the stationary distribution. Then for both the gamma

and Weibull, if ® > 1 (IFR), IY (µ) < IX(µ), and if ® < 1 (DFR), IY (µ) > IX(µ); of course,

if ® = 1, both families reduce to the exponential distribution, for which IY (µ) = IX(µ) by

its memorylessness property. We now prove these statements.

Let X have the gamma distribution with pdf fµ(x) = µf1(µx) given in (5) and cdf

Fµ(x) = F1(µx), so that the mean is º = ®=µ, and IX(µ) = ®=µ2. Then Y has the

stationary distribution with pdf

gµ(y) =
¹Fµ(y)

º
=

µ
®

¹Fµ(y) =
µ
®

¹F1(µy):

In this case,

¡ d2

dµ2
loggµ(y) = 1

µ2
+ y2f 0

1(µy)
¹F1(µy)

+ y2f2
1 (µy)

¹F 2
1 (µy)

= 1
µ2

(
1 + y2 f 0

µ(y)
¹Fµ(y)

+ y2f 2
µ (y)

¹F 2
µ (y)

)
; (9)

where f 0
µ(y) is the derivative with respect to y. An integration by parts yields

Eµ

(
Y 2 f 0

µ(Y )
¹Fµ(Y )

)
=

µ
®

Z 1

0
y2f 0

µ(y) dy = ¡2µ
®

Z 1

0
yfµ(y) dy = ¡2: (10)

Next,

Eµ

(
Y 2f2

µ (Y )
¹F 2

µ Y

)
=

µ
®

Z 1

0
y2

n
1

¡(®)µ
®y®¡1e¡µy

o2

n
1

¡(®)
R 1
y µ®x®¡1e¡µx dx

o dy

=
µ®+1

¡(® + 1)

Z 1

0

y2®e¡2µy
R 1

y x®¡1e¡µx dx
dy: (11)

8



For ® > (<)1 and all y > 0,
Z 1

y
x®¡1e¡µx dx > (<)

y®¡1e¡µy

µ
;

so that for ® > (<)1

Eµ

(
Y 2f2

µ (Y )
¹F 2
µ (Y )

)
< (>)

µ®+2

¡(® + 1)

Z 1

0
y®+1e¡µy dy = ® + 1: (12)

Thus for ® > (<)1, (9)-(12) imply that

IY (µ) = Eµ

(
¡ d2

dµ2 loggµ(Y )
)

< (>)
1
µ2 f1 ¡ 2 + (® + 1)g =

®
µ2 = IX(µ);

which completes the proof for the gamma.

Next, let X have the Weibull distribution with pdf fµ(x) given in (6), cdf Fµ(x),

survival function ¹Fµ(x) = e¡(µx)® , and IX(µ) = ®2=µ2. Since the mean is

º = Eµ(X) = ¡(®¡1 + 1)
µ

;

the stationary distribution of the residual lifetime, Y , has pdf

gµ(y) =
µ

¡(®¡1 + 1)e¡(µy)®
:

Thus,

IY (µ) = Eµ

(
¡d2 log gµ(Y )

dµ2

)
=

1
µ2 + ®(® ¡ 1)µ®¡2Eµ (Y ®) :

Since Eµ(Y ®) = 1=®µ®, IY (µ) = ®=µ2, so that IX(µ) = ®IY (µ).

5. Selection Samples

Let X have pdf fµ(x). Bayarri et al. (1987) considered problems in which observations

are restricted, or truncated, to a subset S of the sample space, so that w(x) = I(x 2 S).

Let Y have the truncated pdf

hµ(y) =
fµ(y)

Pµ(X 2 S)
for y 2 S; (13)

and zero otherwise. A random sample from (13) is called a selection sample, and S is

called a selection set. If fµ(x) belongs to the exponential family of distributions of the

form (2), then it follows from Corollary 2.2 of Bayarri et al. (1987) that IX(µ) ¸ IY (µ)

for all µ if and only if log Pµ(X 2 S) is a concave function of µ. They used this fact to

9



derive information orderings between the normal location, normal scale, and gamma scale

families and their weighted counterparts using various truncation sets. In this section,

we present further results on selected samples from the gamma, Weibull, and exponential

distributions.

First, for the gamma with known shape parameter ®, unknown scale µ, and cdf Fµ(x),

let S = fx : x · ag for some a > 0. Then

d
dµ

logPµ(X 2 S) =
d
dµ

logFµ(a) = a
f1(aµ)
F1(aµ)

= a¹1(aµ);

where ¹1 is the reversed hazard rate function of F1. Since the gamma distribution is DRHR

for all values of ®, a selection sample from the lower tail of the gamma distribution has

smaller Fisher information about the scale parameter than an unrestricted sample, for all

values of ®.

Next we consider the Weibull distribution. In Section 3, we noted that it belongs to

the exponential family (2) only after reparametrization. Let fµ(x) be given by (6), with

® > 0 known, and µ unknown. Let S = fx : x < ag for a > 0, and let Y be an observation

selected from this lower tail. Since Pµ(X 2 S) = 1 ¡ e¡(µa)® ,

gµ(y) =
µ®y®¡1e¡(µy)®

1 ¡ e¡(µa)® for 0 < y < a:

After some calculations we have

IY (µ) =
®2

µ2 ¡
(

®a®µ®¡1e¡(µa)®

1 ¡ e¡(µa)®

)2

= IX(µ) ¡
(

®a®µ®¡1e¡(µa)®

1 ¡ e¡(µa)®

)2

;

so that IX(µ) > IY (µ) for all µ > 0, for all ®. However, if Y is an observation selected

from the upper tail, S = fx : x > bg, of the Weibull distribution, its pdf is

gµ(y) = ®µ®y®¡1e¡f(µy)®¡(µb)®g for y > b:

In this case, IX(µ) = IY (µ) for all µ and all ®. Thus, the gamma and Weibull di®er in

this respect, even though both of them are IFR for ® > 1 and DFR for ® < 1.

Bayarri et al. (1987) proved that an observation selected from both tails of the normal

distribution with known variance has more information about the unknown mean µ for

some values of µ than an observation from that normal distribution. For other values of
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µ, it gives less information. We now prove an analogous result for the scale parameter of

the exponential.

Theorem 5.1. Let X have an exponential distribution with pdf fµ(x) = µe¡µx for

x > 0. For 0 < a < b < 1, let w(x) = I(x < a or x > b), and let Y have the

corresponding weighted distribution. Then

IY (µ) > (<)IX(µ) for 0 < µ < µ¤ (µ > µ¤);

where µ¤ is the unique positive solution of the equation

b2eµa ¡ a2eµb = (b ¡ a)2:

Proof. Y has pdf

gµ(y) =
µe¡µy

1 ¡ e¡µa + e¡µb for 0 < y < a or y > b:

Thus,

IY (µ) = Eµ

(
¡d2 log gµ(Y )

dµ2

)
= 1

µ2
+ b2eµa ¡ a2eµb ¡ (b ¡ a)2

eµ(a+b)(1 ¡ e¡µa + e¡µb)2
:

Since IX(µ) = 1=µ2, IY (µ) > IX(µ) if and only if h(µ) = b2eµa ¡ a2eµb ¡ (b ¡ a)2 is positive.

Note that h(0+) = 2a(b ¡ a) > 0 so that if c = log(b=a)=(b ¡ a), h is strictly increasing in

the interval (0; c), and strictly decreasing in the interval (c; 1); furthermore, h is concave

and eventually negative. Thus, h is positive only when 0 < µ < µ¤, establishing the result.
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