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Abstract Suppose we have a renewal process observed over a fixed length of time
starting from a random time point and only the times of renewals that occur within
the observation window are recorded. Assuming a parametric model for the renewal
time distribution with parameter θ , we obtain the likelihood of the observed data
and describe the exact and asymptotic behavior of the Fisher information (FI) on θ

contained in this window censored renewal process. We illustrate our results with
exponential, gamma, and Weibull models for the renewal distribution. We use the FI
matrix to determine optimal window length for designing experiments with recurring
events when the total time of observation is fixed. Our results are useful in estimat-
ing the standard errors of the maximum likelihood estimators and in determining the
sample size and duration of clinical trials that involve recurring events associated with
diseases such as lupus.
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792 Y. Zhao, H. N. Nagaraja

1 Introduction

We consider a renewal process (RP) represented by a sequence {Xn, n ≥ 1} of indepen-
dent and identically distributed (iid) positive continuous random variables. The first
unit is placed in operation at time zero; it fails at time X1 and is immediately replaced
by a new unit which then fails at time X1 + X2, and so on. Let f and F denote the
probability density function (pdf) and cumulative distribution function (cdf) of the
renewal variable X representing the common distribution of the Xi and we assume
that μX = E(X) is finite.

Now suppose the RP has evolved over time when we start observing the process
for a fixed period of length w. We name the process inside the observation window a
window censored renewal process (WCRP). Waiting time for the first renewal within
this window is the forward recurrence time (FRT) random variable Y and its long-run
pdf is given by Karlin and Taylor (1975)

g(y) = 1 − F(y)

μX
, y ≥ 0. (1)

Let N denote the number of renewals observed in the window and D denote the data
set obtained from one WCRP. The data set has three different profiles that depend on
N . When N = 0, no event is observed inside the observation window as shown in
Fig. 1a. When N = 1, as in Fig. 1b, we observe one Y , one Z and the data set is
D = (N = 1, Y, Z), with Z denoting a right-censored renewal variable representing
the time between the last renewal and the end of observation period. When N ≥ 2 as in
Fig. 1c, we observe one Y , one Z , N −1 X ’s and the data set is D = (N = n, Y, X, Z),
with X = (X1, . . . , X N−1) denoting the renewal variables.

When we observe m multiple WCRPs, we assume that they are independent. If they
have a common renewal distribution and window length, we have m iid WCRPs.

Renewal processes can be used to model recurrent events data that arise in a variety
of real-life situations. Nelson (2003) gives several examples from product repairs and
disease recurrences, and discusses graphical and formal non-parametric approaches
for analyzing WCRP data. Vardi (1982) introduced a non-parametric method for esti-
mating F from multiple iid WCRPs and Denby and Vardi (1985) discussed a short-
cut method for estimating F based on iid WCRPs. They obtain the Kaplan–Meier

(a)

(b)

(c)

Fig. 1 Data profile of a WCRP; filled circle indicates a renewal and vertical line mark the start and the end
of an observation window of length w
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Fisher information in a renewal process 793

estimator after excluding observation windows without renewals. Soon and Woodroofe
(1996) extended Vardi’s work to non-arithmetic F and proved the consistency of non-
parametric maximum likelihood estimates (MLE). Rigdon and Basu (2000) discuss
parametric inference procedures for repairable systems with complete repairs and
consider models based on homogeneous Poisson processes. Time truncated case there
corresponds to a special WCRP data where the renewal distribution is exponential.
Their models apply to data sets where the systems are observed from time zero. Thus
left-censoring is not addressed in their models. Alvarez (2006) has recently considered
an alternating renewal process (ARP) model in a parametric setting. He has discussed
the maximum likelihood estimation of the parameters in a model with two states
where the underlying distributions of ‘on’ and ‘off’ lifetimes are either geometric or
exponential distributions. Alvarez (2005) considers ARP with more than two states
and Weibull lifetime distributions. Here we focus on the Fisher information (FI) from
WCRPs observed from parametric renewal distributions.

Let θ denote the parameter vector associated with the renewal cdf F . In Sect. 2,
we obtain the likelihood function for the data D and an expression for the FI about θ

in a WCRP. We describe the asymptotic properties of the FI matrix and a method to
approximate its elements. In Sects. 3 and 4, we focus on the exponential and gamma
renewal distributions, respectively, and study the properties of FI from these distribu-
tions. Section 5 is devoted to a similar study for the Weibull distribution. In Sect. 6,
we illustrate the uses of FI in designing longitudinal studies involving RP data. The
last section contains some concluding remarks. Proofs are collected in the Appendix.

Let I (θ; X) be the FI in a random variable X on the parameter θ and I (θ;D) be
the FI matrix on θ in the data set D. We denote an exponential random variable with
mean β by Expo(β), and a gamma random variable with shape parameter α and scale
parameter β by Gamma(α, β).

2 Likelihood function and Fisher information

2.1 Likelihood function

The likelihood function of a data set D from a WCRP depends on N . Let δn represent
the indicator of n renewals inside the observation window, i.e.,

δn =
{

1 if N = n
0 otherwise,

Theorem 1 For the data set D generated from a WCRP with window length w, the
likelihood function L(D; θ) is given by

L(D; θ) =
∞∑

n=0

δn Ln(D; θ), (2)
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794 Y. Zhao, H. N. Nagaraja

where

L0(D; θ) = 1 − G(w),

L1(D; θ) = g(y)[1 − F(z)], where z = w − y, and

Ln(D; θ) = g(y) f (x1) · · · f (xn−1)[1 − F(z)],

with z = w − y if n = 1 and z = w − y −
n−1∑
i=1

xi if n ≥ 2,

0 < y, z, xi < w, i = 1, . . . , n − 1, for n ≥ 2. (3)

The proof of Theorem 1 is given in Appendix A.1. Note that for any D only one
term in the series in (2) is non-zero.

The log-likelihood corresponding to (2) is

�(D; θ) = δ0 log L0(D; θ) + δ1 log L1(D; θ) +
∞∑

n=2

δn log Ln(D; θ), (4)

and will be used in calculating the FI in D.
The likelihood function of the data set D obtained from m iid WCRPs of length w

is given by

L(D; θ) =
m∏

i=1

L(Di ; θ)

=
m∏

i=1

[
δ0[1 − G(w)] + δ1g(yi )[1 − F(zi )]

+
∞∑

n=2

δng(yi ) f (xi1) · · · f (xi(n−1))[1 − F(zi )]
]
.

Since in each of the infinite series, only one term is non-zero, the joint likelihood
is a product of finitely many terms. Now suppose nw is the number of windows that
do not have any renewals. From the remaining (m − nw) windows we collect all the
X variables, Y variables, and Z variables. Let the number of X variables be denoted
by nx . The number of Y or Z variables is (m − nw). We relabel the variables as Xk ,
k = 1, . . . , nx , Yk , k = 1, . . . , m −nw, and Zk , k = 1, . . . , m −nw. After rearranging
the factors, L(D; θ) can be written as

L(D; θ) = [1 − G(w)]nw ×
m−nw∏
k=1

g(yk) ×
nx∏

k=1

f (xk) ×
m−nw∏
k=1

[1 − F(zk)]. (5)
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Fisher information in a renewal process 795

Thus the log-likelihood function of a data set from m iid WCRPs can be expressed
as

�(D; θ) = log L(D; θ)

= nw log[1 − G(w)] +
m−nw∑
k=1

log g(yk) +
nx∑

k=1

log f (xk)

+
m−nw∑
k=1

log[1 − F(zk)]. (6)

Similar expressions for L(D; θ) and �(D; θ) can be written when the window
lengths vary.

2.2 Fisher information in a WCRP

Theorem 2 Consider a WCRP data D with renewal distribution parameter θ and
assume that all the needed regularity conditions are satisfied. Then the (k, l)th ele-
ment of the FI matrix I(θ;D) = [I (θk, θl;D)] is given by

I (θk, θl;D) = E

[(
∂

∂θk
log L(D; θ)

)(
∂

∂θl
log L(D; θ)

)]

= A0(θk, θl;D) +
∫ w

0
A1(θk, θl;D)g(y)[1 − F(z)]dy

+
∞∑

n=2

∫ w

y=0

∫ w−y

x1=0
· · ·
∫ w−y−∑n−2

i=1 xi

xn−1=0

× An(θk, θl;D)Ln(D; θ)dxn−1 · · · dx1dy (7)

where

A0(θk, θl;D) =
(

∂
∂θk

G(w)
) (

∂
∂θl

G(w)
)

1 − G(w)
,

A1(θk, θl;D) =
(

∂
∂θk

g(y)

g(y)
−

∂
∂θk

F(z)

1 − F(z)

)(
∂

∂θl
g(y)

g(y)
−

∂
∂θl

F(z)

1 − F(z)

)
,

An(θk, θl;D) =
(

∂
∂θk

g(y)

g(y)
+

n−1∑
i=1

∂
∂θk

f (xi )

f (xi )
−

∂
∂θk

F(z)

1 − F(z)

)

×
(

∂
∂θl

g(y)

g(y)
+

n−1∑
i=1

∂
∂θl

f (xi )

f (xi )
−

∂
∂θl

F(z)

1 − F(z)

)
,

and Ln(D; θ) and z are given by (3).
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The proof of this theorem is given in Appendix A.2.

2.3 Limiting properties of Fisher information

Theorem 3 Let the renewal random variable X have finite mean μX and I (θ;D) be
the FI on θ from one WCRP with window length w. Under certain regularity conditions

lim
w−→∞

I (θ;D)

w
= I (θ; X)

μX
.

The regularity conditions are:

(RC1) ∂
∂θ

log g(y; θ) and ∂2

∂θ2 g(y; θ) are finite for all y > 0 where g is given by (1).
(RC2) The FI on θ in the FRT variable Y from the RP is finite and the associated

regularity conditions hold.

The proof is in Appendix A.3. If there are multiple parameters in the renewal distri-
bution, the off-diagonal terms of the FI matrix have a similar property. If I (θk, θl;D)

is the (k, l)th entry of the FI matrix for θ from a WCRP with window length w,

lim
w−→∞

I (θk, θl;D)

w
= I (θk, θl; X)

μX
.

This, combined with Theorem 3 leads to the following result.

Theorem 4 Let I(θ;D) be the FI matrix for θ from a WCRP data with window length
w. Then

lim
w−→∞

1

w
I(θ;D) = 1

μX
I(θ; X).

Any continuous function of the elements of the FI matrix possesses a similar lim-
iting property. It holds for the trace, and in the case of the determinant,

lim
w−→∞

det (I(θ;D))

w p
= det (I(θ; X))

μ
p
X

,

where p is the dimension of θ .

Remarks Let θ̂ be the MLE of the p-dimensional parameter θ based on the data

set from m iid WCRPs. If w is held fixed and m → ∞, then
√

m(θ̂ − θ)
d→

Np(0, [I(θ;D)]−1). On the other hand, if m remains finite and w → ∞, or if both

approach infinity,
√

mw(θ̂ − θ)
d→ Np(0, [I(θ; X)]−1). Here Np denotes a p-variate

normal distribution. Hence the FI matrix or an approximation to it can be used to con-
struct confidence intervals and tests of hypotheses based on the large-sample properties
of the MLEs. For example, when the renewal distribution Expo(β), the FI from these
m WCRPs is mw

β3 (see Lemma 5 to follow). When mw is large, the MLE β̂ from such

a data set is approximately N1(β, β3/mw).
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Fisher information in a renewal process 797

When the renewal distribution is either gamma, Weibull, or lognormal with two
parameters, the FI matrix is approximated by simulation with large m and thus the
asymptotic distribution of the MLE is approximated by a bivariate normal distribution
as follows:

θ̂
·∼ N2(θ, �̂), �̂ = 1

m
[Î(θ;D)]−1.

2.4 Approximating the Fisher information

When the FI matrix I(θ;D) does not have a closed-form expression, assuming θ is
known, we can simulate m iid WCRPs and compute the average of the observed FI
matrices, defined as the product of the first derivatives of the log-likelihood function.
This can serve as an estimate of the FI matrix. We now describe the simulation process.

2.4.1 Simulation of a renewal process

To simulate a WCRP, we need to first simulate a Y with pdf in (1). This pdf can be
viewed as (Cox 1962)

g(y) = 1 − F(y)

μX
=
∫ ∞

y

1

v

v f (v)

μX
dv, (8)

and hence Y can be simulated using the inherent length-biased sampling process rep-
resented by the pdf v f (v)/μX and a random contraction created by a Uniform(0, 1)

random variable. Thus, the FRT random variable Y can be generated using the fol-
lowing steps:

1. Generate a random variable V with pdf h(v) = v f (v)/μX .
2. Generate independently a U from the Uniform(0, 1) distribution.
3. Set Y = U V .

Sometimes V and X belong to the same family and thus the simulation processes will
be similar. For example, when X is Gamma(α, β), V is a Gamma(α + 1, β) random
variable.

The steady-state WCRP with window length w can now be simulated using the
intrinsic properties of the RP as described in the following algorithm:

1. Simulate Y using the process described above. If Y ≥ w, we stop and set D =
(N = 0, w). If Y < w, we save Y and go to step 2.

2. Generate X1 from the renewal pdf f (x). If Y + X1 ≥ w, we set D = (Y, Z =
w − X1). If Y + X1 < w, save Y and X1, and go to step 3.

3. Continue independently generating X j from f (x) up to Xn such that Y +∑n−1
j=1

X j ≤ w and Y +∑n
j=1 X j > w. Set D = (N = n, Y, X = (X1, . . . , Xn−1), Z =

w − (Y +∑n−1
j=1 X j )).

Repeat this cycle for, say, m times.

123
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The (k, l)th entry of the observed FI matrix from the i th WCRP in the simulated
data set is

Î (θk, θl;Di )

=
[

∂

∂θk
�(Di ; θ)

]
×
[

∂

∂θl
�(Di ; θ)

]

= δ0

∂
∂θk

G(w) ∂
∂θl

G(w)

(1 − G(w))2 + δ1

(
∂

∂θk
g(yi )

g(yi )
−

∂
∂θk

F(zi )

1 − F(zi )

)(
∂

∂θl
g(yi )

g(yi )
−

∂
∂θl

F(zi )

1 − F(zi )

)

+
∞∑

n=2

δn

⎡
⎣
⎛
⎝ ∂

∂θk
g(yi )

g(yi )
+
⎛
⎝n−1∑

j=1

∂
∂θk

f (xi j )

f (xi j )

⎞
⎠−

∂
∂θk

F(zi )

1 − F(zi )

⎞
⎠

×
⎛
⎝ ∂

∂θl
g(yi )

g(yi )
+
⎛
⎝n−1∑

j=1

∂
∂θl

f (xi j )

f (xi j )

⎞
⎠−

∂
∂θl

F(zi )

1 − F(zi )

⎞
⎠
⎤
⎦ . (9)

The approximated FI matrix from one WCRP, denoted by Î(θ;D) = [ Î (θk, θl;D)] is

Î(θ;D) = 1

m

m∑
i=1

Î(θ;Di ), (10)

where Î(θ;Di ) is the observed FI matrix for the i th window. Clearly, this estimate of
the FI matrix is unbiased and is consistent as m → ∞.

If the true parameter values are unknown, we replace θ with the MLE θ̂ in (9) and
(10). The new approximation to the FI matrix is denoted by Î(θ̂;D) = [ Î (θ̂k, θ̂l;D)].
It is a consistent estimator whenever I (θk, θl;D) is continuous in (θk , θl ), since θ̂ is
consistent for θ .

3 WCRP with exponential renewal distribution

3.1 Likelihood function

If X is distributed as Expo(β), its pdf is given by

f (x;β) = 1

β
e−x/β, x > 0, (11)

and, in view of (2), the corresponding FRT variable Y is also Expo(β). Plugging these
functions into (3) in Theorem 1 we obtain

L0(D;β) = e−w/β, Ln(D;β) =
(

1

β

)n

e−w/β for n ≥ 1.
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Fisher information in a renewal process 799

Thus the likelihood function of a data set from one WCRP is

Ln = β−ne−w/β, n ≥ 0, (12)

an expression that depends only on n, the number of renewals in the window. This
is not surprising given that the exponential distribution has the memoryless property.
The marginal distribution of the number of renewals N in a window of length w is
obtained by integrating out the Y and the X ’s from the likelihood function over their
supports. Thus,

P(N = 0) = 1 − G(w) = e−w/β,

P(N = 1) =
∫ w

0

1

β
e−w/βdy = w

β
e−w/β,

P(N = n) =
∫ w

y=0

∫ w−y

x1=0
· · ·
∫ w−y−∑n−2

j=1 x j

xn−1=0

(
1

β

)n

e−w/βdxn−1 · · · dx1dy

= (w
β
)ne−w/β

n! , for n = 2, 3, . . . ,

or N ∼ Poisson(w
β

) with expected value E(N ) = w
β

. This is well-known; using dif-
ferent arguments, Cox (1962) observed that the number of renewals is Poisson in a
WCRP with an exponential renewal distribution.

3.2 Fisher information

Lemma 5 Consider a RP with renewal distribution Expo(β). The FI on the parameter
β in the data set from a WCRP with window length w is

I (β;D) = w

β3 . (13)

One can use Theorem 2, but a direct proof is easier in view of the likelihood given
in (12). Note that

∂ log Ln

∂β
= − 1

β

(
n − w

β

)
,

and since N ∼ Poisson(w
β

),

I (β;D) = 1

β2 Var(N ) = w

β3 .
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Thus the FI on β is a multiple of the window length w. Since the FI on β from
X ∼ Expo(β) is I (β; X) = 1

β2 , it follows that

I (β;D) = w

β3 = w
I (β; X)

μX
= E(N )I (β; X). (14)

These relationships are due to the special properties of the exponential distribution.

4 Gamma renewal distribution

4.1 Likelihood function

If X is distributed as Gamma(α, β), it has pdf

f (x;α, β) = e−x/β xα−1

	(α)βα
, x ≥ 0, α, β > 0. (15)

The cdf of X does not have a closed form in general, and is given by

F(x;α, β) =
∫ x

0

e−t/β tα−1

	(α)βα
dt. (16)

The pdf and cdf of the associated FRT random variable Y , respectively, are

g(y;α, β) = 1 − F(y;α, β)

αβ
= 1 − ∫ y

0
e−x/β xα−1

	(α)βα dx

αβ
, and (17)

G(y;α, β) =
∫ y

0
g(t;α, β)dt

=
∫ y

0

1 − ∫ t
0

e−x/β xα−1

	(α)βα dx

αβ
dt . (18)

The likelihood function for the data set from a WCRP with this renewal distribution
is obtained by plugging (15)–(18) into (3) in Theorem 1. With θ = (α, β),

L(D; θ) = δ0 L0(D; θ) + δ1L1(D; θ) +
∞∑

n=2

δn Ln(D; θ)

= δ0

[
1 −

∫ w

0

1 − ∫ t
0 f (x)dx

αβ
dt

]
+ δ1

[
1 − ∫ y

0 f (x)dx

αβ

(
1 −

∫ z

0
f (t)dt

)]

+
∞∑

n=2

δn

[
1 − ∫ y

0 f (x)dx

αβ
f (x1) · · · f (xn−1)

(
1 −

∫ z

0
f (t)dt

)]

where f is given by (15).
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4.2 Fisher information

Clearly, the FI matrix from a WCRP with a Gamma(α, β) renewal distribution does
not have a closed-form expression. As described in Sect. 2.4, the FI matrix can be
approximated using simulations and (9) and (10). We need the following expressions
to estimate the FI on α from a WCRP using Î (α, α;Di ), given in (9).

∂

∂α
log(1 − G(w)) =

∫∞
w

∫ y
0 f (x)

[
∂
∂α

	(α)

	(α)
+ log β − log x

]
dx dy

∫∞
w

[1 − F(y)] dy
− 1

α
,

∂

∂α
log f (xi j ) = −

∂
∂α

	(α)

	(α)
− log β + log xi j ,

(19)

∂

∂α
log g(yi ) =

− ∫ yi
0 f (x) log x dx +

[
∂
∂α

	(α)

	(α)
+ log β

]
F(yi )

1 − F(yi )
− 1

α
,

∂

∂α
log(1 − F(zi )) =

− ∫ zi
0 f (x) log x dx +

[
∂
∂α

	(α)

	(α)
+ log β

]
F(zi )

1 − F(zi )
.

Similarly, the following expressions are needed for estimating the FI in β from the i th
WCRP by Î (β, β; Di ).

∂

∂β
log(1 − G(w)) =

α
β

∫∞
w

[F(y) − F(y;α + 1, β)]dy∫∞
w

[1 − F(y)]dy
− 1

β
,

∂

∂β
log f (xi j ) = −α

β
+ xi j

β2 ,

∂

∂β
log g(yi ) =

α
β
[F(yi ) − F(yi ;α + 1, β)]

1 − F(yi )
− 1

β
,

∂

∂β
log(1 − F(zi )) =

α
β
[F(zi ) − F(zi ;α + 1, β)]

1 − F(zi )
.

In the above expressions F(x;α+1, β) denotes the cdf of a Gamma(α+1, β) variable.
In order to demonstrate the estimation of FI, we simulate Î(θ; D) with θ = (α, β)

using the statistical software R. The integrations in the expressions above are cal-
culated using the ‘integrate’ function in R. Due to the instability of log x . f (x), R
misrepresents the inner integral of the double integral on the right side of (19) as
divergent for some parameter values. The following transformation is made to evalu-
ate the inner integral defined on a bounded region (a, b) = (0, y) to make the double

integrals converge. We take r = 0.9 and x = t
1

1−r + a and note that for any function
B(·),

∫ b

a
B(x)dx = 1

1 − r

∫ (b−a)1−r

0
t

r
1−r B

(
t

1
1−r + a

)
dt.
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In our simulation, we chose α = 0.5, 0.8, 1, 2, 5, and β = 0.5, 1, 5. The renewal
distribution has mean μX = αβ and standard deviation σX = √

αβ2. For each (α, β)
value, five window lengths 0.5μX , μX , μX +σX , μX +2σX and μX +3σX are chosen.
Note that a change in the value of α or β affects the mean and standard deviation of
the renewal distribution and hence changes the window length w. For each value of
(α, β) and each window length picked, m iid WCRPs each with a renewal distribution
Gamma(α, β) are simulated and the approximated FI is calculated using (10).

We plot the curves of the FI in α, β and the determinant of the FI matrix in Figs. 2,
3 and 4. Each figure has a fixed β and the curves are drawn by connecting the points
formed by pairs of window length and FI for each of the five choices of α. In each
figure, plot (a) presents Î (α, α;D) versus w, (b) presents Î (β, β;D) versus w, and
(c) presents the determinant of our approximated FI matrix, d̂et[I(α, β;D)], versus
w. The values of α and associated symbols (given in parentheses) in each subplot are
0.5(◦), 0.8(	), 1.0(×), 2.0(
), and 5.0(∗). For instance, the curve with circles (◦)
on it in plot (a) of Fig. 2 shows the FI in α for a WCRP with renewal distribution
Gamma(α = 0.5, β = 0.5). The renewal distribution has mean μX = 0.5 × 0.5 =
0.25 and standard deviation σX = √

0.5 × 0.52 = 0.354. The window lengths at
which simulations are run are 0.5 × 0.25 = 0.625, 0.25, 0.25 + 0.354 = 0.6036,
0.25 + 2 × 0.354 = 0.957, and 0.25 + 3 × 0.354 = 1.310. The other four curves in
the same plot are obtained similarly with α equalling 0.8, 1, 2, and 5, respectively.
Plots (b) and (c) of Fig. 2 are drawn similarly; only the ordinates are different.

Across different values of β the shapes of the FI curves are nearly the same. The FI
curves in plots (a) appear to be linear; in plots (b) they appear to show mildly nonlinear
trends within the range of our simulation and the determinant curves in plot (c) show
quadratic trends. As expected, both FI and the determinant of the FI matrix increase
monotonically as the window length increases. We will refine the examination of these
plots in Sect.6.

5 Weibull renewal distribution

Suppose X ∼ Weibull(r , β) with pdf

f (x; r, β) = r

β
xr−1e−xr /β, x ≥ 0, β, r > 0,

where r is the shape parameter and β is the scale parameter. The associated FRT
variable Y has the pdf

g(y; r, β) = e−yr /β

β1/r	(1 + 1
r )

,

and this random variable can be simulated as the length-biased version of the random
variable V distributed as a {Gamma(1+ (1/r), β)}1/r random variable (Zhao 2006, p.
15). Now one can follow the algorithm presented in Sect. 2.4.1 to simulate the needed
WCRP data.
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Fig. 2 Estimates of the FI in a WCRP with renewal distribution Gamma(α, β) for β = 0.5 and selected α

and window-length. Figure legend is given in a
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Fig. 3 Estimates of the FI in a WCRP with renewal distribution Gamma(α, β) for β = 1 and selected α

and window-length. Figure legend is given in a
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While closed form expression is not available for the FI matrix, the partial deriva-
tives of f, F, g, and G with respect to r and β that are needed in (9) are much simpler
than for the Gamma parent, and involve only single integrals. In particular, we have

−
∂
∂r G(w)

1 − G(w)
= ∂

∂r
log(1 − G(w)) =

∫ w

0 g(y)

[
yr

β
log y − log β

r2 − 	′(1+ 1
r )

r2	(1+ 1
r )

]
dy

1 − G(w)
,

∂
∂r f (xi j )

f (xi j )
= ∂

∂r
log f (xi j ) = 1

r
+ log xi j − xr

i j

β
log xi j ,

∂
∂r g(yi )

g(yi )
= ∂

∂r
log g(yi ) = − yr

i

β
log yi + log β

r2 +
∂
∂r 	(1 + 1

r )

r2	(1 + 1
r )

,

−
∂
∂r F(zi )

1 − F(zi )
= ∂

∂r
log(1 − F(zi )) = − zr

i

β
log zi ,

and

−
∂
∂β

G(w)

1 − G(w)
= ∂

∂β
log(1 − G(w)) =

∫ w

0 g(y)
(

1
βr − yr

β2

)
dy

1 − G(w)
,

∂
∂β

f (xi j )

f (xi j )
= ∂

∂β
log f (xi j ) = − 1

β
+ xr

i j

β2 ,

∂
∂β

g(yi )

g(yi )
= ∂

∂β
log g(yi ) = − 1

rβ
+ yr

i

β2 ,

−
∂
∂β

F(zi )

1 − F(zi )
= ∂

∂β
log(1 − F(zi )) = zr

i

β2 .

We simulated Î(θ; D) with θ = (r, β). The simulations used r = 0.5, 0.8,

1.0, 1.2, 5 and β = 0.5, 1, 5 and w values represented by 0.5μX , μX , μX + σX ,
μX + 2σX and μX + 3σX . For each set of (r , β, w) value, approximated FI is calcu-
lated using (9), (10) and m iid simulated WCRPs. Using the conventions employed
for the gamma RP, we plotted three subplots (with the parameter r taking the role
of the α of the gamma distribution): (a) presenting Î (r, r; D) versus w, (b) showing
Î (β, β; D) versus w, and (c) presenting the determinant of our approximation to the FI
matrix, d̂et[I(r, β; D)], versus w. The plots are not shown here for economy (see Zhao
2006, Figures 3.4–3.6). The FI curves increase monotonically with linear or quadratic
trends and the determinant of FI matrix increases quadratically or exponentially. We
will show one standardized FI plot later in Sect. 6.3.

6 Designing experiments with WCRP data

Let us consider a study that plans to observe m iid RPs using windows of length w.
The total time spent observing the RPs is the total window lengths, m × w. Let us fix
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Fisher information in a renewal process 807

the total time at T based on, say, cost considerations. We want to choose the values
of m and w such that m × w = T under certain optimality condition based on the FI
contained in the experiment.

When θ is a scalar parameter, we search for the m and w combination that maxi-
mizes the FI. Since the variance of the MLE is approximated by the reciprocal of the
FI, this criterion can be viewed as attaining the best precision for the MLE given the
total duration of the experiment. For a vector parameter θ we could consider one of
the following:

1. Maximize I(θk ,θk ;D)
w

for each θk .

2. Maximize det[I(θ;D)]
w p , where θ is p-dimensional.

Under criterion 1, different combinations of w and m may turn out to be optimal for
different k. Now suppose the renewal distribution has two parameters (as in the gamma
case). The determinant of the FI matrix from m WCRPs is

m2 × det[I(θ;D)] =
(

T

w

)2

× det[I(θ;D)].

As the determinant of the FI matrix increases, the determinant of the covariance
matrix of the MLEs, also known as the generalized variance (Anderson 1984, p. 259),
decreases. Thus, we want to maximize ( T

w
)2 × det[I(θ;D)]. Since T is a constant, we

can maximize det[I(θ;D)]/w2 as suggested in the optimality criterion 2.
We will now look for the window lengths that are optimal according to one of

these criteria for the exponential, gamma, and Weibull renewal distributions. In the
multi-parameter case one could also consider maximizing the trace of the FI matrix.

If the objective is to control cost that is a more general function of m and w, the
optimal scheme may be different. See the discussion below.

6.1 The exponential distribution

If the renewal distribution is Expo(β), from (14) it follows that the FI from m iid
WCRPs with common window length w and total duration T is I (β; D) = Tβ−3.

When T fixed, the FI from the data set is not affected by the choice of window length
and the optimality criterion 1 simplifies to the constant 1/β3. Thus for a fixed total
duration of the experiment, all combinations of window length and number of subjects
have the same amount of FI collected. Then the choice will be made on the basis of
the number of available subjects and/or limitations on the maximum window length
permitted due to time considerations.

The optimal scheme may be different for other objective functions. Now suppose
c (≥0) is the cost of recruiting a subject and let η(w) be the cost associated with the
observation time w per subject. Without loss of generality we assume η(0) = 0 and
η(w) is strictly increasing. With the recruitment of m subjects where each is observed
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808 Y. Zhao, H. N. Nagaraja

for w time units, the total cost would be C = cm + mη(w). If this cost is held fixed,
m = C/(c + η(w)), and the FI in the experiment is

I (β; D) = m
w

β3 = Cw

(c + η(w))β3 .

Thus the optimal window length w0 corresponds to the maximum value of w/(c +
η(w)). If η(w) is continuously differentiable and if the solution to wη′(w)−η(w) = c
is unique, then one can determine the optimal design subject to the constraint that m
is an integer.

If c = 0 and η(w) = w, we obtain the first scenario we discussed with C = T
and all combinations of integer m and w with mw = T provide the same amount of
FI. If c > 0, while the waiting time cost is still linear, the optimal strategy uses only
one subject monitored for T time units. On the other hand if c > 0 and η(w) = ew

indicating that the cost of monitoring a subject increases exponentially, the optimal
design has the unique window length w0 > 1 that is the solution of the equation
w exp(w) − exp(w) = c.

6.2 Gamma renewal distribution

For the Gamma(α, β) renewal distribution, using simulation we estimated the FI from
one WCRP in Sect. 4. We obtained Î (α, α;D), Î (β, β;D) and the determinant of
the FI matrix, det(Î(θ;D)) for different (α, β) and w values. Based on these, we can
calculate, and plot the following standardized FI measures:

Î (α, α;D)/w

I (α; X)/μX
,

Î (β, β;D)/w

I (β; X)/μX
,

det(Î(θ;D))/w2

det(I(θ; X))/μ2
X

.

It follows from Theorem 4 that these ratios approach 1 in probability as the window
length w increases.

These simulation results are plotted in Figs. 5, 6 and 7 using conventions and sym-
bols adopted in Sect. 4.2 and the same combination of (α, β,w) values. As done there,
we put three plots in each of these figures and each figure corresponds to a specific

value of β. Plot (a) displays Î (α,α;D)/w
I (α;X)/μX

versus w, plot (b) displays Î (β,β;D)/w
I (β;X)/μX

versus

w, and plot (c) displays det(Î(θ;D))/w2

det(I(θ;X))/μ2
X

versus w. The plots in Figs. 5, 6 and 7 also

contain horizontal band bounded by ±10% of the limiting FI. A quick look at the
subplots (a) and (b) indicate that the FI on α and β are nonlinear functions of the
window length w and the determinant is not a function of just w2. Subplots (a) and
(c) show that the standardized FI can be non-monotonic. Suppose a researcher has
some preliminary estimates of α and β which could be based on the estimates of the
mean and standard deviations of the renewal distribution. Using these preliminary
estimates and one of the above criteria, we want to decide an optimal window length
given a fixed total time of the experiment. We have in Figs. 5, 6 and 7 the measures of
relevant information we can use to decide on the window length for all combinations
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Fig. 5 Standardized FI curves for a WCRP with a gamma renewal distribution with β = 0.5 and selected
values of α and window length w; the horizontal lines represent 10% boundaries around the limiting FI or
the determinant. Figure legend is given in a
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Fig. 6 Standardized FI curves for a WCRP with a gamma renewal distribution with β = 1 and selected
values of α and window length w; the horizontal lines represent 10% boundaries around the limiting FI or
the determinant. Figure legend is given in a
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Fig. 7 Standardized FI curves for a WCRP with a gamma renewal distribution with β = 5 and selected
values of α and window length w; the horizontal lines represent 10% boundaries around the limiting FI or
the determinant. Figure legend is given in a
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of α = (0.5, 0.8, 1, 2, 5) and β = (0.5, 1, 5). For each value of (α, β), we look at the
three corresponding curves on the subplots. For instance, when α = 0.5 and β = 0.5,
we look at Fig. 5 for the curves with circle (◦) symbols on them in each of the three
plots. From subplot (a), the standardized FI on α varies within the 0.9–1.1 range. The
curve in plot (b) representing the standardized FI about β decreases as window length
increases, suggesting that a smaller window length is preferred (in contrast, if α > 1,
longer window is preferred for inference on β). And the curve cross the 1.1 line at
μX +σX = 0.25+√

0.125 = 0.60. The curve in plot (c) representing the standardized
measure based on the determinant of the FI first decreases and then increases. The
curve attains a local maximum at w = μX + 2 × σX = 0.25 + 2 × 0.354 = 0.958.
Based on all three plots, we recommend a window length between 0.60 and 0.958
(that is between μX + σX and μX + 2σX ). Generally the recommendation depends
on the parameter or parameters of interest and researcher’s preliminary estimates.

Figures 5, 6 and 7 show that some of the standardized information curves are mono-
tonic. In such cases, we need to consider practical issues. Even if the curves show a
decreasing trend, we should not consider extremely short window lengths. It would
mean more subjects on test and the assumption of iid RPs across a large number of
subjects or processes would be difficult to defend. On the other hand, if the curves
show an increasing trend, we should not be increasing the window length in an unlim-
ited fashion. This is because, even for a single process, the assumption of stationarity
implied by the RP model may be untenable for a long duration under observation
(especially in disease relapse models). Thus, in case a curve is monotonic, we recom-
mend the window length at which the functions under consideration first leaves or first
enters the region (0.9, 1.1), or in another words, the FI achieved is within 10% of the
limiting standardized FI. For instance, when α = 2 and β = 0.5, in view of plots (a)
and (b) of Fig. 5, a window length between μX + σX and μX + 3σX is a good choice.

There are situations where the standardized curves are non-monotonic. For exam-
ple, when β is away from 1 and α < 1, the maximum FI per unit time is attained in
plots (a) and (c) when w = μX + σX . So, a window of this length is recommended in
such cases.

Finally, these figures also show that when α = 1 (which corresponds to the Expo-
nential renewal distribution) the simulated values of the standardized FI on β remains
very close to 1 even for very small w values.

6.3 Weibull distribution

For the Weibull(r , β) renewal distribution, as done for the gamma parent, we used
simulation and computed

Î (r, r; D)/w

I (r; X)/μX
,

Î (β, β; D)/w

I (β; X)/μX
,

det(Î(θ; D))/w2

det(I(θ; X))/μ2
X

.

for r = 0.5, 0.8, 1.0, 1.2, 1.5, and β = 0.5, 1, 5.0 and for selected w. The results are
similar to the gamma case, now the parameter r playing the role of α. For illustra-
tion, we present the results for β = 1 in Fig. 8 using the conventions adopted for the
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Fig. 8 Standardized FI curves for a WCRP with a Weibull renewal distribution with β = 1 for selected
values of r and window length w; the horizontal lines represent 10% boundaries around the limiting FI or
the determinant. Figure legend is given in a
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gamma case. As done there, we put three plots in each of these figures and each figure

corresponds to a specific value of β. Subplot (a) plots Î (r,r;D)/w
I (r;X)/μX

versus w, (b) plots
Î (β,β;D)/w
I (β;X)/μX

versus w, (c) plots det(Î(θ;D))/w2

det(I(θ;X))/μ2
X

versus w.

There are five curves on each subplot corresponding to five different values of r . On
each curve, there are five window lengths, same as those chosen in Sect. 5, at which
we calculate the functions noted on the ordinate axis. From Theorem 4, it follows that
the functions plotted in these graphs approach 1 as the window length w increases.

The findings are similar to the gamma case and details are given in Zhao (2006,
Sect. 6.3). For both the gamma and Weibull distributions the shape parameters α, r
determine the hazard rate properties. In particular, α, r exceeding (being less than)
1 means the renewal distribution has increasing (decreasing) hazard rate. Of course,
α = r = 1 corresponds to the exponential distribution with a constant hazard rate.
From our limited study, it appears that for the scale parameter (β) the standardized
FI curves are monotonic when these shape parameters are considerably away from 1,
monotonically decreasing (increasing) for low (high) values of the shape parameter.
Such a monotonic property holds for the FI about the shape parameter both for the
Weibull and Gamma for the large shape parameter values, but only for the Weibull for
small shape parameter values. Changes in the values of the scale parameter seem to
affect the shapes of the standardized FI curves for shape parameter values under 1.

7 Discussion

There are very few results on Fisher information in WCRPs in the literature and our
study provides a comprehensive investigation of this area. If we have some knowl-
edge of the renewal distribution and the parameter values before the start of our study,
we can use the FI to determine the optimal observation window length for designing
experiments. Simulation study can be done for any parameter values with any renewal
distribution to search for an optimal window length.

Our WCRP models are applicable to recurrence data sets that do not start from time
zero, a common occurrence in clinical trials involving recurring events. For example, in
longitudinal studies of lupus and relapsing remitting multiple sclerosis patients, flare-
ups occur periodically and patients have shown these symptoms for a long period of
time prior to enrollment in the study. That is, the data set usually starts with an FRT
and the work here is useful for parametric inference on such data sets. Using a small
data set of this type arising from a longitudinal study of lupus flares, we found that
lognormal distribution provides a good fit for the renewal distribution.

To apply our models to recurrence data, certain assumptions need to be met. First
we need to check if the distributions of time between events are iid; second we need
to check if we have chosen the correct type of renewal distribution. Rigdon and Basu
(2000, p. 87) comment on the selection of models: “. . . show graphs of [the number of
renewals] N (ti ) versus ti . A linear relationship . . . indicates that the system remained
stable over the time that data were collected. In this case a RP, or possibly a homo-
geneous Poisson process, may be appropriate model if the times between failure are
independent.”
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In studies with many WCRPs (corresponding to different patients in a clinical
trial), homogeneity of the parameter values and fitness of the renewal distribution to
the data should be checked. In such settings either a fixed or random effects models
can be considered. Validation of and inference under such models are currently under
investigation. Some preliminary work was reported in Zhao (2006).

Appendix A

A.1 Proof of Theorem 1

When N = 0, there is no renewal inside the observation window, and we have a
right-censored FRT of length w. The likelihood function of the data set is

L0(D; θ) = P(N = 0) = P(Y > w) =
∫ ∞

w

g(y)dy = 1 − G(w).

When N = 1, we observe one renewal inside the window and the data set contains
Y = y and Z = z = w − y, where Z is the right censored renewal variable. The
likelihood function of the data set is

L1(D; θ) = g(y)[1 − F(z)] where z = w − y; y, z > 0.

When N = n ≥ 2, we have at least two renewals inside the window and the
data set contains Y = y, X = (x1, . . . , xn−1), and Z = z with the constraint z =
w − y −∑n−1

i=1 xi . The likelihood function of the data set is

Ln(D; θ) = g(y) f (x1) . . . f (xn−1)[1 − F(z)].

Let {N = n} be the event that n renewals occur inside the observation window. For
one WCRP, events {N = n} for n = 0, 1, . . . are mutually exclusive and exhaust all
possibilities. The expression represented by the infinite series on the right side of (2)
contains a single non-zero term representing the likelihood function corresponding to
the event {N = n} for a given D.

A.2 Proof of Theorem 2

The proof directly follows from the definition of Fisher information. From the like-
lihood function given in Theorem 1, the log-likelihood function of the data set from
one WCRP can be written as

�(D; θ) = log L(D; θ)

= δ0 log L0(D; θ) + δ1 log L1(D; θ) +
∞∑

n=2

δn log Ln(D; θ).
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Upon taking the first derivative of the log-likelihood function with respect to the
parameter θk , we obtain

∂

∂θk
�(D; θ) = ∂

∂θk
log L(D; θ)

= δ0
∂

∂θk
log L0(D; θ)+δ1

∂

∂θk
log L1(D; θ)+

∞∑
n=2

δn
∂

∂θk
log Ln(D; θ),

where

∂

∂θk
log L0(D; θ) = ∂

∂θk
log [1 − G(w)] = − ∂

∂θk
G(w)

1 − G(w)
,

∂

∂θk
log L1(D; θ) = ∂

∂θk

[
log g(y) + log (1 − F(z))

] =
∂

∂θk
g(y)

g(y)
−

∂
∂θk

F(z)

1 − F(z)
,

∂

∂θk
log Ln(D; θ) = ∂

∂θk

[
log g(y) +

(
n−1∑
i=1

log f (xi )

)
+ log(1 − F(z))

]

=
∂

∂θk
g(y)

g(y)
+
(

n−1∑
i=1

∂
∂θk

f (xi )

f (xi )

)
−

∂
∂θk

F(z)

1 − F(z)
.

We know that δiδ j = 0 for i = j and δiδi = δi for i = 0, 1, . . .. Hence the product
of ∂

∂θk
�(D; θ) and ∂

∂θl
�(D; θ) can be expressed as

∞∑
n=0

δn

(
∂

∂θk
log Ln(D; θ)

)(
∂

∂θl
log Ln(D; θ)

)

= δ0

∂
∂θk

G(w) ∂
∂θl

G(w)

(1 − G(w))2 + δ1

(
∂

∂θk
g(y)

g(y)
−

∂
∂θk

F(z)

1 − F(z)

)(
∂

∂θl
g(y)

g(y)
−

∂
∂θl

F(z)

1 − F(z)

)

+
∞∑

n=2

δn

[{
∂

∂θk
g(y)

g(y)
+
(

n−1∑
i=1

∂
∂θk

f (xi )

f (xi )

)
−

∂
∂θk

F(z)

1 − F(z)

}

×
{

∂
∂θl

g(y)

g(y)
+
(

n−1∑
i=1

∂
∂θl

f (xi )

f (xi )

)
−

∂
∂θl

F(z)

1 − F(z)

}]
. (20)

By definition, the (k, l)th entry of the FI matrix I (θk, θl;D) is the expectation

E
[

∂
∂θk

�(D; θ) ∂
∂θl

�(D; θ)
]

and, in view of (20) is given by

E

{
δ0

∂
∂θk

G(w) ∂
∂θl

G(w)

(1 − G(w))2

}
+ E

{
δ1

( ∂
∂θk

g(Y )

g(Y )
−

∂
∂θk

F(Z)

1 − F(Z)

)( ∂
∂θl

g(Y )

g(Y )
−

∂
∂θl

F(Z)

1 − F(Z)

)}
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+
∞∑

n=2

E

⎧⎨
⎩δn

⎡
⎣
⎛
⎝ ∂

∂θk
g(Y )

g(Y )
+
⎛
⎝n−1∑

i=1

∂
∂θk

f (Xi )

f (Xi )

⎞
⎠−

∂
∂θk

F(Z)

1 − F(Z)

⎞
⎠

×
⎛
⎝ ∂

∂θl
g(Y )

g(Y )
+
⎛
⎝n−1∑

i=1

∂
∂θl

f (Xi )

f (Xi )

⎞
⎠−

∂
∂θl

F(Z)

1 − F(Z)

⎞
⎠
⎤
⎦
⎫⎬
⎭

= E

{
δ0

∂
∂θk

G(w) ∂
∂θl

G(w)

(1 − G(w))2

}
+ E {δ1 A1(θk , θl ; D)} +

∞∑
n=2

E {δn An(θk , θl ; D)} ,

where

E

{
δ0

∂
∂θk

G(w) ∂
∂θl

G(w)

(1 − G(w))2

}
=

∂
∂θk

G(w) ∂
∂θl

G(w)

(1 − G(w))2 × E(δ0)

=
∂

∂θk
G(w) ∂

∂θl
G(w)

(1 − G(w))2 × (1 − G(w))

=
∂

∂θk
G(w) ∂

∂θl
G(w)

1 − G(w)

= A0(θk, θl;D).

Similarly,

E {δ1 A1(θk, θl;D)} =
∫ w

y=0
A1(θk, θl;D)L1(D; θ)dy

=
∫ w

y=0
A1(θk, θl;D)g(y)[1 − F(z)]dy.

This holds because δ1δn = 0 for n = 1 and hence only the term for n = 1 remains in
the sum. Similarly,

E
{
δn An(θk, θl;D)

}

=
∫ w

y=0

∫ w−y

x1=0
· · ·
∫ w−y−∑n−2

1 xi

xn−1=0
An(θk, θl;D)Ln(D; θ)dxn−1 · · · dx1 dy,

since the other terms in the sum are all zeroes.

A.3 Proof of Theorem 3

Let Nw denote the number of renewals in an observation window of length w. The FI
on θ in a data set D from one WCRP is

I (θ;D) = −E

(
∂2

∂θ2 log L(D; θ)

)
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=
[
− ∂2

∂θ2 log(1 − G(w))

]
(1 − G(w))

+
∫ w

0

[
− ∂2

∂θ2 log g(y) − ∂2

∂θ2 log(1 − F(z))

]
g(y)[1 − F(z)]dy

+
∞∑

n=2

∫
· · ·
∫
∑n−1

i=1 xi +y≤w

×
[
−∂2 log g(y)

∂2θ
−

n−1∑
i=1

∂2 log f (xi )

∂2θ
− ∂2[1 − F(z)]

∂2θ

]

×g(y) f (x1) · · · f (xn−1)[1 − F(z)]dxn−1 · · · dx1 dy

= H1 + H2 + H3,

where z = w − y −∑n−1
i=1 xi and

H1 =
[
− ∂2

∂θ2 log(1 − G(w))

]
(1 − G(w))

+
∫ w

y=0

[
− ∂2

∂θ2 log g(y)

]
g(y)(1 − F(z))dy (21)

+
∞∑

n=2

∫ w

y=0

∫ w−y

x1=0
· · ·
∫ w−y−∑n−2

i=1 xi

xn−1=0

[
− ∂2

∂θ2 log g(y)

]

×g(y) f (x1) · · · f (xn−1)[1 − F(z)]dxn−1 · · · dx1 dy, (22)

H2 =
∞∑

n=2

∫ w

y=0

∫ w−y

x1=0
· · ·
∫ w−y−∑n−2

i=1 xi

xn−1=0

[
−

n−1∑
i=1

∂2

∂θ2 log f (xi )

]

×g(y) f (x1) · · · f (xn−1)[1 − F(z)]dxn−1 · · · dx1 dy, and

H3 =
∫ w

y=0

[
− ∂2

∂θ2 log(1 − F(z))

]
g(y)[1 − F(z)]dy (23)

+
∞∑

n=2

∫ w

y=0

∫ w−y

x1=0
· · ·
∫ w−y−∑n−2

i=1 xi

xn−1=0

[
− ∂2

∂θ2 log(1 − F(z))

]

×g(y) f (x1) · · · f (xn−1)[1 − F(z)]dxn−1 · · · dx1 dy. (24)

We will prove that H1
w

and H3
w

go to zero when w goes to infinity and that H2
w

goes to
I (θ;X)

μX
.

First consider H1. The expression in (21) becomes

∫ w

y=0

[
− ∂2

∂θ2 log g(y)

]
g(y)P(Nw = 1|Y = y)dy,
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and (22) becomes

∞∑
n=2

∫ w

y=0

[
− ∂2

∂θ2 log g(y)

]
g(y)

∫ w−y

x1=0
· · ·
∫ w−y−∑n−2

i=1 xi

xn−1=0

× f (x1) · · · f (xn−1)[1 − F(z)]dxn−1 · · · dx1 dy

=
∞∑

n=2

∫ w

y=0

[
− ∂2

∂θ2 log g(y)

]
g(y)P(Nw = n|Y = y)dy.

Thus, H1 becomes

[
− ∂2

∂θ2 log(1 − G(w))

]
(1 − G(w))

+
∞∑

n=1

∫ w

y=0

[
− ∂2

∂θ2 log g(y)

]
g(y)P(N = n|Y = y)dy

=
[
− ∂2

∂θ2 log(1 − G(w))

]
(1 − G(w)) +

∫ w

y=0

[
− ∂2

∂θ2 log g(y)

]
g(y)dy,

since whenever y < w,
∑∞

n=1 P(N = n|Y = y) = 1. Note that

[
− ∂2

∂θ2 log(1 − G(w))

]
(1 − G(w)) = −

(
∂

∂θ

− ∂
∂θ

G(w)

1 − G(w)

)
(1 − G(w))

= ∂2

∂θ2 G(w) +
(

∂
∂θ

G(w)
)2

1 − G(w)
,

where

∂2

∂θ2 G(w) = ∂2

∂θ2

∫ w

0
g(y)dy → ∂2

∂θ2 1 = 0 as w → ∞,

and

∂

∂θ
G(w) = ∂

∂θ

∫ w

0
g(y)dy → ∂

∂θ
1 = 0 as w → ∞.

Since 1 − G(w) → 0 as w → ∞, we apply L’Hopital’s rule to determine the
following limit.

lim
w→∞

(
∂
∂θ

G(w)
)2

1 − G(w)
= lim

w→∞
2
(

∂
∂θ

G(w)
) (

∂2

∂w∂θ
G(w)

)
− ∂

∂w
G(w)

= lim
w→∞

2
(

∂
∂θ

G(w)
) (

∂
∂θ

g(w)
)

−g(w)
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= lim
w→∞ −2

(
∂

∂θ
G(w)

)
∂

∂θ
log g(w) → 0

by assumptions (RC1) and (RC2). Thus H1 < ∞ for any w.
Next, we consider H3. The first term (23), is

∫ w

z=0

[
− ∂2

∂θ2 log(1 − F(z))

]
(1 − F(z))g(w − z)dz

=
∫ w

z=0

[
− ∂2

∂θ2 log(1 − F(z))

]
(1 − F(z))P(Nw = 1|Z = z)dz.

The terms in (24) can be expressed as

∞∑
n=2

∫ w

z=0

∫ w−z

x1=0
· · ·
∫ w−z−∑n−2

i=1 xi

xn−1=0

[
− ∂2

∂θ2 log(1 − F(z))

]
(1 − F(z))

× f (x1) · · · f (xn−1)g(w −
n−1∑
i=1

xi − z)dxn−1 · · · dx1 dz

=
∞∑

n=2

∫ w

z=0

[
− ∂2

∂θ2 log(1 − F(z))

]
(1 − F(z))

∫ w−z

x1=0
· · ·
∫ w−z−∑n−2

i=1 xi

xn−1

× f (x1) · · · f (xn−1)g(w −
n−1∑
i=1

xi − z)dxn−1 · · · dx1 dz

=
∞∑

n=2

∫ w

z=0

[
− ∂2

∂θ2 log(1 − F(z))

]
(1 − F(z))P(Nw = n|Z = z)dz

=
∫ w

z=0

[
− ∂2

∂θ2 log(1 − F(z))

]
(1 − F(z))

∞∑
n=2

P(Nw = n|Z = z)dz.

So H3 becomes

∞∑
n=1

∫ w

z=0

[
− ∂2

∂θ2 log(1 − F(z))

]
(1 − F(z))P(Nw = n|Z = z)dz

=
∫ w

z=0

[
− ∂2

∂θ2 log(1 − F(z))

]
(1 − F(z))

∞∑
n=1

P(Nw = n|Z = z)dz

=
∫ w

z=0

[
− ∂2

∂θ2 log(1 − F(z))

]
(1 − F(z))dz.
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From the regularity condition (RC2) in the theorem we have

∫ ∞
0

(
− ∂2

∂θ2 log g(y)

)
g(y)dy < ∞

⇐⇒
∫ ∞

0

(
− ∂2

∂θ2 log
1 − F(y)

μX

)
1 − F(y)

μX
dy < ∞

⇐⇒
∫∞

0

(
− ∂2

∂θ2 log(1 − F(y))
)

(1 − F(y))dy + ∫∞
0

(
∂2

∂θ2 log μX

)
(1 − F(y))dy

μX
< ∞

⇐⇒
∫∞

0

(
− ∂2

∂θ2 log(1 − F(y))
)

(1 − F(y))dy +
(

∂2

∂θ2 log μX

)
μX

μX
< ∞

⇐⇒
∫ ∞

0

(
− ∂2

∂θ2 log(1 − F(y))

)
(1 − F(y))dy < ∞;

i.e., H3 < ∞.
The expression H2 is

∞∑
n=2

n−1∑
j=1

∫ w

y=0

∫ w−y

x1=0
· · ·
∫ w−y−∑n−2

i=1 xi

xn−1=0

[
− ∂2

∂θ2 log f (x j )

]

× g(y) f (x1) · · · f (xn−1)[1 − F(z)]dxn−1 · · · dx1 dy

=
∞∑

n=2

n−1∑
j=1

∫ w

x j =0

∫ w−x j

y=0

∫ w−y−x j

x1=0
· · ·
∫ w−y−∑n−2

i=1 xi

xn−1=0

[
− ∂2

∂θ2 log f (x j )

]

× f (x j )g(y) f (x1) · · · f (xn−1)[1 − F(z)]dxn−1 · · · dx1 dy dx j

and H2 can be expressed as

=
∞∑

n=2

n−1∑
j=1

∫ w

x j =0

[
− ∂2

∂θ2 log f (x j )

]
f (x j )P(Nw = n|X j = x j )dx j

=
∞∑

n=2

(n − 1)

∫ w

x=0

[
− ∂2

∂θ2 log f (x)

]
f (x)P(Nw = n|X = x)dx

=
∫ w

x=0

[
− ∂2

∂θ2 log f (x)

]
f (x)

∞∑
n=2

(n − 1)P(Nw = n|X = x)dx

=
∫ w

x=0

[
− ∂2

∂θ2 log f (x)

]
f (x)

×
( ∞∑

n=2

n P(Nw = n|X = x) −
∞∑

n=2

P(Nw = n|X = x)

)
dx

=
∫ w

x=0

[
− ∂2

∂θ2 log f (x)

]
f (x) (E(Nw|X = x) − 1) dx .
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We have

H2

w
=
∫ w

x=0

[
− ∂2

∂θ2 log f (x)
]

f (x) (E(Nw|X = x) − 1) dx

w

=
∫ w

x=0

[
− ∂2

∂θ2 log f (x)
]

f (x) (E(Nw|X = x)) dx

w

−
∫ w

x=0

[
− ∂2

∂θ2 log f (x)
]

f (x)dx

w

=
∫ w

x=0

[
− ∂2

∂θ2 log f (x)

]
f (x)

E(Nw|X = x)

w
dx

−
∫ w

x=0

[
− ∂2

∂θ2 log f (x)
]

f (x)dx

w
.

Since

lim
w→∞

∫ w

x=0

[
− ∂2

∂θ2 log f (x)
]

f (x)dx

w
= 0,

if we have

lim
w→∞

∫ w

x=0

[
− ∂2

∂θ2 log f (x)

]
f (x)

E(Nw|X = x)

w
dx = I (θ; X)

μX
, (25)

we will have

lim
w→∞

H2

w
= I (θ; X)

μX
+ 0 = I (θ; X)

μX
,

and overall,

I (θ;D)

w
= H1 + H2 + H3

w
→ 0 + I (θ; X)

μX
+ 0 = I (θ; X)

μX
.

Now we prove (25) is true.
Since

lim
w→∞

E(Nw)

w
= 1

μX
,

∀δ > 0, ∃ a w1 such that

E(Nw)

w
<

1

μX
+ δ for all w > w1.
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By condition (RC1), for all ε > 0 we can find a w2 large enough such that

∫ ∞

w

(
− ∂2

∂θ2 log f (x)

)
f (x)dx < ε′ = min

{
ε

3
μX ,

ε

3( 1
μX +δ

)
,
ε

3

}

for all w > w2. Now

E(Nw|X = x) = E(number of renewals in a window of length w|X = x)

= E(number of renewals in a window of length (w − x)) + 1

= E(Nw−x ) + 1.

Then for w2 < w0 < w,

∫ w

0

(
− ∂2

∂θ2 log f (x)

)
f (x)

E(Nw|X = x)

w
dx

=
∫ w0

0

(
− ∂2

∂θ2 log f (x)

)
f (x)

E(Nw−x )

w
dx (26)

+
∫ w

w0

(
− ∂2

∂θ2 log f (x)

)
f (x)

E(Nw−x )

w
dx (27)

+ 1

w

∫ w

0

(
− ∂2

∂θ2 log f (x)

)
f (x)dx . (28)

Denote the expressions in (26)–(28) as K1, K2 and K3, respectively. It is obvious that

∫ w0

0

(
−∂2 log f (x)

∂θ2

)
f (x)

E(Nw−w0)

w
dx ≤ K1

≤
∫ w0

0

(
−∂2 log f (x)

∂θ2

)
f (x)

E(Nw)

w
dx .

Since

lim
w→∞

E(Nw−w0)

w
= 1

μX
and lim

w→∞
E(Nw)

w
= 1

μX
,

we have

lim
w→∞ K1 =

∫ w0

0

(
− ∂2

∂θ2 log f (x)

)
f (x)

1

μX
dx .

So, for all ε > 0, that exists a w3 such that

∣∣∣∣K1 −
∫ w0

0

(
− ∂2

∂θ2 log f (x)

)
f (x)

1

μX
dx

∣∣∣∣ ≤ ε

6
for all w > w3.
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Also,

|K2| ≤
∣∣∣∣
∫ w

w0

(
− ∂2

∂θ2 log f (x)

)
f (x)

E(Nw)

w
dx

∣∣∣∣

≤
(

1

μX
+ δ

) ∣∣∣∣
∫ w

w0

(
− ∂2

∂θ2 log f (x)

)
f (x)dx

∣∣∣∣ for w > w1

≤
(

1

μX
+ δ

) ∣∣∣∣
∫ ∞

w0

(
− ∂2

∂θ2 log f (x)

)
f (x)dx

∣∣∣∣

≤
(

1

μX
+ δ

)
ε

3
(

1
μX

+ δ
) for w0 > w2

= ε

3
.

Since |K3| is bounded by I (β; X)/w, it approaches 0 as w → ∞ and hence there
exists a w4 such that |(28)| ≤ ε/6 for all w > w4. So,

∣∣∣∣
∫ w

x=0

[
− ∂2

∂θ2 log f (x)

]
f (x)

E(Nw|X = x)

w
dx − I (X; θ)

μX

∣∣∣∣

=
∣∣∣∣
∫ w0

0

(
− ∂2

∂θ2 log f (x)

)
f (x)

E(Nw−x )

w
dx

+
∫ w

w0

(
− ∂2

∂θ2 log f (x)

)
f (x)

E(Nw−x )

w
dx + 1

w

∫ w

0

(
− ∂2

∂θ2 log f (x)

)
f (x)dx

−
∫ w0

0

(
− ∂2

∂θ2 log f (x)

)
f (x)

1

μX
dx −

∫ ∞

w0

(
− ∂2

∂θ2 log f (x)

)
f (x)

1

μX
dx

∣∣∣∣

≤
∣∣∣∣
∫ w0

0

(
− ∂2

∂θ2 log f (x)

)
f (x)

E(Nw−x )

w
dx −

∫ w0

0

(
− ∂2

∂θ2 log f (x)

)
f (x)

1

μX
dx

∣∣∣∣

+
∣∣∣∣
∫ w

w0

(
− ∂2

∂θ2 log f (x)

)
f (x)

E(Nw−x )

w
dx

∣∣∣∣+
∣∣∣∣
∫ w

0

(
− ∂2

∂θ2 log f (x)

)
f (x)dx

∣∣∣∣

+
∣∣∣∣
∫ ∞

w0

(
− ∂2

∂θ2 log f (x)

)
f (x)

1

μX
dx

∣∣∣∣
≤ ε

6
+ ε

3
+ ε

6
+ ε

3
for w > max{w1, w2, w3, w4} and w0 > w2.

Since we can make ε arbitrarily small, we have

lim
w→∞

∫ w

x=0

[
− ∂2

∂θ2 log f (x)

]
f (x)

E(Nw|X = x)

w
dx = I (X; θ)

μX
.
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