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Using information theoretic quantities like the Wehrl entropy and Fisher’s information measure we study the
thermodynamics of the problem leading to Landau’s diamagnetism, namely, a free spinless electron in a
uniform magnetic field. We reveal a new Fisher-uncertainty relation, derived via the Cramer-Rao inequality,
that involves phase space localization and energy fluctuations.
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I. INTRODUCTION

The last years have witnessed a great deal of activity re-
volving around physical applications of Fisher’s information
measure sFIMd I sas a rather small sample, see for instance,
Ref. 1–5d. Frieden and Soffer1 have shown that Fisher’s in-
formation measure provides one with a powerful variational
principle, the extreme physical information one, that yields
most of the canonical Lagrangians of theoretical physics.1,2

Additionally, I has been shown to provide an interesting
characterization of the “arrow of time,” alternative to the one
associated with Boltzmann’s entropy.6,7 Also to be empha-
sized is the fact that both equilibrium and off-equilibrium
thermodynamics can be entirely based upon Fisher’s mea-
sure, a procedure that exhibits definite advantages over con-
ventional textbook treatments.8

Unraveling the multiple FIM facets and their links to
physics should be of general interest to a vast audience. Our
present subject matter is the information theory treatment of
Landau-diamagnetism’s thermodynamics, that we will study
using two information measures, namely FIM and a special
instance of Shannon’s logarithmic one, called the Wehrl en-
tropy W.

W is a very useful measure of localization in phase
space.9,10 It is built up using coherent states9,11,12 and consti-
tutes a powerful tool in statistical physics. The pertinent defi-
nition reads

W = −E dxdp
2p"

msx,pdln msx,pd , s1d

where msx , pd= kzuruzl is a “semiclassical” phase-space dis-
tribution function associated to the density matrix r of the
system,12–14 often referred to as the Husimi distribution.15

The distribution msx , pd is normalized in the fashion
esdxdp /2p"dmsx , pd=1. Indeed, msx , pd is a Wigner-
distribution DW smeared over an " sized region of phase
space.11 The smearing renders msx , pd a positive function,
even if DW does not have such a character. The semiclassical
Husimi probability distribution refers to a special type of
probability: that for simultaneous but approximate location
of position and momentum in phase space.11 The uncertainty
principle manifests itself through the inequality

W ø 1, s2d

which was first conjectured by Wehrl9 and later proved by
Lieb.16 Equality holds iff r is a coherent state.9,16 This sce-
nario will have to be modified in the case of Landau’s dia-
magnetism problem, as we will show below.

The usual treatment of equilibrium in statistical mechan-
ics makes use of the Gibbs’s canonical distribution, whose
associated, “thermal” density matrix is given by r=Z−1e−bH,
with Z=Trse−bHd the partition function, b=1/kT the inverse
temperature sTd, and k the Boltzmann constant. In order to
conveniently write down an expression for W one considers,
for the Hamiltonian H, its eigenstates unl and eigenenergies
En, because one can always write11

msx,pd = kzuruzl =
1
Zo

n
e−bEnukzunlu2. s3d

A useful route to W starts then with s3d and continues
with s1d.

Quantum-mechanical phase-space distributions expressed
in terms of the phase states uzl of the harmonic oscillator
have been proved to be useful in different contexts.12–14 Par-
ticular reference is made to the illuminating work of Ander-
sen and Halliwell,11 who discuss, among other things, the
concepts of Husimi distributions and Wehrl entropy. Coher-
ent states are eigenstates of a general annihilation operator a,
appropriate for the problem at hand, i.e., auzl=zuzl.12–14 In
the special case of the harmonic oscillator whose Hamil-
tonian has the form Ho="vfa†a+1/2g, the complex plane of
eigenvalues of the annihilation operator a are given by

z = smv/2"d1/2x + is2"vmd−1/2p . s4d

In this case, a new relation between the entropy W and the
measure I of the equilibrium thermal state was found in Ref.
19. Accordingly, these two measures become complementary
informational quantities and satisfy the condition W+ln I
=1. A natural question that we shall address here is the fol-
lowing: will the relation of Ref. 19 retain its form for Land-
au’s diamagnetism? The answer is no, which makes the ther-
modynamics of the latter problem definitely different to that
of the harmonic oscillator. Notice that, in this instance, sid
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Wø1 implies Ił1 and siid the use of coherent states maxi-
mizes the Fisher measure.

For the convenience of the reader this paper is organized
as follows: in Sec. II we summarize important aspects of
constructing a complete set of coherent states for a spinless
electron in a uniform magnetic field. This enables one to
obtain the pertinent Husimi distribution in phase-space given
fcf. Eq. s3dg in Sec. III, where we explicitly evaluate it, to-
gether with concomitant Wehrl entropy. We introduce in Sec.
IV basic notions regarding Fisher’s information measure
sFIMd. In Sec. V we construct the appropriate FIM in phase-
space one for Landau’s diamagnetism, and finally, we draw
some conclusions in Sec. VI.

II. ELECTRON IN A UNIFORM MAGNETIC FIELD

We enter the present application by revisiting the com-
plete set of coherent states of a spinless electron in a uniform
magnetic field, generated by using the step-ladder operator.17

Consider the kinetic momentum

pW = pW +
e
c

AW , s5d

of a particle of charge e, mass mr, and linear momentum pW ,
subject to the action of a vector potential AW . These are the
essential ingredients of the well-known Landau model for
diamagnetism, a spinless electron in a magnetic field of in-
tensity H swe follow the presentation of Feldman et al.17d.
The Hamiltonian reads17

H =
pW · pW

2mr
, s6d

and the magnetic field is HW =„W 3AW . The vector potential is
chosen in the symmetric gauge as AW = s−Hy /2 ,Hx /2 ,0d,
which corresponds to a uniform magnetic field along the z
direction. One also needs the step operators17

p± = px ± ipy ±
i"
2l2 sx ± iyd . s7d

Motion along the z axis is free.17 For the transverse motion,
the Hamiltonian specializes to17

Ht =
p+p−

2mr
+

1
2

"V . s8d

Two important quantities characterize the problem, namely,
V=eH /mrc, the cyclotron frequency and the length l
= s"c /eHd1/2.18 The eigenstates uN ,ml are determined by two
quantum numbers, N sassociated to the energyd, and m sto
the z projection of the angular momentumd. As a conse-
quence, they are simultaneously eigenstates of both Ht and
the angular momentum operator Lz,17 so that

HtuN,ml = sN + 1
2d"VuN,ml = ENuN,ml s9d

and

LzuN,ml = m"uN,ml . s10d

We note that the eigenvalues of Lz are not bounded by below
sm takes the values −‘ , . . . ,−1 ,0 ,1 , . . . ,Nd.17 This agrees
with the fact that the energies sN+1/2d"V are infinitely
degenerate.18 Such a fact diminishes the physical relevance
of phase-space localization for estimation purposes, as we
shall see below. Moreover, Lz is not an independent constant
of the motion.18

We face here a bi-dimensional phase-space problem. The
corresponding four phase-space variables can conveniently
be called x, y, px, and py, since pz is a constant of the
motion18 and the motion along the z axis is that of a free
particle. The coherent states ua ,jl are defined as the simul-
taneous eigenstates of the two commuting non-Hermitian op-
erators which annihilate the ground state17

p−uN = 0,m = 0l = 0,

X+uN = 0,m = 0l = 0, s11d

with17

X± = x −
py

mrV
± iSy +

px

mrV
D , s12d

that are called orbit-center coordinate operators that step on
the angular momentum m and not the energy.17 We have then

p−ua,jl =
"a

il2 ua,jl , s13d

X+ua,jl = jua,jl , s14d

where the above defined quantity l represents the classical
radius of the ground-state’s Landau orbit. Evaluating now
ka ,jup+p−ua ,jl we immediately find the modulus squared of
eigenvalue a as given by

uau2 =
l4

"2HSpx −
"y
2l2D2

+ Spy +
"x
2l2D2J . s15d

The terms within the curly brackets sdivided by 2mrd yield
the classical energy Emag of an electron in a uniform mag-
netic field. As noted in Ref. 17, the modulus of both a and j
has dimensions of length.

After expanding the states ua ,jl in the complete set of
energy eigenfunctions uN ,ml given above, and using Eqs.
s3.4d and s3.6d of Ref. 17, we immediately obtain the prob-
ability of finding the electron in the state ua ,jl as

ukN,mua,jlu2 =
uau2Nuju2sN−md

s2l2dNN!s2l2dN−msN − md!
e−suau2+uju2d/2l2.

s16d

Our coherent states ua ,jl satisfy the closure relation17

E d2ad2j

4p2l4 ua,jlka,ju = 1, s17d

as expected.
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III. HUSIMI DISTRIBUTION AND WEHRL ENTROPY

We begin at this point our present endeavor, i.e., intro-
ducing thermodynamics into the model of the preceding sec-
tion, by calculating the appropriate Husimi distribution s3d
that our model requires. Such distribution adopts the appear-
ance

msx,px;y,pyd =
1
Z o

N=0

‘

o
m=−‘

N

e−bENukN,mua,jlu2. s18d

Using s16d one can rewrite the above expression in the fash-
ion

msx,px;y,pyd =
e−b"V/2

Z
e−suau2+uju2d/2l2o

N=0

‘ uau2Nuju2Ne−b"VN

s2l2d2NN!

3 o
m=−‘

N S 2l2

uju2D
m 1

sN − md!
, s19d

and pass to the evaluation of the sum

o
m=−‘

N S 2l2

uju2D
m 1

sN − md!
= S uju2

2l2 D−N
euju2/2l2. s20d

This last result is now replaced into s19d so as to arrive at

msx,px;y,pyd =
e−b"V/2

Z
e−uau2/2l2o

N=0

‘ F uau2

2l2 e−b"VGN 1
N!

,

s21d

which immediately leads to the desired Husimi result we
were looking for sour first new resultd, namely,

msx,px;y,pyd =
e−b"V/2

Z
e−s1−e−b"Vduau2/2l2. s22d

The appropriate partition function Z that we need here, i.e.,
that for a particle in a cylindrical geometry slength L and
radius Rd, oriented along the magnetic field, has been given
by Feldman et al. One has ZperpZparall, where Zparall is the
usual partition function for one-dimensional free motion
Zparall= sL /"ds2pmrkTd1/2.17 Z has the form17

Z = V
s2pmrkTd1/2

h
mrV

4p"

1
sinhsb"V/2d

. s23d

Using it we can easily recast msx , px ;y , pyd as

msx,px;y,pyd =
4p2"2

VmrVs2pmrkTd1/2

3s1 − e−b"Vde−s1−e−b"Vduau2/2l2. s24d

This last expression is not yet normalized fthe pertinent nor-
malization integral equals 2p" / sL˛2pmrkTd, with L the
length of the sampleg. This can be remedied by scaling the
above Husimi distribution. We proceed in two steps. First we
define

wsx,px;y,pyd =
VmrVs2pmrkTd1/2

4p2"2 msx,px;y,pyd s25d

and write

wsx,px;y,pyd = s1 − e−b"Vde−s1−e−b"Vduau2/2l2. s26d

Although this is not yet normalized, it is dimensionless. Now
the corresponding normalization integral yields
AmrV / s2p"d. Finally, the normalized distribution is, of
course,

fsx,px;y,pyd =
2p"

AmrV
s1 − e−b"Vde−s1−e−b"Vduau2/2l2. s27d

Obviously, we write now the Wehrl entropy in terms of the
distribution function fsx , px ;y , pyd and get

W = −E d2ad2j

4p2l4 fsx,px;y,pydln fsx,px;y,pyd , s28d

so that, after replacing s27d into W we find

W = 1 − lns1 − e−b"Vd − lnS2pl2

A D , s29d

where we have used the following result given in Ref. 17,

E d2ad2j

4p2l4 e−s1−e−b"Vduau2/2l2 =
AmV

2p"

1
1 − e−b"V . s30d

W depends on the sample’s dimensions via the third term in
s29d. The effect of the magnetic field is reflected via V. The
important point is the following: the present Wehrl measure
is, save for the above mentioned sconstantd third term, iden-
tical to that of an harmonic oscillator of frequency V at the
temperature T.19 This constitutes our second original
spresentd contribution. It is to be pointed out that this result
confirms an hypothesis made 10 years ago in Ref. 11, whose
authors conjectured that the form s29d found for the har-
monic oscillator could be of a rather general character.

IV. FISHER’S INFORMATION MEASURE

Fisher advanced, already in the 1920s, a quite interesting
information measure sfor a detailed study see Refs. 1 and 2d.
Consider a u−z “scenario” in which we deal with a system
specified by a physical parameter u, while z is a stochastic
variable szPRMd and fuszd the probability density for z sthat
depends also on ud. One makes a measurement of z and has
to best infer u from this measurement, calling the resulting
estimate ũ= ũszd. The question is how well u can be deter-
mined. Estimation theory2 states that the best possible esti-
mator ũszd, after a very large number of z samples is exam-
ined, suffers a mean-square error «2 from u that obeys a
relationship involving Fisher’s I, namely, I«2=1, where the
Fisher information measure I is of the form

Isud =E dzfuszdH ] ln fuszd
]u

J2
. s31d

This “best” estimator is the so-called efficient estimator. Any
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other estimator exhibits a larger mean-square error. The only
caveat to the above result is that all estimators be unbiased,
i.e., satisfy kũszdl=u. Fisher’s information measure has a
lower bound: no matter what parameter of the system one
chooses to measure, I must be larger or equal than the in-
verse of the mean-square error associated with the concomi-
tant experiment. This result,

I«2 ø 1, s32d

is referred to as the Cramer–Rao bound.2 The uncertainty
principle can be regarded as a special instance of s32d.2 One
often speaks of “generalized” uncertainty relations.

A particular I-case is of great importance, that of transla-
tion families,2,3 i.e., distribution functions sDFd whose form
does not change under u-displacements. These DF are shift-
invariant sà la Mach, no absolute origin for ud, and for them
Fisher’s information measure adopts the somewhat simpler
appearance2

I =E dzfszdH ] ln fszd
]z J2

. s33d

Fisher’s measure is additive.2 Here we deal with the issue of
estimating localization in a thermal scenario that revolves
around a four-dimensional phase space, i.e., z
;sz1 ,z2 ,z3 ,z4d is a four-dimensional vector. Such an estima-
tion task leads, as shown in Ref. 8, to the thermodynamics of
the problem. Our Fisher measure acquires the appearance,19

I = o
i

4

Ii = o
i

4 E dzifsz1,z2,z3,z4dH ] ln fszid
]zi

J2
. s34d

V. FISHER INFORMATION AND LANDAU
DIAMAGNETISM

We are now in conditions to obtain explicitly the
Fisher’s information measure, by using the formalism previ-
ously described. Since ln f=lns2p" /AmrVd+lns1−e−b"Vd
− s1−e−b"Vduau2 /2l2, the result s15d allows for the immediate
finding

] ln f

]x
=

1 − e−b"V

2"
Spy +

"x
2l2D , s35d

] ln f

]y
=

1 − e−b"V

2"
Spx −

"y
2l2D , s36d

] ln f

]px
=

l2s1 − e−b"Vd
"2 Spx −

"y
2l2D , s37d

and

] ln f

]py
=

l2s1 − e−b"Vd
"2 Spy +

"x
2l2D . s38d

With the above expressions we can now recast s15d in the
fashion

uau2 =
2l4

s1 − e−b"Vd2A , s39d

where

A = S ] ln f

]x D2
+ S ] ln f

]y D2
+

"2

4l4FS ] ln f

]px
D2

+ S ] ln f

]py
D2G .

s40d

We are now in a position to write down the Fisher measure
by following the prescription s34d sRefs. 19 and 20d and then
write

I =E d2ad2j

4p2l4 fsx,px;y,pydl2A , s41d

which, after a little algebra, turns out to be

I =
s1 − e−b"Vd2

2l2 E d2ad2j

4p2l4 uau2fsx,px;y,pyd . s42d

The integration is performed by appropriately using the per-
tinent derivatives of s30d. We finally obtain

I = 1 − e−b"V. s43d

A glance at Ref. 19 tells us that the above is just the
Fisher measure for the harmonic oscillator, which constitutes
our third original result. No dependence on the sample’s size
parameters is detected. This is a direct result of the infinite
degeneracy discussed above, which entails that estimating
position in phase space loses physical relevance.

We can finally compare the information s43d with the
Wehrl measure s29d, concluding that

W = 1 − ln I − lnS2pl2

A D , s44d

i.e., they are complementary informational quantities.19 As a
matter of fact, we establish here one of the few existing
direct Shannon-Fisher links. Since we already know that W
ø1, this leads to the inequality

I ł A/s2pl2d , s45d

still another original result. When the area of the sample is
microscopic, A=2pl2, the inequality reduces to that charac-
terizing the harmonic oscillator, i.e., Ił1.

For didactic reasons it is now convenient to focus atten-
tion on the quantity uau2=2mrsl4 /"2dEmag, the “natural vari-
able” of our scenario. Going back to Eq. s42d, we notice that
the integral there is just kuau2l, i.e., proportional to the semi-
classical mean magnetic energy kEmagl fsee the comment that
follows Eq. s15dg. In other words, estimating localization in
phase space is for the present problem equivalent to evaluat-
ing the average energy of our electron. It is pertinent to ask
now about uau- fluctuations. A quick calculation yields

kuaul2 =
pl2

2I
s46d

and
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sDkuauld2 = kuau2l − kuaul2 =
4 − p

2
l2

I
. s47d

Our phase space localization problem becomes intimately
linked to these fluctuations. The ensuing sDkuauld2 I-product,
i.e., the uau-Cramer-Rao bound s32d sgeneralized uncertainty
principle2d is

sDkuauld2I =
4 − p

2
l2 =

4 − p

2
c

eH
" , s48d

and we observe sid as an equal sign is obtained, the estima-
tion is optimal in the sense that the lower bound of the in-
equality s32d is always obtained,2 siid the associated uncer-
tainty is independent of the temperature, and siiid as we
increase localization-quality sI increasesd, the size of
uau-fluctuations, reasonably enough, decreases. A control-
parameter, namely, the magnetic field intensity H, is avail-
able. The larger the intensity, the better the overall quality.
Nature imposes the ultimate control, however, as given by ".
The difference between s4−pd /2 and 1/2 sof the order of
10−1d is due to the semiclassical character of our treatment.
We look now for a Cramer-Rao inequality that directly in-
volves the energy Emag. Things will drastically change be-
cause to get the energy from uau2 one must divide by l4,
which in turn will reverse the H role. We immediately find

kEmagl =
"V

I
s49d

and

kEmag
2 l = 2

"2V2

I2 , s50d

so that for the energy-fluctuation D2Emag= kEmag
2 l− kEmagl2

one finds

DEmagI = "V = "
eH
mrc

, s51d

which, once again, is independent of T. The effect of H is
clearly different now, as anticipated. It is a simple matter to

verify that s51d also gives a “localization-energy vs fluctua-
tions” Cramer-Rao uncertainty identical to the one that ob-
tains for the harmonic oscillator. The smaller the energy fluc-
tuations, the better the localization estimation via I. Since the
infinite degeneracy of the problem does not affect energy
considerations, it is understandable that the result s51d be
identical to the one that holds for the harmonic oscillator.

VI. CONCLUDING REMARKS

We have here focused attention upon Landau’s diamagne-
tism. A semiclassical information theory undertaking was
tackled, sid trying to estimate phase-space location via Fisher
information and siid evaluating the semiclassical Wehrl en-
tropy. As a summary

sid Using the coherent states discussed in Ref. 17 we have
explicitly given the form of the Husimi distribution function
for a spinless electron in a uniform magnetic field fcf. Eq.
s22dg.

siid We have discovered that the Wehrl entropy for Land-
au’s diamagnetism is, save for a constant term that depends
on the size of the sample, that of a thermal harmonic oscil-
lator whose frequency is the cyclotron one.

siiid For the corresponding Fisher measure the above si-
militude becomes identity. The thermostatistics of the two
problems is thus the same at the semiclassical level. This is
of course a defect, that can be traced to the infinite degen-
eracy of the system’s energy levels.

sivd We confirmed a conjecture made in Ref. 11, in the
sense that the form s29d is indeed of a rather general charac-
ter.

svd An uncertainty relation linking phase space localiza-
tion with energy fluctuations has been discovered fcf. Eq.
s51dg.
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