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Abstract

This research is motivated by one of our survey studies to assess the potential influence

of introducing zebra mussels to the Lake Mead National Recreation Area, Nevada. One

research question in this study is to investigate the association between the boating activity

type and the awareness of zebra mussels. A chi-squared test is often used for testing

independence between two factors with nominal levels. When the null hypothesis of inde-

pendence between two factors is rejected, we are often left wondering where does the

significance come from. Cell residuals, including standardized residuals and adjusted resid-

uals, are traditionally used in testing for cell significance, which is often known as a post hoc

test after a statistically significant chi-squared test. In practice, the limiting distributions of

these residuals are utilized for statistical inference. However, they may lead to different con-

clusions based on the calculated p-values, and their p-values could be over- o6r under-esti-

mated due to the unsatisfactory performance of asymptotic approaches with regards to type

I error control. In this article, we propose new exact p-values by using Fisher’s approach

based on three commonly used test statistics to order the sample space. We theoretically

prove that the proposed new exact p-values based on these test statistics are the same.

Based on our extensive simulation studies, we show that the existing asymptotic approach

based on adjusted residual is often more likely to reject the null hypothesis as compared to

the exact approach due to the inflated family-wise error rates as observed. We would recom-

mend the proposed exact p-value for use in practice as a valuable post hoc analysis tech-

nique for chi-squared analysis.

1 Background

This research is motivated by one survey study conducted by Gerstenberger et al. [1] to assess

potential influence of introducing zebra mussels to the Lake Mead National Recreation Area

(LMNRA), Nevada, USA. Zebra mussels are relative small (finger-nail-sized for adult zebra

mussels). Their extremely high reproductive rates raise the concern that they could clog

water intakes in the LMNRA as it is the main water resource for the city [2]. They can be eas-

ily moved from an affected lake to an unaffected one by attaching to boats, nets, docks, and

so on. In this study, surveys approved by United States Fish and Wildlife Service were used
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to collect data on six different sites in the LMNRA between 2002 and 2003 [1]. All the 274

participants were asked in person about their boating activity types (Pleasure, Angler, Jet Ski,

and Other) and their awareness of zebra mussels (Yes/No), see Table 1 for data from this

study. The chi-squared test was used to test independence between boater activity type and

awareness of zebra mussels, and a very small p-value indicated a strong association between

the two factors.

Researchers are often interested in identifying significant cells/relationships after a statis-

tically significant chi-squared test [3, 4]. Two test statistics are commonly used to test the

significance for each cell. The first test is standardized residual that is calculated as raw

residual divided by the squared root of the expected value, where raw residual is defined

as the difference between the observed value and the expected value. The second test is

adjusted residual: raw residual divided by its standard error. Both tests follow the standard

normal distribution asymptotically. These two tests have different conclusions for testing

the cells of data in Table 1. In addition to that, statistical inference of these two tests relies

on how close the limiting distribution is to the true distribution. For a cell with a relatively

small value, asymptotic approaches are often not reliable. Recently, Sharpe [5] reviewed sev-

eral approaches to conduct a post hoc test after a statistically significant chi-squared test:

residual comparison, ransacking, and partitioning. The goal of a post hoc test is to find the

source of overall significance.

To overcome the unsatisfactory performance from the existing asymptotic approaches for

testing each individual cell in a contingency table after a significant chi-squared test, we pro-

pose using Fisher’s approach to compute exact p-value by enumerating all possible tables with

the same marginal row and column totals as the observed data. The two aforementioned test

statistics can be used to order the sample space, and so does raw residual. It could be very com-

putationally intensive to enumerate all possible tables due to the exponentially increased size

of the searching sample space, even with the utilization of efficient numerical search algo-

rithms [6]. For this particular problem, we find that the complete sample space can be reduced

to a set of 2 × 2 tables instead of all possible R × C tables to test the significance of each cell. In

addition, we theoretically show that the exact p-values based on the three test statistics are the

same, thus they have the same conclusion.

The rest of the article is organized as follows. In Section 2, we review the commonly used

approaches to test the significance of each cell after a statistically significant chi-squared test,

and propose the exact p-value calculation by using Fisher’s approach. We theoretically prove

the relationship between exact p-values based on different test statistics considered in this arti-

cle. In Section 3, we illustrate the application of the proposed exact p-value by using two real

examples including the motivation example from our survey study. We then conduct extensive

Monte Carlo simulation studies to compare the performance between the proposed exact

approach and the existing asymptotic approaches. Finally, we conclude our research with

some remarks in Section 4.

Table 1. Awareness of zebramussels of boaters from Lake Mead National Recreation Area, Nevada, USA.

Boater activity type

Awareness Pleasure Angler Jet Ski Other Total

Yes 139 15 5 4 163

No 68 15 17 11 111

Total 207 30 22 15 274

https://doi.org/10.1371/journal.pone.0188709.t001

Exact post hoc analysis
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2 Methods

In the case that the overall chi-squared test is significant, the next step is to perform a post hoc

test to find out which cells from the contingency table are different from their expected values.

Without any prior knowledge of each cell, we are interested in testing all cells in a contingency

table at once. Three test statistics are often calculated for each cell: Raw Residual (RawR), Stan-

dardized Residual (StdR), and Adjusted Residual (AdjR). The larger these residuals are, the

greater the contribution of these residuals to the overall chi-squared test.

2.1 Residuals

Raw residual is computed as the difference between the observed value and the expected value,

which is

TRawR ¼ xij � eij;

where eij is the expected value of the ij-th cell under the independence hypothesis. It has been

pointed that the TRawR is insufficient for hypothesis testing since the TRawR value tends to be

large when the value in that cell is large [5]. For this reason, the following two test statistics

were traditionally used for testing independence in the ij-th cell. Standardized residual is the

component from the chi-squared test, which is

TStdR ¼
xij � eij

ffiffiffiffi

eij
p ;

and adjusted residual uses the standard error of xij − eij in the test statistic [7, 8]

TAdjR ¼
xij � eij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eijð1�mi=NÞð1� nj=NÞ
q ;

wheremi, nj, and N are the row marginal total, the column marginal total, and the total sample

size, respectively. Both TStdR and TAdjR follow the standard normal asymptotically [9].

Both TStdR and TAdjR can be used for testing the independence hypothesis for each cell by

comparing the calculated test statistics to the critical value from the standard normal distribu-

tion. It should be noted that they could reach a different conclusion based on their asymptotic

p-values. It is easy to find out that the p-value based on TAdjR is always less than that based on

TStdR, because |TAdjR| is always larger than |TStdR| for an observed data. For this reason, TAdjR is

often recommended for use in practice as compared to TStdR as the latter test could be too con-

servative [10].

2.2 Exact post-hoc p-value

The accuracy of the limiting distribution for p-value calculation relies on multiple factors:

marginal row and column totals, and whether the observed value in that cell is too small. In

addition to that, the type I error control by using the limiting distribution is often unsatisfac-

tory [11–17]. To overcome these limitations from using asymptotic approaches for statistical

inference, we propose using Fisher’s exact approach in testing the independence. All the possi-

ble data with the same marginal row and column totals as the observed data are enumerated

and used in the p-value calculation, and the rejection region is determined by using any of the

three test statistics: TRawR, TStdR and TAdjR. Suppose that the marginal row and column totals

arem1,m2, � � �,mR, and n1, n2, � � �, nC in a R × C contingency table. The probability of

Exact post hoc analysis
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observing a data with values X = {xij, i = 1, � � �, R, and j = 1, � � �, C} is computed as

PðXÞ ¼ ðm
1
!m

2
! � � �mR!Þðn1!n2! � � � nC!Þ
ðQR

i¼1

QC

j¼1
xij!ÞN!

; ð1Þ

which is often known as the hypergeometric probability. Let T be the test statistic to order the

sample space, and X� be the observed data. Then, the exact p-value based on Fisher’s approach

is calculated as
X

X2OðX�Þ
PðXÞ;

where O(X�) = {X ∶ |T(X)|� |T(X�)|} is the rejection region, and P(X) is the probability of

data X as given in Eq (1).

It is very computational to calculate exact p-values without using network search algorithms

to find the rejection region effectively. The network algorithm developed by Mehta and Patel

[6] has been utilized by many statistical software in computing exact Fisher’s p-value for cate-

gorical data that can be organized in a contingency table. Obviously, this algorithm provides a

much faster method to find the rejection region than a direct and naive full enumeration

which could quickly become impossible as the table size and the total sample size increase. For

this particular problem, we can simplify the exact p-value because two data sets having the

same nij would have the same test statistic. In other words, if a data is in the rejection region,

then a set of data that have the same nij as that data, should also be in the rejection region. For

this reason, the sample space in exact p-value calculation is the collection of data as in Table 2.

This new sample size is a collection of data Y = (xij,mi − xij, nj − xij, N −mi − nj + xij), and

the probability of data Y is calculated as

PðYÞ ¼
½mi!ðN �miÞ!�½nj!ðN � njÞ!�

½xij!ðmi � xijÞ!ðnj � xijÞ!ðN �mi � nj þ xijÞ!�N!
:

For a 2 by 2 table as in Table 2, it is much easier to enumerate all possible data without the

involvement of efficient network search algorithms. Suppose Y� is the observed data. The new

exact p-value based on Fisher’s exact approach is computed as
X

Y

PðYÞ � I½jTðYÞj � jTðY�Þj�; ð2Þ

where I(a) is an indicator function with I(a) = 1 when a is true, and zero otherwise.

Theorem 2.1 Exact p-value calculations based on the three test statistics are the same.

Proof. The proposed exact p-value by using Fisher’s approach depends on the test statistic T

to order the sample space. The rejection region is defined as

CTðY�Þ ¼ fY : jTðYÞj � jTðY�Þjg:

In the new exact p-value calculation, the row and columnmarginal totals in Table 2 are consid-

ered as fixed. It follows that eij and eij(1 −mi/N)(1 − nj/N) in the denominate of TStdR and TAdjR

Table 2. Reorganized data for testing the independence from the ij-th cell.

Cj Other columns combined Total

Ri xij mi − xij mi

Other rows combined nj − xij N −mi − nj + xij N −mi

nj N − nj N

https://doi.org/10.1371/journal.pone.0188709.t002

Exact post hoc analysis
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are constant. Thus, TStdR and TAdjR are proportional to TRawR, and it follows that

CTRawR
ðY�Þ ¼ CTStdR

ðY�Þ ¼ CTAdjR
ðY�Þ:

By the definition of exact p-value in Eq (2), exact p-values based on these three test statistics

are the same for a given data.

We have shown that the three test statistics lead to the same exact p-value from this theo-

rem. They agree with each other for testing individual independence in each cell. For simplic-

ity, we use TAdjR for sample space ordering to compute exact p-value by using Fisher’s

approach.

The classic approach to adjust the significance level for multiple comparisons is the Bonfer-

roni method, which is α/W, whereW is the number of comparisons. This correction method

is widely used for a problem with independent multiple comparisons. However, in the consid-

ered problem for all cells in a contingency table, they are correlated, where the Holm-Bonfer-

roni method can be used. In this method, allW p-values are sorted from the smallest to the

largest, and the k-th smallest p-value is compared with α/(W + 1 − k). This method is uni-

formly more powerful than the traditionally used Bonferroni method. Later, Simes proposed

an improved method for multiple comparisons with the adjusted significance level of αk/W
for the k-th smallest p-value [18]. The method by Simes is often more powerful than the two

aforementioned methods for multiple comparisons. For this reason, we use the method by

Simes for both the asymptotic approach and the proposed approach.

3 Results

We first use two real examples to illustrate the application of the proposed exact p-value calcu-

lation for a post hoc test after a chi-squared test, then we conduct extensive numerical studies

to compare the proposed exact approach with the existing approaches.

3.1 Real data application

The first example is a cross-sectional study to study malignant melanoma [19, 20]. In this

study, 408 cases were randomly selected from all patients from New South Wales, Australia

who was diagnosed with malignant melanoma. Tumor types (4 categories: Hutchinson’s mela-

notic freckle (H), Indeterminate (I), Nodular (N), and Superficial spreading melanoma (S))

and tumor site (3 categories: Head and neck, Trunk, and Extremities) were recorded for each

case. Data of this study is presented in a 4 × 3 contingency table: Table 3. The chi-squared test

statistic is calculated as 65.81, with the p-value of 2.9×10−12 which is much less than 0.05. Since

the overall chi-squared test is significant, we would reject the null hypothesis that tumor type

and tumor site are independent.

We compute p-values for each cell in this contingency table of this example. First, we use

the limiting distributions of test statistics TStdR and TAdjR for p-value calculation, see Table 4.

Table 3. Data from themalignant melanoma example for testing independence between tumor type and tumor site.

Tumor site

Tumor type Extremities Head and neck Trunk Total

Hutchinsonśmelanotic freckle (H) 10 22 2 34

Indeterminate (I) 28 11 17 56

Nodular (N) 73 19 33 125

Superficial spreading melanoma (S) 115 16 54 185

Total 226 68 106 400

https://doi.org/10.1371/journal.pone.0188709.t003

Exact post hoc analysis
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This table is sorted by the TAdjR test statistic from the largest to the smallest. As can be seen

from the table, TStdR is relatively conservative as compared to TAdjR since TAdjR has three cells

with significant results as compared to one based on TStdR. Suppose TAdjR is used for statistical

inference. We can conclude that the expected count is significantly different from the observed

count for tumor types of H at all three tumor sites, and S when head and neck is the tumor

site. In addition to these results by using asymptotic approaches, we also provide the proposed

exact p-value based on TAdjR to order the sample space in the last column of Table 4. We have

proved in Theorem 2.1 that exact p-values based on the three test statistics are identical. For

this particular example, four cells have significant p-values, and the majority of them have

tumor type of H at three different tumor sites.

We revisit the awareness survey in Introduction section as the second example. This per-

sonal interview survey data is presented in Table 1, and the overall p-value to test the indepen-

dence between boater activity type and awareness of zebra mussels in the Lake Mead is

calculated as 1.4 × 10−5, which indicates a significant association between boater activity type

and awareness of zebra mussels. Following a significant chi-squared test, we compute the three

test statistics, asymptotic p-values based on TStdR and TAdjR, and the proposed exact p-value,

see Table 5. No significant cell is found by using TStdR, while boaters for pleasure, Jet ski, or

other are shown to be significant by using either TAdjR or the exact approach. In this example,

Table 4. P-value calculation for each cell of data from themalignantmelanoma example. The calculated p-value for each cell is compared to the multiple
comparison correction method by Simes [18]. The cells with significant p-values are bold.

Exact P-value

Site Type Freq TRawR TStdR P-value TAdjR P-value TAdjR

Head neck H 22 263.09 45.52 1.51×10−11 59.93 9.77×10−15 5.62×10−11

Head neck S 16 238.70 7.59 5.87×10−3 17.01 3.71×10−5 4.91×10−5

Extremities H 10 84.82 4.42 3.56×10−2 11.09 8.66×10−4 1.03×10−3

Trunk H 2 49.14 5.45 1.95×10−2 8.11 4.40×10−3 3.62×10−3

Extremities S 115 109.73 1.05 3.06×10−1 4.49 3.41×10−2 4.29×10−2

Trunk S 54 24.75 0.50 4.77×10−1 1.28 2.58×10−1 3.07×10−1

Extremities I 28 13.25 0.42 5.18×10−1 1.12 2.90×10−1 3.11×10−1

Trunk I 17 4.67 0.31 5.75×10−1 0.50 4.81×10−1 5.14×10−1

Head neck N 19 5.06 0.24 6.25×10−1 0.42 5.18×10−1 5.68×10−1

Extremities N 73 5.64 0.08 7.77×10−1 0.27 6.05×10−1 6.64×10−1

Head neck I 11 2.19 0.23 6.31×10−1 0.32 5.70×10−1 7.02×10−1

Trunk N 33 0.02 0.00 9.83×10−1 0.00 9.76×10−1 1.00

https://doi.org/10.1371/journal.pone.0188709.t004

Table 5. P-value calculation for each cell of data from the survey for the awareness of zebramussels. The calculated p-value for each cell is compared
to the multiple comparison correction method by Simes [18]. The cells with significant p-values are bold.

Exact P-value

Site Type Freq TRawR TStdR P-value TAdjR P-value TAdjR

Pleasure Yes 68 251.47 3.00 0.08 20.61 5.62×10−06 7.69×10−06

Pleasure No 139 251.47 2.04 0.15 20.61 5.62×10−06 7.69×10−06

Jet Ski Yes 5 65.41 5.00 0.03 13.41 2.50×10−04 3.11×10−04

Jet Ski No 17 65.41 7.34 0.01 13.41 2.50×10−04 3.11×10−04

Other Yes 4 24.24 2.72 0.10 7.09 7.74×10−03 1.26×10−02

Other No 11 24.24 3.99 0.05 7.09 7.74×10−03 1.26×10−02

Angler Yes 15 8.10 0.45 0.50 1.26 2.62×10−01 3.25×10−01

Angler No 15 8.10 0.67 0.41 1.26 2.62×10−01 3.25×10−01

https://doi.org/10.1371/journal.pone.0188709.t005

Exact post hoc analysis
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a few observations have the same cell p-values. For such cases, we use the largest adjusted

p-value for those having the same p-value. In this example, TAdjR and the proposed exact

approach for p-value calculation have the same conclusion. It should be noted that when a fac-

tor only has 2 levels (the awareness in this example, j = 1, 2), TAdjR is the same within each level

of the other factor (TAdjR(xi1) = TAdjR(xi2)) [9]. This leads to the same exact p-values for the

these two cells as observed in the table.

3.2 Simulation study

We conduct an extensive simulation study to further compare the existing asymptotic

approach based on TAdjR and the proposed exact approach. It has been observed that the

asymptotic approach based on TStdR is relatively conservative as compared to that based on

TAdjR. For this reason, we exclude TStdR in the comparison.

For a given total sample size (N) and the size of table (R × C), we first simulate the row and

column marginal totals, (m1, � � �,mR) and (n1, � � �, nC). We simulate 1,000 sets of the marginal

totals. For each simulated marginal totals, we then use an R function, r2dtable, to randomly

generate 2,000 R × C contingency tables by using Patefield’s algorithm [21, 22]. For each simu-

lated data from these 2,000 tables, we compute the asymptotic p-value based on the limiting

distribution of TAdjR and the exact p-value. We compute the family-wise error rate (FWER) for

each approach when performing R × C hypotheses at the same time for each simulated data.

The FWER is calculated as the average of the number of tables whose hypotheses are rejected

from at least one cell. The significance level is set as 0.05k/(R × C), k = 1, 2, � � �, R × C by using
the Simes correction method for multiple comparisons.

Fig 1 shows the FWERs for both asymptotic and exact approaches for a contingency table

size with sizes of 3 × 3, 5 × 5, and 8 × 8, and sample sizes from 50 to 500. It can be seen that

the asymptotic approach does not guarantee the type I error in the majority of cases, and it is

almost 5 times the nominal level in one case. The performance of the asymptotic approach

gets worse as the size of table increases. It could be caused by the reason that the chance of

rejecting at least one of the null hypotheses is increased when more hypotheses are tested

simultaneously. The proposed exact approach guarantees the type I error rate.

Suppose ΓAsy and ΓExact are the numbers of cells with significant p-values by using the

asymptotic approach and the exact approach, respectively. We include the cases that have at

least one cell being significant based on one of the two approaches, max(ΓAsy, ΓExact)> 0. In

other words, the cases with ΓAsy = 0 and ΓExact = 0 are excluded in the performance comparison.

In Table 6, we compare the existing asymptotic approach based on TAdjR and the proposed

exact approach by using all cases with max(ΓAsy, ΓExact)> 0 for given N and the table size

(R = 3 and C = 3). The last row of this table shows the total number of such cases from the total

1,000× 2,000 = 2,000,000 simulated data. We find that the proportion of the two approaches

having the same conclusion ΓAsy = ΓExact, increases as the total sample size goes up, and the

proportion of ΓAsy> ΓExact (the number of cell rejected by the asymptotic approach is more

than that by using the exact approach), is a decreasing function of N. Among the cases with

ΓAsy> ΓExact, the majority of them are the ones that the exact approach has no significant p-

value from any cell. The number of cases such that the exact approach has more rejected cells

than the asymptotic approach, is relatively low, which is less 0.15% for the cases studied. When

N is small, such as N = 50, the asymptotic approach always rejects at least the same number of

cells as the exact approach, ΓAsy� ΓExact.
We present the frequency and proportion of simulated data from a 3 × 5 contingency table

in Table 7 and a 5 × 5 contingency table in Table 8. When the total sample size is small, the pro-

portion of ΓAsy = ΓExact is less than that of ΓAsy> ΓExact, and this trend is reversed as the sample

Exact post hoc analysis
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size increases. As the table size increases, the proportion of two approaches having different

numbers of rejected cells (ΓAsy 6¼ ΓExact), goes up. Similar to Table 6, these two tables show that

the proportion of ΓAsy> ΓExact is relatively large as compared to that of ΓAsy< ΓExact.
When we compare the three tables in Eqs (6), (7), and (8) with different table sizes, we find

that the proportion of max(ΓAsy, ΓExact)> 0 among the total 2 million simulations, is increased

as the table size increases. Within the 3 × 5 or 5 × 5 contingency table, the proportion of max

(ΓAsy, ΓExact)> 0 is a decreasing function of N, while in Table 6 for a 3 × 3 contingency table,

this proportion is almost constant across different total sample sizes.

Fig 1. Actual family-wise error rates of the proposed exact approach and the existing asymptotic approach based on the adjusted
residual at the nominal level of 0.05.

https://doi.org/10.1371/journal.pone.0188709.g001

Table 6. For a 3 × 3 contingency table, frequency (Freq) and proportion (Prop) of simulated data having at least one cell is significant based on
either TAdjR or exact p-value, from a total of 2 million simulations. ΓAsy and ΓExact are the number of cells with significant p-values by using the asymptotic
approach and the exact approach, respectively.

N = 50 N = 100 N = 300 N = 500

Freq Prop Freq Prop Freq Prop Freq Prop

ΓAsy = ΓExact > 0 28975 34.69 38868 45.79 52616 61.50 58046 68.15

ΓAsy > ΓExact = 0 41845 50.10 32801 38.64 21705 25.37 17256 20.26

ΓAsy > ΓExact > 0 12700 15.21 13133 15.47 11136 13.02 9761 11.46

ΓExact > ΓAsy = 0 0 0.00 74 0.09 82 0.10 77 0.09

ΓExact > ΓAsy > 0 2 0.00 12 0.01 13 0.02 30 0.04

Total 83522 100 84888 100 85552 100 85170 100

https://doi.org/10.1371/journal.pone.0188709.t006

Exact post hoc analysis
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4 Discussion

It is well known that asymptotic approaches could lead to different conclusions based on their

limiting distributions for p-value calculation. In this article, we theoretically prove that exact

p-values produce the same result by using any of the three commonly used test statistics. For

this reason, we would like to recommend the proposed exact p-value for use in practice. We

develop the software program to compute exact p-value by using the statistical software R [23],

and it is available from the first author’s website at: https://faculty.unlv.edu/gshan/ under the

Software development section. In addition to that, we also provide a website for researchers

who do not use R, which is: http://gshan.i2.unlv.edu/ZPostHoc. We would appreciate any

comments from users to further improve the R function and the website.

We do not find an alternative approach based on the exact framework. The existing

approaches are generally based on asymptotic limiting distributions or simulation. For the

approach based on simulation, it can only simulate a certain number of cases, and it may delete

some cases (e.g., the ones with one or more zeros in the table). Although simulation is an

approach to utilize when it is difficult to enumerate all possible samples, especially for a study

with the total sum fixed [24–27].

In addition to the considered three test statistics for testing cells, several other approaches

were developed after a significant chi-squared test. Partitioning is one of them, and this

approach basically divide a contingency table into a set of 2 × 2 tables. Obviously, the total pos-

sible number of set is
�

R
2

�

×

�

C
2

�

. Due to the large number of partitioning, a set of orthogo-

nal partitions was proposed [28] to avoid having too many unnecessary comparisons [5, 29].

Alternatively, Jin andWang [30] suggested to implement multiple comparisons on one factor.

Table 7. For a 3 × 5 contingency table, frequency (Freq) and proportion (Prop) of simulated data having at least one cell is significant based on
either TAdjR or exact p-value, from a total of 2 million simulations. ΓAsy and ΓExact are the number of cells with significant p-values by using the asymptotic
approach and the exact approach, respectively.

N = 50 N = 100 N = 300 N = 500

Freq Prop Freq Prop Freq Prop Freq Prop

ΓAsy = ΓExact > 0 27157 27.72 39202 39.40 54207 55.71 60262 62.71

ΓAsy > ΓExact = 0 64211 65.53 51568 51.83 34503 35.46 28220 29.37

ΓAsy > ΓExact > 0 6614 6.75 8427 8.47 8269 8.50 7373 7.67

ΓExact > ΓAsy = 0 0 0.00 268 0.27 267 0.27 196 0.20

ΓExact > ΓAsy > 0 0 0.00 23 0.02 58 0.06 42 0.04

Total 97982 100 99488 100 97304 100 96093 100

https://doi.org/10.1371/journal.pone.0188709.t007

Table 8. For a 5 × 5 contingency table, frequency (Freq) and proportion (Prop) of simulated data having at least one cell is significant based on
either TAdjR or exact p-value, from a total of 2 million simulations. ΓAsy and ΓExact are the number of cells with significant p-values by using the asymptotic
approach and the exact approach, respectively.

N = 50 N = 100 N = 300 N = 500

Freq Prop Freq Prop Freq Prop Freq Prop

ΓAsy = ΓExact > 0 27316 17.71 37304 26.62 54315 43.55 61890 52.49

ΓAsy > ΓExact = 0 123066 79.79 97514 69.58 64434 51.66 50217 42.59

ΓAsy > ΓExact > 0 3853 2.50 5167 3.69 5565 4.46 5445 4.62

ΓExact > ΓAsy = 0 0 0.00 148 0.11 329 0.26 278 0.24

ΓExact > ΓAsy > 0 0 0.00 10 0.01 81 0.06 73 0.06

Total 154235 100 140143 100 124724 100 117903 100

https://doi.org/10.1371/journal.pone.0188709.t008

Exact post hoc analysis
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When that factor has R levels, each data for a post hoc test is a 2 × C contingency table. Then,

the total number of comparisons is
�

R
2

�

. They compute p-value for each 2 × C contingency

table by using the chi-squared test. One can always consider using exact approaches for p-

value calculation for such data [13]. We consider this as future work.

5 Conclusions

In this article, we propose using Fisher’s approach to compute exact p-value for each cell in a

contingency table after a significant overall chi-squared test [31–35]. The existing approaches

are often based on asymptotic limiting distributions of their associated test statistics. From our

extensive simulation studies conducted in this article, we find that the FWERs of the asymp-

totic approach based on TAdjR could be much larger than the nominal level, while the proposed

exact approach guarantee the FWER. Due a lack of an existing approach with the FWER

guaranteed, we do not have another approach to be included to compare with the proposed

exact approach with regards to power.
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