
Statistics and Computing (2021) 31:53
https://doi.org/10.1007/s11222-021-10026-6

Fisher Scoring for crossed factor linear mixedmodels

Thomas Maullin-Sapey1 · Thomas E. Nichols1

Received: 12 March 2021 / Accepted: 13 June 2021 / Published online: 19 July 2021
© The Author(s) 2021

Abstract
The analysis of longitudinal, heterogeneous or unbalanced clustered data is of primary importance to a wide range of appli-
cations. The linear mixed model (LMM) is a popular and flexible extension of the linear model specifically designed for such
purposes. Historically, a large proportion of material published on the LMM concerns the application of popular numerical
optimization algorithms, such as Newton–Raphson, Fisher Scoring and expectation maximization to single-factor LMMs (i.e.
LMMs that only contain one “factor” by which observations are grouped). However, in recent years, the focus of the LMM
literature has moved towards the development of estimation and inference methods for more complex, multi-factored designs.
In this paper, we present and derive new expressions for the extension of an algorithm classically used for single-factor LMM
parameter estimation, Fisher Scoring, to multiple, crossed-factor designs. Through simulation and real data examples, we
compare five variants of the Fisher Scoring algorithm with one another, as well as against a baseline established by the R
package lme4, and find evidence of correctness and strong computational efficiency for four of the five proposed approaches.
Additionally, we provide a new method for LMM Satterthwaite degrees of freedom estimation based on analytical results,
which does not require iterative gradient estimation. Via simulation, we find that this approach produces estimates with both
lower bias and lower variance than the existing methods.

Keywords Fisher Scoring · Linear mixed model · Crossed factors

1 Introduction

1.1 Background

Since its conception in the seminal work of Laird and
Ware (1982), the literature on linear mixed model (LMM)
estimation and inference has evolved rapidly. At present,
many software packages exist which are capable of perform-
ing LMM estimation and inference for large and complex
LMMs in an incredibly quick and memory-efficient manner.
For some packages, this exceptional speed and efficiency
arise from simplifying model assumptions, while for oth-
ers, complex mathematical operations such as sparse matrix
methodology and sweep operators are utilized to improve
performance (Wolfinger et al. 1994; Bates et al. 2015).

B Thomas Maullin-Sapey
Thomas.Maullin-Sapey@bdi.ox.ac.uk

Thomas E. Nichols
Thomas.Nichols@bdi.ox.ac.uk

1 Big Data Institute, Li Ka Shing Centre for Health Information
and Discovery, Old Road Campus, Oxford OX3 7LF, UK

However, due to practical implementation concerns, the
current methodology cannot be applied in certain situa-
tions. For example, in the mass-univariate analyses used in
medical imaging, standard practice involves estimating hun-
dreds of thousands of models concurrently. To efficiently
perform a mass-univariate analysis within a practical time-
frame, the use of vectorized computation which exploits the
repetitive nature of simplistic operations to streamline cal-
culation must be employed (Smith and Nichols 2018; Li
et al. 2019). Unfortunately, many existing LMM tools utilize
complex operations, for which vectorized support does not
currently exist. As a result, alternative methodology, using
more conceptually simplistic mathematical operations for
which vectorized support exists, is required.

The complex nature of LMM computation has partly
arisen from the gradual expansion of the definition of “lin-
ear mixedmodel”. Previously, the termwas primarily used to
refer to an extension of the linear regressionmodel containing
random effects grouped by a single random factor. Examples
of this definition can be seen in Laird and Ware (1982), in
which “linear mixed model” refers only to “single-factor”
longitudinal models, and in Lindstrom and Bates (1988),

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11222-021-10026-6&domain=pdf
http://orcid.org/0000-0002-1890-330X
http://orcid.org/0000-0002-4516-5103

53 Page 2 of 25 Statistics and Computing (2021) 31 :53

where more complex, multi-factor models are described as
an “extension” of the “linear mixed model”. Consequently,
throughout the late 1970s and 1980s, one of the main focuses
of the LMM literature was to provide parameter estima-
tion methods such as Fisher Scoring, Newton–Raphson and
expectation maximization for the single-factor LMM (e.g.
Dempster et al. 1977; Jennrich and Schluchter 1986; Laird
et al. 1987). By exploiting structural features of the single-
factor model, implementation of these methods required
only conceptually simplistic mathematical operations. For
instance, the Fisher Scoring algorithm proposed by Jennrich
and Schluchter (1986) relies only upon vector addition and
matrix multiplication, inversion, and reshaping operations.

More recently, usage of the term “linear mixed models”
has grown substantially to includemodels which contain ran-
dom effects grouped by multiple random factors. Examples
of this more general definition are found in Pinheiro and
Bates (2009) and Tibaldi et al. (2007). For this more general
“multi-factor” LMM definition, models can be described as
exhibiting either a hierarchical factor structure (i.e. factor
groupings are nested inside one another) or crossed factor
structure (i.e. factor groupings are not nested inside one
another). For instance, a study involving students grouped
by the factors “school” and “class” contains hierarchical fac-
tors (as every class belongs to a specific school). In contrast,
a study involving observations grouped by “subject” and
“location”, where subjects change location between recorded
measurements, contains crossed factors (as each subject is
not generally associated with a specific location or vice
versa). In either case, the computational approaches used
in the single-factor setting cannot be directly applied to the
more complexmulti-factor model. For this reason, parameter
estimation of themulti-factor LMMhas often been viewed as
a much more “difficult” problem than its single-factor coun-
terpart (see, for example, the discussion in chapters 2 and 8
of West et al. 2014).

Several authors have proposed and implemented methods
for multi-factor LMM estimation. However, such meth-
ods typically require conceptually complex mathematical
operations, which are not naturally amenable to vectorized
computation, or restrictive simplifying model assumptions,
which prevent some designs frombeing estimated. For exam-
ple, the popular R package lme4 performs LMM estimation
via minimization of a penalized least squares cost function
based on a variant of Henderson’s mixed model equations
(Henderson et al. 1959; Bates et al. 2015). However, sparse
matrix methods are required to achieve fast evaluation of the
cost function, and advanced numerical approximation meth-
ods are needed for optimization (e.g. theBoundOptimization
BYQuadratic Approximation, BOBYQA, algorithm, Powell
2009). The commonly used SAS and SPSS packages, PROC-
MIXED andMIXED, employ a Newton–Raphson algorithm
proposed by Wolfinger et al. (1994). In this approach,

though, derivatives andHessiansmust be computed using the
sweep operator, W-transformation, and Cholesky decompo-
sition updating methodology (SAS Institute Inc 2015; IBM
Corp 2015). The hierarchical linear models (HLM) package
takes an alternative option and restricts its inputs to only
LMMs which contain hierarchical factors (Raudenbush and
Bryk 2002), although the hierarchical cross-classified mod-
els (HCM) sub-module does make allowances for specific
use-case crossed LMMs. To perform parameter estimation,
HLM employs a range of different methods, each tailored to
a particular model design. As a result, there are many models
for which HLM does not provide support.

Methods have also been proposed for evaluating the
score vector (the derivative of the log-likelihood function)
and the Fisher Information matrix (the expected Hessian
of the negative log-likelihood function) required to per-
form Fisher Scoring for the multi-factor LMM. For example,
alongside theNewton–Raphson approach adopted by PROC-
MIXED and MIXED, Wolfinger et al. (1994) also describe a
Fisher Scoring algorithm. However, evaluation of the expres-
sions they provide requires the use of the sweep operator,
W-transformation, and Cholesky decomposition updating
methodology, operations for which widespread vectorized
support do not yet exist. More recently, expressions for score
vectors and Fisher Information matrices were provided by
Zhu and Wathen (2018). However, the approach (Zhu and
Wathen 2018) adopt to derive these expressions produces
an algorithm that requires independent computation for each
variance parameter in the LMM. This algorithm’s serialized
nature results in substantial overheads in terms of compu-
tation time, thus limiting the method’s utility in practical
situations where time-efficiency is a crucial consideration.

To our knowledge, no approach has yet been provided
for multi-factor LMM parameter estimation, which utilizes
only simplistic, universally available operations which are
naturally amenable to vectorized computation. In this work,
we revisit a Fisher Scoring approach suggested for the single-
factor LMM, described in Demidenko (2013), extending it
to the multi-factor setting, with the intention of revisiting
the motivating example of the mass-univariate model in later
work.

The novel contribution of this work is to provide new
derivations and closed-form expressions for the score vec-
tor and Fisher Information matrix of the multi-factor LMM.
We show how these expressions can be employed for LMM
parameter estimation via the Fisher Scoring algorithm and
can be further adapted for constrained optimization of the
random effects covariance matrix. Additionally, we demon-
strate that such closed-form expressions are also of use in the
setting of mixed model inference, where the degrees of free-
domof the approximateT-statistic are not known andmust be
estimated (Verbeke and Molenberghs 2001). We show how
our derived results may be combined with the Satterthwaite-

123

Statistics and Computing (2021) 31 :53 Page 3 of 25 53

based method for approximating degrees of freedom for the
LMMby using an approach based on thework of Kuznetsova
et al. (2017).

In this paper, we first propose five variants of the Fisher
Scoring algorithm. Following this, we provide a discussion
of initial starting values for the algorithm and methods for
improving the algorithm’s computational efficiency during
implementation. Detail on constrained optimization, allow-
ing for structural assumptions to be placed on the random
effects covariance matrix, is then provided. Proceeding this,
new expressions for Satterthwaite estimation of the degrees
of freedom of the approximate T-statistic for the multi-factor
LMM are given. Finally, we verify the correctness of the
proposed algorithms and degrees of freedom estimates via
simulation and real data examples, benchmarking the per-
formance against the R package lme4.

1.2 Preliminaries

1.2.1 The model

Both the single-factor and multi-factor LMM, for n observa-
tions, take the following form:

Y = Xβ + Zb + ε

ε ∼ N (0, σ 2 In), b ∼ N (0, σ 2D),
(1)

The known quantities in the model are; Y (the (n× 1) vector
of responses), X (the (n× p) fixed effects design matrix) and
Z (the (n × q) random effects design matrix). The unknown
model parameters are: β (the (p× 1) fixed effects parameter
vector), σ 2 (the scalar fixed effects variance) and D (the
(q × q) random effects covariance matrix). From (1), the
marginal distribution of the response vector, Y , can be seen to
be N (Xβ, σ 2(In+ZDZ ′)). The log-likelihood for the LMM
specified by (1) is derived from the marginal distribution of
Y . Dropping constant terms, this log-likelihood is given by:

l(θ) = −1

2

{
n log(σ 2) + σ−2e′V−1e + log |V |

}
, (2)

where θ is shorthand for all the parameters (β, σ 2, D),
V = In + ZDZ ′ and e = Y − Xβ. Throughout the main
body of this work, we shall consider parameter estimation
performed via maximum likelihood (ML) estimation of (2).
However, we note that the approaches we describe for ML
estimation can also be easily adapted to use a restricted max-
imum likelihood (ReML) criterion. Further detail on ReML
estimation is provided in Appendix 6.3.

The distinction between the multi-factor and single-factor
LMMs lies in the specification of the random effects in the
model. Random effects are often described in terms of fac-
tors, categorical variables that group the random effects, and

levels, individual instances of such a categorical variable.We
highlight here that the term “factor”, in this work, refers only
to categorical variables which group random effects and does
not refer to groupings of fixed effects. We denote the total
number of factors in the model as r and denote the kth factor
in the model as fk for k ∈ {1, . . . , r}. For a given factor fk ,
lk will be used to denote the number of levels possessed by
fk , and qk the number of random effects which fk groups.
The single-factor LMM corresponds to the case r = 1, while
the multi-factor setting corresponds to the case r > 1.

An example of how this notation may be used in practice
is given as follows. Suppose an LMM contains observa-
tions that are grouped by “subject” (i.e. the participant whose
observation was recorded) and “location” (i.e. the place the
observation was recorded). Further, suppose that the LMM
includes a random intercept and random slope which each
model subject-specific behaviour, and a random intercept
which models location-specific behaviour. Two factors are
present in this design: the factor f1 is “subject” and the factor
f2 is “location”. Therefore, r = 2. The number of subjects is
l1 and the number of locations is l2. The number of covariates
grouped by the first factor, q1, is 2 (i.e. the random intercept
and the random slope) and the number grouped by the second
factor, q2, is 1 (i.e. the random intercept).

The values of r , {qk}k∈{1,...,r} and {lk}k∈{1,...,r} determine
the structure of the random effects design matrix, Z , and ran-
dom effects covariance matrix, D. To specify Z formally is
notationally cumbersome and of little relevance to the aims
of this work. For this reason, the reader is referred to the
work of Bates et al. (2015) for further detail on the construc-
tion of Z . Here, it suffices to note that, under the assumption
that its columns are appropriately ordered, Z is comprised
of r horizontally concatenated blocks. The kth block of Z ,
denoted Z(k), has dimension (n × lkqk) and describes the
randomeffectswhich are grouped by the kth factor.Addition-
ally, each block, Z(k), can be further partitioned column-wise
into lk blocks of dimension (n × qk). The j th block of Z(k),
denoted Z(k, j), corresponds to the random effects which
belong to the j th level of the kth factor. In summary,

Z = [Z(1), Z(2), . . . Z(r)],
Z(k) = [Z(k,1), Z(k,2), . . . Z(k,lk)] (for k ∈ {1, . . . , r})

An important property of the matrix Z is that for any arbi-
trary factor fk , the rows of Z(k) can be permuted in order
to obtain a block diagonal matrix. As, for the single-factor
LMM, Z ≡ Z(1), it follows that the observations of the
single-factor LMM can be arranged such that Z is block
diagonal. This feature of the single-factor LMM simplifies
the derivation of the Fisher Informationmatrix and score vec-
tor required for Fisher Scoring. However, this simplification
cannot be generalized to the multi-factor LMM. In general,
it is not true that the rows of Z can be permuted in such a

123

53 Page 4 of 25 Statistics and Computing (2021) 31 :53

way that the resultant matrix is block-diagonal. As empha-
sized in Sect. 1.1, due to this, many of the results derived
in the single-factor LMM have not been generalized to the
multi-factor setting.

To describe the random effects covariance matrix, D, it
is assumed that factors are independent from one another
and that for each factor, factor fk , there is a (qk × qk)
unknown covariance matrix, Dk , representing the “within-
factor” covariance for the random effects grouped by fk . The
random effects covariance matrix, D, appearing in (1), can
now be given as D = ⊕r

k=1(Ilk ⊗ Dk) where ⊕ represents
the direct sum, and⊗ theKronecker product. Note that, while
D is large in dimension (having dimension (q × q) where
q = ∑

i qi li), D contains qu = ∑
i
1
2qi (qi + 1) unique

elements. Typically, it is true that qu << q2. As a result,
the task of describing the random effects covariance matrix
D reduces in practice to specifying only a small number of
parameters.

1.2.2 Notation

In this section, we introduce notation which will be used
throughout the remainder of this work. The hat operator is
used to denote estimators resulting from likelihood maximi-
sation procedures (e.g. β represents the true fixed effects
parameter vector while the maximum likelihood estimate of
β is denoted β̂). Subscript notation, A[X ,Y], is used to denote
the sub-matrix of matrix A, composed of all elements of A
with row indices x ∈ X and column indices y ∈ Y . The
replacement of X or Y with a colon, :, represents all rows or
all columns of A, respectively. If a scalar, x or y, replaces X
or Y , this represents the elements with row indices x = X or
column indices y = Y , respectively. The notation (k) may
also replace X and Y where (k) represents the indices of the
columns of Z which correspond to factor fk . Similarly, X
and Y may be substituted for the ordered pair (k, j) where
(k, j) represents the indices of the columns of Z which cor-
respond to level j of factor fk . We highlight again our earlier
notation, Z(k, j), which, due to its frequent occurrence acts as
a shorthand for Z[:,(k, j)], i.e. the columns of Z corresponding
to level j of factor fk .

Finally, we shall also adopt the notations “vec”, “vech”,
Nk , Km,n , Dk and Lk as used in Magnus and Neudecker
(1980), defined as follows:

• “vec” represents the mathematical vectorization operator
which transforms an arbitrary (k × k) matrix, A, to a
(k2×1) columnvector, vec(A), composed of the columns
of A stacked into a column vector. (Note: this is different
to the concept of computational vectorization discussed
in Sect. 1.1).

• “vech” represents the half-vectorization operator which
transforms an arbitrary square matrix, A, of dimension

(k × k) to a (k(k + 1)/2 × 1) column vector, vech(A),
composed by stacking the elements of A which fall on
and below the diagonal into a column vector.

• Nk is defined as the unique matrix of dimension (k2 ×
k2) which implements symmetrization for any arbitrary
square matrix A of dimension (k×k) in vectorized form,
i.e. Nk satisfies the following relation:

Nkvec(A) = vec(A + A′)/2.

• Km,n is the unique “Commutation” matrix of dimension
(mn × mn), which permutes, for any arbitrary matrix A
of dimension (m × n), the vectorization of A to obtain
the vectorization of the transpose of A, i.e. Km,n satisfies
the following relation:

vec(A) = Km,nvec(A
′).

• Dk is the unique “Duplication”matrix of dimension (k2×
k(k + 1)/2), which maps the half-vectorization of any
arbitrary symmetric matrix A of dimension (k × k) to its
vectorization, i.e. Dk satisfies the following relation:

vec(A) = Dkvech(A).

• Lk is the unique 1−0 “elimination” matrix of dimension
(k(k + 1)/2 × k2), which maps the vectorization of any
arbitrary lower triangular matrix A of dimension (k × k)
to its half-vectorization, i.e. Lk satisfies the following
relation:

vech(A) = Lkvec(A).

To help track the notational conventions employed in this
work, an index of notation is provided in the Supplementary
Material Section S10.

2 Methods

2.1 Fisher Scoring algorithms

In this section, we employ the Fisher Scoring algorithm for
ML estimation of the parameters (β, σ 2, D). The Fisher
Scoring algorithm update rule takes the following form:

θs+1 = θs + αsI(θs)
−1 dl(θs)

dθ ,
(3)

where θs is the vector of parameter estimates given at iteration
s, αs is a scalar step size, the score vector of θs ,

dl(θs)
dθ

, is the
derivative of the log-likelihood with respect to θ evaluated at

123

Statistics and Computing (2021) 31 :53 Page 5 of 25 53

θ = θs , and I(θs) is the Fisher Information matrix of θs ;

I(θs) = E

[(
dl(θ)

dθ

)(
dl(θ)

dθ

)′∣∣∣∣θ = θs

]
.

A more general formulation of Fisher Scoring, which
allows for low-rank Fisher Information matrices, is given
by Rao and Mitra (1972):

θs+1 = θs + αsI(θs)
+ dl(θs)

dθ ,
(4)

where superscript plus,+, is theMoore–Penrose (or “pseudo”)
inverse. For notational brevity, when discussing algorithms
of the form (3) and (4) in the following sections, the subscript
s, representing iteration number, will be suppressed unless
its inclusion is necessary for clarity.

For the LMM, several different representations of the
parameters of interest, (β, σ 2, D), can be used for numerical
optimization and result in different Fisher Scoring iteration
schemes. In this section, we consider the following three rep-
resentations for θ :

θh =

⎡
⎢⎢⎢⎢⎢⎣

β

σ 2

vech(D1)
...

vech(Dr)

⎤
⎥⎥⎥⎥⎥⎦

, θ f =

⎡
⎢⎢⎢⎢⎢⎣

β

σ 2

vec(D1)
...

vec(Dr)

⎤
⎥⎥⎥⎥⎥⎦

, θc =

⎡
⎢⎢⎢⎢⎢⎣

β

σ 2

vech(�1)
...

vech(�r)

⎤
⎥⎥⎥⎥⎥⎦

,

where �k represents the lower triangular Cholesky factor of
Dk , such that Dk = �k�

′
k . We will refer to the representa-

tions (θh , θ f and θc) as the “half”, “full” and “Cholesky”
representations of (β, σ 2, D), respectively. In a slight abuse
of notation, the function l will be allowed to take any repre-
sentation of θ as input, with the interpretation unchanged (i.e.
l(θ f) = l(θh) = l(θc)). For example, if the full representa-
tion is being used, the log-likelihood will be denoted l(θ f),
but if the half representation is being used, the log likelihood
will be denoted l(θh).

In the following sections, the score vectors and Fisher
Information matrices required to perform five variants of
Fisher Scoring for the multi-factor LMM will be stated
with proofs provided in Appendices 6.1 and 6.2. For nota-
tional convenience, we denote the sub-matrix of the Fisher
Information matrix of θh with row indices corresponding
to parameter vector a and column indices corresponding to
parameter vector b as Ih

a,b. In other words, Ih
a,b is the sub-

matrix of I(θh), defined by:

Ih
a,b = E

[(
dl(θh)

da

)(
dl(θh)

db

)′∣∣∣∣θ = θs

]
.

For further simplification of notation, when a and b are
equal, the second subscript will be dropped and the matrix

Ih
a,b = Ih

a,a will be denoted simply as Ih
a . Analogous nota-

tion is used for the full and Cholesky representations.

2.1.1 Fisher Scoring

The first variant of Fisher Scoringwe provide uses the “half”-
representation for (β, σ 2, D), θh , and is basedon the standard
form of Fisher Scoring given by (3). This may be considered
the most natural approach for a Fisher Scoring algorithm as
θh is an unmodified vector of the unique parameters of the
LMM and (3) is the standard update rule. For this approach,
the elements of the score vector are:

dl(θh)

dβ
= σ−2X ′V−1e, (5)

dl(θh)

dσ 2 = −n

2
σ−2 + 1

2
σ−4e′V−1e. (6)

For k ∈ {1, . . . , r}:

dl(θh)

dvech(Dk)
=

1

2
D′

qkvec

(lk∑
j=1

Z ′
(k, j)V

−1
(
ee′

σ 2 − V

)
V−1Z(k, j)

)
. (7)

and the entries of the Fisher Information matrix are given by:

Ih
β = σ−2X ′V−1X , Ih

β,σ 2 = 0p,1, Ih
σ 2 = n

2
σ−4. (8)

For k ∈ {1, . . . , r}:

Ih
β,vech(Dk)

= 0p,qk (qk+1)/2,

Ih
σ 2,vech(Dk)

= 1

2
σ−2vec′

(lk∑
j=1

Z ′
(k, j)V

−1Z(k, j)

)
Dqk .

(9)

For k1, k2 ∈ {1, . . . , r}:

Ih
vech(Dk1),vech(Dk2)

= 1

2
D′

qk1

lk2∑
j=1

lk1∑
i=1

(Z ′
(k1,i)V

−1Z(k2, j) ⊗ Z ′
(k1,i)V

−1Z(k2, j))Dqk2
.

(10)

where 0n,k denotes the (n × k)-dimensional matrix of zeros.
Due to its to natural approach to Fisher Scoring, this algo-
rithm is referred to as FS in the remainder of this text.
Pseudocode for the FS algorithm is given in Algorithm 1.
Discussion of the initial estimates used in the algorithm is
deferred to Sect. 2.2. To ensure D is non-negative definite,
a commonly employed Eigendecomposition-based approach
is used (c.f. Supplementary Material Section S11).

123

53 Page 6 of 25 Statistics and Computing (2021) 31 :53

Algorithm 1: Fisher Scoring (FS)

1 Assign θh to an initial estimate using (22) and (23)

2 while current l(θh) and previous l(θh) differ by more than a
predefined tolerance do

3 Calculate dl(θh)
dθh

using (5)–(7).

4 Calculate I(θh) using (8)–(10)

5 Assign θh = θh + αI(θh)−1 dl(θh)
dθh

6 Project D to be non-negative definite

7 Assign α = α
2 if l(θh) has decreased in value.

8 end

2.1.2 Full Fisher Scoring

The second variant of Fisher Scoring considered in this work
uses the “full”, θ f , representation of the model parameters,
and shall therefore be referred to as “Full Fisher Scoring”
(FFS). In this approach, for each factor, fk , the elements of
vec(Dk) are to be treated as distinct from one another with
numerical optimization for Dk performed over the space of
all (qk × qk) matrices. This approach differs from the FS
method proposed in the previous section, in which optimiza-
tion was performed on the space of only those (qk × qk)
matrices that are symmetric. This optimization procedure is
realized by treating symmetric matrix elements of Dk as dis-
tinct and, for a given element, using the partial derivative
with respect to the element during optimization instead of
the total derivative with respect to both the element and its
symmetric counterpart. This change is reflected by denot-
ing the elements of the score vector which correspond to
vec(Dk) using a partial derivative operator, ∂ , rather than the
total derivative operator, d. The primary motivation for the
inclusion of the FFS approach is that it serves as a basis for
which the constrained covariance approaches of Sect. 2.4 can
be built upon. However, it should be noted that as it does not
require the construction or use of duplication matrices, FFS
also provides simplified expressions and potential improve-
ment in terms of computation speed. As a result, FFS is of
some theoretical and practical interest and is detailed in full
here.

An immediate obstacle to this approach is that the Fisher
Information matrix of θ f is rank-deficient and, therefore,
cannot be inverted. Intuitively, this is to be expected, as
repeated entries in θ f result in repeated rows in I(θ f).Math-
ematically, this can be seen by noting that I f

vec(Dk)
can be

expressed as a product containing the matrix Nqk (defined
in Sect. 1.2.2), which is low-rank by construction. Conse-
quently, the Fisher Scoring update rule for θ f must be based
on the pseudo-inverse formulation of Fisher Scoring given in
(4).

As the derivatives of the log-likelihood with respect to β

and σ 2 do not depend upon the parameterisation of D, both
FFS and FS employ the same expressions for the elements of
the score vector which correspond to β and σ 2, given by (5)
and (6), respectively. The score vector for {vec(Dk)}k∈{1,...r}
used by FFS is given by:

∂l(θ f)

∂vec(Dk)
=1

2
vec

(lk∑
j=1

Z ′
(k, j)V

−1
(
ee′

σ 2 − V

)
V−1Z(k, j)

)
.

(11)

The entries of the Fisher Information matrix of θ f , based on
the derivatives given in (5), (6) and (11), are given by:

I f
β = Ih

β , I f
β,σ 2 = Ih

β,σ 2 , I f
σ 2 = Ih

σ 2 .

For k ∈ {1, . . . , r}:

I f
β,vec(Dk)

= 0p,q2k ,

I f
σ 2,vec(Dk)

= 1

2
σ−2vec′

(lk∑
j=1

Z ′
(k, j)V

−1Z(k, j)

)
.

(12)

For k1, k2 ∈ {1, . . . , r}:

I f
vec(Dk1),vec(Dk2)

= 1

2

lk2∑
j=1

lk1∑
i=1

(Z ′
(k1,i)V

−1Z(k2, j) ⊗ Z ′
(k1,i)V

−1Z(k2, j))Nqk .
(13)

Derivations for the above can be found inAppendices 6.1 and
6.2. It can also be seen that the Full Fisher Scoring algorithm
can also be expressed in the form:

θ
f
s+1 = θ

f
s + αs F(θ

f
s)−1 ∂l(θ f

s)

∂θ ,
(14)

where, unlike in (3) and (4), F(θ f) is not the Fisher Informa-
tion matrix. Rather, F(θ f) is a matrix of equal dimensions to
I(θ f) with all of its elements equal to those of I(θ f), apart
from those which were specified by (13), which instead are,
for k1, k2 ∈ {1, . . . , r}:

Fvec(Dk1),vec(Dk2)

= 1

2

lk2∑
j=1

lk1∑
i=1

(Z ′
(k1,i)V

−1Z(k2, j) ⊗ Z ′
(k1,i)V

−1Z(k2, j))
,(15)

where the same subscript notation has been adopted to index
F(θ f) as was adopted for I(θ f). This alternative represen-
tation of the FFS algorithm can be derived directly using

123

Statistics and Computing (2021) 31 :53 Page 7 of 25 53

well-known properties of the commutation matrix (c.f. Sup-
plementary Material Section S13). Pseudocode for the FFS
algorithm using the representation of the update rule given
by (14) is provided by Algorithm 2.

Algorithm 2: Full Fisher Scoring (FFS)

1 Assign θ f to an initial estimate using (22) and (23)

2 while current l(θ f) and previous l(θ f) differ by more than a
predefined tolerance do

3 Calculate ∂l(θ f)

∂θ f using (5),(6) and (11).

4 Calculate F(θ f) using (12) and (15).

5 Assign θ f = θ f + αF(θ f)−1 ∂l(θ f)

∂θ f

6 Project D to be non-negative definite

7 Assign α = α
2 if l(θ f) has decreased in value.

8 end

2.1.3 Simplified Fisher Scoring

The third Fisher Scoring algorithm proposed in this work
relies on the half-representation of the parameters (β, σ 2, D)

and takes an approach, similar to that of coordinate ascent,
which is commonly adopted in the single-factor setting (c.f.
Demidenko 2013). In this approach, instead of performing
a single update step upon the entire vector θh in the form
of (3), updates for β, σ 2 and {Dk}k∈{1,...,r} are performed
individually in turn. For β and σ 2, each iteration uses the
standard generalized least squares (GLS) estimators given
by:

βs+1 = (X ′V−1
s X)−1X ′V−1

s Y , σ 2
s+1 = e′

s+1V
−1
s es+1

n
.

(16)

To update the random effects covariance matrix, Dk , for
each factor, fk , individual Fisher Scoring updates are applied
to vech(Dk). These updates are performed using the block
of the Fisher Information matrix corresponding to vech(Dk),
given by (10), and take the following form for k ∈ {1, . . . , r}:

vech(Dk,s+1)

= vech(Dk,s) + αs
(Ih

vech(Dk,s)

)−1 dl(θhs)

dvech(Dk,s)
. (17)

In line with the naming convention used in Demidenko
(2013), thismethod shall be referred to as “simplified” Fisher
Scoring (SFS). This is due to the relative simplicity, both
in terms of notational and computational complexity, of the

updates (16) and (17) used in the SFS algorithm in compar-
ison to those used in the FS algorithm of Sect. 2.1.1, given
by (5)–(10). Pseudocode for the SFS algorithm is given by
Algorithm 3.

Algorithm 3: Simplified Fisher Scoring (SFS)

1 Assign θ f to an initial estimate using (22) and (23)

2 while current l(θh) and previous l(θh) differ by more than a
predefined tolerance do

3 Update β and σ 2 using (16)

4 for k ∈ {1, . . . r} do
5 Update vech(Dk) using (17)

6 Project Dk to be non-negative definite
7 end

8 Assign α = α
2 if l(θh) has decreased in value.

9 end

2.1.4 Full simplified Fisher Scoring

The Full Simplified Fisher Scoring algorithm (FSFS) com-
bines the “Full” and “Simplified” approaches described in
Sects. 2.1.2 and 2.1.3. In the FSFS algorithm, individ-
ual updates are applied to β and σ 2 using (16) and to
{vec(Dk)}k∈{1,...,r} using a Fisher Scoring update step, based
on the matrix Fvec(Dk) given by (15). The update rule for
{vec(Dk)}k∈{1,...,r} takes the following form:

vec(Dk,s+1) = vec(Dk,s) + αs F
−1
vec(Dk,s)

∂l(θ f
s)

∂vec(Dk,s)
. (18)

We note that the above can be seen to be equivalent to an
update rule of the form (4), given by:

vec(Dk,s+1) = vec(Dk,s) + αs
(I f

vec(Dk,s)

)+ ∂l(θ f
s)

∂vec(Dk,s)
.

Justification of this claim can be found in Supplementary
Material Section S13. Pseudocode for the FSFS algorithm is
given by Algorithm 4.

2.1.5 Cholesky simplified Fisher Scoring

The final variant of the Fisher Scoring algorithmwe consider
is based on the “simplified” approach described in Sect. 2.1.3
and uses the Cholesky parameterisation of (β, σ 2, D), θc.
This approach follows directly from the below application of

123

53 Page 8 of 25 Statistics and Computing (2021) 31 :53

Algorithm 4: Full Simplified Fisher Scoring (FSFS)

1 Assign θ f to an initial estimate using (22) and (23)

2 while current l(θ f) and previous l(θ f) differ by more than a
predefined tolerance do

3 Update β and σ 2 using (16)

4 for k ∈ {1, . . . r} do
5 Update vec(Dk) using (18)

6 Project Dk to be non-negative definite

7 end
8 Assign α = α

2 if l(θ f) has decreased in value.

9 end

the chain rule of differentiation for vector-valued functions,

dl(θc)

dvech(�k)
= ∂vech(Dk)

∂vech(�k)

∂l(θc)

∂vech(Dk)
.

An expression for the derivative which appears second in
the above product was given by (7). It therefore follows that
in order to evaluate the score vector of vech(�k) (i.e. the
derivative of l with respect to vech(�k)), only an expression
for the first term of the above product is required. This term
can be evaluated to Lqk (�

′
k ⊗ Iqk)(Iq2k

+ Kqk)Dqk , proof of
which is provided in Appendix 6.4.

Through similar arguments to those used to prove Corol-
laries 4–6 of Appendix 6.2, it can be shown that the Fisher
Information matrix for θc is given by:

Ic
β = Ih

β , Ic
β,σ 2 = Ih

β,σ 2 , Ic
σ 2 = Ih

σ 2 .

For k ∈ {1, . . . , r}:

Ic
β,vech(�k)

= 0p,qk (qk+1)/2,

Ic
σ 2,vech(�k)

= Ih
σ 2,vech(Dk)

(
∂vech(Dk)

∂vech(�k)

)′
.

(19)

For k1, k2 ∈ {1, . . . , r}:

Ic
vech(�k1),vech(�k2)

=
(

∂vech(Dk1)

∂vech(�k1)

)
Ih
vech(Dk1),vech(Dk2)

(
∂vech(Dk2)

∂vech(�k2)

)′
.

(20)

From the above, it can be seen that a non-“simplified”
Cholesky-based variant of the Fisher Scoring algorithm, akin
to the FS and FFS algorithms described in Sects. 2.1.1 and
2.1.2, could be constructed. However, preliminary tests have
indicated that the performance of such an approach, in terms
of computation time, is significantly worse than the previ-
ously proposed algorithms. For this reason, we only consider

the “simplified” version of the Cholesky Fisher Scoring algo-
rithm, analogous to the “simplified” approaches described in
Sects. 2.1.3 and 2.1.4, here. The Cholesky Simplified Fisher
Scoring (CSFS) algorithm adopts (16) as the update rule
for β and σ 2, and employs the following update rule for
{vech(�k)}k∈{1,...,r}.

vech(�k,s+1) =
vech(�k,s) + αs

(Ic
vech(�k,s)

)−1 dl(θcs)

dvech(�k,s)
. (21)

Pseudocode summarizing the CSFS approach is given by
Algorithm 5.

Algorithm 5: Cholesky Simplified Fisher Scoring
(CSFS)

1 Assign θc to an initial estimate using (22) and (23)

2 while current l(θc) and previous l(θc) differ by more than a
predefined tolerance do

3 Update β and σ 2 using (16)

4 for k ∈ {1, . . . r} do
5 Update vec(�k) using (21)

6 end
7 Assign α = α

2 if l(θc) has decreased in value.

8 end

2.2 Initial values

Choosing which initial values of β, σ 2 and D will be used
as starting points for optimization is an important considera-
tion for the Fisher Scoring algorithm. Denoting these initial
values as β0, σ 2

0 and D0, respectively, this work follows the
recommendations ofDemidenko (2013) and evaluatesβ0 and
σ 2
0 using the OLS estimates given by,

β0 = (X ′X)−1X ′Y , σ 2
0 = e′

0e0
n

. (22)

where e0 is defined as e0 = Y − Xβ0. For the initial estimate
of {Dk}k∈{1,...,r}, an approach similar to that suggested in
Demidenko (2013) is also adopted, which substitutes V for
In in the update rule for vec(Dk), equation (18). The resulting
initial estimate for {Dk}k∈{1,...,r} is given by

vec(Dk,0) =
(lk∑

j=1

Z ′
(k, j)Z(k, j) ⊗ Z ′

(k, j)Z(k, j)

)−1

× vec

(lk∑
j=1

Z ′
(k, j)

(
e0e′

0

σ 2
0

− In

)
Z(k, j)

). (23)

123

Statistics and Computing (2021) 31 :53 Page 9 of 25 53

2.3 Computational efficiency

This section provides discussion on the computational effi-
ciency of evaluating the Fisher Information matrices and
score vectors of Sects. 2.1.1–2.1.5. This discussion is, in large
part, motivated by the mass-univariate setting (c.f. Sect. 1.1),
in which not one, but rather hundreds of thousands of models
must be estimated concurrently. As a result, this discussion
prioritizes both time efficiency and memory consumption
concerns and, further, operates under the assumption that
sparse matrix methodology, such as that employed by the
R package lme4, cannot be employed. This assumption is
motivated by the current lack of support for computationally
vectorized sparse matrix operations.

A primary concern, for both memory consumption and
time efficiency, stems from the fact that many of the matri-
ces used in the evaluation of the score vectors and Fisher
Information matrices possess dimensions which scale with
n, the number of observations. For example, V has dimen-
sions (n×n) and is frequently inverted in the FSFS algorithm.
In practice, it is not uncommon for studies to have n ranging
into the thousands. As such, inverting V directly may not be
computationally feasible. To address this issue, we define the
“product forms” as;

P = X ′X , Q = X ′Y , R = X ′Z , S = Y ′Y , T = Y ′Z , U = Z ′Z .

Working with the product forms is preferable to using the
original matrices X , Y and Z , as the dimensions of the prod-
uct forms do not scale with n, but instead scale with p and
q. As an example, consider the expressions below, which
appear frequently in (11) and (15) and have been reformu-
lated in terms of the product forms:

Z ′
(k1,i)V

−1Z(k2, j) = (U −UD(Iq + DU)−1U)[(k1,i),(k2, j)],
Z ′

(k, j)V
−1e = ((Iq −UD)(Iq + DU)−1(T ′ − R′β))[(k, j),:].

For computational purposes, the right-hand side of the
above expressions is much more convenient than the left-
hand side. In order to evaluate the left-hand side in both
cases, an (n × n) inversion of the matrix V must be per-
formed. In contrast, the right-hand side is expressible solely
in terms of the product forms and (β, σ 2, D), with the only
inversion required being that of the (q×q)matrix (Iq+DU).
These examples can be generalized further. In fact, all of the
previous expressions (5)–(23) can be rewritten in terms of
only the product forms and (β, σ 2, D). This observation is
important as it implies that an algorithm for mixed model
parameter estimation may begin by taking the matrices X ,Y
and Z as inputs, but discard them entirely once the product
forms have been constructed. As a result, both computation
time and memory consumption no longer scale with n.

Another potential source of concern regarding computa-
tion speed arises from noting that the algorithms we have
presented contain many summations of the following two
forms:

c0∑
i=1

Ai B
′
i and

c1∑
i=1

c2∑
i=1

Gi, j ⊗ Hi, j . (24)

where matrices {Ai } and {Bi } are of dimension (m1 × m2),
andmatrices {Gi, j } and {Hi, j } are of dimension (n1×n2).We
denote thematrices formed fromvertical concatenation of the
{Ai } and {Bi }matrices as A and B, respectively, andG and H
thematrices formed fromblock-wise concatenation of {Gi, j }
and {Hi, j }, respectively. Instances of such summations can
be found, for example, in Eqs. (7) and (10).

From a computational standpoint, summations of the
forms shown in (24) are typically realized by “for” loop.
This cumulative approach to computation can cause a poten-
tial issue for LMM computation since typically the number
of summands corresponds to the number of levels, lk , of
some factor, fk . In particular applications of the LMM, such
as repeated measures and longitudinal studies, some factors
may possess large quantities of levels. As this means “for”
loops of this kind could hinder computation and result in slow
performance, we provide alternative methods for calculating
summations of the forms shown in (24).

For the former summation shown in (24), we utilize the
“generalized vectorization”, or “vecm” operator, defined by
Turkington (2013) as the operator which performs the below
mapping for a horizontally partitioned matrix M :

M = [
M1 M2 ... Mc0

] → vecm(M) = [
M ′

1 M ′
2 ... M ′

c0

]′

where the partitions {Mi } are evenly sized and contain
m columns. Using the definition of the generalized vec-
torization operator, the former summation in (24) can be
reformulated as:

l∑
i=1

Ai B
′
i = vecm2(A

′)′vecm2(B
′).

The right-hand side of the expression above is of practical
utility as the “vecm” operator can be implemented efficiently.
The “vecm” operation can be performed, for instance, using
matrix resizing operations such as the “reshape” operators
commonly available in many programming languages such
as MATLAB and Python. The computational costs associ-
ated with this approach are significantly lesser than those
experienced when evaluating the summation directly using
“for” loops.

For the latter summation in (24), we first define the nota-
tion M̃ to denote the transformation below, for the block-wise

123

53 Page 10 of 25 Statistics and Computing (2021) 31 :53

partitioned matrix M :

M =

⎡
⎢⎢⎢⎣
M1,1 M1,2 ... M1,c2
M2,1 M2,2 ... M2,c2

...
...

. . .
...

Mc1,1 Mc1,2 ... Mc1,c2

⎤
⎥⎥⎥⎦ → M̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec(M1,1)
′

...

vec(M1,c2)
′

vec(M2,1)
′

...

vec(Mc1,c2)
′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(25)

Using a modification of Lemma 3.1 (i) of Neudecker and
Wansbeek (1983), we obtain the below identity:

vec

(∑
i, j

Gi, j ⊗ Hi, j

)
= (In2 ⊗ Kn1,n2 ⊗ In1)vec(H̃

′G̃),

(26)

where Kn1,n2 is the (n1n2 ×n1n2) Commutation matrix (c.f.
Sect. 1.2.2). The matrices H̃ and G̃ can be obtained from
H and G using resizing operators with little computation
time. The matrix (In2 ⊗ Kn1,n2 ⊗ In1) can be calculated via
simple means and is a permutation matrix depending only
on the dimensions of H and G. As a result, this matrix
can be calculated once and stored as a vector. Therefore,
the matrix multiplication in the above expression does not
need to be performed directly, but instead can be evaluated
by permuting the elements of vec(H̃ ′G̃) according to the
permutation vector representing (In2⊗Kn1,n2⊗ In1). To sum-
marize, evaluation of expressions of the latter form shown
in (24) can be performed by using only reshape operations,
a matrix multiplication, and a permutation. This method of
evaluation provides notably faster computation time than the
corresponding “for” loop evaluated over all values of i and j .

The above method, combined with the product form
approach, was used to obtain the results of Sects. 3.1–4.2.

2.4 Constrained covariance structure

In many applications involving the LMM, it is often desir-
able to use a constrained parameterisation for Dk . Examples
include compound symmetry, first-order auto-regression and
a Toeplitz structure. A more comprehensive list of com-
monly employed covariance structures in LMManalyses can
be found, for example, in Wolfinger (1996). In this section,
we describe how the Fisher Scoring algorithms of the previ-
ous sections can be adjusted to model dependence between
covariance elements.

When a constraint is placed on the covariance matrix Dk ,
it is assumed that the elements of Dk can be defined as con-
tinuous, differentiable functions of some smaller parameter
vector, vecu(Dk). Colloquially, vecu(Dk) may be thought

of as the vector of “unique” parameters required to specify
the constrained parameterization of Dk . To perform con-
strained optimization, we adopt a similar approach to the
previous sections and define the constrained representation
of θ as θcon = [β ′, σ 2, vecu(D1)

′, ...vecu(Dk)
′]′. Denoting

the Jacobian matrix ∂vec(Dk)/∂vecu(Dk) as Ck , the score
vector and Fisher Information matrix of θcon can be con-
structed as follows; for k ∈ {1, ..., r},

dl(θcon)

dvecu(Dk)
= Ck ∂l(θcon)

∂vec(Dk)
,

Icon
β,vecu(D̃k)

= 0p,q̃k , Icon
σ 2,vecu(D̃k)

= I f
σ 2,vec(Dk)

C′
k,

(27)

and, for k1, k2 ∈ {1, . . . , r},

Icon
vecu(D̃k1),vecu(D̃k2)

= Ck1I f
vec(Dk1),vec(Dk2)C′

k2 ,

where q̃k is the length of vecu(Dk) and I f is the “full”
Fisher Information matrix defined in Sect. 2.1.2. The above
expressions can be derived trivially using the definition of
the Fisher Information matrix and the chain rule. In the
remainder of this work, the matrix Ck is referred to as a “con-
straint matrix” due to the fact it “imposes” constraints during
optimization. A fuller discussion of constraint matrices,
alongside examples, is provided in Supplementary Material
Section S14.

We note here that this approach can be extended to situa-
tions in which all covariance parameters can be expressed
in terms of one set of parameters, ρD , common to all
{vec(Dk)}k∈{1,...,r}. In such situations, a constraint matrix,
C, may be defined as the Jacobian matrix ∂[vec(D1)

′, . . .
vec(D1)

′]′/∂ρD and Fisher Information matrices and score
vectors may be derived in a similar manner to the above.
Models requiring this type of commonality between factors
are rare in the LMM literature, since the covariance matri-
ces {Dk}k∈{1,...r} are typically defined independently of one
another. However, one such example is provided by the ACE
model employed for twin studies, in which the elements of
v(D) can all be expressed in terms of three variance compo-
nents; ρD = [σ 2

a , σ 2
c , σ 2

e]′. Further information on the ACE
model is presented in Sect. 4.1.2.

123

Statistics and Computing (2021) 31 :53 Page 11 of 25 53

2.5 Degrees of freedom estimation

Several methods exist for drawing inference on the fixed
effects parameter vector, β. Often, research questions can
be expressed as null hypothesis tests of the below form:

H0 : Lβ = 0, H1 : Lβ 	= 0,

where L is a fixed and known (1 × p)-sized contrast vector
specifying a hypothesis, or prior belief, about linear relation-
ships between the elements of β, upon which an inference is
to bemade. In the setting of theLMM, a commonly employed
statistic for testing hypotheses of this form is the approximate
T-statistic, given by:

T = Lβ̂√
σ̂ 2L(X ′V̂−1X)−1L ′

,

where V̂ = In + Z D̂Z ′. As noted in Dempster et al. (1981),
using an estimate of D in this setting results in an under-
estimation of the true variability in β̂. For this reason, the
relation T ∼ tv is not exact and is treated only as an approx-
imating distribution (i.e. an “approximate T statistic”) where
the degrees of freedom, v, must be estimated empirically. A
standardmethod for estimating the degrees of freedom, v, uti-
lizes the Welch–Satterthwaite equation, originally described
in Satterthwaite (1946) and Welch (1947), given by:

v(η̂) = 2(S2(η̂))2

Var(S2(η̂))
, (28)

where η̂ represents an estimate of the variance parameters
η = (σ 2, D1, . . . Dr) and S2(η̂) = σ̂ 2L(X ′V̂−1X)−1L ′.
Typically, as the variance estimates obtained under ML esti-
mation are biased downwards, ReMLestimation is employed
to obtain the estimate of η employed in the above expres-
sion. If ML were used to estimate η instead, the degrees of
freedom, v(η̂), would be underestimated and, consequently,
conservative p-values and a reduction in statistical power for
resulting hypothesis tests would be observed.

To obtain an approximation for v(η̂), a second-order Tay-
lor expansion is applied to the unknown variance on the
denominator of (28):

Var(S2(η̂)) ≈
(
dS2(η̂)

dη̂

)′
Var(η̂)

(
dS2(η̂)

dη̂

)
. (29)

This approach is well documented and has been adopted,
most notably, by the R package lmerTest, first presented
in Kuznetsova et al. (2017). To obtain the derivative of
S2 and asymptotic variance covariance matrix, lmerTest
utilizes numerical estimation methods. As an alternative,
we define the “half” representation of η̂, η̂h , by η̂h =

[σ̂ 2, vech(D̂1)
′, . . . , vech(D̂r)

′]′ and present the below exact
closed-form expression for the derivative of S2 in terms of
η̂h ;

dS2(η̂h)

dσ̂ 2 = L(X ′V̂−1X)−1L ′,

dS2(η̂h)

dvech(D̂k)
= σ̂ 2D′

qk

(lk∑
j=1

B̂(k, j) ⊗ B̂(k, j)

)
,

where B̂(k, j) = Z ′
(k, j)V̂

−1X(X ′V̂−1X)−1L ′. We obtain an

expression for var(η̂h) by noting that the asymptotic variance
of η̂h is given by I(η̂h)−1 where I(η̂h) is a sub-matrix of
I(θ̂h), given by equations (8)–(10).

In summary, we have provided all the closed-form expres-
sions necessary to perform the Satterthwaite degrees of
freedom estimation method for any LMM described by (1).
For the remainder of this work, estimation of v using the
above expressions is referred to as the “direct-SW” method.
This name reflects the direct approach taken for the eval-
uation of the right-hand side of (29). We note that this
approach may also be extended to models using the con-
strained covariance structures of Sect. 2.4 by employing the
Fisher Information matrix given by Eq. (27) and transform-
ing the derivative of S2(η) appropriately (details of which
are provided by Theorem 7 of Appendix 6.5). We conclude
this section by noting that this method can also be used in
a similar manner for estimating the degrees of freedom of
an approximate F-statistic based on the multi-factor LMM.
Additional material describing how theWelch–Satterthwaite
equation may be applied for approximate F-statistics is pro-
vided in Supplementary Material Section S15.

3 Simulations

To assess the accuracy and efficiency of each of the pro-
posed LMM parameter estimation methods described in
Sects. 2.1.1–2.1.5 and the direct-SW degrees of freedom
estimation method described in Sect. 2.5, extensive simula-
tions were conducted. These simulations are described fully
in Sect. 3.1 and the results are presented in Sect. 3.2. All
reported results were obtained using an Intel(R) Xeon(R)
Gold 6126 2.60GHz processor with 16GB RAM.

3.1 Simulationmethods

3.1.1 Parameter estimation

The algorithms of Sects. 2.1.1–2.1.5 have been implemented
in the programming language Python. Under three different
simulation settings, eachwith a different design structure, the

123

53 Page 12 of 25 Statistics and Computing (2021) 31 :53

algorithms are compared against one another, the ‘lmer’ func-
tion from the R package lme4, and the baseline truth used to
generate the simulations. All methods are contrasted in terms
of output, computation time and, for themethods presented in
this paper, the number of iterations until convergence. Con-
vergence of each method was assessed by verifying whether
successive log-likelihood estimates differed by more than
a predefined tolerance of 10−6. 1000 individual simulation
instances were run for each simulation setting.

All model parameters were held fixed across all runs. In
every simulation setting, test data were generated accord-
ing to model (1). Each of the three simulation settings
imposed a different structure on the random effects design
and covariance matrices, Z and D. The first simulation set-
ting employed a single factor design (r = 1)with two random
effects (i.e. q1 = 2) and 50 levels (i.e. l1 = 50). The sec-
ond simulation setting employed two crossed factors (r = 2)
where the number of random effects and numbers of levels
for each factor were given by q1 = 3, q2 = 2, l1 = 100 and
l2 = 50, respectively. The third simulation setting used three
crossed factors (i.e. r = 3)with the number of randomeffects
and levels for each of the factors given by q1 = 4, q2 = 3,
q3 = 2, l1 = 100, l2 = 50 and l3 = 10, respectively. In all
simulations, the number of observations, n, was held fixed at
1000. In each simulated design, the first column of the fixed
effects design matrix, X , and the first random effect in the
random effects design matrix, Z , were treated as intercepts.
Within each simulation instance, the remaining (nonzero)
elements of the variables X and Z , as well as those of the
error vector ε, were generated at random according to the
standard univariate normal distribution. The random effects
vector b was simulated according to a normal distribution
with covariance D, where D was predefined, exhibited no
particular constrained structure and contained a mixture of
both zero and nonzero off-diagonal elements. The assign-
ment of observations to levels for each factor was performed
at randomwith the probability of an observation belonging to
any specific level held constant and uniform across all levels.

Fisher Scoring methods for the single-factor design have
been well studied (c.f. Demidenko 2013), and the inclusion
of the first simulation setting is only for comparison pur-
poses. The second and third simulation settings represent
more complex crossed factor designs for which the proposed
Fisher Scoring-based parameter estimation methods did not
previously exist. To assess the performance of the proposed
algorithms, the mean absolute error (MAE) and mean rel-
ative difference (MRD) were used as performance metrics.
Themethods considered for parameter estimationwere those
described in Sects. 2.1.1–2.1.5, and the baseline truth used
for comparison was either the baseline truth used to generate
the simulated data or the lmer computed estimates.

All methods were contrasted in terms of the MAE and
MRD of both β and the variance product σ 2D. The variance

product σ 2D was chosen for comparison instead of the indi-
vidual components σ 2 and D as the variance product σ 2D
is typically of intrinsic interest during the inference stage
of conventional statistical analyses and is often employed
for further computation. In all simulations, both ML and
ReML estimation variants of the methods were assessed.
The computation time for each method was also recorded
and contrasted against that of lmer. To ensure a fair compar-
ison of computation time, the recorded computation times
for lmer were based only on the performance of the “opti-
mizeLmer” function, which is the module employed for
parameter estimation by lmer. The specific values of β, σ 2,

and D employed for each simulation setting can be found
in Section S1 of the Supplementary Material. Formal defini-
tions of MAE and MRD measures used for comparison are
given in Section S2 of the Supplementary Material.

3.1.2 Degrees of freedom estimation

The accuracy and validity of the direct-SW degrees of free-
dom estimation method proposed in Sect. 2.5 were assessed
through further simulation. To achieve this, as LMM degrees
of freedom are assumed to be specific to the experiment
design, a single design was chosen at random from each of
the three simulation settings described in Sect. 3.1.1. With
the fixed effects and random effects matrices, X and Z , now
held constant across simulations, 1000 simulations were run
for each simulation setting. The random effects vector, b, and
random error vector, ε, were allowed to vary across simula-
tions according to normal distributions with the appropriate
variances. In each simulation, degrees of freedom were esti-
mated via the direct-SW method for a predefined contrast
vector, corresponding to a fixed effect that was truly zero.

The direct-SW estimated degrees of freedom were com-
pared to a baseline truth and the degrees of freedom estimates
produced by the R package lmerTest. Baseline truth was
established in each simulation setting using 1,000,000 simu-
lations to empirically estimate Var(S2(η̂)), giving a single
value for the denominator of v(η̂) from Equation (28).
Following this, in each of the 1000 simulation instances
described above, the numerator of (28) was recorded, giv-
ing 1000 estimates of v(η̂). The final estimate was obtained
as an average of these 1000 values. All lmerTest degrees
of freedom estimates were obtained using the same simu-
lated data as was used by the direct-SW method and were
computed using the “contest1D” function from the lmerTest
package. While all baseline truth measures were computed
using parameter estimates obtained using the FSFS algo-
rithm of Sect. 2.1.4, we believe this has not induced bias
into the simulations as, as discussed in Sect. 3.2.1, all sim-
ulated FSFS-derived parameter estimates considered in this
work agreed with those provided by lmer within a tolerance
level on the scale of machine error.

123

Statistics and Computing (2021) 31 :53 Page 13 of 25 53

3.2 Simulation results

3.2.1 Parameter estimation results

The results of the parameter estimation simulations of 3.1.1
were identical. In all three settings, all parameter estimates
and maximised likelihood criteria produced by the FS, FFS,
SFS and FSFS methods were identical to those produced
by lmer up to a machine error level of tolerance. In terms
of the maximisation of likelihood criteria, there was no evi-
dence to suggest that lmer outperformed any of the FS, FFS,
SFS or FSFS methods, or vice versa. The CSFS method
provided worse performance, however, with maximised like-
lihood criteria which were lower than those reported by lmer
in approximately 2.5% of the simulations run for simula-
tion setting 3. The reported maximised likelihood criteria for
these simulations were all indicative of convergence failure.
For all methods considered during simulation, the observed
performance was unaffected by the choice of likelihood esti-
mation criteria (i.e. ML or ReML) employed.

The MRD and MAE values provided evidence for strong
agreement between the parameter estimates produced by
lmer and the FS, FFS, SFS and FSFS methods. The largest
MRD values observed for these methods, taken relative to
lmer, across all simulations and likelihood criteria, were
1.03×10−3 and 2.12×10−3 forβ andσ 2D, respectively. The
largest observed MAE values for these methods, taken rela-
tive to lmer, across all simulations, were given by 1.02×10−5

and 4.30 × 10−4 for β and σ 2D, respectively. Due to the
extremely small magnitudes of these values,MAE andMRD
values are not reported in detail here. For further detail, see
Supplementary Material Sections S3–S6.

To compare the proposed methods in terms of computa-
tional performance, Tables 1 and 2 present the average time
and number of iterations performed for each of the 5 meth-
ods, using ML and ReML likelihood criteria, respectively.
Corresponding computation times are also provided for lmer.
For both ML and ReML likelihood criteria, all Fisher Scor-
ingmethods demonstrated considerable efficiency in terms of
computation speed.While the improvement in speed isminor
for simulation setting 1, for multi-factor simulation settings
2 and 3, the performance gains can be seen to be consider-
able.Overall, the onlymethod that consistently demonstrated
notably worse performance than the others was the CSFS
algorithm. In addition to requiring a longer computation time,
the CSFS algorithm employed many more iterations.

Within a setting where q (i.e. the number of columns
in the random effects design matrix) is small, the results
of these simulations demonstrate strong computational effi-
ciency for the FS, FFS, SFS and FSFSmethods. However, we
emphasise that no claim is made to suggest that the observed
results will generalise to larger values of q or all possible
designs. For large sparse LMMs that include a large number

of random effects, without further adaptation of the methods
presented in this work to employ sparse matrix methodology,
it is expected that lmer will provide superior performance.
We again emphasise here that our purpose in undertaking
this work is not to compete with the existing LMM param-
eter estimation tools. Instead, the focus of this work is to
develop methodology, which provides performance compa-
rable to the existing tools, for use in situations where the
existing tools may not be applicable due to practical imple-
mentation considerations.

It must be stressed that reported computation times do not
solely reflect theoretical differences between the proposed
methods and those employed by lmer. Practical considera-
tions related to implementation, such as which programming
language and software libraries are used, also influence com-
putational performance. Again, we emphasize that the aim of
these simulations is not to perform a like-for-like comparison
between software packages but instead, to demonstrate the
viability and efficacy of our proposed methods as assessed
in relation to the tools currently available.

Two potential causes for the poor performance of the
CSFS method have been identified. The first cause is pre-
sented in Demidenko (2013), in which it is argued that the
Cholesky parameterised algorithm will provide slower con-
vergence than that of the unconstrained alternative methods
due to structural differences between the likelihood surfaces
over which parameter estimation is performed. This rea-
soning offers a likely explanation for the higher number
of iterations and computation time observed for the CSFS
method across all simulations.However, this does not explain
the small number of simulations in simulation setting 3 in
which evidence of convergence failure was observed.

The secondpossible cause alsoprovides an explanation for
the observed convergence failure. Pinheiro and Bates (1996)
note that Cholesky parameterisations are not unique and the
number of possible choices for the Cholesky factorisation of
a positive definite matrix of dimension (q×q) increases with
the dimension q. This means that, for each covariance matrix
Dk , there are multiple Cholesky factors, �k , which satisfy
�k�

′
k = Dk . The larger Dk is in dimension, the greater the

number of �k that correspond to Dk there are. Pinheiro and
Bates (1996) argue that when optimal solutions are numer-
ous and close together in the parameter space, numerical
problems can arise during optimisation.We note that in com-
parison to the other simulation settings considered here, the
design for simulation setting 3 contains the largest number
of factors and random effects. Consequently, the covariance
matrices, Dk , are large for this simulation setting and numer-
ous Cholesky factors which correspond to the same optimal
solution for the covariance matrix, D, exist. For this rea-
son, simulation setting 3 is the most susceptible to numerical
problems of the kind described by Pinheiro andBates (1996).
We suggest that this is a likely accounting for the 2.5% of

123

53 Page 14 of 25 Statistics and Computing (2021) 31 :53

Table 1 The average time in
seconds and the number of
iterations reported for maximum
likelihood estimation performed
using the FS, FFS, SFS, FSFS
and CSFS methods. For each
simulation setting, results
displayed are taken from
averaging across 1000
individual simulations. Also
given are the average times
taken by lmer to perform
maximum likelihood parameter
estimation on the same
simulated data. Standard
deviations are given in brackets
below each entry in the table

Method FS FFS SFS FSFS CSFS lmer

Simulation 1

t (Time/s) 0.041 0.037 0.026 0.055 0.057 0.059

(0.012) (0.011) (0.007) (0.058) (0.017) (0.021)

nit (No. of iterations) 5.243 5.243 6.048 6.048 10.461 –

(0.613) (0.613) (0.256) (0.256) (1.851) –

Simulation 2

t (Time/s) 0.129 0.112 0.105 0.125 0.220 0.648

(0.047) (0.042) (0.036) (0.061) (0.070) (0.050)

nit (No. of iterations) 6.694 6.694 8.323 8.323 14.281 –

(0.964) (0.964) (0.534) (0.534) (1.381) –

Simulation 3

t (Time/s) 1.081 0.889 1.872 1.941 3.970 5.979

(0.434) (0.429) (0.915) (0.869) (1.094) (0.299)

nit (No. of iterations) 8.133 8.133 16.054 16.054 33.437 –

(0.743) (0.743) (0.835) (0.835) (24.265) –

Table 2 The average time in
seconds and the number of
iterations reported for restricted
maximum likelihood estimation
performed using the FS, FFS,
SFS, FSFS and CSFS methods.
For each simulation setting,
results displayed are taken from
averaging across 1000
individual simulations. Also
given are the average times
taken by lmer to perform
restricted maximum likelihood
parameter estimation on the
same simulated data. Standard
deviations are given in brackets
below each entry in the table

Method FS FFS SFS FSFS CSFS lmer

Simulation 1

t (Time/s) 0.057 0.052 0.043 0.064 0.088 0.071

(0.014) (0.011) (0.008) (0.042) (0.021) (0.021)

nit (No. of iterations) 5.261 5.261 6.053 6.053 10.404 –

(0.591) (0.591) (0.257) (0.257) (1.829) –

Simulation 2

t (Time/s) 0.175 0.154 0.157 0.169 0.306 0.810

(0.043) (0.039) (0.035) (0.041) (0.067) (0.065)

nit (No. of iterations) 6.758 6.758 8.413 8.413 14.283 –

(0.984) (0.984) (0.561) (0.561) (1.404) –

Simulation 3

t (Time/s) 1.615 1.378 2.968 3.002 6.604 7.457

(0.404) (0.344) (0.752) (0.814) (5.455) (0.442)

nit (No. of iterations) 8.084 8.084 16.018 16.018 34.611 –

(0.730) (0.730) (0.798) (0.798) (25.526) –

simulations in which convergence failure was observed. In
summary, the simulation results offer strong evidence for
the correctness and efficiency of the Fisher Scoring methods
proposed, with the exception of the CSFS method, which
experiences slower performance and convergence failure in
rare cases.

3.2.2 Degrees of freedom estimation results

Across all degrees of freedom simulations, results indicated
that the degrees of freedom estimates produced by the direct-
SW method possessed both lower bias and lower variance
than those produced by lmerTest. The degrees of freedom

estimates, for each of the three simulation settings, are sum-
marized in Table 3.

It can be seen from Table 3 that throughout all simulation
settings both direct-SW and lmerTest appear to underesti-
mate the true value of the degrees of freedom. However, the
bias observed for the lmerTest estimates is notably more
severe that of the direct-SW method, suggesting that the
estimates produced by direct-SW have a higher accuracy
than those produced by lmerTest. The observed difference
in the standard deviation of the degrees of freedom estimates
between the lmerTest and direct-SW methods is less pro-
nounced. However, in all simulation settings, lower standard
deviations are reported for direct-SW, suggesting that the

123

Statistics and Computing (2021) 31 :53 Page 15 of 25 53

Table 3 The mean, standard deviation and mean squared error for
1, 000 degrees of freedom estimates in each simulation setting. Results
are displayed for both the lmerTest and direct-SW methods, alongside
“true”meanvalues,whichwere established using themoment-matching
based approach outlined in Sect. 3.1.2 and computed using 1,000,000
simulation instances

Method Truth Direct-SW lmerTest

Simulation 1

Mean 910.93 910.68 906.62

Standard deviation 0.0 2.36 2.39

Mean squared error 0.0 5.64 24.23

Simulation 2

Mean 844.61 842.17 837.79

Standard deviation 0.0 7.16 7.26

Mean squared error 0.0 57.20 99.21

Simulation 3

Mean 707.01 700.96 695.08

Standard deviation 0.0 17.19 17.67

Mean squared error 0.0 332.01 454.53

estimates produced by direct-SW have a higher precision
than those produced by lmerTest.

For both lmerTest and direct-SW, the observed bias and
variance increase with simulation complexity. The simula-
tions provided here indicate that the severity of disagreement
between direct-SW and lmerTest increases as the complex-
ity of the random effects design increases. This observation
matches the expectation that the accuracy of the numerical
gradient estimation employed by lmerTest will worsen as the
complexity of the parameter space increases. Reported mean
squared errors are also provided, indicating further that the
direct-SW method outperformed lmerTest in terms of accu-
racy and precision in all simulation settings.

4 Real data examples

To illustrate the usage of themethodology presented in Sects.
2.1–2.5 in practical situations, we provide two real data
examples. These examples are described fully in Sect. 4.1,
and the results are presented in Sect. 4.2. Again, all reported
results were obtained using an Intel(R) Xeon(R) Gold 6126
2.60 GHz processor with 16GB RAM. For each reported
computation time, averages were taken across 50 repeated
runs of the given analysis.

4.1 Real data methods

4.1.1 The SAT score example

The first example presented here is based on data from the
longitudinal evaluation of school change and performance
(LESCP) dataset (Turnbull et al. 1999). This dataset has
notably been previously analysed by Hong and Raudenbush
(2008) and was chosen for inclusion in this work because
it previously formed the basis for between-software com-
parisons of LMM software packages by West et al. (2014).
The LESCP study was conducted in 67 American schools in
which SAT (student aptitude test) math scores were recorded
for randomly selected samples of students. As in West et al.
(2014), one of the 67 schools from this dataset was chosen
as the focus for this analysis. For each individual SAT score,
unique identifiers (ID’s) for the student who took the test and
for the teacher who prepared the student for the test were
recorded. As many students were taught by multiple teach-
ers and all teachers taught multiple students, the grouping of
SAT scores by student ID and the grouping of SAT scores by
teacher ID constitute two crossed factors. In total, n = 234
SAT scores were considered for analysis. The SAT scores
were taken from 122 students taught by a total of 12 teach-
ers, with each student sitting between 1 and 3 tests.

The research question in this example concerns how
well a student’s grade (i.e. year of schooling) predicted
their mathematics SAT score (i.e. did students improve
in mathematics over the course of their education?). For
this question, between-student variance and between-teacher
variance must be taken into consideration as different stu-
dents possess different aptitudes for mathematics exams and
different teachers possess different aptitudes for teaching
mathematics. In practice, this is achieved by employing an
LMM which includes random intercept terms for both the
grouping of SAT scores according to student ID and the
grouping of SAT scores according to teacher ID. For the
kth mathematics SAT test taken by the i th student, under the
supervision of the j th teacher, such a model could be stated
as follows:

MATHi, j,k = β0 + β1 × YEARi, j,k + si + t j + εi, j,k,

where MATHi, j,k is the SAT score achieved and YEARi, j,k

is the grade of the student at the time the test was taken. In
the above model, β0 and β1 are unknown parameters and
si , t j and εi, j,k are independent mean-zero random variables
which differ only in termsof their covariance. si is the random
intercept which models between-student variance, t j is the
random intercept which models between-teacher variance,
and εi, j,k is the random error term. The random variables
si , t j and εi, j,k are assumed to be mutually independent and
follow the below distributions:

123

53 Page 16 of 25 Statistics and Computing (2021) 31 :53

si ∼ N (0, σ 2
s), t j ∼ N (0, σ 2

t), εi, j,k ∼ N (0, σ 2),

where the parametersσ 2
s ,σ

2
t andσ 2 are the unknown student,

teacher and residual variance parameters, respectively.
The random effects in the SAT score model can be

described using the notation presented in previous sections as
follows; r = 2 (i.e. observations are grouped by two factors,
student ID and teacher ID), q1 = q2 = 1 (i.e. one random
effect is included for each factor, the random intercepts si and
t j , respectively), and l1 = 122, l2 = 12 (i.e. there are 122
students and 12 teachers).When themodel is expressed in the
form described by (1), the random effects design matrix Z is
a 0− 1 matrix. In this setting, the positioning of the nonzero
elements in Z indicates the student and teacher associated
with each test score. The random effects covariance matrices
for the two factors, student ID and teacher ID, are given by
D0 = [σ 2

s] and D1 = [σ 2
t], respectively.

For the SAT score model, the estimated parameters
obtained using each of the methods detailed in Sects. 2.1.1–
2.1.5 are reported. For comparison, the parameter estimates
obtained by lmer are also given. As the estimates for the
fixed effects parameters, β0 and β1, are of primary interest,
MLwas employed to obtain all reported parameter estimates.
For this example, methods are contrasted in terms of output,
computation time and the number of iterations performed.

4.1.2 The twin study example

The second example presented in this work aims to demon-
strate the flexibility of the constrained covariance approaches
described in Sect. 2.4. This example is based on the ACE
model, an LMM commonly employed to analyse the results
of twin studies by accounting for the complex covariance
structure exhibited between related individuals. The ACE
model achieves this by separating between-subject response
variation into three categories: variance due to additive
genetic effects (σ 2

a), variance due to common environmental
factors (σ 2

c), and residual error (σ 2
e). For this example, we

utilize data from the Wu-Minn Human Connectome Project
(HCP) (Van Essen et al. 2013). The HCP dataset contains
brain imaging data collected from 1, 200 healthy young
adults, aged between 22 and 35, including data from 300
twin pairs and their siblings. We do not make use the imag-
ing data in the HCP dataset but, instead, focus on the baseline
variables for cognition and alertness.

The primary research question considered in this exam-
ple focuses on how well a subject’s quality of sleep predicts
their English reading ability. The variables of primary inter-
est used to address this question are subject scores in the
Pittsburgh Sleep Quality Index (PSQI) questionnaire and an
English language recognition test (ENG). Other variables
included the subjects’ age in years (AGE) and sex (SEX), as
well as an age–sex interaction effect. A secondary research

question considered asks “Howmuch of the between-subject
variance observed in English reading ability test scores can
be explained by additive genetic and common environmental
factors?”. To address this question, the covariance parame-
ters σ 2

a , σ
2
c and σ 2

e must be estimated.
To model the covariance components of the ACE model,

a simplifying assumption that all family units share common
environmental factorswasmade. Following thework ofWin-
kler et al. (2015), family units were first categorized by their
internal structure into what shall be referred to as “family
structure types” (i.e. unique combinations of full-siblings,
half-siblings and identical twin pairs which form a family
unit present in the HCP dataset). In the HCP dataset, 19 such
family structure types were identified. In the following text,
each family structure type shall be treated as a factor in the
model. For the i th observation to belong to the j th level of
the kth factor in the model may be interpreted as the i th sub-
ject belonging to the j th family exhibiting family structure
of type k. The model employed for this example is given by:

ENGk, j,i = β0 + β1 × AGEi + β2 × SEXi + . . . β3

×AGEi ×SEXi +β4×PSQIi +γk, j,i + εk, j,i ,

where both γk, j,i and εk, j,i are mean-zero random variables.
The random error, εk, j,i , is distributed N (0, σ 2

e), and the ran-
dom term γk, j,i models the within-“family unit” covariance.
Further detail on the specification of γk, j,i can be found in
Appendix (6.6.1).

In the notation of the previous sections, the number of
factors in the ACE model, r , is equal to the number of fam-
ily structure types present in the model (i.e. 19). For each
family structure type present in the model, family structure
type k, lk is the number of families who exhibit such struc-
ture and qk is the number of subjects present in any given
family unit with such structure. As there is a unique ran-
dom effect (i.e. a unique random variable, γk, j,i) associated
with each individual subject, none of which are scaled by
any coefficients, the random effects design matrix, Z , is the
(n × n) identity matrix. To describe {Dk}k∈{1,...,r} requires
the known matrices Ka

k and Kc
k , which specify the kinship

(expected genetic material) and environmental effects shared
between individuals, respectively (See SupplementaryMate-
rial Section S16.1 for more details). Given Ka

k and Kc
k , the

covariance components σ 2 and {Dk}k∈{1,...,r} are given as
σ 2 = σ 2

e and Dk = σ−2
e (σ 2

aK
a
k + σ 2

c K
c
k), respectively.

As the covariance components σa and σc are of practical
interest in this example, optimization is performed accord-
ing to the ReML criterion using the adjustments described
in Appendix 6.3 and covariance structure is constrained via
the methods outlined in Sect. 2.4. Further detail on the
constrained approach for the ACE model can be found in
Appendix 6.6.2. Discussion of computational efficiency for

123

Statistics and Computing (2021) 31 :53 Page 17 of 25 53

Table 4 Performance metrics,
parameter estimates and
approximate T-test results for
the twin study example.
Standard errors for the fixed
effects parameter estimates are
given in brackets alongside the
corresponding estimates. For
each model parameter, a
T-statistic, direct-SW degrees of
freedom estimate, and p-value
are provided, corresponding to
the approximate t-test for a
nonzero effect. p-values that are
significant at the 5% level are
indicated using a ∗ symbol

Estimation method OLS Powell FS

Performance

l (Log-likelihood) −2133.49 −2005.83 −2005.81

t (Time in seconds) < .001 93.32 2.31

Fixed effects parameters (Standard Errors)

β0 (Intercept) 121.46 (3.61) 118.43 (3.40) 118.34 (3.42)

β1 (Age) −0.11 (0.12) −0.04 (0.11) −0.04 (0.11)

β2 (Sex) −10.74 (5.07) −7.22 (4.64) −7.61 (4.66)

β3 (Age/sex) 0.45 (0.18) 0.33 (0.16) 0.34 (0.16)

β4 (PSQI score) −0.49 (0.12) −0.31 (0.10) −0.30 (0.10)

Covariance parameters

σ 2
a (Additive genetic) 0.00 48.20 50.67

σ 2
c (Common environment) 0.00 27.53 26.89

σ 2
e (Residual error) 110.04 33.57 32.71

Tests for Fixed Effects

T statistic 33.67 34.83 34.65

Intercept degrees of freedom 1105.00 920.59 921.57

p value < .001∗ < .001∗ < .001∗

T statistic −0.94 −0.350 −0.320

Age degrees of freedom 1105.00 907.44 908.42

p value .350 .726 .749

T statistic −2.12 −1.56 −1.63

Sex degrees of freedom 1105.00 833.01 832.96

p value .034∗ .120 .103

t-statistic 2.58 2.03 2.10

Age/sex degrees of freedom 1105.00 830.53 830.61

p value .010∗ .043∗ .036∗

T statistic −4.25 −3.19 −3.17

PSQI score degrees of freedom 1105.00 933.67 928.87

p value < .001∗ .001∗ .001∗

the ACE model is also provided in Supplementary Material
Section S16.2.

Section4.2.2 reports themaximized restricted log-likelihood
values and parameter estimates obtained using the Fisher
Scoring method. Also given are approximate T-statistics
for each fixed effects parameter, alongside correspond-
ing degrees of freedom estimates and p-values obtained
via the methods outlined in Sect. 2.5. To verify correct-
ness, the restricted log-likelihood of the ACE model was
also maximized numerically using the implementation of
Powell’s bi-directional search-based optimization method
(Powell 1964) provided by the SciPy Python package. The
maximized restricted log-likelihood values and parameter
estimates produced were then contrasted against those pro-
vided by the Fisher Scoringmethod. TheOLS (ordinary least
squares) estimates, which would be obtained had the additive
genetic and commonenvironmental variance components not

been accounted for in the LMM analysis, are also provided
for comparison.

4.2 Real data results

4.2.1 The SAT score results

For the SAT score example described in Sect. 4.1.1, the
log-likelihood, fixed effect parameters and variance compo-
nents estimates produced by the Fisher Scoring algorithms
were identical to those produced by lmer. Further, the
reported computation times for this example suggested lit-
tle difference between all methods considered in terms of
computational efficiency. Of the Fisher Scoring methods
considered, the FS and FFS methods took the fewest iter-
ations to converge, while the SFS and FSFS methods took
the most iterations to converge. The results presented here
exhibit strong agreement with those reported in West et al.

123

53 Page 18 of 25 Statistics and Computing (2021) 31 :53

(2014), in which the same model was used as the basis for a
between-software comparison of LMM software packages.
For completeness, the full table of results can be found in
Supplementary Material Section S9.

4.2.2 The twin study results

The results for the twin study example described inSect. 4.1.2
are presented in Table 4. It can be seen from Table 4 that
the Powell optimizer and Fisher Scoring method attained
extremely similar optimized likelihood values, with Fisher
Scoring converging notably faster. This result offers further
evidence for the correctness of the parameter estimates pro-
duced by the Fisher Scoring method as it is unlikely that
both Powell estimation and Fisher Scoring would converge
to the same solution if the solution were suboptimal. The
parameter estimates produced by Fisher Scoring and Powell
optimization can be seen to be smaller in magnitude than
those estimated by OLS, highlighting how the inclusion of
additional variance terms in themodel can have ameaningful
impact on the conclusion of the analysis.

Also provided in Table 4 are approximate t-tests based
on the Fisher Scoring and Powell optimizer parameter esti-
mates, with corresponding standard t-tests given based on the
OLS estimates. At the 5% significance level, the approximate
t-tests conclude that the fixed effects parameters correspond-
ing to the “Intercept”, “Age and Sex Interaction” and the
“PSQI Score” are nonzero in value.While it may be expected
that age should affect reading ability, no significant effect
was observed for the “Age” covariate. This lack of observed
effect may be explained by the narrow age range of subjects
present in the HCP dataset, with subjects ranging from 22 to
35 years in age, and by the fact that individual observations
were recorded in units of years. In general, the OLS-based
t-tests produced similar conclusions to those produced by
the FS-based approximate t-tests. A notable exception, how-
ever, is given by the t-tests for the fixed effect associated with
the “Sex” covariate. While the standard OLS t-test reported
at the 5% significance level that the “Sex” fixed effect was
nonzero in value, the FS-based approximate t-test concluded
that there was not evidence to support this claim. This result
further highlights the importance of modelling all relevant
variance terms.

5 Discussion

In this work, we have presented derivations for and demon-
strated potential applications of, score vector and Fisher
Information matrix expressions for the LMMs containing
multiple random factors. While many of the examples pre-
sented in this paper were benchmarked against existing
software, it is not the authors’ intention to suggest that the

proposed methods are superior to existing software pack-
ages. Instead, this work aims to complement existing LMM
parameter estimation research. This aim is realized through
careful exposition of the score vectors and Fisher Informa-
tion matrices and detailed description of methodology and
algorithms.

Modern approaches to LMM parameter estimation typ-
ically depend upon conceptually complex mathematical
operations which require support from a range of software
packages and infrastructure. Thisworkhas been, in large part,
motivated by current deficiencies in vectorized support for
such operations. Vectorized computation is a crucial require-
ment for medical imaging applications, in which hundreds of
thousands of mixed models must be estimated concurrently.
The methods proposed in this work take advantage over the
existing tools in such situations, wheremany LMM’smust be
run concurrently, as the theoretically simplistic mathemati-
cal operations they employ are more naturally amenable to
vectorized computation. It is with such applications in mind
that this work has been undertaken. We intend to pursue the
application of mass-univariate analysis itself in future work.

Although the methods presented in this work are well
suited for the desired application, we stress that there are
many situations where current software packages will likely
provide superior performance. One such situation can be
found by observing that the Fisher Scoring method requires
the storage and inversion of a matrix of dimensions (q × q).
This is problematic, both in terms of memory and computa-
tion accuracy, for designs which involve very large numbers
of random effects, grouping factors or factor levels. While
such applications have not been considered extensively in
this work, we note that many of the expressions provided
in this document may benefit from combination with sparse
matrix methodology to overcome this issue. We suggest that
the potential for improved computation time via the combina-
tion of the Fisher Scoring approaches described in this paper
with sparse matrix methodology may also be the subject of
future research.

An active area of LMM research that has not been dis-
cussed extensively in this work is hypothesis testing for
random effects covariance parameters. In general, develop-
ment of hypothesis testing procedures for random effects is
a more complex task than for that of fixed effects. This addi-
tional complexity stems from the fact that the random effects
parameters can lie on theboundaryof the parameter space and
must bemodelled usingmixture distributions.Manymethods
are available which provide approximate testing procedures
for random effects covariance parameters (c.f. Scheipl et al.
2008). However, it is not immediately apparent to us whether
the derivations we have provided may be used in conjunc-
tion with such methods to improve the testing procedures for
random effects. We suggest this idea may form a potential
basis for future investigation.

123

Statistics and Computing (2021) 31 :53 Page 19 of 25 53

6 Appendix

6.1 Score vectors

In this appendix, we provide full derivations for the deriva-
tives (7) and (11). For derivatives (5) and (6), we note that the
derivations for the multi-factor LMM are identical to those
given for the single-factor setting in Demidenko (2013). As
a result, we refer the reader to this source for proofs. To
obtain the derivatives (7) and (11), two lemmas, Lemma1 and
Lemma 2, are required. Proofs for Lemma 1 and Lemma 2,
alongside discussion of the definition of derivative employed
throughout this paper, are provided by Supplementary Mate-
rial Section S12.

Lemma 1 Let g be a column vector, A be a square matrix
and {Bs} be a set of arbitrary matrices of equal size. Let
K be an unstructured matrix which none of g, A or any
of the {Bs} depend on. Further, assume A, {Bs}, g and K
can be multiplied as required. The below matrix derivative
expression now holds;

∂

∂K

[
g′(A +

∑
t

Bt K B′
t)

−1g

]

= −
∑
s

B′
s
(
A′ +

∑
t

Bt K B′
t
)−1gg′(A′ +

∑
t

Bt K B′
t
)−1Bs .

(30)

Lemma 2 Let A, {Bs} and K be defined as in Lemma1. Then,
the following is true:

∂

∂K
log |A +

∑
t

Bt K B ′
t | =

∑
s

B ′
s(A +

∑
t

Bt K
′B ′

t)
−1Bs .

(31)

We first derive the partial derivative matrix ∂l
∂Dk

(i.e. the
matrix derivative with respect to Dk which does not account
for the equal elements of Dk induced by symmetry).

Theorem 1 The partial derivative matrix ∂l
∂Dk

is given by the
following.

∂l(θ)

∂Dk
= 1

2

lk∑
j=1

Z ′
(k, j)V

−1
(
ee′

σ 2 − V

)
V−1Z(k, j). (32)

Proof To derive (32), we use the expression for the log-
likelihood of the LMM, given by (2). As the first term inside
the brackets of (2) does not depend on Dk , we need only con-
sider the second and third term for differentiation. We now
note that, by the construction of the random effects design
matrix, Z , and the block diagonal structure of D, it can be
seen that:

V = I + ZDZ ′ = I +
r∑

k=1

lr∑
j=1

Z(k, j)Dk Z
′
(k, j). (33)

By substituting (33) into the second term of (2), and taking
the partial derivative matrix with respect to Dk using Lemma
1, the below can be obtained:

∂

∂Dk

[
σ−2e′V−1e

]
= σ−2

lk∑
j=1

Z ′
(k, j)V

−1ee′V−1Z(k, j).

Similarly, by substituting (33) into the third term of (2), and
taking the partial derivative matrix with respect to Dk using
Lemma 2, the below can be obtained:

∂

∂Dk

[
log |V |] =

lk∑
j=1

Z ′
(k, j)V

−1Z(k, j).

By combining the previous two derivative expressions, (32)
is obtained. �
Through applying the vectorization operator to (32), the fol-
lowing corollary is obtained. This is the result stated by (11)
in Sect. 2.1.2.

Corollary 1 Thepartial derivative vector of the log-likelihood
with respect to vec(Dk) is given as:

∂l(θ)

∂vec(Dk)
= 1

2
vec

(lk∑
j=1

Z ′
(k, j)V

−1
(
ee′

σ 2 − V

)
V−1Z(k, j)

)
.

Using Theorem 5.12 of Turkington (2013), which states that,
in our notation:

dl(θ)

dvec(Dk)
= DqkD′

qk

∂l(θ)

∂vec(Dk)
,

the following corollary is now obtained.

Corollary 2 The total derivative vector of the log-likelihood
with respect to vec(Dk) is given as:

dl(θ)

dvec(Dk)

= 1

2
DqkD′

qk vec

(lk∑
j=1

Z ′
(k, j)V

−1
(
ee′

σ 2 − V

)
V−1Z(k, j)

)
.

Finally, bynoting that the vectorization andhalf-vectorization
operators satisfy vec(Dk) = D+

qkvech(Dk), the following
corollary is obtained. This is the result stated by (7) in
Sect. 2.1.1.

123

53 Page 20 of 25 Statistics and Computing (2021) 31 :53

Corollary 3 The total derivative vector of the log-likelihood
with respect to vech(Dk) is given as:

dl(θ)

dvech(Dk)

= 1

2
D′

qk vec

(lk∑
j=1

Z ′
(k, j)V

−1
(
ee′

σ 2 − V

)
V−1Z(k, j)

)
.

6.2 Fisher Informationmatrix

In this appendix, we provide derivations of the components
of the Fisher Informationmatrix of θ f which relate to Dk , for
some factor fk . To derive these results, we will follow a simi-
lar argument to that of Demidenko (2013) in the single-factor
setting. The derivation of the elements I f

β , I f
β,σ 2 and I f

σ 2 for
the multi-factor LMM is identical to that used for the single
factor LMM given in Demidenko (2013) and, therefore, will
not be repeated here. Theorems 2 and 3 provide derivation of
equation (12) and Theorem 4 provides derivation of equation
(13). Following this, Corollaries 4–6 detail the derivation of
equations (9) and (10).

Theorem 2 For any arbitrary integer k between 1 and r, the
covariance of the partial derivatives of l(θ f) with respect to
β and vec(Dk) is given by:

I f
β,vec(Dk)

= cov

(
∂l(θ f)

∂β
,

∂l(θ f)

∂vec(Dk)

)
= 0p,q2k .

Proof First, let u and T(k, j) denote the following quantities:

u = σ−1V− 1
2 e, T(k, j) = Z ′

(k, j)V
− 1

2 . (34)

As e ∼ N (0, σ 2V), it follows that u ∼ N (0, In). Let c
be an arbitrary column vector of length qk . Noting that the
derivative of the log-likelihood function has mean zero, the
below can be seen to be true:

cov

(
∂l(θ |y)

∂β
, c′ ∂l(θ |y)

∂vec(Dk)
c

)
= E

[
∂l(θ |y)

∂β
c′ ∂l(θ |y)

∂vec(Dk)
c

]
.

By rewriting in terms of u and T(k, j), and noting that E[u] =
0, the right hand side of the above can be seen to simplify to:

E

[
σ−1XV− 1

2 uc′
(
1

2

lk∑
j=1

(T(k, j)u)(T(k, j)u)′
)
c

]

= 1

2
σ−1XV− 1

2

lk∑
j=1

E

[
uc′T(k, j)uu

′
]
T ′

(k, j)c = 0p,q2k .

That the above is equal to a matrix of zeros follows directly
from the third moment of the Normal distribution being 0.
The result of the theorem now follows. �

Theorem 3 For any arbitrary integer k between 1 and r, the
covariance of the partial derivatives of l(θ f) with respect to
σ 2 and vec(Dk) is given by:

I f
σ 2,vec(Dk)

= cov

(
∂l(θ f)

∂σ 2 ,
∂l(θ f)

∂vec(Dk)

)

= 1

2σ 2 vec
′
(lk∑

j=1

Z ′
(k, j)V

−1Z(k, j)

)
.

Proof To begin, we rewrite the covariance in Theorem 3 in
terms of (34) and remove constant terms to obtain:

1

4σ 2 cov

(
u′u, vec

(lk∑
j=1

(T(k, j)u)(T(k, j)u)′
))

.

Noting that the Kronecker product satisfies the property
vec(aa′) = a ⊗ a, for all column vectors a, we obtain that
the above is equal to:

1

4σ 2 cov

(
u′u,

lk∑
j=1

[
(T(k, j)u) ⊗ (T(k, j)u)

])
.

Wenownote that theKronecker product satisfies vec(ABC) =
(C ′ ⊗ A)vec(B) for arbitrary matrices A, B and C of appro-
priate dimensions. Utilizing this, applying the mixed product
property of the Kronecker product and then moving constant
values outside of the covariance function now gives:

1

4σ 2 vec
′(In)cov(u ⊗ u)

lk∑
j=1

[
(T(k, j) ⊗ T(k, j))

]′

.

Noting that u ∼ N (0, In)we now employ a result fromMag-
nus and Neudecker (1986) which states that cov(u ⊗ u) =
2Nn . Substituting this result into the previous expression
gives the below:

1

2σ 2 vec
′(In)Nn

lk∑
j=1

[
(T(k, j) ⊗ T(k, j))

]′
.

By a result given in Magnus and Neudecker (1986), the
matrix Nn satisfies (A ⊗ A)Nk = Nn(A ⊗ A) for all A, n
and k such that the resulting matrix multiplications are well
defined. Applying this result to the above expression, and
again using the relationship vec(ABC) = (C ′ ⊗ A)vec(B),
the above can be seen to reduce to:

1

2σ 2 vec
′
(lk∑

j=1

T(k, j)T
′
(k, j)

)
Nqk .

123

Statistics and Computing (2021) 31 :53 Page 21 of 25 53

By the definition of T(k, j), and noting that the matrix Nqk
satisfies the relationship vec′(A)Nqk = vec′(A) for all appro-
priately sized symmetric matrices A, the result now follows.

�
Theorem 4 For any arbitrary integers k1 and k2 between 1
and r, the covariance of the partial derivatives of l(θ f) with
respect to vec(Dk1) and vec(Dk2) is given by:

I f
vec(Dk1),vec(Dk2) = cov

(
∂l(θ f)

∂vec(Dk1)
,

∂l(θ f)

∂vec(Dk2)

)

= 1

2
Nqk1

lk2∑
j=1

lk1∑
i=1

(Z ′
(k1,i)V

−1Z(k2, j) ⊗ Z ′
(k1,i)V

−1Z(k2, j)).

Proof We begin by substituting the result of Corollary 1
into the covariance expression appearing in Theorem 4. By
converting to the notation introduced in (34) and removing
constant terms, the below is obtained:

1

4
cov

(lk1∑
j=1

vec

[
(T(k1, j)u)(T(k1, j)u)′

]
,

lk2∑
j=1

vec

[
(T(k2, j)u)(T(k2, j)u)′

])
.

Through similar arguments to those used in the proof of the
previous theorem, Theorem 3, the above can be seen to be
equal to:

1

2
Nqk1

lk2∑
j=1

lk1∑
i=1

[
(T(k1,i)T

′
(k2, j)) ⊗ (T(k1,i)T

′
(k2, j))

]
.

From the definition of T(k, j), it can be seen that the above is
equal to the result of Theorem 4. �
We now turn attention to the derivation of (9) and (10). As in
the proofs of Corollaries 2 and 3 of Appendix 6.1, we begin
by noting that:

dl(θ)

dvech(Dk)
= D+

qk

dl(θ)

dvec(Dk)
= D+

qkDqkD′
qk

∂l(θ)

∂vec(Dk)

= D′
qk

∂l(θ)

∂vec(Dk)
,

where the first equality follows from the definition of the
duplicationmatrix and the second equality follows fromThe-
orem 5.12 of Turkington (2013). Applying the above identity
to Theorems 2, 3 and 4 and moving the matrix D′

qk outside
the covariance function in each, leads to the following three
corollaries which, when taken in combination, provide equa-
tions (9) and (10).

Corollary 4 For any arbitrary integer k between 1 and r, the
covariance of the total derivatives of l(θh) with respect to β

and vech(Dk) is given by:

Ih
β,vech(Dk)

= 0p,qk (qk+1)/2.

Corollary 5 For any arbitrary integer k between 1 and r, the
covariance of the total derivatives of l(θh)with respect to σ 2

and vech(Dk) is given by:

Ih
σ 2,vech(Dk)

= 1

2σ 2 vec
′
(lk∑

j=1

Z ′
(k, j)V

−1Z(k, j)

)
Dqk .

Corollary 6 For any arbitrary integers k1 and k2 between 1
and r, the covariance of the total derivatives of l(θh) with
respect to vech(Dk1) and vech(Dk2) is given by:

Ih
vech(Dk1),vech(Dk2)

= 1

2
D′
qk1

lk2∑
j=1

lk1∑
i=1

(Z ′
(k1,i)V

−1Z(k2, j) ⊗ Z ′
(k1,i)V

−1Z(k2, j))Dqk2
.

We note that the results of Corollaries 4, 5 and 6 do not
contain the matrix Nqk , which appears in the corresponding
theorems (Theorems 2, 3 and 4). This is due to another result
ofMagnus andNeudecker (1986), which states thatD′

k Nk =
D′

k for any integer k. This concludes the derivations of Fisher
Information matrix expressions given in Sects. 2.1.1–2.1.4.

6.3 Restrictedmaximum likelihood estimation

In this appendix, we describe how themethods fromSect. 2.1
may be adapted to use an alternative likelihood criteria:
the criteria employed by Restricted Maximum Likelihood
(ReML) estimation. A well-documented issue for ML esti-
mation is that the variance estimates produced using ML are
biased. ReML addresses this issue by maximizing the log-
likelihood function of the residual vector, e, instead of the
response vector, Y . Neglecting constant terms, the restricted
maximum log-likelihood function, lR , is given by:

lR(θh) = l(θh) − 1

2

(
− p log(σ 2) + log |X ′V−1X |

)
,

where l(θh) is given in (2). To derive the ReML-based FS
algorithm, akin to that described in Sect. 2.1.1, the following
adjustments to the score vectors given by (6) and (7) must be

123

53 Page 22 of 25 Statistics and Computing (2021) 31 :53

used.

dlR(θh)

dβ
= dl(θh)

dβ
,

dlR(θh)

dσ 2 = dl(θh)

dσ 2 + 1

2
pσ−2,

dlR(θh)

dvech(Dk)
= dl(θh)

dvech(Dk)
+

1

2
D′

qkvec

(lk∑
j=1

Z ′
(k, j)V

−1X(X ′V−1X)−1X ′V−1Z(k, j)

)
.

The latter result can be derived through similar means to that
of Theorem 1 and Corollaries 1–3. Derivation of the ReML
score vectors of β and σ 2 can be found in Demidenko (2013)
where proofs may be found for the single-factor LMM. As
these proofs do not depend on the number of factors in the
model, they can be seen to also apply in the multi-factor
LMM setting without further adjustment.

Due to the asymptotic equivalence of the ML and ReML
estimates, the parameter estimates produced by ML and
ReML have the same asymptotic covariance matrix. Con-
sequently, the Fisher Information matrix for the parameter
estimates produced by ReML, which is the inverse of the
asymptotic covariance matrix, is identical to that of the
parameter estimates produced byML.As a result, the ReML-
based FS algorithm utilizes the Fisher Information matrix
specified by (8)-(10) and requires no further derivation. To
summarize, the ReML-based FS algorithm for the multi-
factor LMM is almost identical to that given in Algorithm 1.
The only adaptations required occur on line 3 of Algorithm 1
where the score vectors must be substituted for their ReML
counterparts, provided above. Analogous adjustments can be
made for the algorithms presented in Sects. 2.1.2–2.1.5.

6.4 Cholesky Fisher Scoring

In this appendix, we prove the identity stated by the below
theorem, Theorem 5, which was utilized in Sect. 2.1.5.

Theorem 5 Let Dk be a square symmetric positive-definite
matrix with Cholesky decomposition given by Dk = �k�

′
k .

The below expression gives the derivative of vech(Dk) with
respect to vech(�k).

∂vech(Dk)

∂vech(�k)
= Lqk (�

′
k ⊗ Iqk)(Iq2k

+ Kqk)Dqk .

Proof By the chain rule for vector-valued functions, as stated
by Turkington (2013), the derivative in Theorem 5 can be
expanded in the following manner:

∂vech(Dk)

∂vech(�k)
= ∂vec(�k)

∂vech(�k)

∂vec(Dk)

∂vec(�k)

∂vech(Dk)

∂vec(Dk)
.

The first and third derivatives in above the product are given
byTheorems 5.9 and 5.10 of Turkington (2013), respectively,

which state:

∂vec(�k)

∂vech(�k)
= Lqk ,

∂vech(Dk)

∂vec(Dk)
= Dqk .

The second derivative in the product is given by a result of
Magnus and Neudecker (1999), which states that:

∂vec(�k�
′
k)

∂vec(�k)
= (�′

k ⊗ Iqk)(Iq2k
+ Kqk).

Combining the above derivatives yields the desired result. �

6.5 Derivative of S2(�̂h)with respect to vech(D̂k)

In this appendix, proof of the derivative result which was
given in Sect. 2.5 is provided. Following this, an extension
of this result is provided for models containing constrained
covariance matrices of the form described in Sect. 2.4.

Theorem 6 Define η̂h as in section 2.5 anddefine the function
S2(η̂h) by:

S2(η̂h) = σ 2L(X ′V̂−1X)−1L ′.

The derivative of S2(η̂h)with respect to the half vectorization
of D̂k is given by:

dS2(η̂h)

dvech(D̂k)
= σ̂ 2D′

qk

(lk∑
j=1

B̂(k, j) ⊗ B̂(k, j)

)
,

where B(k, j) is givenby B̂(k, j) = Z ′
(k, j)V̂

−1X(X ′V̂−1X)−1L ′.

Proof By the chain rule for vector valued functions, as stated
by Turkington (2013), and by noting that the function S2(η̂h)
outputs a (1 × 1) scalar value, it can be seen that:

∂S2(η̂h)

∂vec(D̂k)
= σ̂ 2 ∂

(
L(X ′V̂−1X)−1L ′)

∂vec(D̂k)

= σ̂ 2 ∂vec(V̂)

∂vec(D̂k)

∂vec(V̂−1)

∂vec(V̂)

∂vec(X ′V̂−1X)

∂vec(V̂−1)

∂
(
L(X ′V̂−1X)−1L ′)
∂vec(X ′V̂−1X)

.

Using the expansion given in (33) the first derivative in the
product is evaluated to the below.

∂vec(V̂)

∂vec(D̂k)
=

lk∑
j=1

Z ′
(k, j) ⊗ Z ′

(k, j).

For the second derivative in the product, we apply result
(4.17) from Turkington (2013), which states:

∂vec(V̂−1)

∂vec(V̂)
= −V̂−1 ⊗ V̂−1.

123

Statistics and Computing (2021) 31 :53 Page 23 of 25 53

For the third term of the product, a result stated in Chapter
5.7 of Turkington (2013) gives the following:

∂vec(X ′V̂−1X)

∂vec(V̂−1)
= X ⊗ X .

By a variant of (4.17) from Turkington (2013), given on the
line following the statement of (4.17), the below is obtained:

∂
(
L(X ′V̂−1X)−1L ′)
∂vec(X ′V̂−1X)

= −((X ′V̂−1X)−1L ′) ⊗ ((X ′V̂−1X)−1L ′).

Following this, application of the mixed product property of
the Kronecker product and multiplication by the transposed
duplication matrix yields the result of Theorem 6. �

Theorem 7 Define ρD̂ and C as in Sect. (2.4) and B̂(k, j) and
η̂h as in Theorem 6. The derivative of S2(η̂h) with respect to
ρD̂ is given by:

dS2(η̂h)

dρD̂

= σ 2CB̂,

where B̂ is defined by:

B̂ =
⎡
⎣(l1∑

j=1

B̂ ′
(1, j) ⊗ B̂ ′

(1, j)

)
, . . . ,

(lr∑
j=1

B̂ ′
(r , j) ⊗ B̂ ′

(r , j)

)⎤
⎦

′
.

Proof From the proof of Theorem 6, it can be seen that the
partial derivative of S2(η̂h) with respect to vec(D̂k) is given
by:

∂S2(η̂h)

∂vec(D̂k)
= σ̂ 2

lk∑
j=1

B̂(k, j) ⊗ B̂(k, j).

Bydefining v(D̂) as in Sect. 2.4, it can be seen from the above
that the partial derivative of S2(η̂h) with respect to v(D̂) is
σ̂ 2B̂. By the chain rule for vector valued functions, as stated
by Turkington (2013), the below can now be obtained;

dS2(η̂h)

dρD̂

= ∂v(D̂)

∂ρD̂

∂S2(η̂h)

∂v(D̂)
= C ∂S2(η̂h)

∂v(D̂)
,

where the second equality follows from the definition of C.
Substituting the partial derivative of S2(η̂h) with respect to
ρD̂ into the above completes the proof. �

6.6 The ACEmodel

6.6.1 Specification of random effects

In this appendix, we provide detail on how the random effects
vector, b, and covariance matrix, D, are defined for the ACE
model. To do so, we first describe the covariance of the ran-
dom terms γk, j,i from Sect. 4.1.2. Following this, we use the
γk, j,i terms to construct the random effects vector, b. To sim-
plify notation, we assume that for each family structure type,
subjects within family units which exhibit such a structure
are ordered consistently. For example, if the family structure
describes “families containing one twin-pair and one half-
sibling”, we assume that the members of every family who
exhibit such a structure are given in the same order: (twin,
twin, half-sibling).

As noted in Sect. 4.1.2, γk, j,i models the within-“family
unit” covariance. As such, cov(γk, j1,i , γk, j2,i) = 0, for any
two distinct family units, j1 	= j2. Within any individual
family unit (e.g. family unit j of structure type k), the ran-
dom effects {γk, j,i }i∈{1,...,qk } are defined to have the below
covariance matrix:

cov
([

γk, j,1 ... γk, j,qk
]′) = σ 2

aK
a
k + σ 2

c K
c
k,

where Ka
k and Kc

k are the known, predefined kinship (addi-
tive genetic) and common environmental effects matrices,
respectively (see Supplementary Material Section S16.1 for
more details). The random effects vector, b, is constructed
by vertical concatenation of the random γk,i, j terms, i.e. b =
[γ1,1,1, γ1,1,2, . . . , γr ,lr ,qr]′. To derive an expression for the
covariance matrix of b, we note from equation (1) that σ 2

e D
is equal to cov(b). Equating this with the previous expres-
sion, it may now be seen that D is block diagonal, with its kth
unique diagonal block given by Dk = σ−2

e (σ 2
aK

a
k + σ 2

c K
c
k).

6.6.2 Constrained optimization for the ACEmodel

In this appendix, a brief overview of the constrained opti-
mization procedure which was adopted for parameter esti-
mation of the ACE model is provided. A derivation of the
constraint matrix, C is then provided by Theorem 8.

To perform parameter estimation for the ACE model, an
approach based on theReMLcriterion described inAppendix
6.3 and the constrained covariance structure methods out-
lined in Sect. 2.4 was adopted. The resulting optimization
procedure was performed in terms of the parameter vec-
tor θ ACE = (β, τa, τc, σ

2
e), where τa = σ−1

e σa and τc =
σ−1
e σc. β and σ 2

e were updated according to the GLS update
rules provided by equation (16), while updates for the param-
eter vector [τa, τc]′ were performed via a Fisher Scoring
update rule. The Fisher Scoring update rule employed was of
the form (3) with θ substituted for [τa, τc]′. To obtain the gra-

123

53 Page 24 of 25 Statistics and Computing (2021) 31 :53

dient vector and information matrix required to perform this
update step, a constraint-based approach (c.f. Sect. 2.4) was
employed. An expression for the required constraint matrix,
C, alongside derivation, is given by Theorem 8 below.

Theorem 8 For the ACE model, the constraint matrix (Jaco-
bian) which maps a partial derivative vector taken with
respect to v(D) to a total derivative vector taken with respect
to τ = [τa, τc]′ is given by:

C =
(

�(1,r) ⊗
[
2τa 0
0 2τc

])(r⊕
k=1

[
vec(Ka

k)
′

vec(Kc
k)

′
])

,

where ⊕ represents the direct sum.

Proof We first define τ̃a,1, . . . τ̃a,r and τ̃c,1, . . . τ̃c,r as vari-
ables which satisfy the below expressions, for all k ∈
{1, . . . , r}.

τa = τ̃a,k,

τc = τ̃c,k, vec(Dk) = τ̃ 2a,kvec(K
a
k) + τ̃ 2c,kvec(K

c
k).

We now define the vector τ̃ = [τ̃a,1, τ̃c,1, . . . , τ̃a,r , τ̃c,r]′. By
the chain rule and definition of C, it can be seen that:

C = dv(D)

dτ
= ∂τ̃

∂τ

∂v(D)

∂τ̃
. (35)

The first partial derivative in the product is given by:

∂τ̃

∂τ
=

[
1 0 1 0 1 ... 0
0 1 0 1 0 ... 1

]
= �(1,r) ⊗ I2.

To evaluate the second derivative in the product, we first
consider the partial derivative of vec(Dk) with respect to
[τ̃a,k, τ̃c,k]′ for arbitrary k ∈ {1, . . . , r}. From the definitions
of τ̃a,k and τ̃c,k , it can be seen that:

∂vec(Dk)

∂[τ̃a,k, τ̃c,k]′ =
[
2τ̃a,kvec(Ka

k)
′

2τ̃c,kvec(Kc
k)

′
]

.

By similar reasoning it can be seen, for arbitrary k1, k2 ∈
{1, . . . , r}, such that k1 	= k2, that the below is true:

∂vec(Dk1)

∂[τ̃a,k2 , τ̃c,k2]′
= 0(2,q2k1

),

where 0(2,q2k1
) is the (2 × q2k1) dimensional matrix of zero

elements. By combining the above expressions and noting
the definitions of v(D) and τ̃ , it can now be seen that the

derivative of v(D) with respect to τ̃ is given by the below.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
2τ̃a,1vec(Ka

1)
′

2τ̃c,1vec(Kc
1)

′
]

0(2,q22) ... 0(2,q2r)

0(2,q21)

[
2τ̃a,2vec(Ka

2)
′

2τ̃c,2vec(Kc
2)

′
]

... 0(2,q2r)

...
...

. . .
...

0(2,q21) 0(2,q22) ...

[
2τ̃a,rvec(Ka

r)
′

2τ̃c,rvec(Kc
r)

′
]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
r⊕

k=1

[
2τ̃a,kvec(Ka

k)
′

2τ̃c,kvec(Kc
k)

′
]

.

By substituting the above partial derivative results into (35),
substituting τa = τ̃a,k and τc = τ̃c,k and rearranging, the
result stated in Theorem 8 can now be obtained. �

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-021-10026-
6.

Author Contributions Not applicable.

Funding This workwas supported by the Li Ka ShingCentre for Health
Information and Discovery and NIH grant [R01EB026859] (TMS, TN)
and the Wellcome Trust award [100309/Z/12/Z] (TN).

Codeavailability All code used to generate the results of the simulations
and real data examples presented in Sects. 3.1–4.2.2 is publicly avail-
able and can be found in the below GitHub repository: https://github.
com/TomMaullin/LMMPaper Included in this repository are detailed
notebooks demonstrating how the code may be executed in order to
reproduce the results presented in this work.

Declaration

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Bates, D., Machler, M., Bolker, B., Walker, S.: Fitting linear mixed-
effects models using lme4. J. Stat. Softw. 67(1), 1–48 (2015)

123

https://doi.org/10.1007/s11222-021-10026-6
https://doi.org/10.1007/s11222-021-10026-6
https://github.com/TomMaullin/LMMPaper
https://github.com/TomMaullin/LMMPaper
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Statistics and Computing (2021) 31 :53 Page 25 of 25 53

Demidenko, E.: MixedModels: Theory and Applications with R.Wiley
Series in Probability and Statistics. Wiley, New York (2013)

Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from
incomplete data via the em algorithm. J. R. Stat. Soc. Ser. B
(Methodol.) 39(1), 1–38 (1977)

Dempster,A.P.,Rubin,D.B., Tsutakawa,R.K.: Estimation in covariance
components models. J. Am. Stat. Assoc. 76(374), 341–353 (1981).
https://doi.org/10.1080/01621459.1981.10477653

Henderson, C.R., Kempthorne, O., Searle, S.R., von Krosigk, C.M.:
The estimation of environmental and genetic trends from records
subject to culling. Biometrics 15(2), 192–218 (1959)

Hong,G., Raudenbush, S.W.: Causal inference for time-varying instruc-
tional treatments. J. Educ. Behav. Stat. 33(3), 333–362 (2008).
https://doi.org/10.3102/1076998607307355

I.B.M. Corp: IBM SPSS Advanced Statistics 23. IBM Corp, Armonk,
NY (2015)

Jennrich, R.I., Schluchter, M.D.: Unbalanced repeated-measures mod-
els with structured covariance matrices. Biometrics 42(4), 805–
820 (1986). http://www.jstor.org/stable/2530695

Kuznetsova, A., Brockhoff, P., Christensen, R.: lmertest package: tests
in linear mixed effects models. J. Stat. Softw. 82(13), 1–26 (2017).
https://doi.org/10.18637/jss.v082.i13

Laird, N., Lange, N., Stram, D.: Maximum likelihood computations
with repeated measures: application of the em algorithm. J. Am.
Stat. Assoc. 82(397), 97–105 (1987). https://doi.org/10.1080/
01621459.1987.10478395

Laird, N.M., Ware, J.H.: Random-effects models for longitudinal data.
Biometrics 38(4), 963–974 (1982). http://www.jstor.org/stable/
2529876

Li, X., Guo, N., Li, Q.: Functional neuroimaging in the new era of
big data. Genom. Proteomics Bioinform. 17(4), 393–401 (2019).
https://doi.org/10.1016/j.gpb.2018.11.005. big Data in Brain Sci-
ence

Lindstrom, M.J., Bates, D.M.: Newton–Raphson and em algorithms
for linear mixed-effects models for repeated-measures data. J.
Am. Stat. Assoc. 83(404), 1014–1022 (1988). http://www.jstor.
org/stable/2290128

Magnus, J.R.,Neudecker,H.: The eliminationmatrix: some lemmas and
applications. SIAM J. Algebraic Discrete Methods 1(4), 422–449
(1980). https://doi.org/10.1137/0601049

Magnus, J.R., Neudecker, H.: Symmetry, 0–1 matrices, and Jacobians:
a review. Econom. Theory 46, 1986 (1986)

Magnus, J.R., Neudecker, H.: Matrix differential calculus with appli-
cations in statistics and econometrics. Wiley Series in Probability
and Statistics. Rev edn. Wiley, New York (1999)

Neudecker, H., Wansbeek, T.: Some results on commutation matrices,
with statistical applications. Can. J. Stat. 11(3), 221–231 (1983).
https://doi.org/10.2307/3314625

Pinheiro, J., Bates, D.: Mixed-effects models in S and S-PLUS.
Springer, Statistics and Computing (2009)

Pinheiro, J.C., Bates, D.M.: Unconstrained parametrizations for
variance-covariance matrices. Stat. Comput. 6, 289–296 (1996)

Powell, M.: The bobyqa algorithm for bound constrained optimiza-
tion without derivatives. Technical Report, Department of Applied
Mathematics and Theoretical Physics (2009)

Powell, M.J.D.: An efficient method for finding the minimum of a func-
tion of several variables without calculating derivatives. Comput.
J. 7(2), 155–162 (1964). https://doi.org/10.1093/comjnl/7.2.155

Rao, C., Mitra, S.K.: Generalized Inverse of Matrices and Its Applica-
tions. Wiley, Probability and Statistics Series (1972)

Raudenbush, S.W., Bryk, A.S.: Hierarchical Linear Models: Applica-
tions and Data AnalysisMethods, 2nd edn. Advanced Quantitative
Techniques in the Social Sciences 1. SAGE Publications (2002)

SAS Institute Inc: SAS/STATR 14.1 User’s Guide The MIXED Pro-
cedure. Springer Berlin Heidelberg, SAS Institute Inc, Cary, NC
(2015)

Satterthwaite, F.E.:An approximate distribution of estimates of variance
components. Biometrics Bull. 2(6), 110–114 (1946). http://www.
jstor.org/stable/3002019

Scheipl, F., Greven, S., Küchenhoff, H.: Size and power of tests for a
zero random effect variance or polynomial regression in additive
and linear mixed models. Comput. Stat. Data Anal. 52(7), 3283–
3299 (2008). https://doi.org/10.1016/j.csda.2007.10.022

Smith, S.M., Nichols, T.E.: Statistical challenges in big data human
neuroimaging. Neuron 97(2), 263–268 (2018). https://doi.org/10.
1016/j.neuron.2017.12.018

Tibaldi, F.S., Verbeke, G.,Molenberghs, G., Renard, D., Van denNoort-
gate, W., de Boeck, P.: Conditional mixed models with crossed
random effects. Br. J. Math. Stat. Psychol. 60(2), 351–365 (2007).
https://doi.org/10.1348/000711006X110562

Turkington, D.A.: Cambridge University Press. Generalized Vectoriza-
tion, Cross-Products, and Matrix Calculus (2013). https://doi.org/
10.1017/CBO9781139424400

Turnbull, B.J., Welsh, M.E., Heid, C.A., Davis, W., Ratnofsky, A.C.:
The longitudinal evaluation of school change and performance
(lescp) in title i schools. interim report to congress (1999)

Van Essen, D., Smith, S., Barch, D., Behrens, T., Yacoub, E., Ugur-
bil, K.: The wu-minn human connectome project: an overview.
NeuroImage 80, 20 (2013). https://doi.org/10.1016/j.neuroimage.
2013.05.041

Verbeke, G., Molenberghs, G.: Linear Mixed Models for Longitudinal
Data. Springer Series in Statistics. Springer, New York (2001)

Welch, B.L.: The generalization of ‘student’s’ problem when several
different population variances are involved. Biometrika 34(1/2),
28–35 (1947)

West, B., Welch, K., Galecki, A.: Linear Mixed Models: A Practical
Guide Using Statistical Software. CRC Press, Boca Raton (2014)

Winkler,A.M.,Webster,M.A.,Vidaurre,D.,Nichols, T.E., Smith, S.M.:
Multi-level block permutation. NeuroImage 123, 253–268 (2015).
https://doi.org/10.1016/j.neuroimage.2015.05.092

Wolfinger, R.: Heterogeneous variance: Covariance structures for
repeated measures. J. Agric. Biol. Environ. Stat. 1, 205 (1996).
https://doi.org/10.2307/1400366

Wolfinger, R., Tobias, R., Sall, J.: Computing gaussian likelihoods and
their derivatives for general linear mixed models. SIAM J. Sci.
Comput. 15, 1994 (1994). https://doi.org/10.1137/0915079

Zhu, S., Wathen, A.J.: Essential formulae for restricted maximum like-
lihood and its derivatives associated with the linear mixed models.
1805.05188 (2018)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1080/01621459.1981.10477653
https://doi.org/10.3102/1076998607307355
http://www.jstor.org/stable/2530695
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.1080/01621459.1987.10478395
https://doi.org/10.1080/01621459.1987.10478395
http://www.jstor.org/stable/2529876
http://www.jstor.org/stable/2529876
https://doi.org/10.1016/j.gpb.2018.11.005
http://www.jstor.org/stable/2290128
http://www.jstor.org/stable/2290128
https://doi.org/10.1137/0601049
https://doi.org/10.2307/3314625
https://doi.org/10.1093/comjnl/7.2.155
http://www.jstor.org/stable/3002019
http://www.jstor.org/stable/3002019
https://doi.org/10.1016/j.csda.2007.10.022
https://doi.org/10.1016/j.neuron.2017.12.018
https://doi.org/10.1016/j.neuron.2017.12.018
https://doi.org/10.1348/000711006X110562
https://doi.org/10.1017/CBO9781139424400
https://doi.org/10.1017/CBO9781139424400
https://doi.org/10.1016/j.neuroimage.2013.05.041
https://doi.org/10.1016/j.neuroimage.2013.05.041
https://doi.org/10.1016/j.neuroimage.2015.05.092
https://doi.org/10.2307/1400366
https://doi.org/10.1137/0915079

	Fisher Scoring for crossed factor linear mixed models
	Abstract
	1 Introduction
	1.1 Background
	1.2 Preliminaries
	1.2.1 The model
	1.2.2 Notation

	2 Methods
	2.1 Fisher Scoring algorithms
	2.1.1 Fisher Scoring
	2.1.2 Full Fisher Scoring
	2.1.3 Simplified Fisher Scoring
	2.1.4 Full simplified Fisher Scoring
	2.1.5 Cholesky simplified Fisher Scoring

	2.2 Initial values
	2.3 Computational efficiency
	2.4 Constrained covariance structure
	2.5 Degrees of freedom estimation

	3 Simulations
	3.1 Simulation methods
	3.1.1 Parameter estimation
	3.1.2 Degrees of freedom estimation

	3.2 Simulation results
	3.2.1 Parameter estimation results
	3.2.2 Degrees of freedom estimation results

	4 Real data examples
	4.1 Real data methods
	4.1.1 The SAT score example
	4.1.2 The twin study example

	4.2 Real data results
	4.2.1 The SAT score results
	4.2.2 The twin study results

	5 Discussion
	6 Appendix
	6.1 Score vectors
	6.2 Fisher Information matrix
	6.3 Restricted maximum likelihood estimation
	6.4 Cholesky Fisher Scoring
	6.5 Derivative of S2(h) with respect to vech(k)
	6.6 The ACE model
	6.6.1 Specification of random effects
	6.6.2 Constrained optimization for the ACE model

	References

