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Abstract

Several recent papers on automatic face verification have significantly raised the per-

formance bar by developing novel, specialised representations that outperform standard

features such as SIFT for this problem.

This paper makes two contributions: first, and somewhat surprisingly, we show that

Fisher vectors on densely sampled SIFT features, i.e. an off-the-shelf object recognition

representation, are capable of achieving state-of-the-art face verification performance on

the challenging “Labeled Faces in the Wild” benchmark; second, since Fisher vectors

are very high dimensional, we show that a compact descriptor can be learnt from them

using discriminative metric learning. This compact descriptor has a better recognition

accuracy and is very well suited to large scale identification tasks.

1 Introduction

Face identification, i.e. the problem of inferring the identity of people from pictures of their

face, is a key area of research in image understanding. Beyond its scientific interest, this

problem has numerous and important applications in surveillance, access control, and search.

Automatic Face Verification (AFV) is a formulation of the face identification problem where

the task is to determine whether two images depict the same person or not. In the past few

years, the dataset “Labeled Faces in the Wild” (LFW) [13] has become the de-facto eval-

uation benchmark for AFV, promoting the rapid development of new and significantly im-

proved AFV methods. Recent efforts, in particular, have focused on developing new image

representations and combination of features specific to AFV to surpass standard representa-

tions such as SIFT [21]. The question that this paper addresses is what happens if, instead

of developing yet another face-specific image representation, one applies off-the-shelf object

recognition representations to AFV.

The results are striking. Our first contribution is to show that dense descriptor sampling

combined with the improved Fisher Vector (FV) encoding of [24] (Sect. 2) outperforms or

performs just as well as the best face verification representations, including the ones that use

elaborate face landmark detectors [3, 6] and multiple features [12]. The significance of this
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result is that FVs are not specific to faces, having been proposed for object recognition in

general. However, FV descriptors are high-dimensional, which may be impractical in com-

bination with huge face databases. Our second contribution is to show that FV face repre-

sentations are amenable to discriminative dimensionality reduction using a linear projection,

which leads simultaneously to a significant dimensionality reduction as well as improved

recognition accuracy (Sect. 3). The processing pipeline (Sect. 4) is illustrated in Fig. 1. Our

end result is a compact discriminative descriptor for face images that achieves state-of-the-

art performance on the challenging LFW dataset in both restricted and unrestricted settings

(Sect. 5).

1.1 Related work

Face identification approaches. Face recognition research has been focusing on five ar-

eas: face detection, facial landmark detection, face registration, face description, and sta-

tistical learning. A typical face recognition system requires all these steps, but many works

focus on a few of these aspects in order to improve the overall system performance. For facial

landmark detection, Everingham et al. [9] proposed pictorial structures, Dantone et al. [8]

conditional random forests, and Zhu et al. [43] deformable parts models. Several papers

investigated face descriptors, including LBP and its variants [5, 6, 12, 20, 22, 25, 33, 38, 39],

SIFT [10, 20], and learnt representations [25, 40]. In [29], the Fisher vector encoding of local

intensity differences was used as a face descriptor. Another interesting approach is to learn

and extract semantic face attributes as facial features for identification and other tasks [3, 17].

Statistical learning is generally used to map face representations to a final recognition re-

sult, with metric or similarity learning being the most popular approach, particularly for

AFV [6, 10, 12, 22, 41]. Another popular approach is based on exemplar SVMs [33, 38, 39].

Dense features and their encodings for generic object recognition. Dense feature ex-

traction is an essential component of many state-of-the-art image classification methods [18,

23, 27]. The idea is to compute features such as SIFT densely on an image, rather than

on a sparse and potentially unreliable set of points obtained from an interest point detector.

Dense features are then encoded into a single feature vector, summarising the image con-

tent in a form suitable for learning and recognition. The best known encoding is probably

the Bag-of-Visual-Words (BoVW) model [7, 31], which builds a histogram of occurrences

of vector-quantised descriptors. More recent encodings include VLAD [15], Fisher Vectors

(FVs) [24], and Super Vector Coding [42]. A common aim of these encodings is to reduce the

loss of information introduced by the vector quantisation step in BoVW. In [4] it was shown

that FVs outperform the other encodings on a number of image recognition benchmarks, so

we adopt them here for face description.

Discriminative dimensionality reduction. The aim of discriminative dimensionality re-

duction is to obtain smaller image descriptors, while preserving or even improving their

ability to discriminate images based on their content. This is often formalised as the prob-

lem of finding a low-rank linear projection W of the descriptors that minimises the dis-

tances between images with the same content (e.g. same face) and maximises it otherwise.

“Fisherfaces” [2] is one of the early examples of discriminative learning for dimensionality

reduction, applied to face recognition. A closely related formulation is that of learning a Ma-

halanobis matrix M =W>W , a problem that has convex formulations [37], even in the case
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Figure 1: Method overview: a face is encoded in a discriminative compact representa-

tion

of low-rank constraints [30]. However, learning the matrix M is practical only if the starting

dimensionality of the descriptor is moderate (e.g. less than 1000 dimensions), so different

approaches are required otherwise. One approach is to first reduce the dimensionality gen-

eratively, for example by using PCA, and then perform metric learning in a low-dimensional

space [6, 10], but this is suboptimal as the first step may lose important discriminative infor-

mation. Another approach, which we use here, is to optimise directly the projection matrix

W , as its size depends on the reduced dimensionality, although this results in a non-convex

formulation [11, 34].

2 Fisher vector faces representation

Dense features. The FV construction starts by extracting patch features such as SIFT [21]

from the image. Rather than sampling locations and scales sparsely by running a carefully

tuned face landmark detector, our approach extracts features densely in scale and space.

Specifically, 24 ⇥ 24 pixels patches are sampled with a stride of one pixel and for each

patch the root-SIFT representation of [1] (referred simply as “SIFT” in the following) is

computed. The process is repeated at five scales, with a scaling factors of
p

2. The procedure

is run (unless otherwise noted) after cropping and rescaling the face to a 160⇥ 125 image,

resulting in about 26K 128-dimensional descriptors per face. To aggregate these descriptors,

the non-linear FV encoding is used, as described briefly below.

Fisher vectors. The FV encoding aggregates a large set of vectors (e.g. the dense SIFT

features just extracted) into a high-dimensional vector representation. In general, this is

done by fitting a parametric generative model, e.g. the Gaussian Mixture Model (GMM), to

the features, and then encoding the derivatives of the log-likelihood of the model with respect

to its parameters [14]. Following [24], we train a GMM with diagonal covariances, and only

consider the derivatives with respect to the Gaussian mean and variances. This leads to the

representation which captures the average first and second order differences between the

(dense) features and each of the GMM centres:
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Here, {wk,µk,σk}k are the mixture weights, means, and diagonal covariances of the GMM,

which is computed on the training set and used for the description of all face images; αp(k) is

the soft assignment weight of the p-th feature xp to the k-th Gaussian. An FV φ is obtained
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by stacking the differences: φ =
h

Φ
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1 ,Φ

(2)
1 , . . . ,Φ
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(2)
K

i

. The encoding describes how

the distribution of features of a particular image differs from the distribution fitted to the

features of all training images.

To make the dense patch features amenable to the FV description based on the diagonal-

covariance GMM, they are first decorrelated by PCA. In our experiments, we applied PCA to

SIFT, reducing its dimensionality from 128 to 64. The FV dimensionality is 2Kd, where K is

the number of Gaussians in the GMM, and d is the dimensionality of the patch feature vector.

We note that even though FV dimensionality is high (65536 for K = 512 and d = 64), it is

still significantly lower than the dimensionality of the vector obtained by stacking all dense

features (1.7M in our case). Following [24], the performance of an FV is further improved

by passing it through signed square-rooting and L2 normalisation.

Spatial information. The Fisher vector is an effective encoding of the feature space struc-

ture. However, it does not capture the distribution of features in the spatial domain. Several

ways of incorporating the spatial information have been proposed in the literature. In [24],

a spatial pyramid coding [18] was used, which consists in dividing an image into a num-

ber of cells and then stacking the FVs computed for each of these cells. The disadvantage

of such approach is that the dimensionality of the final image descriptor increases linearly

with the number of cells. In [16], a generative model (e.g. GMM) was learnt for the spatial

location of each visual word, and FV was used to encode both feature appearance and loca-

tion. Here we employ a related approach of [28], which consists in augmenting the visual

features with their spatial coordinates, and then using the FV encoding of the augmented

features as the image descriptor. In more detail, our dense features have the following form:
⇥

Sxy; x
w
� 1

2
;

y
h
� 1

2

⇤

, where Sxy is the (PCA-SIFT) descriptor of a patch centred at (x,y), and

w and h are the width and height of the face image. The resulting FV dimensionality is thus

67584. Fig. 2 illustrates how Gaussian mixture components are spatially distributed over a

face when learnt for a face verification task.

3 Large-margin dimensionality reduction

In this section we explain how a high-dimensional FV encoding (Sect. 2) is compressed to

a small discriminative representation. The compression is carried out using a linear projec-

tion, which serves two purposes: (i) it dramatically reduces the dimensionality of the face

descriptors, making them applicable to large-scale datasets; and (ii) it improves the recogni-

tion performance by projection onto a subspace with a discriminative Euclidean distance.

In more detail, the aim is to learn a linear projection W 2 R
p⇥d , p ⌧ d, which projects

high-dimensional Fisher vectors φ 2 R
d to low-dimensional vectors Wφ 2 R

p, such that the

squared Euclidean distance d2
W (φi,φ j) = kWφi �Wφ jk2

2 between images i and j is smaller

than a learnt threshold b 2 R if i and j are the same person, and larger otherwise. We

further impose that these conditions are satisfied with a margin of at least one, resulting in

the constraints:

yi j

�

b�d2
W (φi,φ j)

�

> 1 (2)

where yi j = 1 iff images i and j contain the faces of the same person, and yi j =�1 otherwise.

Note that the Euclidean distance in the p-dimensional projected space can be seen as a

low-rank Mahalanobis metric in the original d-dimensional space:

d2
W (φi,φ j) = kWφi �Wφ jk2

2 = (φi �φ j)
TW TW (φi �φ j), (3)
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where W TW 2R
d⇥d is the Mahalanobis matrix defining the metric. Due to the factorisation,

the Mahalanobis matrix W TW has rank equal to p, i.e. much smaller than the full rank d. As

a consequence, learning the projection matrix W is the same as learning a low-rank metric

W TW . Direct optimisation of the Mahalanobis matrix is however quite difficult, as the latter

has over 2 billion parameters for the d = 67K dimensional FVs. On the contrary, W has

pd = 8.5M parameters for p = 128, which can be learnt in the large scale learning scenario.

Learning W optimises the following objective function, incorporating the constraints (2)

in a hinge-loss formulation:

argmin
W,b

∑
i, j

max
⇥

1� yi j

�

b� (φi �φ j)
TW TW (φi �φ j)

�

,0
⇤

(4)

The minimiser of (4) is found using a stochastic sub-gradient method. At each iteration t, the

algorithm samples a single pair of face images (i, j) (sampling with equal frequency positive

and negative labels yi j) and performs the following update of the projection matrix:

Wt+1 =

(

Wt if yi j

�

b�d2
W (φi,φ j)

�

> 1

Wt � γyi jWtψi j otherwise
(5)

where ψi j = (φi � φ j)(φi � φ j)
T is the outer product of the difference vectors, and γ is a

constant learning rate, determined on the validation set. Note that the projection matrix Wt

is left unchanged if the constraint (2) is not violated, which speed-ups learning (due to the

large size of W , performing matrix operations at each iteration is costly). We choose not to

regularise W explicitly; rather, the algorithm stops after a fixed number of learning iterations

(1M in our case).

Finally, note that the objective (4) is not convex in W , so initialisation is important. In

practice, we initialise W to extract the p largest PCA dimensions. Furthermore, differently

from standard PCA, we equalise the magnitude of the dominant eigenvalues (whitening)

as the less frequent modes of variation tend to be amongst the most discriminative. It is

important to note that PCA-whitening is only used to initialise the learning process, and the

learnt metric substantially improves over its initialisation (Sect. 5). In particular, this is not

the same as learning a metric on the low-dimensional PCA-whitened data (p2 parameters);

instead, a projection W on the original descriptors is learnt (pd � p2 parameters), which

allows us to fully exploit the available supervision.

4 Implementation details and extensions

Face alignment and extraction. Given an image, we first run the Viola Jones detector [36]

to obtain the face detection. Using this detection, we then detect nine facial landmark po-

sitions using the publicly available code of [9]. Similar to them, we then apply similarity

transformation using all these points to transform a face to a canonical frame. In the aligned

image, we extract a 160⇥125 face region around the landmarks for further processing.

Face descriptor computation. For dense SIFT computation and Fisher vector encoding,

we utilised publicly available packages [4, 35]. Dimensionality reduction learning is im-

plemented in MATLAB and takes a few hours to compute on a single core (for each split).

Given an aligned and cropped face image, our mexified MATLAB implementation takes 0.6s

to compute a descriptor on a single CPU core (in the case of 2 pixel SIFT density).

Citation
{Viola and Jones} 2001

Citation
{Everingham, Sivic, and Zisserman} 2009

Citation
{Chatfield, Lempitsky, Vedaldi, and Zisserman} 2011

Citation
{Vedaldi and Fulkerson} 2010



6 SIMONYAN et al.: FISHER VECTOR FACES IN THE WILD

Diagonal “metric” learning. Apart from the low-rank Mahalanobis metric learning (Sect. 3),

we also consider diagonal metric learning on the full-dimensional Fisher vectors. It is carried

out using a conventional linear SVM formulation, where features are the vectors of squared

differences between the corresponding components of the two compared FVs. We did not

observe any improvement by enforcing the positivity of the learnt weights, so it was omitted

in practice (i.e. the learnt function is not strictly a metric).

Joint metric-similarity learning. Recently, a “joint Bayesian” approach to face similarity

learning has been employed in [5, 6]. It effectively corresponds to joint learning of a low-

rank Mahalanobis distance (φi �φ j)
TW TW (φi �φ j) and a low-rank kernel (inner product)

φ T
i V TV φ j between face descriptors φi,φ j. Then, the difference between the distance and

the inner product can be used as a score function for face verification. We consider it as

another option for comparing face descriptors (apart from the low-rank metric learning and

diagonal metric learning), and incorporate joint metric-similarity learning into our large-

margin learning formulation (4). In that case, we perform stochastic updates (5) on both

low-dimensional projections W and V .

Horizontal flipping. Following [12], we considered the augmentation of the test set by

taking the horizontal reflections of the two compared images, and averaging the distances

between the four possible combinations of the original and reflected images.

5 Experiments

5.1 Dataset and evaluation protocol

Our framework is evaluated on the popular “Labeled Faces in the Wild dataset” (LFW) [13].

The dataset contains 13233 images of 5749 people downloaded from the Web and is con-

sidered the de-facto standard benchmark for automatic face verification. For evaluation, the

data is divided into 10 disjoint splits, which contain different identities and come with a

list of 600 pre-defined image pairs for evaluation (as well as training as explained below).

Of these, 300 are “positive” pairs portraying the same person and the remaining 300 are

“negative” pairs portraying different people.

We follow the recommended evaluation procedure [13] and measure the performance of

our method by performing a 10 fold cross validation, training the model on 9 splits, and

testing it on the remaining split. All aspects of our method that involve learning, including

PCA projections for SIFT, Gaussian mixture models, and the discriminative Fisher vector

projections, were trained independently for each fold.

Two evaluation measures are considered. The first one is the Receiving Operating Char-

acteristic Equal Error Rate (ROC-EER), which is the accuracy at the ROC operating point

where the false positive and false negative rates are equal [10]. This measure reflects the

quality of the ranking obtained by scoring image pairs and, as such, is independent on the

bias learnt in (2). ROC-EER is used to compare the different stages of the proposed frame-

work. In order to allow a direct comparison with published results, however, our final clas-

sification performance is also reported in terms of the classification accuracy (percentage of

image pairs correctly classified) – in this case the bias is important.

LFW specifies a number of evaluation protocols, two of which are considered here. In

the “restricted setting”, only the pre-defined image pairs for each of the splits (fixed by the
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LFW creators) can be used for training. Instead, in the “unrestricted setting” one is given

the identities of the people within each split and is allowed to form an arbitrary number, in

practice much larger, of positive and negative pairs for training.

5.2 Framework parameters

First, we explore how the different parameters of the method affect its performance. The

experiments were carried out in the unrestricted setting using unaligned LFW images and a

simple alignment procedure described in Sect. 4. We explore the following settings: SIFT

density (the step between the centres of two consecutive descriptors), the number of Gaus-

sians in the GMM, the effect of spatial augmentation, dimensionality reduction, distance

function, and horizontal flipping. The results of the comparison are given in Table 1. As can

be seen, the performance increases with denser sampling and more clusters in the GMM.

Spatial augmentation boosts the performance with only a moderate increase in dimensional-

ity (caused by the addition of the (x,y) coordinates to 64-D PCA-SIFT). Our dimensionality

reduction to 128-D achieves 528-fold compression and further improves the performance.

We found that using projection to higher-dimensional spaces (e.g. 256-D) does not improve

the performance, which can be caused by overfitting.

As far as the choice of the FV distance function is concerned, a low-rank Mahalanobis

metric outperforms both full-rank diagonal metric and unsupervised PCA-whitening, but is

somewhat worse than the function obtained by the joint large-margin learning of the Ma-

halanobis metric and inner product. It should be noted that the latter comes at the cost of

slower learning and the necessity to keep two projection matrices instead of one. Finally,

using horizontal flipping consistently improves the performance. In terms or the ROC-EER

measure, our best result is 93.13%.

SIFT GMM Spatial Desc. Distance Hor. ROC-

density Size Aug. Dim. Function Flip. EER,%

2 pix 256 32768 diag. metric 89.0

2 pix 256 X 33792 diag. metric 89.8

2 pix 512 X 67584 diag. metric 90.6

1 pix 512 X 67584 diag. metric 90.9

1 pix 512 X 128 low-rank PCA-whitening 78.6

1 pix 512 X 128 low-rank Mah. metric 91.4

1 pix 512 X 256 low-rank Mah. metric 91.0

1 pix 512 X 128 low-rank Mah. metric X 92.0

1 pix 512 X 2⇥128 low-rank joint metric-sim. 92.2

1 pix 512 X 2⇥128 low-rank joint metric-sim. X 93.1

Table 1: Framework parameters: The effect of different FV computation parameters and

distance functions on ROC-EER. All experiments done in the unrestricted setting.

5.3 Learnt projection model visualisation

Here we demonstrate that the learnt model can indeed capture face-specific features. To

visualise the projection matrix W , we make use of the fact that each GMM component corre-

sponds to a part of the Fisher vector and, in turn, to a group of columns in W . This makes it

possible to evaluate how important certain Gaussians are for comparing human face images
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(a) (b) (c) (d) (e)

Figure 2: Coupled with discriminative dimensionality reduction, a Fisher vector can

automatically capture the discriminative parts of the face. (a): an aligned face image;

(b): unsupervised GMM clusters densely span the face; (c): a close-up of a face part covered

by the Gaussians; (d): 50 Gaussians corresponding to the learnt projection matrix columns

with the highest energy; (e): 50 Gaussians corresponding to the learnt projection matrix

columns with the lowest energy.

by computing the energy (Euclidean norm) of the corresponding column group. In Fig. 2

we show the GMM components which correspond to the groups of columns with the highest

and lowest energy. Each Gaussian captures joint appearance-location statistics (Sect. 2), but

here we only visualise the location as an ellipse with the centre and radii set to the mean and

variances of the spatial components. As can be seen from Fig. 2-d, the 50 Gaussians cor-

responding to the columns with the highest energy match the facial features without being

explicitly trained to do so. They have small spatial variances and are finely localised on the

image plane. On the contrary, Fig. 2-e shows how the 50 Gaussians corresponding to the

columns with the lowest energy cover the background areas. These clusters are deemed as

the least meaningful by our projection learning; note that their spatial variances are large.

5.4 Comparison with the state of the art

Unrestricted setting. In this scenario, we compare against the best published results ob-

tained using both single (Table 2, left-bottom) and multi-descriptor representations (Table 2,

left-top). Similarly to the previous section, the experiments were carried out using unaligned

LFW images, processed as described in Sect. 4. This means that the outside training data is

only utilised in the form of a simple landmark detector, trained by [9].

Our method achieves 93.03% face verification accuracy, closely matching the state-of-

the-art method of [6], which achieves 93.18% using LBP features sampled around 27 land-

marks. It should be noted that (i) the best result of [6] using SIFT descriptors is 91.77%;

(ii) we do not rely on multiple landmark detection, but sample the features densely. The

ROC curves of our method as well as the other methods are shown in Fig. 3.

Restricted setting. In this strict setting, no outside training data is used, even for the land-

mark detection. Following [19], we used centred 150⇥ 150 crops of “LFW-funneled” im-

ages, provided as a part of the LFW dataset. We found that the limited amount of training

data, available in this setting, is insufficient for dimensionality reduction learning. Therefore,

we learnt a diagonal “metric” function using an SVM as described in Sect. 4. Achieving the

verification accuracy of 87.47%, our descriptor sets a new state of the art in the restricted set-

ting (Table 2, right), outperforming the recently published result of [19] by 3.4%. It should
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Figure 3: Comparison with the state of the art: ROC curves of our method and the state-

of-the-art techniques in LFW-unrestricted (left) and LFW-restricted (right) settings.

be noted that while [19] also use GMMs for dense feature clustering, they do not utilise the

compressed Fisher vector encoding, but keep all extracted features for matching, which im-

poses a limitation on the number of features that can be extracted and stored. In our case,

we are free from this limitation, since the dimensionality of an FV does not depend on the

number of features it encodes. The best result of [19] was obtained using two types of fea-

tures and GMM adaptation (“APEM Fusion”). When using non-adapted GMMs (as we do)

and SIFT descriptors (“PEM SIFT”), their result is 6% worse than ours.

Our results in both unrestricted and restricted settings confirm that the proposed face

descriptor can be used in both small-scale and large-scale learning scenarios, and is robust

with respect to the face alignment and cropping technique.

6 Conclusion

In this paper, we have shown that an off-the-shelf image representation based on dense SIFT

features and Fisher vector encoding achieves state-of-the-art performance on the challenging

“Labeled Faces in the Wild” dataset. The use of dense features allowed us to avoid applying

a large number of sophisticated face landmark detectors. Also, we have presented a large-

margin dimensionality reduction framework, well suited for high-dimensional Fisher vector

representations. As a result, we obtain an effective and efficient face descriptor computation

pipeline, which can be readily applied to large-scale face image repositories.

It should be noted that the proposed system is based upon a single feature type. In our

future work, we are planning to investigate multi-feature image representations, which can

be readily incorporated into our framework.
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Unrestricted setting

Method Mean Acc.

LDML-MkNN [10] 0.8750 ± 0.0040

Combined multishot [33] 0.8950 ± 0.0051

Combined PLDA [20] 0.9007 ± 0.0051

face.com [32] 0.9130 ± 0.0030

CMD + SLBP [12] 0.9258 ± 0.0136

LBP multishot [33] 0.8517 ± 0.0061

LBP PLDA [20] 0.8733 ± 0.0055

SLBP [12] 0.9000 ± 0.0133

CMD [12] 0.9170 ± 0.0110

High-dim SIFT [6] 0.9177 ± N/A

High-dim LBP [6] 0.9318 ± 0.0107

Our Method 0.9303 ± 0.0105

Restricted setting

Method Mean Acc.

V1-like/MKL [26] 0.7935 ± 0.0055

PEM SIFT [19] 0.8138 ± 0.0098

APEM Fusion [19] 0.8408 ± 0.0120

Our Method 0.8747 ± 0.0149

Table 2: Left: Face verification accuracy in the unrestricted setting. Using a single

type of local features (dense SIFT), our method outperforms a number of methods, based on

multiple feature types, and closely matches the state-of-the-art results of [6]. Right: Face

verification accuracy in the restricted setting (no outside training data). Our method

achieves the new state of the art in this strict setting.
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