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Abstract

The Ising model originated in statistical physics as a means of studying phase transitions in

magnets, and has been the object of intensive study for almost a century. Combinatorially, it

can be viewed as a natural distribution over cuts in a graph, and it has also been widely studied

in computer science, especially in the context of approximate counting and sampling. In this

paper, we study the complex zeros of the partition function of the Ising model, viewed as a

polynomial in the “interaction parameter”; these are known as Fisher zeros in light of their

introduction by Fisher in 1965. While the zeros of the partition function as a polynomial in

the “field” parameter have been extensively studied since the classical work of Lee and Yang,

comparatively little is known about Fisher zeros. Our main result shows that the zero-field Ising

model has no Fisher zeros in a complex neighborhood of the entire region of parameters where the

model exhibits correlation decay. In addition to shedding light on Fisher zeros themselves, this

result also establishes a formal connection between two distinct notions of phase transition for

the Ising model: the absence of complex zeros (analyticity of the free energy, or the logarithm of

the partition function) and decay of correlations with distance. We also discuss the consequences

of our result for efficient deterministic approximation of the partition function. Our proof relies

heavily on algorithmic techniques, notably Weitz’s self-avoiding walk tree, and as such belongs to

a growing body of work that uses algorithmic methods to resolve classical questions in statistical

physics.
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1 Introduction

In combinatorial terms, the Ising model is a probability distribution over the cuts of a graph.

Given a graph G = (V, E), the configurations of the model are assignments σ of “+” or “−”

spins to the vertices of G; σ corresponds to the cut between spin-“+” and spin-“−” vertices.

The model assigns to configuration σ the weight wG,β(σ) = β|{e=(u,v)∈E : σ(u) 6=σ(v)}|, where

β > 0 is a parameter. The associated probability distribution, known as the Gibbs measure,

is then defined by assigning probability µG,β(σ) := 1
ZG(β) wG,β(σ) to each configuration σ.

The normalizing factor here is the partition function, defined as

ZG(β) :=
∑

σ:V →{+,−}

wG,β(σ) =

|E|
∑

k=0

γkβk, (1)

where γk is the number of k-edge cuts in G. Note that ZG(β) is a polynomial in β with

positive coefficients. We also sometimes consider graphs in which certain vertices are pinned

to “+” or “−” spins. For such a graph, we restrict the sum in the definition of ZG to those

configurations σ in which these vertices have the spin determined by their pinning.

The origins of the Ising model lie in the qualitative modeling of phase transitions in

magnets [11]; indeed, it was the first model among the wide class of spin systems to be studied

extensively in statistical physics. The parameter β above is a proxy for the “temperature” or

“interaction strength”, while the graph is a proxy for the physical structure of the magnet.

In this parameterization, β > 1 corresponds to so-called anti-ferromagnetic interactions

(where neighbors prefer to have different spins), β < 1 to ferromagnetic interactions (where

neighbors prefer to have the same spins), and β = 1 to infinite temperature (where the

neighbors behave independently of each other). We will restrict our attention throughout to

graphs of fixed (but arbitrary) maximum degree ∆.

Historically, there have been two distinct (though closely related) mechanisms for defining

and understanding phase transitions in statisical physics. The first is decay of long-range

correlations in the Gibbs measure, which is familiar in theoretical computer science due

to its extensive use in approximation algorithms and the analysis of spin systems and

graphical models. The second, which is more classical and less familiar in computer science,

is analyticity of the “free energy” log Z (where Z is the partition function). This second

notion connects naturally to stability theory of polynomials, and in particular to the study of

the location of complex roots of the partition function Z, even when only real values of the

parameters make physical sense in the model. The seminal work of Lee and Yang [12, 28]

was one of the first, and certainly the best known, to use this notion. We note in passing that

stability theory has seen a surge of recent interest in theoretical computer science, in contexts

ranging from approximation algorithms to the construction of Ramanujan graphs (see, e.g.,

[17, 18, 1, 2, 26]).

We now briefly describe the connection between the analyticity of the free energy and

the location of complex zeros of the partition function. The first ingredient is that natural

observables of the model (e.g., the magnetization) can be written as derivatives of the free

energy with respect to an appropriate parameter of the model. Thus, analyticity of the free

energy for a given range S of parameters implies that all such observables vary continuously

(and have continuous derivatives) when the parameter value lies in S, which in turn implies

that there is no phase transition in S. However, it is not hard to see that for any finite

graph, the free energy is always analytic as a function of β when β lies on the positive real

axis, suggesting a complete absence of phase transitions. Indeed, it turns out (see, e.g.,

[23, Chapter 1]) that in order to see phase transitions one has to consider infinite graphs.
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For concreteness, we consider the case of the Ising model on the infinite 2-dimensional

integer lattice Z
2 [28]. In order to define the free energy for such an infinite graph, one

takes the limit of the free energies of a suitable increasing sequence of finite subgraphs (e.g.,

increasing rectangles in Z
2), after scaling them by their size. Lee and Yang [28] showed that,

for infinite graphs of sub-exponential growth (including Z
2), the free energy obtained via

this prescription is well defined and analytic for a range of parameters S provided that the

partition functions of the finite graphs used in the limit definition, viewed as polynomials in

the parameter, are zero-free in a complex neighborhood of S. Thus, proving zero-freeness of

partition functions of such a sequence of finite graphs in a fixed (i.e., not depending upon the

finite graphs in question) complex neighborhood of S implies the absence of phase transitions

in S.

Algorithms, phase transitions, and roots of polynomials. While the algorithmic con-

sequences of phase transitions defined in terms of decay of correlations have been well studied,

first in the context of Markov Chain Monte Carlo algorithms (Glauber dynamics) and more

recently in determinstic algorithms that directly exploit correlation decay, algorithmic use of

the information on complex roots of the partition function originated only recently in the

work of Barvinok (see [3] for a survey). This has led to increased interest in understanding

the relationship between the above two notions of phase transitions. Such connections have

been the focus of some recent work on the independent set (or “hard core lattice gas”) model;

notably, connections similar to the ones in this paper have been explored for that model by

Peters and Regts [20], while related ideas are harnessed in early work of Shearer [22], as later

elucidated by Scott and Sokal [21] and further elaborated by Harvey et al. [10], to shed light

on the Lovász Local Lemma.

The motivation for our work here is to take a step towards achieving a fuller understanding

of these connections. Specifically, we study the zeros of the Ising partition function (at zero

field), viewed as a polynomial in the interaction parameter. While the study of zeros in

terms of the fugacity (or field) parameter was famously pioneered by Lee and Yang [12], and

has given rise to a well developed theory, very little is known about the zeros in terms of the

interaction parameter, which were first studied in the classical 1965 paper of Fisher [8] and

are thus known as “Fisher zeros”.

Our main result is that the Ising model has no Fisher zeros in a region of the complex

plane that contains the entire interval B on the positive real line where correlation decay

holds. Our analysis crucially exploits the correlation decay property in order to understand

the Fisher zeros. Thus, in the particular case of the zero field Ising model, we are able to

establish a tight connection between correlation decay and the absence of zeros. Another

potentially interesting aspect of this result is the use of algorithmic techniques associated

with correlation decay (notably, Weitz’s algorithm [27]) to understand a classical concept in

statistical physics.

We now proceed to formally describe our results. First we identify the range of the

parameter β for which the Ising model is, in a certain sense, well-behaved on graphs of

bounded degree ∆.

◮ Definition 1 (Correlation decay region). Given ∆ > 0, the correlation decay region B = B∆

for β is the interval (∆−2
∆ , ∆

∆−2 ).

The correlation decay region is very well studied in both physical and algorithmic contexts,

and comes from a consideration of the behavior of the Gibbs measure on trees. In particular,

it corresponds to those β for which there is exponential decay of correlations in the Gibbs

measure on any finite subtree of the infinite ∆-regular tree – a fact which has been used to

ITCS 2019
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give a deterministic algorithm for approximating the partition function of the Ising model

for such β [27, 29]. On the other hand, Sly and Sun [25] have shown that for β > ∆
∆−2 , this

approximation problem is NP-hard under randomized reductions. In statistical physics, the

correlation decay region describes those β for which the definition of the Gibbs measure

given by eq. (1) for finite graphs can be extended in a unique way to a Gibbs measure on

the infinite ∆-regular tree [9]; for this reason, the correlation decay region is also referred to

as the uniqueness region.

As advertised earlier, our goal is to prove the existence of a region of the complex plane,

containing B, which contains no Fisher zeros. We state this now as our main theorem.

◮ Theorem 2. Fix any ∆ > 0. For any real β ∈ B :=
(

∆−2
∆ , ∆

∆−2

)

, there exists a δ > 0 such

that for all β′ ∈ C with |β′ − β| < δ, the Ising partition function ZG(β′) 6= 0 for all graphs G

of maximum degree ∆. Moreover the same holds even if G contains an arbitrary number of

vertices pinned to + or − spins.

◮ Remarks.

(1) It is worth noting that the choice of δ does not depend on the size of the graph, only

on ∆ and β. In particular, given any δ1 > 0, one can choose δ > 0 such that, for all β′

in a complex neighborhood of radius δ around the closed interval [ ∆−2
∆ + δ1, ∆

∆−2 − δ1],

ZG(β′) is non-zero for all graphs of degree at most ∆.

(2) For the case of the Ising model, the above theorem establishes a connection between

the two notions of phase transition discussed above. Namely, for the zero-field Ising

model, it shows that decay of correlations on the ∆-regular tree also implies the absence

of Fisher zeros for finite graphs of degree at most ∆, and hence the analyticity of the

free energy for appropriate infinite graphs (i.e., those of maximum degree at most ∆ and

of subexponential growth, such as regular lattices).

Discussion. To the best of our knowledge, the previous best general result on the Fisher

zeros of the Ising model appears in the work of Barvinok and Soberón [6], who showed that

ZG(β) is non-zero if |β − 1| < c/∆, where ∆ is the maximum degree of G, and c can be

chosen to be 0.34 (and as large as 0.45 if ∆ is large enough). While this result provides a

disk around 1 in which there are no Fisher zeros, it cannot guarantee the absence of Fisher

zeros in a neighborhood of the correlation decay region B (which would require at least that

c ≥ 2 − o∆(1)). Our Theorem 2 therefore strengthens this result to a neighborhood of the

entire correlation decay region B.4

Our main theorem on Fisher zeros can also be combined with the techniques of Barvinok [3]

and Patel and Regts [19] to give a new deterministic polynomial time approximation algorithm

for the partition function of the ferromagnetic Ising model with zero field on graphs of degree

at most ∆ when β ∈ (∆−2
∆ , ∆

∆−2 ). In particular, combining Theorem 2 with Lemmas 2.2.1

and 2.2.3 of [3] (see also the discussion at the bottom of page 27 therein) and the proof of

Theorem 6.1 of [19], we obtain the following corollary:

◮ Corollary 3. Fix a positive integer ∆ and δ > 0. There exist positive constants δ1 > 0

and c such that for any complex β with ℜ(β) ∈
[

∆−2
∆ + δ, ∆

∆−2 − δ
]

and |ℑ(β)| ≤ δ1, the

following is true. There exists an algorithm which, on input a graph G of degree at most

∆ on n vertices, and an accuracy parameter ε > 0, runs in time O(n/ε)c and outputs Ẑ

satisfying
∣

∣Ẑ − ZG(β)
∣

∣ ≤ ε |ZG(β)|.

4 Technically the results are incomparable in the sense that, while our results cover a much larger portion
of the real line than that in [6], the diameter of the disk centered around 1 in the region of [6] may be
larger than the radius guaranteed by our result.
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For real β in the same range, a deterministic algorithm with the above properties, based

on correlation decay, was already analyzed in [29]. However, our extension to complex values

of the parameter is also interesting in light of the fact that algorithms for approximating the

Ising partition function at complex values of the parameters have recently been studied in

the context of classical simulation of restricted models of quantum computation [16].

Finally, we emphasize that in contrast to most other recent applications of Barvinok’s

method (e.g., [19, 5, 6, 4, 14]), where the required results on the location of the roots of

the associated partition function are derived without reference to correlation decay, the

algorithmic version of correlation decay is crucial to our proof. Indeed, implicit in our proof

is an analysis of Weitz’s celebrated correlation decay algorithm [27] (proposed originally for

the independent set (or “hard core”) model, and analyzed by Zhang, Liang and Bai [29]

for the Ising model in the case of real positive β ∈ B) for the Ising model with complex β′

close to β ∈ B. Thus, as mentioned earlier, our work shows that Weitz’s algorithm can be

viewed as a bridge between the “decay of correlations” and “analyticity of free energy” views

of phase transitions. We note also that our work is close in spirit to recent work of Peters

and Regts [20] (see also [7]), who employ correlation decay in the hard core model to prove

stability results for the hard core partition function.

2 Outline of proof

We fix ∆ to be the maximum degree throughout, and let d = ∆ − 1. Let G be any graph

of maximum degree ∆. Our starting point is a recursive criterion that guarantees that

the partition function ZG(β) has no zeros. For any non-isolated vertex v of G, let Z+
G,v(β)

(respectively, Z−
G,v(β)) be the contribution to ZG(β) from configurations with σ(v) = +

(respectively, with σ(v) = −), so that ZG(β) = Z+
G,v(β) + Z−

G,v(β). Define also the ratio

RG,v(β) :=
Z

+

G,v
(β)

Z
−

G,v
(β)

. Now note that Z+
G,v(β) and Z−

G,v(β) can be seen as Ising partition

functions defined on the same graph G with the vertex v pinned to the appropriate spin; i.e.,

they are partition functions defined on a graph with one less unpinned vertex. Thus we may

assume recursively that neither Z+
G,v(β) nor Z−

G,v(β) vanishes. Under this assumption, the

condition ZG(β) 6= 0 is equivalent to RG,v(β) 6= −1.

Our next ingredient is a formal recurrence, due to Weitz [27], for computing ratios such

as RG,v(β) in two-state spin systems. This recurrence is based on the so-called “tree of

self-avoiding walks” (or “SAW tree”) in G, rooted at v, with appropriate boundary conditions

(i.e., initial inputs, or fixed values at the leaves of the tree). Weitz’s recurrence has been used

in the development of several approximate counting algorithms based on decay of correlations

(see, e.g., [27, 29, 13, 24]). We now state a precise version of Weitz’s result that is tailored

to our application.

◮ Lemma 4. Let G be a graph of maximum degree ∆ = d + 1, with some vertices possibly

pinned to spins “+” or “−”. Given β ∈ C, define hβ(x) := β+x
βx+1 . For integers k ≥ 0 and s,

define the maps

Fβ,k,s(x) := βs

k
∏

i=1

hβ(xi).

Then, the ratio RG,v(β) can be obtained by iteratively applying a sequence of multivariate

maps of the form Fβ,k,s(x) such that, in all but the final application, one has 1 ≤ k + |s| ≤ d,

while for the final application one has 1 ≤ k + |s| ≤ ∆, and any initial input to these maps is

xi = 1.

ITCS 2019
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For completeness we sketch a proof of Lemma 4 at the end of this section.

Returning now to the condition RG,v(β) 6= −1 derived above, we see from Lemma 4 that

a sufficient condition for the absence of zeros of ZG(β) is the existence of a subset D ⊆ C

such that 1 ∈ D, −1 /∈ D, and D is closed under the recurrence Fβ,k,s (in the sense that

Fβ,k,s maps Dk into D). These properties guarantee that the recurrence, with initial inputs 1

at the leaves, can never yield the value −1, and hence that RG,v(β) 6= −1, so ZG(β) 6= 0.

The main technical content of this paper is to prove, under the conditions on β stated in

Theorem 2, the existence of such a set D, a result which we formally state as follows.

◮ Theorem 5. Fix a degree ∆ = d + 1. For any β ∈
(

∆−2
∆ , ∆

∆−2

)

, there exists δβ > 0 such

that, for any β′ ∈ C with |β′ − β| ≤ δβ, there exists a set D ⊆ C with 1 ∈ D, −1 6∈ D, and

(a) Fβ′,k,s(Dk) ⊆ D for integers k ≥ 0 and s such that 1 ≤ k + |s| ≤ d;

(b) −1 /∈ Fβ′,k,s(Dk) for integers k ≥ 0 and s such that 1 ≤ k + |s| ≤ ∆.

At the end of this section, we spell out the details of how to combine Lemma 4 and Theorem 5

into a proof of our main result, Theorem 2.

The main technical task of the paper is to prove Theorem 5. We briefly sketch our

approach in this extended abstract; the details can be found in the full version [15]. The first

step is to simplify the problem by working with a univariate version of the recurrence Fβ,k,s

defined in Lemma 4. The univariate version is defined as fβ,k,s(x) := βshβ(x)k, and we can

show that it satisfies Fβ(Dk) = fβ(D) for any set D such that C := log(hβ(D)) is convex in

the complex plane. (Henceforth we will drop the subscripts k, s for simplicity.) This means

that the set D we seek in Theorem 5 should be the image of a convex set C under the map

log ◦ hβ .

Next, to enable us to exploit the fact that β is in the correlation decay interval B =
(

∆−2
∆ , ∆

∆−2

)

, we further modify the univariate recurrence to fϕ
β := ϕ ◦ fβ ◦ ϕ−1, where

ϕ(x) := log x. This is an example of the use of a so-called “potential” function ϕ in order

to smooth a recurrence, as has been useful in several correlation decay arguments. The key

point here is that, when β ∈ B, fϕ
β (unlike fβ itself) is actually a uniform contraction on

an appropriate domain in C; hence we can conclude that fϕ
β (S) ⊆ S for “nice” sets S (i.e.,

S that are convex and symmetric around the origin). Since the condition fβ(D) ⊆ D is

equivalent to fϕ
β (log D) ⊆ log D, this imposes the further constraint that log D be a “nice”

set.

Putting together the constraints in the previous two paragraphs, we need to construct a

suitable convex set C whose image log(h−1
β (exp(C))) is nice; our set D in Theorem 5 will

then be defined as h−1
β (exp(C)) (and this set must include 1 and exclude −1). This turns

out to be hard to achieve directly due to the complexity of the map p := log ◦ h−1
β ◦ exp.

However, we are able to show that one can instead work with a (non-analytic) approximation

of p under which the image of a natural convex C becomes a nice (in fact, rectangular) set.

Moreover, this holds even for complex β that are sufficiently close to the region B. This fact

then allows us to push through the analysis and arrive at a proof of Theorem 5.

We conclude this overview with the proofs of Lemma 4 and Theorem 2 promised earlier.

The proof of our main technical result, Theorem 5, can be found in the full version [15].

Proof of Lemma 4 (Sketch). This description is exactly the same as the version of Weitz’s

result used for the Ising model in, e.g., [24] and [29], except that there, only the maps

Fβ,k,0 for 1 ≤ k ≤ d (with at most one final application with k = ∆) are used, and the

initial values come from the set {0, ∞}; these initial values are the values of the ratio for

single leaf vertices in the SAW tree pinned to − and + respectively, and the maps Fβ,k,0

describe how to combine the ratios from k subtrees. The version in the lemma follows by
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noticing that hβ(1) = 1, hβ(0) = β and hβ(∞) = 1/β, so that Fβ,k,0 applied to a vector

x with k coordinates, s1 of which are set to 0 and s2 to ∞, produces the same output as

Fβ,k−|s1−s2|,s1−s2
applied to the vector x

′ of k − |s1 − s2| coordinates obtained from x by

removing the 0 and ∞ entries, and then appending s1 +s2 −|s1 − s2| entries which are 1. ◭

Proof of Theorem 2. As indicated earlier, the induction is on the number of unpinned

vertices, n, of G. For the base case n = 0, ZG(β) = βk, where k is the number of pairs

of adjacent vertices in G that are pinned to different spins. Therefore, ZG(β) 6= 0 unless

β = 0. Next suppose that for some positive integer t, it holds that for every β ∈ B,

there exists a δ > 0 such that for all β′ ∈ C with |β′ − β| < δ, ZG(β′) 6= 0 for all graphs

G of maximum degree ∆ with at most t unpinned vertices. Now, let G′ be any graph

of the same maximum degree with t + 1 unpinned vertices. Fix any non-isolated vertex

v in G′, and let Z+
G′,v(β′), Z−

G′,v(β′) be the contributions to the partition function from

configurations with σ(v) = +, σ(v) = −, respectively. By the induction hypothesis, we know

that Z+
G′,v(β′) 6= 0, Z−

G′,v(β′) 6= 0 as they are exactly the Ising partition function defined on

the same graph G′ with the vertex v pinned (thus reducing the number of unpinned vertices

to t). Further, Lemma 4 implies that RG′,v(β′) =
Z

+

G′,v
(β′)

Z
−

G′,v
(β′)

can be computed by iteratively

applying a sequence of maps of the form Fβ′,k,s for 1 ≤ k + |s| ≤ d, followed by at most

one application where k + |s| = ∆, starting with initial values of 1. Part (a) of Theorem 5

then implies that the outputs of all except possibly the final application remain in the set D

defined in that theorem, and part (b) of the theorem implies that the final output, which is

equal to RG′,v(β) by Lemma 4, is not −1. Since Z+
G′,v(β′) and Z−

G′,v(β′) are non-zero, this

implies that ZG′(β′) 6= 0, completing the induction. ◭
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