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ABSTRACT Fisheye Images have attracted increasing attention from the research community due to their
large field of view (LFOV). However, the geometric transformations inherent in fisheye cameras result in
unknown spatial distortion and large variations in the appearance of objects. And this fact leads to poor
performance of the state-of-the-art methods in conventional two-dimensional (2D) images. To address this
problem, we propose a self-study and contour-based object detector in fisheye images, named FisheyeDet.
The No-prior Fisheye Representation Method is proposed to guarantee that the network adaptively extracts
distortion features without prior information such as prespecified lens parameters, special calibration
patterns, etc. Furthermore, in order to tightly and robustly localize objects in fisheye images, the Distortion
Shape Matching strategy is proposed, which invokes the irregular quadrilateral bounding boxes based on the
contour of distorted objects as the core. By combining with the ‘‘No-prior Fisheye Representation Method’’
and ‘‘Distortion Shape Matching’’, our proposed detector builds an end-to-end network. Finally, due to the
lack of public fisheye datasets, we are on the first attempt to create a multi-class fisheye dataset VOC-Fisheye
for object detection. Our proposed detector shows favorable generalization ability and achieves 74.87%mAP
(mean average precision) on the VOC-Fisheye, outperforming the existing state-of-the-art methods.

INDEX TERMS Fisheye, object detection and recognition, large field of view (LFOV), deep learning.

I. INTRODUCTION

Recently fisheye cameras, owing to their large field of view
(LFOV), have attracted diverse attention from both technical
experts and the public in general. Due to providing rich
visual information, they cover a wide variety of applica-
tions, ranging from generating the contents of augmented
reality (AR) or virtual reality (VR) [1], improving the per-
formance of intelligent robot vision systems [2], to reducing
the complexity of perception systems [3]. As opposed to
object detection under pinhole cameras, where remarkable
achievements [4]–[9] have been accomplished, object detec-
tion under fisheye cameras still needs serious progress. Not
enough achievements of object detection under fisheye cam-
eras are mainly caused by the fact that the geometric transfor-
mations inherent in fisheye cameras result in unknown spatial
distortion and large variations in the appearance of objects.

The associate editor coordinating the review of this manuscript and
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Current object detection methods in fisheye images are
grouped into two categories: distortion correction-based and
original LFOV image-based. In the distortion correction-
based methods, image warping encompassing the correction
model plays a key role in processing. The original LFOV
image-based methods try to design location-based convolu-
tional kernels [10]–[13] or adopt heuristic rules [14]–[16]
to extract distortion features directly. These works have
obtained satisfactory results, especially in pedestrians and
vehicles [17]–[20]. However, the prevalence of these methods
can be attributed to the assumption that geometric transforma-
tions are fixed and known.Meanwhile, these methods just use
rectangular bounding boxes (shown in Fig.1 (a), (b), and (c))
to localize objects. Therefore, two drawbacks exist in the
above methods. Firstly, building a unified fisheye distortion
model is impossible since the distortion comes from many
impacts like intrinsic camera parameters and various lens
distortion parameters. So fisheye features extracted from cor-
rected images or manually designed location-based convo-
lutional kernels may be seriously affected the accuracy of
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FIGURE 1. Comparison of irregular quadrilateral bounding boxes and
rectangular bounding boxes for localizing objects in fisheye images.
(a) (d) indicate that the rectangular bounding box brings redundant noise
(black area), (b) (e) indicate that the rectangular bounding box causes
unnecessary overlap, (c) (f) indicate that the rectangular bounding box
cannot be exactly localized.

detection and the robustness of the model. Secondly, rect-
angular bounding boxes cannot provide relatively accurate
locations in fisheye images. For example, as shown in Fig.1,
rectangular bounding boxes [4], [21], [22] result in redundant
information from background noise, unnecessary overlap,
or information loss due to inaccurate annotations in fisheye
images.
To address these two problems, we propose a self-study

and contour-based object detector in fisheye images, called
FisheyeDet, with the aim to adaptively extract valid dis-
tortion features and precisely identify predictable bound-
ing boxes. To adaptively extract valid distortion features,
we design a No-prior Fisheye Representation Method which
constructs an effective fisheye feature pyramid for object
detection, without prior information such as prespecified lens
parameters, special calibration patterns, etc. In this regard,
this method extracts valid distortion features in three steps:
(1) introducing newly finer convolutional kernels which
adaptively sample the feature maps at valid locations so as
to fit the appearance of distorted objects precisely; (2) tak-
ing full advantage of context features by fusing high-level
and low-level features; (3) improving the sub-network and
aggregating the distortion features into a fisheye feature
pyramid. As for precisely identifying predictable bounding
boxes, we introduce a novel Distortion Shape Matching strat-
egy which invokes irregular quadrilateral bounding boxes to
precisely localize all kinds of distorted objects in fisheye
images. Comparing the object locations obtained by rectan-
gular bounding boxes and by irregular quadrilateral bounding
boxes, as shown in Fig.1, we find that the latter can alleviate
the influence of redundant information, unnecessary overlap,
and inaccurate annotations.
To the best of our knowledge, there is no benchmark fish-

eye dataset for the multi-class object detection task. Thus,

we are the first to create a fisheye-like version of PASCAL
VOC [23] (called VOC-Fisheye). With the synthesized fish-
eye dataset, verification and evaluation of FisheyeDet can be
completed with a virtual optical environment. Experimental
results demonstrate that our method outperforms state-of-
the-art methods in terms of mAP by 2.57%-18.14%.

Our contributions are summarized in four-folds:

• We propose FisheyeDet, a self-study and contour-based
object detector in fisheye images. Instead of performing
global parametric transformations and warping features,
FisheyeDet effectively integrates distortion features rep-
resentations learning and tighter bounding boxes loca-
tions refinement into the detector, which significantly
improves the generalization capability of object detec-
tion in fisheye images.

• We design a No-prior Fisheye Representation Method
to extract valid distortion features and construct an
effective fisheye feature pyramid adaptively. In the pro-
cess of learning the properties of distortion in fisheye
images, manual design based on prior information is
not involved, such as designing location-based convo-
lutional kernels or correcting images.

• The designed Distortion Shape Matching utilizes irreg-
ular quadrilateral bounding boxes to tightly localize the
distorted objects, which improves the accuracy of pre-
diction.

• Both qualitative and quantitative experiments on the
VOC-Fisheye dataset demonstrate the superiority of our
method.

The rest of the paper is organized as follows: Section II
examines previous related works. The network architecture of
FisheyeDet is proposed in Section III-A. Each module of this
network is detailed in Section III-B and Section III-C. And in
Section III-D, the loss function of our network is described.
Section IV introduces the generation of a synthesized fisheye
dataset, the training strategy, and the quantitative and quali-
tative experiments.

II. RELATED WORK

In this section, we review the previous works related to our
method from two aspects: object detection in large field of
view (LFOV) and deformation modeling.

A. OBJECT DETECTION IN LARGE FIELD OF VIEW

Object detection is a fundamental problem in computer
vision, and detection in LFOV is one of the branches. Cur-
rent object detection methods in fisheye images are grouped
into two categories: distortion correction-based and original
LFOV image-based.

1) THE DISTORTION CORRECTION-BASED METHODS

The distortion correction-based methods usually include two
stages: image warping and object detection. Image warping
is the key to these methods. Silberstein et al. [24] first used
Caltech Camera Calibration Toolbox to conduct the distortion
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correction, then used a multiple-part based detection method
to detect pedestrian, called Accelerated Feature Synthe-
sis (AFS). Based on this AFS-based system, Levi et al. [19]
presented an integrated system using temporal cues based
on information from multiple subsequent video frames to
reduce the system error rates. Bertozzi et al. [25] first used
the equidistance mapping function to both correct the lens
distortion and obtain a wide-angle view without strong aber-
rations, then they used a Soft-Cascade+Aggregated Channel
Feature (ACF) classifier to detect vehicles and pedestrians.
To maximize the usage of lost regions, Kim et al. [26] used
directional interpolation to transform a fisheye image into
an anamorphic image. Jeong et al. [27] utilized a distortion
model to transform the distorted images to flat images, and
then applied to the Histogram of Oriented Gradient (HOG)
to detect cars on the flat images. Suhr et al. [17] transformed
fisheye images via Mercator projection to reduce the impact
of pedestrian shape variations, then the Viola-Jones detector
was used to achieve pedestrian detection.

2) THE ORIGINAL LFOV IMAGE-BASED METHODS

Deng et al. [28] were the first to introduce deep learning to
detect multi-class objects in fisheye images, validating the
feasibility of the original LFOV image-based methods. After
that, Yang et al. [29] compared the results of different detec-
tion algorithms that take equirectangular projection (ERP)
images directly as inputs, showing that the network only pro-
duces a certain accuracy without projecting ERP images into
conventional 2D images. Lee et al. [10] adjusted convolu-
tional kernels and pooling operators towork in spherical coor-
dinates so that the convolutional neural network (CNN)-based
detectors could be used directly on spherical coordinates.
SphereNet, proposed by Benjamin Coors et al. [11], could
adapt the sample locations of the convolutional filters which
effectively reverse distortions. In 360◦ images, the trans-
formation is location-based, so Su et al. [12] proposed an
approach to adjust the kernel shape based on its location on
the sphere. To make the model easy to train and deploy, they
further presented the Kernel Transformer Network (KTN).
It learned a transformation that considered both spatial and
cross-channel correlation.
However, some shortcomings exist in these methods: the

strong dependency on handcrafted features or location-based
convolutional kernels, and a remarkable loss of image quality
during the geometric transformations, leading to some valid
object features loss, particularly around the perimeter.

B. DEFORMATION MODELING

Deformation modeling is an extremely important research
topic over a long period. Besides using object parts
with a deformable configuration [30] to model objects,
a lot of tremendous works have been done in designing
translation-invariant features. There have been some note-
worthy works including scale-invariant feature transform
(SIFT) [31], oriented FAST and rotated BRIEF (ORB) [32],
and deformable part-based models (DPM) [14]. Such works

have a common flaw: the poor representation power caused
by the handcrafted features, only applicable to limited geo-
metric transformations. In the era of deep learning, Spatial
transformer networks (STN) [33] was the first work to con-
firm the feasibility of learning translation-invariant features
by CNNs. Scattering networks [34] and TIpooling [35] could
learn different types of transformations. In addition, some
researchers [36], [37] bent their effort to specific transfor-
mations. However, these works still cannot handle unknown
transformations in more complex object tasks. Dai et al. [38]
proposed Deformable ConvNets to effectively model geo-
metric transformations in complex vision tasks since the
offsets could be learned by adding deformable convolution
and deformable RoIpooling modules.

III. THE PROPOSED METHODOLOGY

In this section, we elaborate on the self-study and
contour-based object detector, FisheyeDet. We first briefly
introduce the network architecture in Section III-A. Then
we detail the No-prior Fisheye Representation Method in
Section III-B. After that, we propose a novel strategy,
named Distortion Shape Matching in Section III-C. Finally,
we precisely describe the loss function of our method in
Section III-D.

A. ARCHITECTURE

FisheyeDet is inspired by SSD [22], aiming to build an end-
to-end trainable network to detect objects in fisheye images.
The designed No-prior Fisheye Representation Method con-
structs a novel fisheye feature pyramid, yielding an end-
to-end solution. Considering the characteristics of objects
in fisheye images, the Distortion Shape Matching strategy
is designed to tightly localize the distorted objects. Both of
two novel designs are independent of the backbone archi-
tecture. Therefore, the architecture of FisheyeDet uses the
same VGG-16 reduced backbone designed in SSD [22]. Then
the Distortion Feature Extraction Layers are added on this
backbone. In this part, the No-prior Fisheye Representation
Method is used to adaptively extract valid distortion fea-
tures. The Prediction Detection Layers are inserted after the
Distortion Feature Extraction Layers. In this part, the Dis-
tortion Shape Matching strategy is applied to get the final
outputs including precise locations and corresponding cate-
gories. The high-level overview and the detailed architecture
of FisheyeDet are illustrated in Fig.2 and Fig.3, respectively.
The details of each component in FisheyeDet are as follows:

1) MULTI-SCALE BACKBONE LAYERS

The architecture of FisheyeDet adopts the same VGG-16
reduced backbone designed in SSD [22]. More specifically,
our network keeps the layers from conv1_1 to conv5_3 of
VGG-16 architecture [39], and then converts the fc6 and
fc7 (two fully-connected layers) of VGG-16 into conv6 and
conv7 (convolutional layers). All of these constitute our
Multi-scale Backbone Layers. After that, several modules can
be added.
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FIGURE 2. Overview of the proposed FisheyeDet, which consists of Multi-scale Backbone Layers, Distortion Feature Extraction Layers, and Prediction
Detection Layers.

FIGURE 3. Details of the proposed FisheyeDet. It consists of Multi-scale Backbone Layers, Distortion Feature Extraction Layers, and Prediction Detection
Layers. The No-prior Fisheye Representation Method (NFRep) is used in Distortion Feature Extraction Layers, which consists of Distortion Feature
Extractor Module (DFEM), Fish-context Module (FM), and Multi-filter Feature Connections Module(MFCM). The outputs of Distortion Feature Extraction
Layers are used as the input of the Prediction Detection Layers, denoting as feature pyramid (FIFE layers). At each location of a FIFE layer, the Distortion
Shape Matching is used to output an n-dimensional vector for each anchor box. Non-maximum suppression (NMS) operation is applied during the test
process to merge the outputs of the Distortion Shape Matching.

2) DISTORTION FEATURE EXTRACTION LAYERS

Our Distortion Feature Extraction Layers aim to extract fish-
eye features accurately. As we all know, most state-of-the-art
methods [40]–[42] construct different feature pyramids to
detect an object with variant sizes. In addition, the manu-
ally designed geometric transformations of fisheye images
are not fit well the nature of the real distortion. Following
these intuitions, we propose a self-study process, in which
the properties of distortion in fisheye images can be learned
by the network without introducing any design invoking the
prior information. In this process, the key is that we design
the No-prior Fisheye Representation Method to construct an
effective fisheye feature pyramid for object detection, without
prior information such as prespecified lens parameters, spe-
cial calibration patterns, etc. Concretely, we design the Dis-
tortion Feature Extractor Module which replaces handcrafted
convolutional kernels with deformable convolutional blocks.
This newly introduced finer convolutional kernels will sam-
ple the feature maps at valid locations so as to fit the appear-
ance of objects precisely. Then considering the importance of

the context, we further design the Fish-contextModule to fuse
features from different levels by combining low-resolution,
high-level features with high-resolution, low-level features.
After that, the Multi-filter Feature Connections Module is
proposed to improve the sub-network and aggregate the dis-
tortion features. The structure of each module is shown in
Section III-B1, III-B2, and III-B3 for details.

3) PREDICTION DETECTION LAYERS

In this part, multiple output layers constitute our Fisheye
Image Feature Extraction (FIFE) layers. And then the Distor-
tion Shape Matching strategy allows us to tightly predict can-
didate object regions represented by irregular quadrilateral
bounding boxes. After that, these regions undergo an efficient
non-maximum suppression (NMS) process. Finally, we get
detection results. In this stage, the Distortion ShapeMatching
strategy is proposed to remedy the dilemma of containing
redundant information, unnecessary overlap, and inaccurate
annotations. Simultaneously, a contour-based object localiza-
tion will be obtained.
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B. NO-PRIOR FISHEYE REPRESENTATION METHOD

The No-prior Fisheye Representation Method consists of
three modules, i.e., Distortion Feature Extractor Module,
Fish-context Module, and Multi-filter Feature Connections
Module. All of the above modules make adaptively and accu-
rately extracting distortion features possible. More details
about each part are described below.

1) DISTORTION FEATURE EXTRACTOR MODULE

In real-world systems, owing to the unknown geometric trans-
formations, deformation of the sampling grid is needed, via
adaptively learning from preceding feature maps.
We employ the conv4_3 and conv7 of VGG-16 reduced

backbone as parts of feature extraction layers and add sev-
eral convolutional layers as the other feature extraction lay-
ers (Fig.3). The traditional convolutional unit samples the
input feature maps at a fixed location, which is not sufficient
for object detection in fisheye images. Herein, we utilize
the deformable convolutional [38] blocks to achieve better
receptive fields that cover the objects in fisheye images.
The deformable convolution consists of two steps: (1) sam-
pling over the input feature map x, with an offset 1pn; (2)
Weighted summation of sampling points, with a weighting
coefficient w. For each location p0 on the output feature
map y, the formula is as follows:

y(p0) =

∑

pn∈R

w(pn) · x(p0 + pn + 1pn) (1)

where R is a grid which defines the receptive field size and
dilation, pn represents each location in R. The offsets1pn can
be learned from the preceding feature maps, via additional
convolutional layers. Thus, introducing deformable convo-
lution to construct Distortion Feature Extractor Module can
learn receptive fields adaptively, especially when the geomet-
ric transformations are unknown.

2) FISH-CONTEXT MODULE

In general, low-level features are suitable for the objects
with simple detailed information while high-level features
are for objects with complex detailed information. Therefore,
fully mining the distortion features from different levels plays
a key role. U-Net [43], a U-shaped architecture, consists
of a contracting path to capture context and a symmetric
expanding path that enables precise localization. In this way,
the high-resolution features from the contracting path are
combined with the upsampled output. By using this struc-
ture, It can propagate context information to higher-resolution
layers, achieving multi-level feature fusion. Inspired by
this structure, we design a tiny hourglass structure, named
Fish-context Module. This module takes full advantage of
context features by fusing high-level and low-level features
to produce rich contextual information.

Fish-context Module fuses features from different levels
by combining low-resolution, high-level features with high-
resolution, low-level features. As illustrated in Fig 4, since the
Fish-context Module takes three layers with different scales

FIGURE 4. Illustration of Fish-context Module.

FIGURE 5. Illustration of Multi-filter Feature Connections Modules. Note
that (a), (b), and (c) are the three types of Multi-filter Feature Connections
Modules.

as input, we adopt one deconvolutional operation to expand
the lower-resolution layer and one convolutional operation
to reduce the higher-resolution layer before fusing features.
Specifically, a convolutional layer and a learned deconvo-
lutional layer reap the lower-level context and higher-level
context respectively. In particular, a batch normalization layer
and a RELU layer are added after each convolutional layer
and deconvolutional layer.

3) MULTI-FILTER FEATURE CONNECTIONS MODULE

The multi-scale CNN (MS-CNN) [44] points out that the way
of improving accuracy is to improve the sub-network of each
task. Moreover, recent evidence [45] reveals that the wider
and deeper networkwhich getsmore accurate features ismore
conducive to classification and localization. In this regard,
Inception network structure [46] has shown great capability.
Meanwhile, it also generates multi-scale features by apply-
ing different scale convolutional kernels and concatenating
all these outputs. Following these principles, we design the
Multi-filter Feature Connections Module.

Multi-filter Feature Connections Module generates
multi-scale features from a single-level layer by placing a
group of convolutional operations with different convolu-
tional kernels. Noticing that Multi-filter Feature Connections
Module takes the features generated by Fish-context Module
as input. This would allow each Multi-filter Feature Con-
nections Module to reap the multi-level multi-scale features,
namely, these features are more representative. Meanwhile,
to explicitly extract the distortion features of different layers,
we design three types of Multi-filter Feature Connections
Modules. Fig.5 (a), (b), and (c) are the detailed structure,
respectively.
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FIGURE 6. Irregular IoU computation. The left part is an example of
irregular IoU computation. The right part is an example of using the
Vector Cross Product to estimate the location of the point Pk .

Noticing that before 3 × 3 convolutions and 7 × 7 convo-
lutions, a 1 × 1 convolution is used to compute dimension
reductions. This method significantly reduces the parameter
count. Besides, Inception v2 [46] pinpoints that the effect of a
1×n convolution followed by a n×1 convolution is similar to
a n× n convolution. Using this trick, it can save computation
cost.

C. DISTORTION SHAPE MATCHING

As described in the previous parts, the proposal of the Distor-
tion Shape Matching strategy has innovations in localizing
the objects in fisheye images. In this strategy, novel irregular
quadrilateral bounding boxes are used to overcome the chal-
lenges shown in Fig.1 (a) redundant information, (b) unneces-
sary overlap, and (c) information loss. This strategy contains
two important parts:

1) IRREGULAR INTERSECTION OVER UNION (IoU)

COMPUTATION

Using an 8-points representation method is a contour-based
way to describe the objects in fisheye images. However,
the overlap formed by this method is a polygonal area,
so the previous methods [21], [22], [47] of IoU computation
between the ground truth box and every anchor box may lead
to an inaccurate IoU and further ruin the proposal learning.
Therefore, we put forward a simplified and statistical-based
calculation method to compute the irregular IoU, as shown in
Algorithm 1. Fig.6 visualizes a geometric principle.

Algorithm 1 Irregular IoU Completion
Input: Q1,Q2, . . . ,QN : Quadrilateral; N : Randomly gener-

ate N sample points;
Output: IoU between quadrilateral pairs: IoU
1: Pk : kth random sample point;
2: for each pair < Qi,Qj > (i<j) do
3: Points Set PSetQi ,PSetQj
4: for k = 1 to N do

5: Estimate the location of the point Pk
6: If Pk is inside the Qi, add Pk to PSetQi
7: If Pk is inside the Qj, add Pk to PSetQj
8: end for

9: Compute intersection I of PSetQi and PSetQj
10: IoUi,j ⇐

Num(I )
Num(PSetQi )+Num(PSetQi )−Num(I )

11: end for

FIGURE 7. Illustration of learning of irregular quadrilateral bounding
boxes. Note that the green box is the best matched anchor box, and the
blue box is the ground truth box. The red arrows mean the offsets
between the best matched anchor box and the ground truth box.

To compute the IoU for each pair < Qi,Qj >, the first
step is to uniformly sample N points (Pk , k ∈ [1,N ]). Then,
we estimate the location of each sample point Pk . In this step
(Lines 5-7 in Algorithm 1), considering the fact that in our
paper every Qi is a convex quadrilateral, we use the Vector
Cross Product method (2) to estimate the point Pk whether it
is inside an irregular quadrilateral or not:

BC × BPk > 0, CE × CPk > 0

EG× EPk > 0, GB× GPk > 0 (2)

where B, C , E , and G are the four vertices of a quadrilat-
eral, Pk is a random sample point (Shown in Fig.6), if all
four formulas are established, then the point Pk is inside
the quadrilateral. It’s remarkable that those points inside the
ground truth box will all be reserved for sharing computation.
Following this way, IoU could be easily computed.

2) LEARNING OF IRREGULAR QUADRILATERAL

BOUNDING BOXES

In this part, we adopt 8-points (x1, y1, x2, y2, x3, y3, x4, y4) to
annotate the distorted ground truth box, instead of the con-
ventional 4-points. The outputs of Distortion ShapeMatching
strategy include best matched anchor boxes and the offsets
between the anchor boxes and the corresponding ground truth
boxes.

By calculating IoU between each anchor box and ground
truth box, the predictor can get the offsets from the
best matched anchor box at each location (see Fig.7
for an example). More precisely, let ground truth box
gt = (x1, y1, x2, y2, x3, y3, x4, y4), anchor box is a rectangle
denoted as: ab = (xmin, ymin, xmax , ymax). From the given
coordinates, we calculate the width and height of the anchor
box respectively wab = xmax − xmin, hab = ymax − ymin. The
offsets are calculated as follows:

1x ′
i =

xi − xmin

wab
, 1x ′

j =
xj − xmax

wab

1y′i =
yi − ymin

hab
, 1y′j =

yj − ymax

hab
(3)
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where i = 1, 3, j = 2, 4. This is considered as a direct
regression from a rectangle bounding box to the best matched
quadrilateral ground truth box.

D. LEARNING

Joint localization loss and confidence loss is the popular and
powerful loss function in the object detection task [21], [22],
[47]–[50], so we adopt a similar form to define the loss
function. The loss function is defined as:

L(x, c, l, g) =
1

N
(Lconf (x, c) + αLloc(x, l, g)) (4)

where x is the match indication matrix. c is the confidence, l
is the predicted location, and g is the ground truth location,
N is the number of anchor boxes that match ground truth
boxes. Noticing that in the match indication matrix x, if the
i-th anchor box and the j-th ground truth box match according
to the Distortion Shape Matching strategy, xij is set to 1,
otherwise 0. Additionally, α is set to 1.

As the image resolution has a certain loss, some positive
information is lost, which leads to an imbalance between pos-
itive and negative samples during training. Herein, we intro-
duce hard negative mining [22] and focal loss [51] to address
this problem. Thus, the smooth L1 loss [47] is for Lloc and the
focal loss is for Lconf . The training objective is to minimize
this loss function (see equation (4)).

IV. EXPERIMENTS

In this section, we evaluate our method in fisheye images.
To compensate for the lake of benchmark fisheye datasets
for the multi-class object detection task, we are on the first
attempt to address this problem by creating a fisheye-like
version of PASCALVOC, called VOC-Fisheye in Section IV-
A. And in Section IV-C, we evaluate our FisheyeDet on the
VOC-Fisheye dataset. Finally, extensive ablation studies are
performed to validate the effectiveness of our approach in
Section IV-D.

A. SYNTHESIZED DATASETS–VOC-FISHEYE DATASET

Convolutional neural networks (CNNs) are potential meth-
ods for mining distortion features of the objects in fisheye
images. Exploring the reasons, one of the indispensable fac-
tors is the large-scale training datasets. Although various
public datasets, e.g., PASCALVOC [23], ImageNet [52], and
COCO [53] are available for the identification of multiple
objects, they aim at generic object detection, not specific for
fisheye object detection.
Considering the difference between traditional images and

fisheye images, when the models based on pre-trained on
the generic datasets are directly applied to the fisheye object
detection task, the results are often unsatisfactory. Besides,
it is expensive and time-consuming to generate large-scale
datasets by collecting data and corresponding annotations.
Instead of using the above-mentioned method, we produce
a synthesized training fisheye dataset based on an exist-
ing perspective image dataset–PASCAL VOC [23]. To the

FIGURE 8. Fisheye-like Distortion. P represents the perspective imaging
point. P ′ represents the fisheye imaging point. Radial distortion means
the offset of the image position along the imaging radius direction, and
the tangential distortion indicates the offset of the image pixel position
along the tangential direction of the imaging point.

author’s best knowledge, it is the first public fisheye dataset
for the multi-class object detection task by transforming a
known perspective image dataset. Under the following parts,
we introduce a procedure for generating synthesized fisheye
images.

1) FISHEYE-LIKE DISTORTION

Camera lens distortions roughly contain two categories: tan-
gential distortion and radial distortion [54]. For normal cam-
eras, radial distortion can be considered negligible in many
applications, but for fisheye lenses, it cannot be ignored
due to adverse effects [55]. Fig.8 visualizes the fisheye-like
distortion. In this paper, we only consider the radial distortion
without tangential distortion since the tangential distortion is
caused by the manufacturing process [56].

To visually approximate the appearance of fisheye images,
we first normalize the coordinates of the original images
(Fig.9(a)), which means that (0, 0) represents the center and
(±1, ±1) are the coordinates of four corners, respectively.
Then we introduce the radial distortion [57], in which straight
lines bend outward from the center of the image. Specifically,
the coordinate mapping between the pixels (x, y) on an origi-
nal image and corresponding pixels (x ′, y′) in a fisheye image
can be defined as:

(x ′, y′) = (x

√

1 −
y2

2
, y

√

1 −
x2

2
) (5)

Furthermore, we introduce a coordinate scaling factor
e−r

2/n to control the severity of its distortion.

(x ′′, y′′) = (x ′e−r
2/n, y′e−r

2/n) (6)

where r is the distance from coordinates (x ′, y′) to the center.

2) ANNOTATION

After leveraging the procedure mentioned above, we get
49653 fisheye-looking training images and 14856 testing
images. In order to precisely describe the object contour,
we adopt irregular quadrilaterals to annotate the locations
of objects. The parameters are (x1, y1, x2, y2, x3, y3, x4, y4),
where (xi, yi) are the location of the four corners of the ground
truth box.
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FIGURE 9. Representative samples of the VOC-Fisheye dataset. (a) original images from the PASCAL VOC [23], (b),(c),(d) and(e) fisheye images with
different distortions.

TABLE 1. The feature extraction layers.

3) FURTHER DETAILS OF VOC-FISHEYE

To verify the network without prior information, we expect
our dataset contains different distortions. Based on this idea,
an original image from the PASCAL VOC [23] can be
transformed into several of fisheye images by introducing
different coordinate scaling factors. Some examples of the
VOC-Fisheye dataset can be seen in Fig.9

B. IMPLEMENTATION DETAILS

The VOC-Fisheye ‘trainval’ dataset (the same as PASCAL
VOC) is used to train our model. It consists of 20 object
categories, each of which has the annotated ground truth
location (8-points) and corresponding category information.
During the training stage, the input images are randomly
cropped and resized to 300 × 300. FisheyeDet is trained
with stochastic gradient descent (SGD) optimizer with batch
size 64. The learning rate lr is set to 0.001, and the nesterov
momentum to 0.9 with the weight decay of 5 × 10−4. The
learning rate of every 80 epochs decreases once. In addition,
the aspect ratios of anchor boxes are set to 1, 2, 3, 5, 1/2,
1/3, 1/5. Average precision (AP) is used as an evaluation
protocol for each object category and mean AP (mAP) [23]
is computed over all object categories.

C. COMPARISON TO THE STATE-OF-THE-ART

In this subsection, we quantitatively evaluate our FisheyeDet
on the VOC-Fisheye dataset and compare it with the other
seven state-of-the-art object detectionmethods [8], [21], [22],
[47]–[50].

FIGURE 10. Results of using No-prior Fisheye Representation Method in
different numbers of layers (of 3 × 3 convolutions) in the original SSD
feature extraction network. With the increase of layers, we report the
results on VOC-Fisheye 2007 test.

In Fig.10, we evaluate the effect of the No-prior Fisheye
Representation Method based on the original SSD feature
extraction network (shown in Table 1). It obviously shows
that: (1) the value of mAP steadily improves with the increas-
ing layers. (2) the growth of mAP gradually decreases from
3.46% to 0.07%, indicating that the improvement saturates
when using 3 layers (conv4_3, conv7, conv8_2). So we intro-
duce the No-prior Fisheye Representation Method to the last
three layers for training and testing. Other methods, which
are the representative of the current mainstream models of
object detection, are re-trained and implemented according to
the details provided in the corresponding papers. Results are
given in Table 2. Our method (FisheyeDet) improves mAP to
74.87%,which is surpassing all exitingmethods (e.g.,63.42%
mAP of Faster R-CNN, 56.73% mAP of YOLO, 68.92%
mAP of YOLO V3, 67.63% mAP of SSD, 70.01% mAP of
DSSD, 70.82% mAP of RSSD, and 72.30% mAP of ATSS)
on the VOC-Fisheye dataset.

Additionally, in order to further reinforce and confirm the
superiority of our method, we also evaluate FisheyeDet on
the COCO-Fisheye dataset and the APbbox is boosted by
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FIGURE 11. Baseline vs the proposed FisheyeDet. The first and third lines images are based on the baseline for detecting objects and locating
the objects under different distortions. The second and last line images are based on the FisheyeDet for detecting objects and locating the
objects under different distortions.

TABLE 2. Comparison to the state-of-the-art methods.

0.7%-14.4%. The descriptions of the COCO-Fisheye dataset,
implementation details, and experimental results are detailed
in Appendix A.

D. ABLATION STUDIES

To understand FisheyeDet better, we carry out a series of con-
trolled experiments on the VOC-Fisheye dataset to examine

the impact of different components in our method. The base-
line is a simple detector based on the original SSD, with
300 × 300 input size and VGG-16 reduced backbone.

1) NO-PRIOR FISHEYE REPRESENTATION METHOD

a: DISTORTION FEATURE EXTRACTOR MODULE

Without the prior information, refining the process of fish-
eye distortion feature extraction is a crucial part of the
object detector. And the deformable convolutional blocks
have shown its capability in learning representative image
features for the general object detection task [38]. Base on
these viewpoints, we introduce the deformable convolutional
blocks to construct Distortion Feature Extractor Module.
To indicate the effect of this module, we adopt two different
forms (3 × 3 convolutions and 5 × 5 convolutions) in our
detector and report the results in Table 3.
As shown in Table 3, we observe that it has much bet-

ter mAP (3.03%) for the module with 5 × 5 convolutions,
and has less improvement in mAP (2.64%) for the module
with 3 × 3 convolutions. Thus, Distortion Feature Extractor
Module is effective and necessary in fisheye images without
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TABLE 3. Ablation studies of FisheyeDet: effect of Distortion Feature
Extractor Module. a: 3 × 3 convolutions, b: 5 × 5 convolutions. Animals:
bird, cat, cow, dog, horse, sheep; Vehicles: aeroplane, bicycle, boat, bus,
car, motorbike, train; Indoors: bottle, chair, diningtable, pottedplant,
tvmonitor, sofa; Person: person; mAP: the mean AP of all object
categories.

TABLE 4. Ablation studies of FisheyeDet: effect of Fish-context Module.
DFEM: Distortion Feature Extractor Module; FM: Fish-context Module;
Animals: bird, cat, cow, dog, horse, sheep; Vehicles: aeroplane, bicycle,
boat, bus, car, motorbike, train; Indoors: bottle, chair, diningtable,
pottedplant, tvmonitor, sofa; Person: person; mAP: the mean AP of all
object categories.

prior information. Even though the 5 × 5 convolutions can
achieve better results, the training speed is very slow. This is
understandable: themore perception fields obtained, themore
effective features of object instances extracted. However,
the offsets that need to learn (change from 3 × 3 to 5 × 5)
are also correspondingly increased (see Section III-C), which
consumes more time. Therefore, in the remaining experi-
ments, we use 3 × 3 deformable convolutional blocks in the
feature extraction network.

b: FISH-CONTEXT MODULE

Although Distortion Feature Extractor Module can boost
detection performance, each layer in the feature pyramid con-
tains single-level information, which is similar to the original
SSD [22]. As discussed in Section III-B2, each Fish-context
Module fuses features from different levels by combining
high-level features with low-level features. That is, it may
have additional information about objects which are larger
or smaller than the objects. Table 4 presents the effect of the
Fish-context Module.

By adding Fish-context Module, we can see that the
gaining is improving from 67.63% to 72.68%. This sig-
nificant improvement illustrates the effectiveness of joining
high-level features with the low-level features, resulting in a
better representation of objects in fisheye images.

c: MULTI-FILTER FEATURE CONNECTIONS MODULE

Multi-filter Feature Connections Module aims to generate
multi-scale features. To reveal the influence of theMulti-filter
Feature Connections Module on performance, we carry out
a comparative experiment. Table 5 reports the effect of the
Multi-filter Feature Connections Module.

TABLE 5. Ablation studies of FisheyeDet: effect of Multi-filter Feature
Connections Module. MFCM: Multi-filter Feature Connections Module;
NFRep: No-prior Fisheye Representation Method consist of Distortion
Feature Extractor Module, Fish-context Module, and Multi-filter Feature
Connections Module; Animals: bird, cat, cow, dog, horse, sheep; Vehicles:
aeroplane, bicycle, boat, bus, car, motorbike, train; Indoors: bottle, chair,
diningtable, pottedplant, tvmonitor, sofa; Person: person; mAP: the mean
AP of all object categories.

FIGURE 12. Visualization of Distortion Shape Matching. (a) (b) (c) use
rectangular bounding boxes for localizing objects in fisheye images, and
(d) (e) (f) use irregular quadrilateral bounding boxes for localizing objects
in fisheye images. By comparing (a) (b) (c) and (d) (e) (f), the problems of
redundant information, unnecessary overlaps, and inaccurate
annotations are solved, respectively.

Using Multi-filter Feature Connections Module alone,
the proposed module is sightly better than the original SSD.
By integrating the Distortion Feature Extractor Module and
Fish-context Module, the mAP rises nearly 6.27%.

2) DISTORTION SHAPE MATCHING

Using the No-prior Fisheye Representation Method can
enhance the detection capability, yet it is limited by rectan-
gular bounding boxes such as redundant information, unnec-
essary overlaps, and inaccurate annotations (shown in Fig.1).
To solve this limitation, we introduce the Distortion Shape
Matching strategy into our network.

As shown in Fig.12, Distortion Shape Matching strategy
can solve the problems of redundant information, unneces-
sary overlaps, and incorrect annotations, respectively. And it
indicates that this strategy generates a tighter object region at
the prediction stage.

In order to expose the effect of the Distortion ShapeMatch-
ing strategy, we do further study on this. As Table 6 shows,
the architectures with this strategy are better than those
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TABLE 6. Ablation studies of FisheyeDet: effect of Distortion Shape
Matching (DSM). FM: Fish-context Module; MFCM: Multi-filter Feature
Connections Module; NFRep: No-prior Fisheye Representation Method
consist of Distortion Feature Extractor Module, Fish-context Module, and
Multi-filter Feature Connections Module; Animals: bird, cat, cow, dog,
horse, sheep; Vehicles: aeroplane, bicycle, boat, bus, car, motorbike, train;
Indoors: bottle, chair, diningtable, pottedplant, tvmonitor, sofa; Person:
person; mAP: the mean AP of all object categories.

without this strategy in mAP. Specifically, if we introduce
the Distortion Shape Matching strategy into the Baseline,
the mAP is significantly increased by 3.41%. Such observa-
tion remains true when applied to the other three methods
including the Baseline + FM, the Baseline + MFCM, and
the Baseline + NFRep. It verifies that directly predicting the
compact irregular quadrilateral bounding boxes is essential.
Interestingly, the Baseline + NFRep (i.e., FisheyeDet with-
out DSM) is slightly better than our detector in Animals.
By revisiting the VOC-Fisheye and experimental results,
we conjecture that the degradation is probably due to the
following aspect: our detector is relatively complex, which
requires more samples to enhance its capability. However,
some categories belonging to Animals have too few samples,
leading to a slight degradation compared with the Baseline +

NFRep (i.e., FisheyeDet without DSM) in AP of these cate-
gories and consequent performance degradation in Animals
categories. Nevertheless, we also claim that this module can
capture the distortion information in fisheye images.
Integrating the aforementioned two parts (Section IV-D1

and Section IV-D2), we can see that the mAP is boosted by
7.24% and the AP of each category increases 4.57%, 5.81%,
11.89%, 5.53% with respect to Animals, Vehicles, Indoors,
Person, respectively. This sharp increase demonstrates the
favorable robustness and generalization capability of pro-
posed FisheyeDet, no matter how severe the distortion of the
objects will be. Although there are some objects missed, most
of the objects can be robustly recalled.

V. CONCLUSION

In this paper, we propose a self-study and contour-based
object detector in fisheye images, denoted as FisheyeDet,

combined with the ‘‘No-prior Fisheye Representation
Method’’ and ‘‘Distortion Shape Matching’’. No-prior Fish-
eye Representation Method requires neither a prior lens
design specifications nor a special calibration pattern to
adaptively generate the sampling locations and construct
an effective feature pyramid. To do this, we first construct
the Distortion Feature Extractor Module which improves
the ability to extract fisheye distortion features. Besides,
we utilize the Fish-context Module to fuse context fea-
tures. In addition, Multi-filter Feature Connections Module is
introduced to aggregate the distortion features. Furthermore,
we leverage distortion characteristics of fisheye to guide the
bounding box, designing a novel Distortion Shape Matching
strategy to precisely localize all kinds of distorted objects
in fisheye images. These works are helpful in building an
end-to-end network. Due to the lack of benchmark fisheye
datasets for the multi-class object detection task, we are on
the first attempt to put forward the VOC-Fisheye dataset.
Experiments on this dataset show that FisheyeDet signifi-
cantly outperforms the state-of-the-art conventional methods.
The FisheyeDet allows arbitrary-distorted input, keeps good
generalization ability, and shows higher accuracy.

APPENDIX

In this part, in order to further reinforce and confirm the
superiority of our method, we compare the experimental
results of the proposed FisheyeDet with state-of-the-art object
detection methods [8], [22], [47], [49], [58] in Table 7 on the
COCO-Fisheye dataset.

TABLE 7. Detection results comparisons in terms of accuracy
performance.

DATASET

The COCO-Fisheye dataset is constructed from the
COCO [53] dataset by using the fisheye production
method mentioned in Section IV-A. This dataset contains
354861 fisheye-looking training images and 15000 testing
images. The training images and testing images are from
trainval35k and minival, respectively. In this dataset, it con-
sists of 80 object categories.

IMPLEMENTATION DETAILS

During the training stage, the input images are randomly
cropped and resized to 300 × 300. FisheyeDet is trained
with stochastic gradient descent (SGD) optimizer with batch
size 64. The learning rate lr is set to 0.001, and decreases
at the 80-th and the 100-th epochs, respectively. The nesterov
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momentum to 0.9 with the weight decay of 5×10−4. In addi-
tion, the aspect ratios of anchor boxes are set to 1, 2, 3, 5,
1/2, 1/3, 1/5. For evaluation metrics, we adopt the standard
mean average-precision scores averaged over multiple IoU
thresholds.

EXPERIMENTAL RESULTS

As shown in Table7, our method obtains 29.6% APbbox ,
which is surpassing all exiting methods (e.g., 15.2% APbbox
of Faster R-CNN [47], 18.8% APbbox of SSD [22], 21.7%
APbbox of DSSD [49], 23.3% APbbox of RefineDet [58], and
28.9% APbbox of ATSS [8]) on the COCO-Fisheye dataset.
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