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1 Introduction

Over the past few years, we have witnessed tremendous progress in our understanding of
mathematical and physical properties of Feynman integrals, notably in the massless limit
relevant for the description of high-energy processes. A great deal of this progress has cen-
tred around the most symmetrical and solvable conformal field theory in four dimensions,
planar N = 4 super-Yang-Mills (SYM) theory, where dualities, conformal symmetry and
integrability paved the way to the development of a variety of new methods for efficient
higher-loop calculations.

It has also been realized that these methods, including integrability, are not restricted
to supersymmetric planar field theories. They extend to a large class of interacting non-
supersymmetric planar theories, the fishnet conformal field theories [1–9], which admit
formulations in any spacetime dimensions and may be realized in four dimensions by de-
forming N = 4 SYM, in ways that preserve conformal symmetry and integrability. This
web of theories allows us to shed light on properties of a broad family of higher-loop planar
integrals, with regular iterative structures, the so-called fishnet graphs. These diagrams are
endowed with integrable structures, such as Yangian symmetry [10–13], which put severe
constraints on their analytic expressions and facilitate their determination.

In this paper, we will examine a simple class of planar fishnet integrals in four dimen-
sions, associated with regular square lattices attached to four generic spacetime points, as
shown in the left panel of figure 1. They generalize the well-known ladder conformal inte-
grals, calculated many years ago [14]. They are subject to stringent analytic properties and
were argued to admit integrability-based integral and determinantal representations [15],
some of which have been proven recently [16–18]. The first goal of this paper will be to place
the proposals in ref. [15] on a firmer footing by proving their mathematical equivalence.
To be precise, we will show the equivalence of the so-called Berenstein-Maldacena-Nastase
(BMN) [19] and flux-tube (FT) integral representations with the determinant of a Hankel
matrix of ladder integrals, using exact summation and integration techniques.

The integrability of fishnet graphs was noticed many years ago by Zamolodchikov [20],
who considered them as an example of exactly solvable lattice models and calculated their
leading behaviour in the thermodynamic limit for periodic boundary conditions. Taking
this “continuum” limit was partly motivated by viewing fishnet graphs as approximating
the worldsheet of a string, see e.g. ref. [21]. Recent studies have given support to this pic-
ture, in a more holographic setting, connecting the conformal fishnet integrals to quantum
mechanical systems in Anti-de Sitter space (AdS) [22–26]. In particular, in the contin-
uum limit, evidence was found that tubular fishnet diagrams, like the one shown in the
right panel of figure 1, admit an effective description in terms of a two-dimensional (2d)
non-linear sigma model in AdS.

Motivated by this consideration, in the second half of this paper, we study the ther-
modynamic limit of the four-point fishnet integrals. We do so by taking the dimensions
of the four operators, or alternatively the lengths of each side of a rectangular fishnet,
to be large, holding the aspect ratio (the ratio of side lengths) fixed. In this limit, the
integrability-based integrals can be evaluated in a saddle-point approximation, and the
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Figure 1. Specimens of planar fishnet graphs in position space with different boundary conditions.
Bulk points stand for quartic integration points,

∫
d4x/π2, while edges are massless propagators,

1/(x − y)2. For the fishnet four-point functions considered in this paper, the m vertical and n

horizontal external legs end on four fixed spacetime points x1,2,3,4, as shown in the left panel (m
lines end on x3,4; n lines end on x1,2). In the right panel, we show an m-by-n fishnet graph
with periodic boundary conditions in the angular direction. Such graphs are expected to scale as
∼ g−2mn

c when m,n→∞, with gc a numerical constant [20]. The four-point function considered in
this paper (left panel) scales differently, with a free energy per vertex that depends on the aspect
ratio k = n/m.

saddle-point equations coincide with solvable problems encountered in the study of matrix
models and integrable systems. This connection will allow us to obtain a closed parametric
expression for the bulk free energy in terms of complete elliptic integrals. Interestingly, the
free energy is independent of the cross ratios parametrizing the positions of the boundary
operators. However, we will find that it depends in a complicated manner on the rectan-
gular aspect ratio. For any value of the aspect ratio, it differs from Zamolodchikov’s result
for periodic graphs, indicating a strong dependence of the thermodynamic limit on the
boundary conditions. We shall also study a more general scaling regime, which combines
the short-distance and thermodynamic limits; this limit reveals an intriguing connection
with the equation describing a classical spinning string in AdS3 × S1, studied by Frolov
and Tseytlin [27].

This paper is structured as follows. In section 2, we analyze the integrability-based
representations for the fishnet integrals and prove their equivalence with the determinant
of ladder integrals. Our analysis relies on exact methods which may be applicable to more
general fishnet graphs. We proceed with the analysis of the thermodynamic limit in sec-
tion 3. Applying the saddle-point method to the matrix-model integrals gives us first order
differential equations for the free-energy density, which can be solved simultaneously in
terms of complete elliptic functions. We compare the obtained expression with a direct nu-
merical evaluation of the determinant and study particular limits analytically. We conclude
with a brief discussion of the dependence of the free energy on the boundary conditions. In
section 4 we consider a more general scaling which combines the thermodynamic and short-
distance limits and unveils a connection with the singular equation describing a classical
spinning string in AdS3 × S1. Section 5 contains concluding remarks.
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2 Integral representations

The fabric of the fishnet graphs — the conformal fishnet theory — is a theory of two
Nc ×Nc matrices of complex scalar fields φ1,2 and a quartic interaction, with (Euclidean)
Lagrangian density [1, 2, 5]

L = Tr
{
∂µφi∂µφ

†
i − (4πg)2φ1φ2φ

†
1φ
†
2
}
, (2.1)

with the trace running over the “colour” indices and with g2 a marginal coupling constant,
which is kept fixed in the large Nc limit [5, 28].1

The fishnet four-point function of interest is defined as the leading colour-ordered
contribution to the correlator

Gm,n({xi}) = 〈Tr{φn2 (x1)φm1 (x3)φ†n2 (x2)φ†m1 (x4)}〉 , (2.2)

with the trace embracing all the fields. It receives a single contribution at large Nc, which
is given by the mn-loop Feynman diagram shown in figure 2.

The graph is both ultraviolet (UV) and infrared (IR) finite, for generic x1,2,3,4. Drop-
ping a colour factor and stripping off overall weights, one has

Gm,n({xi}) = g2mn

(x2
12)n(x2

34)m
× Φm,n(u, v) , (2.3)

with x2
ij ≡ (xi− xj)2, where Φm,n is a coupling-independent function of the two conformal

cross ratios
u = x2

14x
2
23

x2
12x

2
34
≡ zz̄

(1− z)(1− z̄) , v = x2
13x

2
24

x2
12x

2
34
≡ u

zz̄
, (2.4)

parametrized here in terms of two numbers z, z̄. The latter are complex conjugates
in Euclidean spacetime signature, and are treated as independent real numbers in the
Minkowskian case.

A representation for Φm,n was proposed in ref. [15] using integrability and analyticity.
The proposal is that for n > m

Φm,n =
[(1− z)(1− z̄)

z − z̄

]m
Im,n(z, z̄) , (2.5)

where Im,n(z, z̄) is a pure function of weight m× n given by the determinant of an m×m
Hankel matrix of ladder functions. It reads

Im,n = 1
N

det
16i,j6m

(Mi+j+n−m−1) , (2.6)

with the matrix element
Mp = p!(p− 1)!Lp(z, z̄) , (2.7)

and normalization factor

N =
2m−1∏
k=0

(n−m+ k)! . (2.8)

1A complete description of the planar limit entails introducing and fine-tuning double-trace couplings [5,
28]; they only affect correlators of short-length single-trace operators and will not play any role here.
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x3

x4

x1 x2

p2 p1

p3 p4

u1

0 1

1

(z, z̄)

um…

Figure 2. A transformation maps the space-time integral into a momentum space amplitude,
shown in red lines, with external massive momenta p1 = x23, p2 = x31, p3 = x14 and p4 = x42, and
with massless internal lines. The latter amplitude is subject to important analyticity requirements
such as the Steinmann relations.

The particular case m = 1 coincides with the well-known ladder integral Lp(z, z̄), defined
for a number of rungs p > 0 by [14, 29]

Lp(z, z̄) =


2p∑
j=p

j![− log (zz̄)]2p−j

p!(j − p)!(2p− j)! [Lij(z)− Lij(z̄)] if p > 1,

z − z̄
(1− z)(1− z̄) if p = 0,

(2.9)

with Lij(z) the polylogarithm of weight j,

Lij(z) = z

(j − 1)!

∞∫
0

dr r
j−1

er − z
=
∞∑
k=1

zk

kj
, (2.10)

where the Taylor series converges for |z| < 1.
The determinant formula (2.6), when interpreted as the result for a scattering ampli-

tude rather than a correlation function, nicely satisfies the Steinmann relations [30, 31],
which forbid sequential discontinuities in overlapping channels. In figure 2, the red lines
indicate the scattering interpretation, and the two channels are (p1 + p2)2 = x2

12 and
(p2 + p3)2 = x2

34. The Steinmann relations imply that

Discx2
12

Discx2
34
Im,n = 0, (2.11)

in the region where x2
12 and x2

34 both vanish, which is the neighborhood of z, z̄ → 1. Con-
formal invariance then translates eq. (2.11) into the vanishing of the double discontinuity
in (1− z)(1− z̄):

Disc1Disc1Im,n = 0. (2.12)

(For example, one can wrap z around 1, and keep z̄ fixed, or wrap both in the same
direction.) The single discontinuity of the ladder integral (2.9) is [15, 32]

Disc1Lp = 2πi (−1)p

p!(p− 1)! log(z/z̄) (log z log z̄)p−1 , (2.13)

– 4 –
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Determinant 
= Dual Integral 

BMN Integral FT Integral

Feynman Integral

Figure 3. Representations of the fishnet four-point integral. The Feynman integral was recently
proved to be equivalent to the BMN integral (2.26) in refs. [16, 17]. In this paper we concentrate
on the pyramid at the top and derive the determinant formula from the BMN and FT integrability-
based representations.

with i =
√
−1. Since the single discontinuity contains only log z and log z̄, the double

discontinuity of any ladder integral vanishes, [Disc1]2Lp = 0. Furthermore, the discontinu-
ities of any two columns (or two rows) of the matrix Mp defined in (2.7) are proportional,
because

Disc1Mp+1 = (− log z log z̄) Disc1Mp , (2.14)

which guarantees the vanishing of the double discontinuity of the determinant (2.6) [15].
(A more general solution to the Steinmann relations is given by the minors of a semi-infinite
matrix of ladders, as found in the study of large-charge correlators in N = 4 SYM [33, 34].)

As alluded to before, along with the determinant (2.6), two matrix-model-like inte-
grals, the BMN integral and FT integral, were given in ref. [15]. They originate from
two different conjectural N = 4 SYM integrability-based tiling constructions, the “hexag-
onalization” [35–39] and the “pentagon OPE” [40–42]. The former has been receiving a
lot of attention recently, as it is closely related to the method of separation of variables
for conformal integrable spin chains, which enabled the calculation of fishnet correlators
in the 2d fishnet conformal field theories [7]. This method was recently extended to four
dimensions in refs. [16, 17, 26, 43], allowing to put on firm ground the results obtained
from the N = 4 SYM integrability-based tiling constructions. According to these analyses,
the BMN representation discussed below is no longer a conjecture — it is proved to be
equivalent to the Feynman integral. In this section we will close the remaining gaps to
the determinant formula by proving its equivalence with both the BMN and FT integral
representations, as schematized in figure 3.

2.1 Dual integral

To begin, let us recast the determinant formula (2.5) into an integral form which will prove
very useful later on. Introducing the parametrization

z = −eσ+ϕ , z̄ = −eσ−ϕ , (2.15)

– 5 –
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we will show in this subsection that one may write the determinant in the form

Φm,n = d(z, z̄)m × IDual
m,n , (2.16)

where IDual
m,n stands for the m-fold integral

IDual
m,n = 1

2mm!N

m∏
i=1

∫ ∞
|σ|

dxixi(x2
i − σ2)n−m

cosh 1
2(xi + ϕ) cosh 1

2(xi − ϕ)

m∏
i<j

(x2
i − x2

j )2 , (2.17)

with N given in eq. (2.8), and with the kinematical prefactor

d(z, z̄) = (1− z)(1− z̄)√
zz̄

. (2.18)

Note that this prefactor differs from the one in eq. (2.5), such that

IDual
m,n =

[ √
zz̄

z − z̄

]m
Im,n . (2.19)

The representation (2.16) may be seen as a reduction of the more general functional
determinant formulae obtained in refs. [44–49] for large-charge correlators in N = 4 SYM
theory, which resum infinite series of fishnet diagrams and generalizations thereof [33, 34].
In the following, we shall refer to eq. (2.17) as the “dual integral”, as it relates in our set-up
to Fourier-like transforms of the integrability-based integrals to be studied later on.

The dual representation given in eqs. (2.16) and (2.17) holds for σ ∈ R and Imϕ ∈
(−π, π), which includes both the Minkowskian and the Euclidean kinematics, correspond-
ing respectively to purely real and purely imaginary values of ϕ. It can be derived from
the determinant (2.6) by first replacing the ladder functions by their integral representa-
tion [29, 44, 45]

Lp(z, z̄) = (z − z̄)
2
√
zz̄ p!(p− 1)!

∞∫
|σ|

dxx(x2 − σ2)p−1

cosh 1
2(x+ ϕ) cosh 1

2(x− ϕ)
. (2.20)

This identity follows directly from the definition (2.10) of the polylogarithms. Namely,
plugging eq. (2.10) into the sum in eq. (2.9), with 2σ = log (zz̄), and relabelling j → 2p−j,
one finds

Lp(z, z̄) =
p∑
j=0

(2p− j)!(−2σ)j

p!j!(p− j)! [Li2p−j(z)− Li2p−j(z̄)]

= 2
p!(p− 1)!

∞∫
0

dr rp−1(r − σ)(r − 2σ)p−1
[

z

er − z
− z̄

er − z̄

]

= (z − z̄)
2
√
zz̄ p!(p− 1)!

∞∫
−σ

dxx(x2 − σ2)p−1

cosh 1
2(x+ ϕ) cosh 1

2(x− ϕ)
,

(2.21)

making use of the combinatorial identity (for p > 0)
p∑
j=0

(p− 1)!(2p− j)!
j!(p− j)!(2p− j − 1)!r

p−j(−2σ)j = 2(r − σ)(r − 2σ)p−1 , (2.22)

– 6 –
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and changing variables, x = r− σ. One recovers eq. (2.20) by manipulating the contour of
integration, noting that the integrand is antisymmetric under x→ −x.

One then inserts eq. (2.20) inside the determinant in eq. (2.6) and applies the so-called
Cauchy-Binet-Andréief formula (Lemma 1 in appendix A) to bring the determinant below
the integral sign. Using eq. (2.19) to remove the factors of (z − z̄)/

√
zz̄, one finds

IDual
m,n = 1

2mN det
16i,j6m

[∫ ∞
|σ|

dxx(x2 − σ2)n−m+i+j−2

cosh 1
2(x+ ϕ) cosh 1

2(x− ϕ)

]

= 1
2mm!N

m∏
`=1

∫ ∞
|σ|

dx`x`(x2
` − σ2)n−m

cosh 1
2(x` + ϕ) cosh 1

2(x` − ϕ)
[∆m(x2)]2 .

(2.23)

One encounters two copies of the determinant

∆m(x2) ≡ det
16i,j6m

[
(x2
j − σ2)i−1

]
, (2.24)

which is actually independent of σ, and is the Vandermonde determinant

∆m

(
x2
)

= det
16i,j6m

(
x

2(i−1)
j

)
=

m∏
j>i

(x2
j − x2

i ) , (2.25)

associated with the set {x2
j , j = 1, . . . ,m}.2 Equation (2.23) proves the equivalence of the

dual and original representations, eqs. (2.16) and (2.17).

2.2 BMN integral

The first integrability-based integral to be discussed is the BMN integral in ref. [15]. This
representation yields the pure function Im,n in the form of a sum of integrals,

IBMN
m,n = 1

m!

m∏
`=1

∑∫
`

a`χ`(z)
(u2
` +a2

`/4)m+n

m∏
i<j

[
(ui−uj)2 + 1

4(ai−aj)2
][

(ui−uj)2 + 1
4(ai+aj)2

]
,

(2.26)
with ∑∫

` ≡
∑
a`>1

∫
R du`/(2π) and (with i =

√
−1)

χ`(z) ≡ (zz̄)−iu`

(
(z/z̄)

1
2a` − (z̄/z)

1
2a`

)
= 2(−1)a` sinh (a`ϕ)e−2iu`σ . (2.27)

The translation to the variables σ and ϕ follows from eq. (2.15), after fixing the square-
root ambiguity appropriately. The representation (2.26) is initially defined in Euclidean
kinematics, that is, for σ ∈ R and −iϕ ∈ (−π, π), and then analytically continued. Its
direct evaluation is straightforward for low values of m and the result is seen to reproduce
the ladder determinant. In particular, one easily verifies the agreement with the ladder
series [35],

Ln(z, z̄) =
∞∑
a1=1

∫
du1
2π

a1χ1(z)
(u2

1 + a2
1
4 )n+1

, (2.28)

2For an arbitrary set {y1, . . . , yN}, the Vandermonde determinant is defined by ∆N (y) =
det16i,j6N (yi−1

j ) =
∏N

j>i
(yj − yi).

– 7 –
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when m = 1. In this subsection, we shall prove the general identity

IBMN
m,n =

[
z − z̄√
zz̄

]m
IDual
m,n = (e−ϕ − eϕ)mIDual

m,n , (2.29)

with IDual
m,n the integral form of the determinant (2.17), for all m and n, with n > m.

To begin, we note that the bulk of the integrand in eq. (2.26) can be written concisely
as a Vandermonde determinant. Namely, defining conjugate variables

ξ2`−1 = u` + ia`/2 , ξ2` = u` − ia`/2 , ` = 1, . . . ,m , (2.30)

one immediately finds that the integrand can be cast into the compact form

IBMN
m,n = im

m!

m∏
`=1

∑∫
`

χ`(z)
(ξ2`−1ξ2`)m+n ×∆2m(ξ) , (2.31)

where ∆2m(ξ) is the Vandermonde determinant for the set {ξ1, ξ2, . . . , ξ2m},

∆2m(ξ) = det (ξi−1
j ) =

2m∏
j>i

(ξj − ξi)

=
m∏
i=1

(−iai)×
m∏
i>j

[
(ui − uj)2 + 1

4(ai − aj)2
] [

(ui − uj)2 + 1
4(ai + aj)2

]
.

(2.32)

One can make immediate use of this remarkable simplification to disentangle pairs of ξ
variables and cast the integral in the form of the Pfaffian of a 2m × 2m skew-symmetric
matrix B,

IBMN
m,n = impfB = im

2mm!
∑

π∈S2m

sign(π)
m∏
`=1

Bπ(2`−1),π(2`) , (2.33)

with the sum running over the permutations of the set {1, . . . , 2m}, by plugging

∆2m(ξ) =
∑

π∈S2m

sign(π)
m∏
`=1

(ξπ(2`−1)−1
2`−1 ξ

π(2`)−1
2` ) (2.34)

into eq. (2.32), and defining

Bij =
∑∫
`

χ`(z)
(ξ2`−1ξ2`)m+n (ξi−1

2`−1ξ
j−1
2` − ξ

j−1
2`−1ξ

i−1
2` ) . (2.35)

A drawback is that the elements Bij(z, z̄) are not ladders, for j 6= i ± 1, but derivatives
thereof.3 Further non-trivial algebraic identities are needed to “purify” the expression and
reduce the integral to a determinant of an m ×m matrix, as discussed in refs. [44–49] in
the related context of large-charge correlators in N = 4 SYM.

3One finds, for r > 1,
Bi,i+r(z, z̄) = − (iz∂z)r − (iz̄∂z̄)r

z∂z − z̄∂z̄
Lm+n−i(z, z̄) .

– 8 –
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Interestingly, it turns out to be possible to bypass this difficulty by decoupling all ξ
variables from the onset. (This promotes the full permutation symmetry of the integrand
to the integral level, if not for the contours, see below.) The preliminary step is to relax
the constraints i(ξ2` − ξ2`−1) = a` ∈ N among conjugate variables (2.30), by turning the
sums over positive a’s into integrals. This task may be done efficiently with the help of the
Mellin-Barnes summation technique. The key formula is Lemma 2 in appendix A. It reads4

∞∑
a=1

(−1)a(eaϕ − e−aϕ)f(a) =
∞∫
−∞

dx
[ 1
eϕ−x + 1 −

1
e−ϕ−x + 1

] ∫
C

da
2πif(a)e−ax , (2.36)

for any suitably smooth function f and with C parallel to the imaginary axis, C = ε + iR
with ε ∈ (0, 1). This representation stems from the combination of the Sommerfeld-Watson
transform,

∞∑
a=1

(−1)a(eaϕ − e−aϕ)f(a) = i
∫ ε+i∞

ε−i∞
dasinh (aϕ)

sin (aπ) f(a) , (2.37)

with an integral transform for the inverse sine factor, see eq. (A.4) in appendix A. This
combination is well-suited to our problem as it puts in place the dual variable x entering
the integral form of the ladder determinant. It also removes the constraints on ϕ, which
may now be chosen anywhere inside the extended kinematics Imϕ ∈ (−π, π). Applying
eq. (2.36) to each sum in eq. (2.31), we get

IBMN
m,n = (−i)m

2mm!

∫
Rm

m∏
`=1

dx`(eϕ − e−ϕ)
2 cosh 1

2(x` + ϕ) cosh 1
2(x` − ϕ)

I1(σ, {x}) , (2.38)

with all dependence on σ factorizing neatly into the integral

I1(σ, {x}) =
m∏
`=1

∫
C

da`
2πi

∫
R

du`
2π

e−a`x`−2iu`σ

(ξ2`−1ξ2`)m+n ×∆2m(ξ) . (2.39)

The key simplification is that ξ2`−1 and ξ2` can now be regarded as independent variables.
They would be real for u` ∈ R and a` ∈ iR. Instead, they run here parallel to the real axis,
along the contours

ξ2`−1 ∈ Γ+ ≡ R + iε , ξ2` ∈ Γ− ≡ R− iε , (2.40)

because a` has a small positive real part ε. Hence,∫
C

da`
2πi

∫
R

du`
2π =

∫
Γ+×Γ−

dξ2`−1dξ2`
(2πi)2 , ∀` = 1, . . . ,m , (2.41)

after taking into account the Jacobian (= −i) for the change of variables (2.30). We may
now write I1(σ, {x}) as a bunch of decoupled ξ-integrals using eq. (2.34) and recast it as
the determinant of a 2m× 2m matrix A,

I1(σ, {x}) = det A , (2.42)
4A similar transformation was considered in ref. [35] in relation to the Mellin representation of correlators.

– 9 –



J
H
E
P
0
7
(
2
0
2
1
)
1
6
8

with elements,

Ak,2`−1 = A+
k (x`) , Ak,2` = A−k (x`) , k = 1, . . . , 2m, ` = 1, . . . ,m , (2.43)

and
A±k (x) ≡

∫
Γ±

dξ
2πiξ

k−m−n−1ei(±x−σ)ξ . (2.44)

Closing the contour of integration in the upper/lower half ξ plane, depending on whether
±x− σ ≷ 0, one finds

A±k (x) =∓ 1
(m+ n− k)! [i(±x− σ)]m+n−kθ(−x± σ) , (2.45)

with θ(t) the Heaviside step function, θ(t) = 1 for t > 0 and θ(t) = 0 otherwise.
One proceeds with straightforward linear algebra. Plugging (2.45) into eq. (2.42), we

first factor out ∓[i(±x`−σ)]n−mθ(−x`±σ), column by column, and then 1/(m+n−k)!, row
by row. The leftover factor is a Vandermonde determinant for the set {i(x1 − σ), i(−x1 −
σ), i(x2−σ), i(−x2−σ), . . . , i(xm−σ), i(−xm−σ)}. As such, it does not depend on σ and
can be written concisely as

(−i)m
m∏
i<j

(xi − xj)2
m∏
i,j

(xi + xj) = (−i)m
m∏
i=1

2xi × [∆m(x2)]2 . (2.46)

Assembling all factors together, we obtain

I1(σ) = im

N

m∏
i=1

θ(−|σ| − xi)2xi(x2
i − σ2)n−m × [∆m(x2)]2 , (2.47)

and, therefore,

IBMN
m,n = (eϕ − e−ϕ)m

2mm!N

m∏
i=1

∫ −|σ|
−∞

dxixi(x2
i − σ2)n−m

cosh 1
2(ϕ+ xi) cosh 1

2(ϕ− xi)
[∆m(x2)]2 , (2.48)

which implies eq. (2.29) with eq. (2.23) and concludes the proof that the BMN inte-
gral (2.26) is equivalent to the determinant formula (2.6).

It is worth mentioning that the above analysis would also apply to the anisotropic
fishnet diagrams [6, 20] associated with a theory in which the two scalar fields are given
non-canonical dimensions 1 ∓ 2ω, with ω ∈ [0, 1/2) playing the role of an anisotropy
parameter. The equivalent of the “BMN representation” for the m × n deformed fishnet
diagram in four dimensions was worked out in refs. [16, 17], along with other generalizations
of the correlator, using the method of separation of variables. It was found to take the
same form as for isotropic fishnets, that is (2.26), up to the replacement

1
(u2
` + a2

`/4)m+n → [f(a`
2 − iu`)f(a`

2 + iu`)]m+n, (2.49)

with f(y) = Γ(y + ω)/Γ(y + 1− ω) and with Γ the Euler Gamma function.5 Importantly,
since the ξ-integrals stay factorized under this deformation, one can repeat the above

5Incidentally, similar generalizations appear in the context of the exact solutions to the Kardar-Parisi-
Zhang equation in 1+1 dimensions, where the initial geometry provides the anisotropy, see e.g. refs. [50–52]
for instances where f is a ratio of Gamma functions.
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x3

x4

x1

x2

nn̄

3 2
1 4

Figure 4. The flux-tube factorization relies on lightcone coordinates to parametrize the positions
of the four points x1,2,3,4 along a null conformal frame (square). In the case of interest, i.e. for
spacelike separations, x2

ij < 0, the null square is the Poincaré patch of (conformally compactified)
R1,1 ⊂ R1,3, as shown in the right panel. Two points are placed at the boundary of the patch, with
n · x1 = n̄ · x4 = 1 and n, n̄ two orthogonal lightlike vectors, n2 = n̄2 = 0, n · n̄ = 1. The remaining
points are sitting at n · x2 = z and n̄ · x3 = z̄, with z, z̄ both real and negative.

analysis and derive a 2m × 2m determinant representation for the correlator by slightly
modifying the integrals in eq. (2.44), using

A±k (x)→
∫

Γ±

dξ

2πi
ξk−1[∓if(∓iξ)]m+nei(±x−σ)ξ . (2.50)

It is not clear, however, if the result may be further simplified and cast into the form of
a determinant of an m × m matrix, as in the undeformed case, since the factorization
of the determinant observed in eq. (2.47) depends very much on the explicit form of the
ξ-integrals. In contrast, 2d fishnet correlators were found [7] to admit a uniform m ×m
determinant representation for all values of the anisotropy parameter.

2.3 FT integral

The second integrability-based representation is the so-called flux-tube representation. It
arises in the Minkowskian kinematics when one considers the correlator as sitting inside
a null conformal frame, as depicted in figure 4. The end-points of the correlator are then
interpreted as producing beams of flux-tube particles at the positions

z = −e2σ1 = −eϕ+σ , z̄ = −e−2σ2 = −eσ−ϕ , (2.51)

with σ1,2 ∈ R, along two orthogonal lightcone directions, n2 = n̄2 = 0, n · n̄ = 1, as
explained in the caption of figure 4.

A nice feature of the flux-tube representation is that it treats symmetrically the m and
n lines of the fishnet graph. Each set of lines is assigned to a set of rapidities, {ui=1,...,m}
and {vj=1,...,n}, representing the momenta of the flux-tube excitations, moving across the
conformal square, and conjugate to the coordinates (2.51). The price to pay is that it gives
rise to more complicated integrals involving both rational and hyperbolic functions. As
explained in ref. [15], in this representation, the correlator takes the form

Φm,n = d(z, z̄)m × π
1
2 (m+n)(m+n+1)(2 cosh σ2)n−m × IFT

m,n , (2.52)

– 11 –



J
H
E
P
0
7
(
2
0
2
1
)
1
6
8

where IFT
m,n is the m× n Fourier integral6

IFT
m,n =

∫
Rm

du

m!

∫
Rn

dv

n!

m∏
i=1

e2iuiσ1

cosh (πui)

n∏
j=1

e2ivjσ2

cosh (πvj)
(2.53)

×∆m(u)∆m(tanh (πu))∆n(v)∆n(tanh (πv))
m,n∏
i,j

tanh (πui)− tanh (πvj)
ui − vj

,

with du =
∏m
i=1 dui/(2π), dv =

∏n
j=1 dvj/(2π), and with the ∆’s referring as before to

Vandermonde determinants,

∆m(u) =
m∏
j>i

(uj − ui) , ∆m(tanh (πu)) =
m∏
j>i

(tanh (πuj)− tanh (πui)) , (2.54)

and similarly for the v’s. Integrals of this type were discussed in refs. [17, 53, 54] in
connection with the separation of variables for SL(2,R) spin chains. In particular, in the
cases where m = 0 or n = 0, the integral matches with the norm of the separated wave
function, and it can be evaluated straightforwardly using eq. (54) of ref. [53]. Below we
explain how to calculate the integral in the general case, m,n 6= 0.

The mixing among hyperbolic and rational interactions makes the flux-tube integral
harder to treat than the BMN one. The problem can be circumvented, however, by col-
lecting these two types of interactions into suitable determinants.

The rational part, for instance, can be encoded in a generalized Cauchy determi-
nant [55],

∆m(u)∆n(v)∏
i,j(ui − vj)

= (−1)
1
2m(2n−m−1) × det

n
C , (2.55)

where C is a “centaur” n×n matrix, mixing Cauchy and Vandermonde entries, defined for
n > m and two sets of variables {u1, . . . , um} and {v1, . . . , vn} by

C =



1
u1 − v1

1
u1 − v2

· · · 1
u1 − vn

1
u2 − v1

1
u2 − v2

· · · 1
u2 − vn...

...
...

...
1

um − v1

1
um − v2

· · · 1
um − vn

1 1 · · · 1
v1 v2 · · · vn
...

...
...

...
vn−m−1

1 vn−m−1
2 · · · vn−m−1

n




m


n−m

. (2.56)

6We simplified the original expression in ref. [15] by using sinh (π(x− y)) =
cosh (πx) cosh (πy) (tanh (πx)− tanh (πy)) and stripping off powers of π.
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The hyperbolic factors, on the other hand, can be seen as coming from the action of the
Vandermonde differential operator

∆m+n({
−→
∂vj ,
−→
∂ui}) ≡

m∏
i>j

(∂uj − ∂ui)
n∏
i>j

(∂vj − ∂vi)
n,m∏
i,j

(∂vj − ∂ui) (2.57)

on the factor
∏
i,j sech(πui) sech (πvj), as shown in appendix A (Lemma 4). Accordingly,

the integral can be written more concisely as

IFT
m,n = (−1)

1
2m(2n−m−1)∏m+n

j=1 (j−1)!

(−1
π

) 1
2 (m+n)(m+n−1)

(2.58)

×
∫
Rm

du

m!

∫
Rn

dv

n!

m∏
i=1

e2iuiσ1
n∏
j=1

e2ivjσ2×det
n
C×∆m+n({

−→
∂vj ,
−→
∂ui})

∏
i,j

sech(πui)sech(πvj) .

We may then perform an integration by parts, using

∆m+n({
−→
∂vj ,
−→
∂ui}) = ∆m+n({−

←−
∂vj ,−

←−
∂ui}) = (−1)

1
2 (m+n)(m+n−1)∆m+n({

←−
∂vj ,
←−
∂ui}) , (2.59)

with the arrows indicating on which side of the integrand in eq. (2.58) the derivative is
acting. Note that there are no boundary terms, since the integrand is exponentially small
at infinity. Using the Leibniz formula for multi-linear forms,

∆m+n({
−→
∂vj ,
−→
∂ui})

[
e

2i
∑

i
uiσ1+2i

∑
j
vjσ2F({ui, vj})

]
= e

2i
∑

i
uiσ1+2i

∑
j
vjσ2∆m+n({

−→
∂vj + 2iσ2,

−→
∂ui + 2iσ1})F({ui, vj}) ,

(2.60)

which applies to any function F({ui, vj}), we get

IFT
m,n = (−1)

1
2m(2n−m−1)∏m+n

j=1 (j−1)!

( 1
π

) 1
2 (m+n)(m+n−1)

(2.61)

×
∫
Rm

du

m!

∫
Rn

dv

n!

m∏
i=1

e2iuiσ1

cosh(πui)

n∏
j=1

e2ivjσ2

cosh(πvj)
×∆m+n({

−→
∂vj +2iσ2,

−→
∂ui +2iσ1})det

n
C .

The next step is to disentangle the integrals in {ui} and {vj}. We may do so by
exponentiating the first m lines of the matrix C using Schwinger’s trick,

1
u− v

= −i
∫ ∞

0
dr eir(u−v+i0) , (2.62)

with i0’s introduced to ensure convergence. We shall omit the latter prescription in the
following, since the integrand is regular when ui = vj , ∀i, j. Factoring out eiriui , row by
row, we get

det
n
C = (−i)m

∫
Rm

+

d~r ei
∑

i
riui det

n
C̃ , (2.63)

with d~r =
∏m
i=1 dri, R+ = (0,∞), and where the matrix C̃ has the same structure as C

up to the replacement 1/(ui − vj)→ e−irivj . Plugging (2.63) into (2.61) and applying the
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Leibniz formula to the phases in eq. (2.63) allow us to strip off the {ui} dependence,

IFT
m,n = (−i)m(2n−m)∏m+n

j=1 (j − 1)!

( 1
π

) 1
2 (m+n)(m+n−1) ∫

Rm
+

d~r
m!

∫
Rm

du
m∏
i=1

ei(2σ1+ri)ui

cosh (πui)︸ ︷︷ ︸
I2

×
∫
Rn

dv

n!

n∏
j=1

e2ivjσ2

cosh (πvj)
∆m+n({

−→
∂vj + 2iσ2, iri + 2iσ1}) det

n
C̃︸ ︷︷ ︸

I3

.

(2.64)

The integral I2 is fully factorized, so it can be evaluated directly using a Fourier transform,

I2 =
m∏
i=1

1
2π cosh (σ1 + ri/2) . (2.65)

We then treat the action of the Vandermonde differential operator on det C̃. We find

I3 = i
1
2m(m−1)∆m(r)∆n(∂v)

n∏
j=1

P (∂vj ) det
n
C̃ , (2.66)

after using ∆m(i(r + 2σ1)) = i
1
2m(m−1)∆m(r),∆n(∂v + 2iσ2) = ∆n(∂v), and defining the

polynomial

P (X) ≡
m∏
j=1

(2iσ + irj −X) , (2.67)

with σ = σ1−σ2, see eq. (2.51). Acting then on the columns of C̃ with P (∂vj ) and collecting
factors row by row, we find

n∏
j=1

P (∂vj ) det
n
C̃ = P (0)n−m

m∏
i=1

P (−iri)× det
n
C̃ . (2.68)

We proceed with the computation of the v-integrals,

IFT
m,n = (−i)

1
2m(2n−m+1)∏m+n

j=1 (j − 1)!

( 1
π

) 1
2 (m+n)(m+n−1)

(2.69)

×
∫
Rm

+

~dr
m!

m∏
i=1

(ri + 2σ)n−mP (−iri)
2π cosh(σ1 + ri

2 ) ∆m(r)
∫
Rn

dv

n!

n∏
j=1

e2ivjσ2

cosh (πvj)
∆n(∂v) det

n
C̃

︸ ︷︷ ︸
I4

.

Applying the Cauchy-Binet-Andréief formula (Lemma 1) with the measure dν =
dv e2ivσ2 sech(πv)/(2π), and the function gj(v) = e−irjv for j ∈ [1,m] and gj+m(v) = vj−1

for j ∈ [1, n−m], we obtain

I4 = det
n

[∫
R

dv e2ivσ2

2π cosh (πv)∂
k−1
v gj(v)

]
= det

16j,k6n
Njk . (2.70)

The n× n matrix N so defined has the special structure

N =
(
D F

E 0

)
, (2.71)
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where the matrix D is irrelevant to detN , E is a lower-triangular (n−m)× (n−m) matrix
with diagonal elements

Ejj = (j − 1)!
∫
R

dv e2iσ2v

2π cosh πv = (j − 1)!
2π cosh σ2

, (2.72)

and F is an m×m Vandermonde matrix with elements

Fjk =
∫
R

dv ei(2σ2−rj)v

2π cosh (πv) (−irj)k+n−m−1 = (−irj)k+n−m−1

2π cosh(σ2 − rj

2 )
. (2.73)

Calculating I4 using the block determinant formula I4 = (−1)m(n−m) detE detF , along
with the sub-determinants,

det
n−m

E =
n−m∏
j=1

(j − 1)!
2π cosh σ2

, det
m
F = (−i)

1
2m(2n−m−1)

m∏
j=1

rn−mj

2π cosh(σ2 − rj

2 )
×∆m(r) ,

(2.74)
and collecting the numerous constant factors, we finally get

IFT
m,n = (−i)m2

(2 cosh σ2)n−m
( 1
π

) 1
2 (m+n)(m+n+1)

×
∫
Rm

+

d~r
2mm!N

m∏
i=1

rn−mi (ri + 2σ)n−mP (−iri)
2 cosh(σ2 − ri

2 ) cosh(σ1 + ri
2 ) [∆m(r)]2 . (2.75)

We may now conclude. Plugging P (−iri) = im
∏m
j=1(2σ+rj+ri) into the above expression

and noting that
m∏
i=1

P (−iri)[∆m(r)]2 = im2[∆m
(
(r + σ)2)]2 m∏

i=1
(2ri + 2σ) , (2.76)

we obtain the sought-after relation

IFT
m,n = 1

(2 cosh σ2)n−m
( 1
π

) 1
2 (m+n)(m+n+1)

IDual
m,n , (2.77)

after changing variables, ri = xi − σ, and using eq. (2.51). We conclude that the flux-tube
representation (2.53) is equivalent to the dual representation (2.23).

3 Thermodynamic limit

We now turn to the thermodynamic limit of the rectangular fishnet correlator, which we
define as the limit n,m → ∞, holding fixed the aspect ratio of the rectangle, k ≡ n/m ∈
(1,∞). We will see that the correlator scales properly in this limit, with a finite “free
energy” per site,7

F (k) ≡ lim
m,n→∞

1
mn

log Φm,n . (3.1)

7Note that we do not include a minus sign in the definition of the free energy, for convenience.
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The free energy is independent of the cross ratios (z, z̄ or ϕ, σ), as long as they are held
fixed at generic values, but it is a nontrivial function of the aspect ratio k. This analysis can
be done by applying the large m saddle-point method to either of the integrals introduced
earlier. However, an analytic form for the free energy F is more easily found if one combines
several solutions together. We analyze here two of the previously discussed integrals, the
dual and BMN integrals, leaving aside the flux-tube integral which is substantially harder
to study.

3.1 Dual integral

As seen earlier, the determinant formula (2.5) can be recast as a matrix-model-like inte-
gral (2.16), or

Φm,n = d(z, z̄)m

2mm!N

∞∫
|σ|

dx1 . . . dxm × e−Γ({xi}) , (3.2)

with the prefactor defined in eq. (2.18) and with the effective potential

Γ ≡ m
m∑
i=1

V (xi)−
m∑
i 6=j

log |x2
i − x2

j | . (3.3)

The latter comprises the Vandermonde interactions and the potential

V (x) ≡ − 1
β

log(x2 − σ2)− 1
m

log x+ 1
m

log
[
cosh 1

2(x+ ϕ) cosh 1
2(x− ϕ)

]
, (3.4)

where
β ≡ m

n−m
= 1
k − 1 , (3.5)

and k = n/m. This integral is similar to known matrix models, such as the O(−2)
model, see [56–58] and references therein, and is readily amenable to the large m sad-
dle-point method.

The key simplification at largem is that the effective potential scales large, Γ = O(m2),
and thus the integral is sharply peaked at its minimum, 0 = δΓ/δxi. The latter equations
can be interpreted as the conditions for the static equilibrium of a symmetric collection
of charges at positions {±xi} subject to Coulomb-like interactions in the presence of the
external potential V (x).

In this regime, only the first and last terms on the right-hand side of eq. (3.4) remain.
The latter is superficially small, but should nonetheless be kept, since it ensures the con-
vergence of the integral at large x. Without it, the charges would run away, xi → ∞.
Instead, their course stops at large distance ∼ m, owing to the linear scaling at large x,
V (x) ≈ |x|/m, which in turn determines the large m scaling,

xi = O(m) . (3.6)

The first term in eq. (3.4) is of order O(m0), for β ∈ (0,∞), and it acts at the lower
bound of the domain. It generates a logarithmic repulsion, which may be interpreted as
coming from n −m non-dynamical charges which push the dynamical charges away from
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x2 = σ2. Altogether, we expect that the charges are, after rescaling, densely distributed
on a compact domain,

xi/m ∈ C ⊂ (|σ|/m,∞) , (3.7)

when β is finite.8 Furthermore, it readily follows from eq. (3.6) that the spacetime pa-
rameters ϕ, σ drop out in the large m limit, as long as ϕ, σ stay of order O(1) at large m.
Hence, one may approximate the potential by

V ≈ − 1
β

log x2 + |x|
m
, (3.8)

in the thermodynamic limit discussed here. A more general scaling where the spacetime
parameters scale large with m will be discussed later on, in section 4.

3.1.1 Saddle-point equation

We may now develop the standard analysis and introduce a density

ρ(x) = β

2m

m∑
i=1

δ
(
x− βxi

4πm
)
, (3.9)

which we normalized for convenience such that∫
C

dx ρ(x) = β

2 . (3.10)

We expect it to admit a smooth description at large m over the support of the distribution
C. Since the scaled potential (3.8) is strictly convex downward and diverges at the origin,
the contour is a single interval C = (a, b) with 0 < a 6 b < ∞, for finite β. In particular,
for a small interval b ∼ a, the charges fill the bottom of the potential described by the
Gaussian matrix model. It corresponds to the low density regime, β ∼ 0, that is, k →∞.
In the opposite regime, when k → 1, the logarithmic repulsion at x = 0 disappears and the
left boundary a→ 0.

The large m scaling of the integral becomes manifest after rewriting the effective po-
tential (3.3) in terms of the density,

Γ = 2m2

β

b∫
a

dxρ(x)V
(4πmx

β

)
− 4m2

β2

b∫
a

b∫
a

dxdyρ(x)ρ(y) log
(16π2m2

β2 |x2−y2|
)

(3.11)

≈−2m2k log
[4πm
β

]
− 4m2

β2

[ b∫
a

dxρ(x)(logx−2πx)+
b∫
a

b∫
a

dxdyρ(x)ρ(y) log |x2−y2|
]
,

using eqs. (3.8) and (3.10). The logarithmic term ∼ m2 logm cancels a similar term coming
from the overall constant N in eq. (2.8); the other prefactors are subleading at large m.
This constant can be given in terms of Barnes’ G-function,

G(z) ≡
z−2∏
i=1

i! ⇒ N = G(n+m+ 1)
G(n−m+ 1) , (3.12)

8The situation is subtle when n − m → 0, since the charges are then free to move all the way to
x = 0 where they accumulate. We shall only consider this regime as the limit k = n/m → 1 of the large
m,n solution.
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and approximated using the asymptotic behavior,

logG(z + 1) ≈ z2

2 log z − 3z2

4 +O(z) , (3.13)

for large z � 1. Defining then the scaling function

f(k) ≡ lim
m,n→∞

m−2 log Φm,n ≈ − lim
m,n→∞

m−2(Γ + log N ) , (3.14)

with the limit taken at fixed k, we get

f − f0 = 4
β2

b∫
a

dxρ(x)(log x− 2πx) + 4
β2

b∫
a

b∫
a

dxdyρ(x)ρ(y) log |x2 − y2| , (3.15)

where

f0 = lim
m,n→∞

(
2k log

[4πm
β

]
−m−2 log N

)
= (k + 1)2

2 log
[
k − 1
k + 1

]
+ 3k + 2k log (4π) .

(3.16)
The saddle-point equation follows from varying Γ = Γ[ρ], at fixed normalization (3.9),
giving

λ = log x− 2πx+ 2
b∫
a

dy ρ(y) log |x2 − y2| , (3.17)

with λ a Lagrange multiplier. A derivative in x eliminates λ and yields the singular equation

0 = 1
x
− 2π +−

b∫
a

4xρ(y)dy
x2 − y2 , ∀x ∈ (a, b) , (3.18)

with −
∫
denoting Cauchy principal value. The equation can also be cast in a more classic

form,

0 = 1
x
− 2π sign x+−

∫
C′

2ρ(y)dy
x− y

, (3.19)

after unfolding the interval, (x, y) ∈ C′ = (−b,−a) ∪ (a, b), and imposing ρ(−x) = ρ(x).

3.1.2 Spin-chain mapping

Equation (3.19) describes a well-known two-cut matrix-model problem, which appears in
various contexts and can be solved exactly (see e.g. refs. [59–64] for reviews of general
methods). In particular, it was found to control the classical limit of the XXX−1/2 Heisen-
berg spin chain [65, 66]. In this case, one considers a collection of S magnons propagating
on a closed spin chain of length J . The magnons’ momenta are parametrized by a set of
roots {uj , j = 1, . . . , S}, quantized by the Bethe ansatz equations

(
ui + i/2
ui − i/2

)J S∏
j 6=i

ui − uj + i
ui − uj − i = 1 , i = 1, . . . , S . (3.20)
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The classical limit corresponds to J, S → ∞ while keeping the density S/J fixed. In this
limit, the roots scale as ui = O(J) and the logarithms of the Bethe ansatz equations
simplify (see [65, appendix C]),

J

ui
+

S∑
j 6=i

2
ui − uj

= 2πni , (3.21)

with the so-called mode numbers ni ∈ Z 6=0 parametrizing the branches of the logarithms.
The ground state corresponds to a symmetric solution, {uj} = {−uj}, with the minimal
choice, nj = sign uj . At large S the roots condense on a symmetric support C′ = (−b,−a)∪
(a, b) and the Bethe equations (3.21) readily reduce to eq. (3.19) when written in terms of
the root distribution density

ρ(x) = 1
J

S∑
j=1

δ(x− uj/J) . (3.22)

One also verifies that the normalizations agree if β = S/J .
Thanks to this identification, one may read off the solution to our problem from the

solution given in refs. [65, 66]. It is expressed in terms of elliptic integrals. In particular,
the parameters a, b and β are given parametrically as

a = 1
4K(q) , b = 1

4
√

1− qK(q) , β = E(q)
2
√

1− qK(q) −
1
2 , (3.23)

with K(q) and E(q) the complete elliptic integrals of the 1st and 2nd kind, respectively,

K(q) =
π/2∫
0

dφ√
1− q sin2 φ

, E(q) =
π/2∫
0

dφ
√

1− q sin2 φ . (3.24)

Here, q ∈ (0, 1) with the lower/upper bound corresponding respectively to β → 0 and
β →∞. One may also express the density ρ(x) in closed form, in terms of the incomplete
elliptic integral of the third kind. (See eqs. (C.7) and (C.8) in appendix C of ref. [65].) We
plot ρ(x) in figure 5 for illustration. We will not need its explicit analytic expression here,
but it will be useful to know its derivative with respect to β, δρ = ∂βρ.

The derivative of the density is rather simple to construct. Differentiating both sides
of eq. (3.17) with respect to β, the potential drops out. Using also the vanishing of ρ at
the boundaries, ρ(a) = ρ(b) = 0, one is left with a simpler (homogeneous) problem

∂βλ = 2
b∫
a

dyδρ(y) log |x2 − y2| , ∀x ∈ (a, b) . (3.25)

In the Coulomb gas picture, this equation describes a collection of charges with no external
potential, but subject to hard-wall boundary conditions at a and b. So, despite the absence
of a potential, the charges do not run away but accumulate close to the boundaries, c = a, b,
where δρ(x) ∼ 1/

√
|x− c|.
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Figure 5. Plot of the density ρ and shifted potential Ṽ (x) = 2πx − log x + λ at low density
β ≡ 0.015.

Taking a derivative of eq. (3.25) with respect to x removes the left-hand side of the
equation, and the solution is immediately obtained using a standard inversion formula,

δρ = x

π
√

(b2 − x2)(x2 − a2)
. (3.26)

The only freedom here is the overall normalization, which is fixed using

δ

b∫
a

dxρ(x) =
b∫
a

dx δρ(x) = ∂

∂β

β

2 = 1
2 , (3.27)

taking into account again that the boundary terms vanish.

3.1.3 Differential equation I

The next step is to calculate the scaling function (3.15). This may be done in principle
using the exact solution for ρ given in refs. [65, 66]. Its direct integration proves difficult
however. So, here we shall consider the much simpler problem of determining df/dβ using
the density derivative δρ = ∂βρ.

Observe first that eq. (3.15) simplifies when evaluated on the saddle point. Acting
with

∫
dxρ(x) on both sides of eq. (3.17) and using the normalisation condition (3.10), one

finds the relation

1
2βλ =

∫ b

a
dxρ(x)(log x− 2πx) + 2

∫ b

a

∫ b

a
dxdyρ(x)ρ(y) log |x2 − y2| , (3.28)

which may be used to eliminate the double integral in eq. (3.15),

β2(f − f0) = βλ+ 2
∫ b

a
dxρ(x)(log x− 2πx) , (3.29)

with f0 given in eq. (3.16). A derivative with respect to β then yields

d

dβ
(β2(f − f0)) = λ+ β∂βλ+ 2

∫ b

a
dx δρ(x)(log x− 2πx) , (3.30)

using that δ
∫

=
∫
δ since ρ vanishes at the boundary.
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One may further simplify the right-hand side of eq. (3.30), by acting on eq. (3.17) and
eq. (3.25) with 2

∫
dxδρ(x) and 2

∫
dxρ(x), respectively, and taking their difference,

λ = β∂βλ+ 2
∫ b

a
dx δρ(x)(log x− 2πx) ⇒ d

dβ
(β2(f − f0)) = 2λ . (3.31)

The integral on the right-hand side of the equation for λ, as well as the one defining ∂βλ,
see eq. (3.25), can be taken immediately using eq. (3.26),

∂βλ = log
[
b2 − a2

4

]
,

∫ b

a
dx δρ(x)(log x− 2πx) = 1

2 log
[
a+ b

2

]
− β − 1

2 . (3.32)

Finally, eliminating λ yields

d

dβ

[
β2(f − f0)

]
= 2β log

[
b2 − a2

4

]
+ 2 log

[
a+ b

2

]
− 4β − 2 , (3.33)

with a, b, β related to each other through eq. (3.23).
This first-order differential equation determines f uniquely, once supplemented with

the boundary condition limβ→0(β2f) = 0. The boundary condition follows from (3.29),
using that b→ a when β → 0, and limβ→0(β2f0) = 0 from eq. (3.16).

The differential equation (3.33) can be integrated directly around particular points,
such as β = 0 or ∞, after evaluating its right-hand side using eqs. (3.23). It is less
straightforward to integrate it for general β, given the complicated dependence of the
coefficients a, b on β. Fortunately, we will not need to deal with this problem here, as the
solution will come for free after combining eq. (3.33) with a similar equation controlling
the thermodynamic limit of the BMN integral.

3.2 BMN integral

Consider now the BMN integral (2.26). In this case, instead of a single matrix-model
integral, we have an ensemble of integrals, labelled by integers {a`}. However, at large m,
we expect it to be dominated by the lowest modes, with a` = 1, ∀` = 1, . . . ,m. This is
because the external potential

Va(u) = (m+ n) log (u2 + a2/4) (3.34)

has its minimum at a = 1 and generates power suppressions for the higher a’s in the
thermodynamic limit. Owing to this truncation, there is no dependence on ϕ, and similarly
σ drops out, for σ, ϕ = O(1). In summary, focusing on the leading saddle, one may write

Φm,n ≈
d(z, z̄)m

(2π)mm! ×
∫
Rm

m∏
`=1

du`
(u2
` + 1/4)m+n

m∏
i<j

[
(ui − uj)2((ui − uj)2 + 1)

]
. (3.35)

Furthermore, one notes that the potential (3.34) scales linearly with m, for all u’s. Hence,
there is no need to rescale the rapidities here and we can proceed directly to the thermo-
dynamic limit with the density

ρ(u) = 1
m

m∑
i=1

δ(u− ui) , (3.36)
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which we expect to be smooth for u = O(m0). Varying the integral (3.35), we get

0 = (k + 1)u
u2 + 1/4 −−

∫ B

−B
dvρ (v)

[
u− v

(u− v)2 + 1 + 1
u− v

]
, ∀u ∈ (−B,B) , (3.37)

assuming that the density is even and supported on a compact interval (−B,B), as sug-
gested by the symmetry and convexity of the potential. We seek a solution obeying the
usual boundary conditions

ρ(u) ∝
√
B2 − u2 , u ∼ ±B , (3.38)

and normalized such that ∫ B

−B
dv ρ(v) = 1 . (3.39)

3.2.1 Resolvent

Equation (3.37) can be solved immediately in the two extreme regimes, k →∞ and k → 1.
The former corresponds to a dilute gas approximation, B → 0, where the singular part
∼ 1/(u− v) of the kernel dominates and the potential becomes linear. Thus it reduces to
the Gaussian matrix model and the associated semi-circle law

ρ(u) ≈ 2
πB2

√
B2 − u2 , (3.40)

with B ∼ 1/
√

2k. The opposite limit, B → ∞, maps to k → 1, and the equation may be
solved by a Fourier transform over the entire real axis,

lim
k→1

ρ(u) = sech (πu) . (3.41)

The problem gets harder in the intermediate regime k ∈ (1,∞). It can nonetheless be
solved exactly by following a method introduced in ref. [67] to tackle a similar looking
matrix-model equation.

To begin, we define the function

r(u) = k + 1
u
−

B∫
−B

dv 2(u− v)ρ(v)
(u− v)2 + 1/4 . (3.42)

It is analytic in C, except along the intervals (−B±i/2,+B±i/2), where it has square-root
branch cuts, and at u = 0, where it has a simple pole, r(u) ∼ (k+ 1)/u. We also note that
the function has a pole at u =∞, with residue

lim
u→∞

u r(u) = k + 1− 2
B∫
−B

dvρ(v) = k − 1 . (3.43)

The function r relates to the standard (single-cut) resolvent

R(u) =
B∫
−B

dvρ(v)
u− v

⇒ r(u) = k + 1
u
− (R(u+ i/2) +R(u− i/2)) , (3.44)
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i
same

up to a sign

Figure 6. Riemann sheet structure of the resolvent r(u). There is a simple pole at the origin (and
at infinity) and two cuts of length 2B spaced by i. The periodicity condition identifies the values
of the functions above and below the cuts, up to a sign.

implying that one may recover the density ρ(u) from the discontinuities of r(u) across
either cut,

ρ(u) = 1
2πi

[
r(u± i/2 + i0)− r(u± i/2− i0)

]
, ∀u ∈ (−B,B) . (3.45)

In particular, it follows from this relation that r(u) must be continuous at the branch points
u = ±i/2±B, since the density vanishes at u = ±B, see eq. (3.38).

The main motivation for introducing a resolvent in this way is that the saddle-point
equation (3.37) now takes the simple form

r(u+ i/2− i0) + r(u− i/2 + i0) = 0, ∀u ∈ (−B,B) . (3.46)

It implies that r(u) extends to an anti-periodic function of period i on the second Riemann
sheet, that is, after continuing below the cuts, see figure 6.

In addition, the resolvent r possesses important reality and reflection properties,

r(u) = (r(u∗))∗ , r(u) = −r(−u) , (3.47)

with ∗ denoting complex conjugation, which stem from the fact that ρ is a real symmetric
function. It then suffices to find r on the first quadrant, in order to determine it everywhere
else. Taking the cuts into account, we should in fact consider the open domain D shown
in the left panel of figure 7, which is obtained by removing the segment between u = i/2
and u = B + i/2 from the first quadrant.

3.2.2 Schwarz-Christoffel mapping

The function r obeys simple functional relations, but is defined over a complicated domain.
The next step is to make the domain more regular with the help of a Schwarz-Christoffel
(SC) transformation. Namely, D can be seen as the interior of a polygon (with a vertex
at infinity) and as such can be mapped conformally to the upper half-plane H = {w ∈ C :
Imw > 0} with the boundary ∂D mapping to the real w axis. The map is constructed
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u1

2
3

4 SC←−−→

× × × ×
w

4 3 2 1

u w

u1 = 0 w1 = 0
u2 = i

2 − i0 w2
u3 = i

2 +B w3
u4 = i

2 + i0 w4
∞ ∞

Figure 7. The conformal mapping u → w = 1/r(u)2 maps the domain D to the upper half-
plane H, and vice versa. In particular, the boundaries map into each other owing to the reflection
symmetry and periodicity of r(u). The table indicates the values of the map at the marked points
on the boundary.

canonically, using the interior angles at the vertices of ∂D to determine the exponents in
the SC transform w → u. Fixing u = w = 0 and u = w =∞ for simplicity, we get

u = A

∫ w

0

(t− w3)dt√
t(t− w2)(t− w4)

, (3.48)

with w4 < w3 < w2 < 0 the images of u4 = i/2 + i0 , u3 = i/2 + B and u2 = i/2 −
i0, respectively, and with A > 0 an arbitrary normalization factor, introduced for later
convenience.

We may now easily express the resolvent r as a function of w. The key observation is
that the map

F : w → F(w) = 1/r(u(w))2 (3.49)
is a holomorphic bijective function of H to itself, that is, a real Möbius transformation.
This is manifest in the neighbourhood of w = 0 or w =∞. At these points, r(u) ∼ (k±1)/u
and
√
w/u is constant. Hence, one can always write

r(u) = 1√
w
, (3.50)

for a suitable choice of the parameters A,w2,3,4, see eq. (3.52) below. The claim is that
eq. (3.50) holds globally, for all w ∈ H.

To justify the claim, it is enough to show that F extends to a continuous function
of the closed upper half-plane taking real values on the real axis. The Schwarz reflection
principle can then be used to conclude that F extends to an entire function on C,9 and
thus F(w) = w given the asymptotic behaviours at 0 and ∞.

Now, it is easy to show that F preserves the boundary ∂H. This follows directly from
the reality and periodicity properties of r. Namely, r(u) is respectively real for u ∈ (0,∞)
and purely imaginary for u ∈ (0, i∞), because of eq. (3.47). It is also purely imaginary just
below the cut, i.e. u ∈ (u2, u3), owing to eq. (3.46),

r(u+ i/2− i0)∗ = r(u− i/2 + i0) = −r(u+ i/2− i0) , (3.51)
9The extension is given by F(w∗) = F(w)∗ and coincides with the continuation of the SC map (3.48)

to the domain u ∈ D ∪D∗.
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and similarly for u ∈ (u3, u4), thanks to the discontinuity formula (3.46) and the reality of
ρ.10 Furthermore, F is continuous on ∂H, including at the fold-point w = w3, since ρ(u)
vanishes at u = u3, and at the origin w = 0, where F → 0. Hence, as desired, F maps ∂H
into itself.

Finally, one may determine the unfixed parameters (A,w2,3,4) in the SC transformation,
by matching both sides of eq. (3.50) at the marked points on the boundary. The analysis
is deferred to appendix B. The results can be written concisely in terms of the elliptic data
a, b, q introduced in eqs. (3.23),

A = 1
2β , w2 = −β2

16π2b2
, w3 = −β

2(1 + 2β)
16π2ab

, w4 = −β2

16π2a2 , (3.52)

with β = 1/(k − 1) and with the modulus q = 1− w2/w4 ∈ (0, 1).

3.2.3 Duality map

Prior to moving on to the calculation of the free energy, let us open a parenthesis here
to comment on the relation between the above solution and the one constructed earlier.
The two solutions should be images of each other, as they are based on two equivalent
representations, for any m and n. In practice, however, it is not easy to follow the Mellin-
Barnes transformation used in section 2.2 all the way to the large m limit. One may
nonetheless find the duality map directly in this limit from a comparison of the two saddle-
point solutions.

Recall first of all that the interval (a, b) determines the support of the dual density,
denoted ρdual(x) here, to avoid confusion. Looking at (3.52), we see that this interval can
be identified with the segment (w2, w3) of the w plane. More precisely, the above relations
suggest to set

x = iβ
4π
√
w

= iβr(u)
4π , (3.53)

thus identifying the image of the resolvent r(u) with the dual x plane. The recipro-
cal relation identifies the u plane with the image of a suitable resolvent rdual(x) for the
dual problem,

u = i
2πrdual(x) . (3.54)

This relation can be worked out from the elliptic parametrization (3.48) together
with (3.53). One may also proceed as follows. Using the map (3.53) and properties of
r(u), one easily sees that the inverse map rdual(x) = −rdual(−x) is an analytic function of
x with square-root cuts along (−b,−a)∪(a, b) and poles at x = 0 and x =∞, with residues

rdual(x) ∼ 1
2x , rdual(x) ∼ k + 1

2(k − 1)x , (3.55)

respectively. It must also obey the equation

rdual(x+ i0) + rdual(x− i0) = 2πi(u∗ − u) = 2π , (3.56)
10Alternatively, one notices that r(u+i/2+i0)+r(u−i/2−i0) = 0 after combining eqs. (3.47) and (3.46).
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for any x ∈ (a, b), since on this interval Im u = i/2 according to eq. (3.53), see table in
figure 7. These requirements define a Riemann-Hilbert problem whose solution is given by

rdual(x) = 1
2x +

b∫
a

2xρdual(y)dy
x2 − y2 , (3.57)

for x /∈ (a, b), with ρdual(x) the density constructed in the previous section. In particu-
lar, equations (3.55) and (3.56) are easily checked using (3.10) and the dual saddle-point
equation (3.18). At last, rdual(x) is seen to be a resolvent for the dual problem, since

ρdual(x) = i
2π (rdual(x+ i0)− rdual(x− i0)) = Reu , (3.58)

for any x ∈ (a, b). Hence, nicely, the large m duality map merely interchanges rapidities
and resolvents of the two problems.

3.2.4 Differential equation II

We may now calculate df/dk using the density of the BMN integral (3.35). The starting
point is the saddle-point expression obtained from eq. (3.35),

f(k) = −(1+k)
∫

duρ(u) log(u2+ 1
4)+ 1

2

∫
dudvρ(u)ρ(v) log[(u−v)2((u−v)2+ 1

4)] , (3.59)

which is extremal on the just-constructed solution ρ,

µ = δf

δρ(u) = −(1 + k) log(u2 + 1
4) +

∫
dvρ(v) log[(u− v)2((u− v)2 + 1

4)] , (3.60)

with µ a Lagrange multiplier for
∫
ρ(u)du = 1. These relations imply that

df
dk =−

∫
du[ρ(u)+(k+1)δρ(u)] log(u2 + 1

4)+
∫

dudvδρ(u)ρ(v) log[(u−v)2((u−v)2 + 1
4)]

=−
∫

duρ(u) log(u2 + 1
4)+µ

∫
duδρ(u) =−

∫
duρ(u) log(u2 + 1

4) , (3.61)

with δρ = dρ/dk, after eliminating the double integration with eq. (3.60) and using δ
∫
ρ =∫

δρ = 0.
We then introduce an auxiliary function,

h(u) =
∫ B

−B
dvρ(v) log[(u− v)2 + 1

4 ] , (3.62)

which returns −df/dk when evaluated at u = 0. This function is nothing but an integrated
version of the resolvent r(u), with given large u behavior,

dh(u)
du = k + 1

u
− r(u) , h(u) = 2 log u+O(1/u2) . (3.63)

This equation can be integrated with the help of eqs. (3.48) and (3.50). It yields

h(u) = (k + 1) log u− (k − 1)
∫ w dt

2t
t− w3√

(t− w2)(t− w4)
= (k + 1) log u− (k − 1) log

(√
w − w4 +

√
w − w2

)
+ (k + 1) arctanh

√
(w − w4)w2
(w − w2)w4

+ const ,

(3.64)
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up to a constant of integration, fixed by the large u asymptotics,

const = −(k − 1) log
[

1
2(k − 1)

]
− (k + 1) log

√
b+ a

b− a
, (3.65)

using u ∼ (k − 1)
√
w � 1 and eq. (3.52). Lastly, the limit u→ 0 yields

df
dk = 2k log

[
1
2(a+ b)

]
− (k − 1) log (ab) + 2 log (4π) + (k + 1) log

[
k − 1
k + 1

]
, (3.66)

using u ∼ (1 + k)
√
w � 1 (see appendix B) and switching to variables a, b with eq. (3.52).

3.3 Free energy

We shall now derive a parametric representation for the scaling function F (k) = f(k)/k.
From eq. (3.14) we see that F (k) is normalized by the rectangle area mn rather than m2.

3.3.1 Parametric representation

A key simplification arises when combining our two differential equations, eqs. (3.33)
and (3.66). Namely, one finds that the function f can be extracted directly, without
any integration. This is possible because the equations are linearly independent and have
only one solution in common. Taking the sum of the two equations eliminates the deriva-
tives of f ,

d

dβ
(β2(f − f0)) + d

dk
f = 2βf − d

dβ
(β2f0) , (3.67)

giving11

f = log
[

1
2(b−a)

]
+k2 log

[
1
2(a+b)

]
− (k − 1)2

2 log (ab)+2k log (4π)+ (k + 1)2

2 log
[
k − 1
k + 1

]
,

(3.68)
after using eqs. (3.33), (3.66), (3.16) and β = 1/(k − 1).

As a double check, one may verify that this expression solves each differential equation
separately. For this purpose, it is useful to have the β derivatives of a and b,

da

dβ
= 2a2

2aβ + a− b
,

db

dβ
= 2b2

2bβ + b− a
, (3.69)

which follow from eq. (3.23) and the chain rule.

11We assume here that the two differential equations are set in the same parametrization, that is, that
the moduli q are the same. This is the case in the range β ∈ (0,∞) ↔ q ∈ (0, 1), where the elliptic
parametrization is bijective,

dβ

dq
= (K(q)− E(q))(E(q)− (1− q)K(q))

4(1− q)3/2qK(q)2 > 0, ∀q ∈ (0, 1) ,

with the lower bound being observed in the limit q → 0 and with β ranging between 0 and ∞ for q ∈ (0, 1).
Hence, all values of k = 1 + 1/β ∈ (1,∞) are covered once and only once.
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Figure 8. Plot of Z(k) = eF (k) for k ∈ [1, 90]. The data points are obtained by extrapolating
numerically the determinant at large m,n for z = z̄ = −1 and k ∈ {1, 80}. The solid line is
obtained using the parametric representation, eqs. (3.70) and (3.71). Z(k) is seen to be monotonic
and bounded by Z(1) = π2/4 = 2.4674 . . . and Z(∞) = 4.

Introducing F (k) = f(k)/k and using eq. (3.23), one arrives at

F (k) = log π2 + k log
(

1 +
√

1− q
2

)
+ (k − 1)2

2k logK (q)

+ 1
k

log
(

1−
√

1− q
2

)
− (k + 1)2

2k logE(q) ,
(3.70)

where we recall that

k = E(q) +
√

1− qK(q)
E(q)−

√
1− qK(q) , (3.71)

with K(q) and E(q) the complete elliptic integrals, see eq. (3.24), and q ∈ (0, 1).
The system of equations (3.70) and (3.71) is our final expression for the free-energy

density. It determines F (k) parametrically over the whole domain k ∈ (1,∞). Figure 8
shows the comparison between this scaling function and a numerical estimate of the ladder
determinant (2.6) for large m and n. As one can see, the agreement is excellent for all
accessible values of k.

Note that one may first simplify the determinant to facilitate the comparison. Since
the cross ratios drop out in this regime, one can conveniently set ϕ = σ = 0, or equivalently
send z, z̄ → −1, in eq. (2.5), giving

Φm,n ≈
1
N

det (ai+j+n−m−1)16i,j6m , (3.72)

with ap = 8(1− 41−p)(2p− 1)!ζ(2p− 1), using Lp(z, z̄) ≈ 2(z− z̄)(1− 41−p)
(2p−1
p−1

)
ζ(2p− 1).

Below, we study in detail the behaviour of the free energy at k =∞ and k = 1, using
known asymptotic expressions for the elliptic integrals at q = 0 and q = 1. These points
are of particular interest since they correspond to the ladder limit n � m and to the
symmetric point n = m, respectively.
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3.3.2 Ladder limit

The limit k → ∞ corresponds to q → 0+. The elliptic integrals are regular at this point
and admit convergent expansions in integer powers of q,

K(q) = π

2 + πq

8 +O(q2), E(q) = π

2 −
πq

8 +O(q2) , (3.73)

from which it follows that
q = 4

√
2√
k
− 16

k
+O

( 1
k3/2

)
, (3.74)

using eq. (3.71). Expanding further and plugging the series inside eq. (3.70), one finds

F (k) = log 4−
2 log

(
k
2

)
+ 3

4k − 1
8k2 + 19

384k3−
7

512k4 + 301
30720k5−

81
20480k6 +O

( 1
k7

)
. (3.75)

Notice that the half-integer powers of 1/k in the expansion of q cancel out in F . Hence,
F admits a regular expansion in 1/k, up to a logarithm ∼ log k/k. The series is seen to
alternate and it approximates the exact curve extremely well throughout the entire domain,
including the point k = 1, where (3.75) is found to converge rather quickly towards the
exact value F (1) = log (π2/4). It suggests that the series converges for all k ∈ [1,∞).

The leading term in this expansion has a simple interpretation. As seen earlier, the
limit k →∞ corresponds to a dilute gas approximation, which means that the free energy
is a multiple of the free energy of an individual ladder Lp at large p. This is easily verified
using the definition (2.9). At large weight, the polylogarithm series (2.9) truncates,

Lij(z) ≈ z , (3.76)

assuming |z| < 1 for convenience, and the sum
∑2p
j=p in eq. (2.9) is dominated by the terms

with j ∼ 2p. One can thus take the large p limit of the summand at fixed l = 2p− j, using
Stirling’s approximation for the factorials, and perform the sum over l = 0, 1, . . . ,

Lp(z, z̄) ≈ (z − z̄)
p∑
l=0

(2p− l)!
p! l! (p− l)! [− log (zz̄)]l ≈ 4p(z − z̄)√

πpzz̄
. (3.77)

It yields limp→∞
1
p log [Lp(z, z̄)] = log 4 = 1.386 . . . , in agreement with F (∞).

3.3.3 Square limit

The limit k → 1 corresponds to q → 1− and in this limit

lim
k→1

F (k) = log (π2/4) = 0.903 . . . . (3.78)

Subleading corrections have a complicated pattern, involving not only powers of (k − 1)
but also of its logarithms. This feature goes back to logarithms in the expansion of the
elliptic integrals around q = 1,

K(q) = − 1
π
K(1− q) log (1− q) + . . . ,

E(q) = − 1
π

(K(1− q)− E(1− q)) log (1− q) + . . . ,
(3.79)

with the dots standing for regular series in (1− q).
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A double expansion is easily generated as follows. First, define the variable

ζ = k − 1√
k

= 2
√

1− q K(q)√
E(q)2 − (1− q)K(q)2 , (3.80)

which is small when k → 1 and changes sign under k → 1/k, and then introduce the ansatz

q = 1− 16ζ2
[
α2(log ζ) +

∞∑
n=1

ζnαn(log ζ)
]
, (3.81)

with the expansion coefficients, α and αn, being functions of log ζ. The latter coefficients
are determined self-consistently, by plugging (3.81) inside eq. (3.80), expanding in powers
of ζ and matching the coefficients on both sides of the equation. For instance, at the
leading order in ζ, one finds

ζ = −8ζα log (ζα) +O(ζ2) , (3.82)

or equivalently

α = − 1
8 log ζ

[
1 + log (−8 log ζ)

log ζ +O
(

log2 (− log ζ)
log2 ζ

)]
. (3.83)

The full solution for α = α(log ζ) can also be given in closed form,

α = − 1
8W−1(− ζ

8)
, (3.84)

with W−1(x) the second branch of the Lambert W function, defined for x ∈ (−1/e, 0) and
such that

W−1(x) = log (−x)− log (− log (−x)) + . . . , (3.85)

when x→ 0−.
Cancelling the terms at higher orders in eq. (3.82) determines the higher coefficients

αn recursively. One finds that αn = 0 when n is odd, in line with the k ↔ 1/k (dihedral)
symmetry of the correlator, and one observes that the non-vanishing coefficients can be
expressed in terms of α. The first few terms read

F (k) = log
[
π2

4

]
+
[
2(3−4α)α− 1

2 log(32α)
]
ζ2+α

6 [3−2α(9+4α(−5+6α))]ζ4+O(ζ6) ,

(3.86)

which is thus an even regular series, up to the tails of logarithms encoded in eq. (3.83).
We remark that the expansion (3.86) has a very small range of validity if α is given by
eq. (3.83).
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3.4 Comparison with periodic fishnets

It is instructive to compare our formula with the large-order behaviour of fishnet graphs
with doubly periodic boundary conditions. In his pioneering paper, A. Zamolodchikov [20]
obtained the expression for them×n fishnet torus partition function Zm,n, in any spacetime
dimensions D, using integrability and bootstrap conditions. Assuming the thermodynamic
scaling, he found that

lim
m,n→∞

1
mn

logZm,n = − log g2
c , (3.87)

where the so-called critical coupling gc is a constant which depends on D but not on the
fishnet lengths m,n. The explicit expression for D = 4 is given by [20]

− log g2
c = log

[
Γ(1

4)4

32π

]
= 0.541 . . . . (3.88)

Clearly, this result bears no similarity at all with our general expression for F (k). It is also
numerically different, over the whole physical range k ∈ (1,∞); it is just over half of the
lowest value achieved by F (k), namely F (1) = log (π2/4) = 0.903 . . ..

From the 2d lattice perspective, this discrepancy and, more generally, the dependence
of the scaling function F on the aspect ratio k appear surprising at first sight. They go
against the common wisdom that the thermodynamic free energy is extensive and inde-
pendent of the boundary conditions.12 Put differently, they suggest that the boundary
conditions set by the four-point fishnet correlator are atypical and “severe” enough to
penetrate deeply into the bulk of the lattice, in such a way that the uniform periodic
distribution may hold only locally, far away from the boundary, if at all.

This sensitivity to the boundary conditions is likely to hold for other correlators. In
fact a similar phenomenon may be observed for half-periodic fishnets, mixing open and
closed boundary conditions, such as the one shown in the right panel of figure 1. An
interesting aspect of these mixed boundary conditions is that they provide a regularization
of the otherwise ill-defined doubly periodic fishnets, which suffer from UV/IR divergences.
They yield finite correlation functions, which depend on several cross ratios and which may
be expanded over a complete basis of states in principal series representations, as discussed
in detail in ref. [5] in a particular case. Doing so, one projects over states carrying arbitrary
scaling dimension ∆ along the radial direction.13 Fishnets of this type were considered in
the thermodynamic limit in ref. [22], for certain states, and their free energy was calculated
for a large range of scaling dimensions ∆ using the Thermodynamic Bethe Ansatz (TBA)
equations of the fishnet theory. Importantly, they were found to scale as in (3.87) only for
∆’s that are much smaller than the fishnet size. The latter requirement is understood as
a condition for the validity of the continuum description of large fishnet graphs, which is
governed in the case at hand by the 2d non-linear AdS5 sigma model. If on the contrary the
dimension ∆ scales large with the system size, then the corresponding state in the sigma

12They are also at odds with common beliefs about universality of large-order behaviour of Feynman
diagrams [68, 69].

13Strictly speaking, ∆ = 2 + iν with ν ∈ R for principal series representations and other values of ∆ are
reached by analytic continuation.
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model is very excited, with a finite energy density, and the free energy density departs
significantly from the ground-state behavior (3.87).

Another way of phrasing the situation is in terms of the so-called graph building
operator Tm [4, 20], which is the integral kernel which adds a rung to periodic fishnet
graphs with m radial lines. It may be interpreted as a finite-time evolution operator for
an integrable spin chain, with spins in a suitable representation of the four-dimensional
conformal group [4, 17]. Its logarithm defines a Hamiltonian for a system of length m,
which is well approximated by the Hamiltonian of the AdS5 sigma model,

− log Tm = m log g2
c +HAdS + . . . , (3.89)

in the large volume limit m→∞, up to higher-derivative interactions associated with 1/m
corrections. The point is that this expansion can be trusted, and the latter corrections
neglected, only when the quantum numbers of the state, and in particular the scaling
dimension, are much smaller than the length m. One may expect this condition to be
observed for m × n half-periodic fishnets, at generic values of the cross ratios, as long as
both m and n are large — with the limit of large number of rungs (or large discrete time),
n→∞, being used here to project on the 2d low-energy states. However, it is not obeyed,
even for large m and large n, for the special configurations of the boundary points which
do not have a smooth 2d limit and extract contributions from the high-energy part of the
spectrum of log Tm.

With that in mind, it appears less surprising to find that the boundary conditions set by
our four-point function are strong enough to drive the system away from the scaling (3.87).
Indeed, the fishnet lengths m,n coincide in this case with the scaling dimensions of the
operators sitting at the boundary, which therefore scale large in the thermodynamic limit.
In other words, the interpretation would be that it is because of the “roughness” of the
boundary conditions that we observe a loss of universality in the thermodynamic scaling.

We should stress that strong sensitivity to the boundary conditions has also been
observed in other solvable statistical models. The most famous example is given by the six-
vertex model and related exactly solvable models of statistical mechanics, see [70, 71] and
references therein, where the partition function with domain-wall boundary conditions was
found to scale very differently from the torus partition function in the large volume limit.
The interpretation here is that the former partition function is subject to the formation of
a so-called arctic curve [72, 73], which separates two different phases of the model. Namely,
the configurations appear nearly frozen across a macroscopic domain near the boundary
and only start fluctuating deep inside the lattice, where they approach the disordered phase.
The free energy is not distributed evenly throughout the lattice but instead undergoes a
(more or less) sharp transition at the place where the two phases co-exist. It has also
been suggested that this phenomenon could result from the roughness of the boundary
conditions [70, 71] at least in some situations.

It would be interesting to see if this analogy can be made more precise for the fishnet
lattices. It would also be interesting to see if the phenomenon discussed here admits a dual
AdS interpretation, despite the tension with the 2d low-energy description (3.89). In the
next section, we will see some indirect evidence of a connection with classical string theory
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in AdS3, as we consider a generalized thermodynamic scaling limit which combines large
fishnet and short spacetime limits.

4 Short-distance limit and spinning string

Let us now discuss a more general scaling limit, in which the spacetime parameters scale
large with the fishnet lengths m,n. We shall focus on the situation where |σ| ∼ m, which
corresponds to the Euclidean short-distance regime, x1 → x3 or x2 → x3, depending on
the sign of σ, and use the dual integral (3.2).14

4.1 Mapping with spinning string

The dual equations stay essentially the same in the general scaling limit, if not for the
potential (3.8), which is replaced by

V (x) ≈ − 1
β

log (x2 − σ2) + |x|
m
. (4.1)

Introducing the density (3.9) and the parameter

ξ = β|σ|
4πm , (4.2)

which is held fixed, with β = 1/(k − 1), in the limit |σ|,m, n → ∞, the saddle-point
equation (3.18) becomes

0 = x

x2 − ξ2 − 2π +−
∫ b

a

4xρ(y)dy
x2 − y2 , x ∈ (a, b) , (4.3)

with ξ 6 a 6 b. Our previous discussion relates then to the limit ξ → 0.
Now, equation (4.3) turns out to be the same as the finite-gap equation [74–76] for

a classical string in AdS3 × S1, constructed explicitly by Frolov and Tseytlin [27].15 It
describes a folded string moving in AdS3 with spin S and global time energy E and boosted
with a momentum J along a big circle in S1. In this setup the parameter ξ plays the role
of the so-called BMN coupling,

ξ2 = λ/(4πJ)2 , (4.4)

with
√
λ/2π the string tension and with λ the ’t Hooft coupling of the dual gauge theory.

At weak BMN coupling, the string theory description merges smoothly with the spin-chain
analysis reviewed in section 3.1.2, as discussed in detail in refs. [65, 66, 74]. However, as
the coupling gets bigger, the classical string analysis takes over.

14We could also consider a rescaling of ϕ, along with σ. We do not expect any difference as long as
|ϕ| < |σ|. Indeed, increasing |ϕ| merely shifts the linear part of the potential, which becomes piecewise
linear, with a plateau up to x ∼ |ϕ|/m followed by the linear potential. This plateau lies outside of the
saddle-point distribution for |ϕ| < |σ|, thus leaving the analysis unchanged. The alternative situation where
|ϕ| > |σ| is more delicate and relates to the lightlike short-distance limit of the correlator.

15Equation (4.3) also shares similarities with the equation for a model of open strings in D = 0 dimensions
studied in ref. [77].
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The solution to eq. (4.3) is known for any ξ and may be found explicitly in refs. [74–76].
Here, we simply quote the expressions for the parameters of the distribution,

b = 4K(q)
√

(a2 − ξ2)(b2 − ξ2) , β = 2bE(q)− 1
2 −

2ξ2K(q)
b

, (4.5)

and q = 1 − a2/b2 ∈ (0, 1), which generalize to ξ 6= 0 the formulae in eqs. (3.23). Recall
that β controls the normalization of the density in our convention. In the string theory, it
relates to a linear combination of the string quantum numbers [74–76]

β = 2
b∫
a

dxρ(x) = E + S − J
2J . (4.6)

It reduces to the spin-chain expression, see comment below (3.22), in the weak BMN
coupling limit ξ → 0, that is, when the “anomalous dimension” E − S − J ∼ 0.

4.2 Short-string regime

One may then derive a differential equation for the scaling function,

f = f(β, ξ) = lim
m,n,|σ|→∞

m−2 log Φm,n , (4.7)

by following the same lines of analysis as before. One only needs to replace the potential
used in eq. (3.30) by its deformed version,

4
b∫
a

dxδρ(x)(log
√
x2 − ξ2 − 2πx) = 2 log

[√
a2 − ξ2 +

√
b2 − ξ2

2

]
− 8bE(q) , (4.8)

with δρ = ∂βρ given in eq. (3.26). It yields the differential equation

∂

∂β
(β2(f−f0−4πξ/β)) = 2β log

[
b2 − a2

4

]
+2 log

[√
a2 − ξ2 +

√
b2 − ξ2

2

]
−8bE(q) , (4.9)

with the derivative taken at fixed ξ and with f0 given explicitly in eq. (3.16). The extra
piece on the left-hand side stems from the prefactor of the dual integral (2.16),

d(z, z̄)m ≈ em|σ| = e4πm2ξ/β , (4.10)

in the limit m, |σ| → ∞.
Integrating eq. (4.9) for general β and ξ is beyond the scope of this paper. Here,

we will focus on taking the strong coupling limit ξ � 1 at fixed β. This limit maps to
the short-string domain on the string theory side, with the spin, energy and momentum
obeying the flat-space dispersion relation S ∼ E2 − J2 [27].16 The small and large β limit
coincides then with J2 � S and J2 � S, respectively.

16The scaling is easily understood from eqs. (4.4) and (4.6). At large ξ, the sphere momentum J is small
(in string units). Hence, in order to keep β = O(1), one must have E ∼ J , meaning that the energy is small
as well.
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At the level of eq. (4.3), the short-string regime corresponds to an expansion around
the bottom of the potential V ′(c) = 0 in the limit ξ → ∞. Expanding eqs. (4.5) around
this point yields

a = c+ β −
√
β(1 + β)
2π +O(1/ξ) , b = c+ β +

√
β(1 + β)
2π +O(1/ξ) , (4.11)

where c = (1 +
√

1 + 16π2ξ2)/4π ∼ ξ. Inserting the expressions in the right-hand side of
the differential equation (4.9), using

2β log
[
b2 − a2

4

]
= β log

[
β(1 + β)ξ2

4π2

]
+O(1/ξ) ,

2 log
[√

a2 − ξ2 +
√
b2 − ξ2

2

]
− 8bE(q) = −4πξ + log

[(1 + β)ξ
2π

]
− 2β − 1 +O(1/ξ) ,

(4.12)
one finds that the terms linear in ξ cancel out, such that

∂

∂β
(β2(f − f0)) = (1 + 2β) log[ξ/(2πe)] + (1 + β) log (1 + β) + β log β +O(1/ξ) . (4.13)

This equation is significantly simpler than the one encountered earlier, for small ξ, and it
can be integrated directly,

f = k log (8π(k − 1)ξ) + 1
2
[
k2 log k − (k + 1)2 log (k + 1)

]
+ 3k

2 +O(1/ξ) , (4.14)

using eq. (3.16) for f0 and the boundary condition limβ→0(β2f) = 0. Re-expressing it in
terms of the original variables, we find

log Φm,n = mn log (2|σ|)+ 1
2(m2 logm+n2 log n−(m+n)2 log (m+ n))+ 3mn

2 +O(1/|σ|) ,
(4.15)

which holds when |σ| � m,n � 1. It is manifestly symmetric under m ↔ n. One reads
from it that Φm,n ∼ |σ|mn in the short-distance limit, |σ| → ∞. Note that it sends the
exponent infinitely far away from the predicted one (3.87) for periodic fishnets. This scaling
is nonetheless in perfect agreement with the UV power counting of the fishnet integral, with
each loop giving rise to a logarithmic divergence ∼ |σ|. It is quite intriguing to see this
simple field theory behaviour arising here from a short string analysis.

Let us add finally that subleading terms can be easily produced by keeping higher
orders in (4.11). For illustration, one easily finds

δ log Φm,n = mn(m+ n)
2|σ| − (mn)2

4σ2 − mn(m+ n)(m2 +mn+ n2)
24|σ|3 +O(1/σ4) , (4.16)

for the first few corrections to (4.15). They constitute corrections to the flat-space regime,
coming from the curvature of AdS, in the string theory interpretation.
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4.3 Hankel determinant of factorials

We can compare the “stringy” prediction (4.15) with a direct evaluation of the determinant
of ladders. As we will now explain, the latter simplifies drastically at large σ and can be
given in closed form for all m and n. We first note the large σ behaviour of the ladders,
choosing σ → −∞ for convenience,

Lp(z, z̄) ≈ (2|σ|)p

p! (z − z̄) . (4.17)

The highest power of |σ| = 1
2 [− log (zz̄)] dominates in the sum (2.9), using the fact that

Lij(z) ≈ z in the limit |σ| = −σ →∞, or z, z̄ � 1. Inserting the above estimate inside the
determinant (2.6) then yields the simple expression

Φm,n ≈
(2|σ|)mn

N
det((i+ j + n−m− 2)!)16i,j6m , (4.18)

for the leading large |σ| behaviour.
Now, determinants of Hankel matrices of factorials form nice sequences, which can be

written concisely in terms of Barnes’ G-function, see eq. (3.12). In particular, a classic
mathematical result yields for n = m,

det ((i+ j − 2)!)16i,j6m = G(m+ 1)2 =
m−1∏
k=0

(k!)2 . (4.19)

The general formula, valid for any n > m, is given by [78]

det((i+ j + n−m− 2)!)16i,j6m = G(m+ 1)G(n+ 1)
G(n−m+ 1) , (4.20)

and it can be derived by evaluating the determinant with the method of orthogonal poly-
nomials, as explained in appendix C. It combines neatly with the prefactor (3.12) such as
to give

Φm,n ≈ (2|σ|)mnG(m+ 1)G(n+ 1)
G(n+m+ 1) , (4.21)

which is symmetric under m ↔ n, as it should be. The large m,n limit follows immedi-
ately from the asymptotic behaviour of Barnes’ G-function at large argument, eq. (3.13),
reproducing perfectly the stringy result (4.15).

One may also find concise expressions for the subleading logarithmic corrections at
large |σ|. They originate from the lower terms in the polynomials in |σ| in the ladders,

Lp → (z − z̄)
2p∑
j=p

j!(2|σ|)2p−j

p!(j − p)!(2p− j)! = (z − z̄)√
πp! e

|σ|(2|σ|)
1
2 +pK 1

2 +p(|σ|) , (4.22)

with K the modified Bessel function of the second kind. Plugging this expression inside
the determinant and expanding at large σ, for several values of m,n, we found that the
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corrections can be parametrized in terms of symmetric polynomials in m and n of increas-
ing degrees,

log (Φm,n/Φ0
m,n) = mn(m+ n)

2|σ| − mn(mn+ 1)
4σ2 − mn(m+ n)(m2 +mn+ n2 − 7)

24|σ|3 + . . . ,

(4.23)
with Φ0

m,n denoting the leading order expression (4.21). These polynomials are readily seen
to match with the stringy curvature corrections (4.16), when m,n� 1.

5 Conclusion

In this paper, we examined simple four-point fishnet integrals in four dimensions, for opera-
tors carrying finite or large scaling dimensions, m,n. The equivalence between the various
integral representations allowed us to obtain closed-form expressions for the free-energy
density controlling the large-order behaviour of these diagrams. It was found to be in-
dependent of the cross ratios (away from singular points), in line with common wisdom
on the scaling of boundary data in the thermodynamic limit. However, the “universality
property” of the free energy appears incomplete, owing to non-trivial dependence on the
fishnet aspect ratio k = n/m.

The dependence on k of the free energy raises a number of questions. In particular,
it suggests that the fishnet partition function studied in this paper may be subject to the
formation of an arctic curve, as seen in the six-vertex model and related exactly solvable
models of statistical mechanics [70–73] with domain wall boundary conditions [79]. The
analogy is quite neat at the mathematical level, with the latter set of boundary conditions
giving rise to a determinant, while the periodic ones are found to be governed by a more
involved (linearized) TBA equation.

It would be interesting to see if this analogy holds up under a more detailed analysis.
Our measure of the free energy density is rather crude, since it averages over the entire
graph. It would be interesting to dive more deeply into the diagram and extract informa-
tion about the local distribution. This may perhaps be done by deforming the boundary
conditions, adding excitations on the local operators at the boundary, or by considering
higher-point functions, with additional operators. (For instance, a five-point function with
a Lagrangian insertion might help exploring local properties of the fishnet graphs.) One
may also draw inspiration from the methods used to construct the arctic curve in the
six-vertex model, see e.g. refs. [80, 81].

Recently, a lot of progress has been made in obtaining alternative descriptions of
the fishnet diagrams in terms of dual systems in AdS. In particular, we mentioned that
cylindrical fishnet graphs are expected to relate to the non-linear AdS sigma model in the
continuum limit. In light of the aforementioned discrepancy, it is not immediately clear
if this description applies to the thermodynamic limit of the open-string-like correlators
studied in this paper. The question remains as to whether a dual AdS description exists
in these cases as well. This description may not be smooth throughout the entire system
or given in terms of a local 2d quantum field theory, but it may nonetheless be formulated
entirely in the AdS space. The AdS string-bit formulation of the fishnet graphs developed
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recently in refs. [23–25, 82] — dubbed the fish-chain model — may shed light on it, as it
does not assume a low-energy approximation and is naturally tied to the regime of large
scaling dimensions. Still, some work appears needed to cast it in a form that is suitable
for studying the thermodynamic limit.

The generalized scaling limit discussed in section 4 is an interesting corner for exploring
a potential new connection with a dual AdS description. In this case we saw that the saddle-
point equation agrees perfectly with the finite-gap equation for a rigid string spinning in
AdS1 × S1. Some aspects of the mapping, such as the emergence of the internal circle S1

or the relation between the spacetime parameter of the fishnet correlator and the BMN
coupling of the string, are quite intriguing and it is not yet clear if this mapping results
from a mathematical accident or stands as an indication of a genuine correspondence.
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A Technical lemmas

In this appendix, we provide the key lemmas used for the exact evaluation of the BMN
and FT integrals.

The following Lemma yields an integral relation for the product of two determinants
defined by two sets of functions.

Lemma 1 (Cauchy-Binet-Andréief formula). For a set of functions {fi, gj}i,j∈[1,n] and
measure dν, we have the Cauchy-Binet-Andréief formula∫

Rn

dν(v)
n! det(fi(vj)) det(gi(vj)) = det

[∫
R

dν(v)fi(v)gj(v)
]
. (A.1)

Proof. See refs. [83, 84].

The next Lemma permits one to convert sums over discrete integers into contour
integrals.
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Lemma 2 (Mellin-Barnes summation formula). Let C = ε + iR for some ε ∈ (0, 1) be a
contour in the complex plane, parallel to the imaginary axis and y ∈ C such that Re y > 0.
The Mellin-Barnes summation formula allows one to replace a summation over integers
by an integral over C,

∑
a>1

(−y)af(a) = −
∫
R

dx y

y + e−x

∫
C

dw
2πie

−wxf(w) . (A.2)

For completeness, we provide a short non-rigorous proof of the classical Mellin-Barnes
summation formula, see ref. [85, Lemma 3.2.13] for convergence issues and conditions on
the function f .

Proof. By a residue calculus (and ignoring convergence issue), we note the identity

∑
a>1

(−y)af(a) = −
∫
C

dw
2πi

π

sin (πw)y
wf(w) , (A.3)

using Resw=a[π/ sin (πw)] = (−1)a. Furthermore, we note the second identity for Re y > 0
and w ∈ C,

π

sin (πw)y
w =

∫
R

dx y

y + e−x
e−wx , (A.4)

where the right-hand side can be viewed as a Mellin transform of a Fermi factor.

We introduce now a lemma about derivatives of the inverse of hyperbolic cosines which
will be essential to prove Lemma 4.

Lemma 3 (Derivative of inverse of hyperbolic cosine). For all j > 0, the j-th derivative
of the inverse of hyperbolic cosine reads

∂j−1

∂uj−1 sech (πu) = sech (πu)Pj−1(tanh (πu)) , (A.5)

where Pk is a polynomial of leading order k and leading coefficient ak = (−π)kk!.

Proof. We prove it by induction. Assume it is valid for some j > 1, we get

∂

∂u

Pj−1(tanh (πu))
cosh (πu) = π

tanh′ (πu)P ′j−1(tanh (πu))− Pj−1(tanh (πu)) tanh (πu)
cosh (πu) . (A.6)

Using the expression of the derivative of the hyperbolic tangent, tanh′ = 1 − tanh2, we
define Pj as

Pj(x) = π[(1− x2)P ′j−1(x)− xPj−1(x)] . (A.7)

The leading coefficient of Pj is then obtained as aj = −πjaj−1. Hence, by induction, as
a0 = 1, for all j > 0, aj = (−π)jj!.

The next Lemma allows us to transform a Vandermonde determinant over hyperbolic
tangents into a Vandermonde determinant over partial derivatives.
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Lemma 4 (Equivalent Vandermonde representations). For any set of variables {uj}j∈[1,n],
the following equality holds

(−π)
1
2n(n−1)

n∏
j=1

(j−1)!
n∏
i=1

sech(πui)
∏
i<j

(tanh(πuj)−tanh(πui)) = ∆n(∂u)
n∏
i=1

sech(πui) ,

(A.8)
where ∆n(∂u) =

∏
i<j(∂uj − ∂ui).

Proof. Starting from the partial-derivative Vandermonde representation and Lemma 3, we
have

∆n(∂u)
n∏
i=1

sech (πui) = det
n

[
∂j−1

∂uj−1
i

sech (πui)
]

= det
n

[
Pj−1(tanh (πui))

cosh (πui)

]
. (A.9)

Combining the rows of the matrix, we can retain only the highest order term of each
polynomial Pj ,

∆n(∂u)
n∏
i=1

sech (πui) =
n∏
j=1

aj−1 × det
n

[tanh (πui)j−1

cosh (πui)

]
. (A.10)

Lastly, we observe that the remaining determinant is again a Vandermonde determinant
with hyperbolic tangents as arguments,

∆n(∂u)
n∏
i=1

sech (πui) = (−π)
1
2n(n−1)

n∏
j=1

(j − 1)!
n∏
i=1

sech (πui)
∏
i<j

(tanh (πuj)− tanh (πui)) .

(A.11)

B Elliptic parameters

In this appendix, we determine the parameters A,w2, w3, w4 in the elliptic parametriza-
tion (3.48), (3.50) by fixing the mapping at the boundary points.

Matching the asymptotics. The asymptotic behaviours at small u and at large u are
easily matched on both sides of eq. (3.50). For u small, w is small and in this limit eq. (3.50)
yields

u = (1 + k)
√
w +O(w) , (B.1)

while eq. (3.48) gives
u = − 2Aw3√

w2w4

√
w +O(w) . (B.2)

Hence,
1 + k = − 2Aw3√

w2w4
. (B.3)

We can proceed similarly for the large u regime, which maps to large w. Equation (3.50)
yields

1√
w

= k − 1
u

+O(1/u3) ⇒ u = (k − 1)
√
w +O(w−1/2) , (B.4)
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while eq. (3.48) gives
u = 2A

√
w +O(w−1/2) . (B.5)

Therefore,
A = k − 1

2 . (B.6)

Matching boundary points. The remaining parameters are fixed by evaluating the
solution at special points on the boundary. Namely, enforcing that the pre-images of
{0, w2, w3, w4} are {0, i

2 − i0, i
2 +B, i

2 + i0}, we obtain the relations

1
2 = A

∫ 0

w2
dt t− w3√

(−t)(t− w2)(t− w4)
,

B = A

∫ w2

w3
dt t− w3√

(−t)(w2 − t)(t− w4)
,

B = A

∫ w3

w4
dt w3 − t√

(−t)(w2 − t)(t− w4)
.

(B.7)

Taking the difference of the last two equations, we get

w4E(q) = w3K(q), q ≡ 1− w2
w4
∈ [0, 1) , (B.8)

while the first equation yields
1

4A
√
−w4

= E(p) +
(w3
w4
− 1

)
K(p), p ≡ w2

w4
, (B.9)

with K and E the complete elliptic integrals of the 1st and 2nd kind, see eq. (3.24).
Equation (B.9) can be further simplified by eliminating w3/w4 with the help of

eq. (B.8). It gives
1

4A
√
−w4

= E(p)K(q) +K(p)E(q)−K(p)K(q)
K(q) = π

2K(q) , (B.10)

using the Legendre relation for elliptic functions of conjugate moduli, p+q = 1, to simplify
the numerator.

Summary. We found

A = k − 1
2 =

√
1− qK(q)

E(q)−
√

1− qK(q) ,

−w2 = (1− q)(−w4) = 1
4π2 [E(q)−

√
1− qK(q)]2,

−w3 = K(q)E(q)
π2(k − 1)2 = 1

4π2
E(q)
K(q)

[E(q)−
√

1− qK(q)]2

1− q ,

−w4 = K2(q)
π2(k − 1)2 = 1

4π2
[E(q)−

√
1− qK(q)]2

1− q ,

B = (k − 1)
[

w3√
−w4

F (γ, q) +
√
−w4E(γ, q)

]
, γ = arcsin

√
w3 − w4
w2 − w4

,

(B.11)

where E(γ, q), F (γ, q) are the incomplete elliptic integrals obtained by changing the upper
limit in eq. (3.24) from π/2 to γ. We arrive at eq. (3.52) by replacing the elliptic integrals
by the parameters a, b, β introduced in eq. (3.23).
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C Orthogonal polynomials

In this appendix, we calculate the short-distance limit of the determinant of ladders,
eq. (4.21), using the method of orthogonal polynomials, see ref. [59] for a review. First,
recall the integral representation (2.21) of the ladder Lp(z, z̄). In the limit σ → −∞, or
equivalently z, z̄ → 0, it yields

Mp = p!(p− 1)!Lp ≈ (z − z̄)× (2|σ|)p
∫ ∞

0
dr rp−1e−r , (C.1)

such that the correlator (2.5) can be written as

Φm,n ≈
(2|σ|)mn

N
det

[∫ ∞
0

dr r`+i+j−2e−r
]

16i,j6m
, (C.2)

with ` ≡ n − m. One then introduces the basis of orthogonal polynomials {L(`)
k (r), k =

0, 1, . . .}, associated with the integration measure r`e−rdr,∫ ∞
0

dr r`e−rL(`)
k (r)L(`)

l (r) = skδk,l , (C.3)

with δk,l the Kronecker delta and with L(`)
k (r) a polynomial of degree k in r. The key advan-

tage of this basis is that it allows one to factorize the determinant. Namely, decomposing
the monomials rk over it,

rk = αkL
(`)
k + . . . , αk 6= 0 , (C.4)

with the dots standing for sums of polynomials of lower degrees, and using basic properties
of the determinant, one may write

Φm,n ≈
(2|σ|)mn

N
det

[
αi−1αj−1

∫ ∞
0

dr r`e−rL(`)
i−1(r)L(`)

j−1(r)
]

16i,j6m
= (2|σ|)mn

N

m−1∏
i=0

α2
i si .

(C.5)
In the case at hand, the L’s are the generalized Laguerre polynomials,

L
(`)
k (r) = r−`er

k!
dk

drk
(e−rrk+`) = (−1)k r

k

k! +O(rk−1) , (C.6)

which obey (C.3) with sk = (k+`)!/k! and (C.4) with αk = (−1)kk!. One thus immediately
concludes that

Φm,n ≈
(2|σ|)mn

N

m−1∏
i=0

(i!(i+ `)!) = (2|σ|)mn

N
G(m+ 1)G(n+ 1)
G(n−m+ 1) , (C.7)

recalling that ` = n−m and using G(z + 1) =
∏z−1
i=0 i!.
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