
1

Fission and Fusion at the End of the Periodic System

Peter Möller, Arnold J. Sierk, Takatoshi Ichikawa and Akira Iwamoto

1Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87544
2Tokai Research Establishment, Japan Atomic Energy Research Institute(JAERI)

Tokai-mura, Naka-gun, Ibaraki, 319-11 Japan

We calculate in a macroscopic-microscopic model fission potential-energy surfaces for
neutron-rich actinides and fission-fusion potential-energy surfaces relevant to the analysis
of heavy-ion reactions employed to form heavy-element evaporation residues. We study the
latter multidimensional potential-energy surfaces both inside and outside the touching point.

Inside the point of contact we define the potential on a multi-million-point grid in 5D
deformation space where elongation, merging projectile and target spheroidal shapes, neck
radius and projectile/target mass asymmetry are independent shape variables. The same
deformation space and the corresponding potential-energy surface also describe the shape
evolution from the nuclear ground-state to separating fragments in fission, and the fast-fission
trajectories in incomplete fusion.

For separated nuclei we study the macroscopic-microscopic potential energy, that is the
“collision surface” between a spheroidally deformed target and a spheroidally deformed pro-
jectile as a function of three coordinates which are: the relative location of the projectile
center-of-mass with respect to the target center-of-mass and the spheroidal deformations of
the target and the projectile. We limit our study to the most favorable relative positions
of target and projectile, namely that the symmetry axes of the target and projectile are
collinear.

We also calculate fission barriers for a long sequence of uranium isotopes. The aim is
to understand another attempted production mechanism for superheavy elements, namely
neutron-capture in thermonuclear explosions.

§1. Introduction

It has been a longstanding challenge to understand in detail element formation at
the end of the periodic system. In nature many of the heaviest elements are formed in
the rapid-neutron-capture process, r-process, in stars.1) About 20 elements beyond
those present in significant quantities on earth have been artificially synthesized in
laboratories, predominantly by use of heavy-ion reactions.2) We present here initial
results of very large-scale fission-barrier calculations for neutron-rich nuclei relevant
to nucleosynthesis at the end of the r-process and fusion-fission potential energy
surfaces relevant to the artificial production of the very heaviest elements in cold-
fusion reactions. About 25 years ago it became clear that rather than use the most
asymmetric target and projectile combinations to extend the periodic system further,
so called cold-fusion reactions with a target near 208Pb were preferable.3) This double
magicity confers extra binding energy to the colliding system. This has no effect on
the barrier between the colliding heavy ions relative to infinite separation, but it
does lower the barrier relative to the ground-state of the compound system.

Here we will identify what other aspects of cold-fusion reactions favor compound-
nucleus formation, apart from the long-recognized benefit of the lower excitation
energy. In particular we will look at the potential energy both before and after
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Fig. 1. Structures in the calculated 5D potential-energy surface of 278112. The lower curve corre-

sponds to the fission barrier. For large values of Q2 there is an additional well-defined valley in

the 5D energy surface, which is stabilized with respect to the fission valley by the ridge shown

in the top curve. One shape in the fission valley and one shape in the additional valley are

shown. The shape in the additional valley corresponds to MH/ML = 208/70. The position of

the vertical thin arrow on the horizontal axis indicates the value of Q2 at the contact point for

spherical target and projectile.

touching in a multidimensional deformation space in a model that takes microscopic
effects into account, and see how this picture differs from a purely macroscopic
picture.

§2. Five-dimensional compound-system potential-energy surfaces

The five-dimensional macroscopic-microscopic potential-energy surfaces for com-
pound systems reached in cold-fusion heavy-ion reactions are calculated and an-
alyzed using the same techniques as introduced previously in studies of actinide
fission.4) In particular we calculate the potential energy as a function of 5 nuclear-
shape coordinates: 15 points each in the neck diameter and left and right fragment
deformations, 35 points in the mass asymmetry, and 33 points in the nuclear elonga-
tion. This leads to a space of 3898125 grid points. However, as explained elsewhere4)

some grid-point coordinate values do not correspond to physically realizable shapes;
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Fig. 2. Calculated outer fission-barrier heights for a sequence of uranium isotopes. Also shown is

the neutron separation energy for the A +1 system. When the separation energy is higher than

the fission barrier fission is possible when a neutron is captured during the r-process.

therefore the actual number of grid points considered are 3594915. Compared to
our previous fission studies we have increased the number of mass-asymmetry grid
points from 20 to 35.

In Fig. 1 we show the result of a water-immersion analysis of the calculated 5D
deformation spaces for the compound system 278112. The shapes in the secondary
valley strongly overlap with the target and projectile masses in the incident channel.
This appearance of the potential-energy surface is very different from what is ob-
tained in a macroscopic multi-dimensional picture in which these systems just after
touching find themselves on a surface that slopes steeply sideways relative to the
incident direction and therefore would immediately deflect systems colliding “at the
Coulomb barrier” towards the fission valley and re-separation.5)–7)

In Fig. 2 we show for a sequence of uranium isotopes the calculated value of the
outer peak in the barrier. In the vicinity of A = 260 the calculated outer barrier
height is less than 5 MeV. In a 3D calculation in a deformation grid appropriate for
studies of the first peak in the fission barrier we find that its height is also below
5 MeV. Thus the r-process could be terminated here by neutron-induced fission.
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However, for a more complete description it is necessary to calculate barriers for
the entire neutron-rich heavy-element region and follow β-decay to stability and de-
termine the associated β-delayed neutron-emission and β-delayed fission branching
ratios. These studies are in progress. However, we can already note that in ther-
monuclear explosions designed to generate particularly high neutron fluences only
nuclei with mass number A up to A = 257 were produced with uranium targets.8)

This is in qualitative agreement with Fig. 2, where the calculated neutron separation
energies become close to the calculated barrier heights just below A = 260.

§3. Three-dimensional heavy-ion collision potential-energy surfaces

We study here the fusion barrier for some cold-fusion reactions commonly used
to reach heavy elements in the region from No to proton number Z = 114.

It is well known that the “Coulomb barrier” calculated in simple macroscopic
models with spherical targets and projectiles is much higher than the optimal energy
for forming heavy evaporation residues in heavy-ion collisions. We therefore use
a more realistic approach and calculate below the energy of a colliding heavy-ion
system as

EP+T(ε2P, ε2T, xP, yP, zP, α, β, γ) = Eself
P (ε2P)− Eself

P (ε2P = gs)
+ Eself

T (ε2T)−Eself
T (ε2T = gs)

+ Eint
PT(ε2P, ε2T, xP, yP, zP, α, β, γ) (3.1)

Here EP+T is the total energy of the colliding system relative to infinitely sepa-
rated targets and projectiles in their ground states (gs). The quantity Eself is the
macroscopic-microscopic potential energy as a function of shape as given by our
FRLDM model.4),9) Since we give the system energy relative to the separated frag-
ments we obviously need to subtract the ground-state self-energies of the target and
projectile; thus the second and fourth terms in the right member of Eq. 3.1 above.
The interaction-energy-term calculation is extensively discussed in our Ref.10) We
assume that the interaction shell-correction energy can be neglected for separated
target and projectile. The Cartesian triplet (xP, yP, zP) gives the location of the
center of the projectile relative to the center of the target. The Euler angles α, β,
and γ specify the orientation of the projectile symmetry axis relative to the target
symmetry axis. The energetically most favorable configuration, at least for prolate
deformations, for a specific distance between target and projectile, is when the axes
of the target and projectile are collinear. To limit the problem to a moderately
low-dimensional parameter space we therefore only consider these relative positions
of target and projectile and only spheroidal deformations ε2T and ε2P of the target
and projectile, respectively. Thus, we have xP = 0, yP = 0, α = 0, β = 0, and γ = 0,
so that the space we investigate is 3-dimensional and is characterized by target and
projectile spheroidal deformations and their relative distance zP. The configuration
we consider is also referred to as the polar-parallel configuration.11)

We now argue that if the system loses stability with respect to target and/or
projectile deformation as the ions approach each other then the energy at which this



Fission and Fusion at the End of the Periodic System 5

Table I. Heavy-ion-reaction fusion barriers calculated in three models. The first model (a) is the

conventional Coulomb barrier. In the second model (b) projectile deformation and target and

projectile microscopic corrections are included. In the third model (c) the variation in zero-point

energy with respect to the projectile spheroidal deformation as the projectile approaches the

target is also considered. We have verified that the effect of target deformation is very small,

only an MeV or so in most cases, due to the stabilizing effect of the doubly-magic proton and

neutron numbers Z = 82 and N = 126 of the target.

Reaction 1-D Coul. Barr. (a) 2-D Saddle (b) 2-D Saddle (c)

(MeV) (MeV) (MeV)

48
20Ca + 208

82Pb → 258
102No 182.65 179.04 178.70

50
22Ti + 208

82Pb → 258
104Rf 201.04 194.29 193.87

54
24Cr + 208

82Pb → 262
106Sg 218.44 209.93 208.60

58
26Fe + 208

82Pb → 266
108Hs 236.13 224.97 221.96

62
28Ni + 208

82Pb → 270
110Ds 252.71 244.21 239.04

64
28Ni + 208

82Pb → 272
110Ds 251.48 238.43 238.58

70
30Zn + 208

82Pb → 278112 267.14 255.05 252.26

74
32Ge + 208

82Pb → 282114 284.49 280.07 271.71

76
32Ge + 208

82Pb → 284114 283.85 275.09 272.40

occurs defines a more realistic fusion-barrier height. This means that we assume that
once the system becomes unstable with respect to deformation, shape changes occur
very fast relative to motion in the collision direction. Specifically we determine
for a succession of values of zP the minimum energy with respect to target and
projectile deformation and the corresponding target and projectile deformations.
If we neglect the microscopic terms in Eself we recover the well-known result that
the target and projectile are fairly oblate: ε2 is in the range −0.4 to −0.2 in the
situations investigated. However, when the microscopic corrections are included
they stabilize the doubly magic 208Pb at spherical or very close to spherical shape;
deviations are typically less than 0.03. We can therefore illustrate the important
aspects of the collision surface in only two dimensions. In Figs. 3 and 4 we show the
energy of the colliding system for a spherical target versus projectile deformation
for a succession of distances as the projectile approaches the target for two heavy-
ion reactions leading to 258

104Rf and 278112. We indicate by a big blob the energy
corresponding to the “conventional” Coulomb barrier calculated as the maximum
in the macroscopic energy between spherical target and projectile. For the light
compound system the Coulomb barrier is only 5.57 MeV higher than the energy
at the point where our more realistic collision surface loses stability with respect
to projectile deformation. The situation is quite different for the heavy compound
system 278112. Here the collision-surface saddle point is 14.09 MeV lower than the
Coulomb barrier. In Table 1 we present calculations of the collision-surface saddle-
point energy for 11 heavy-ion collisions in the second column of numbers. These
have been calculated assuming the target is spherical. We have also relaxed this
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Fig. 3. Calculated macroscopic-microscopic potential energies for the collision of 50Ti+208Pb. Each

of the plotted curves shows the potential energy of the system versus projectile deformation, for

spherical 208Pb and a specific distance between the centers of mass of the target and projectile.

The distance in fermi, is written above the potential-energy curve. For distances less than

14.0 fm the separation between projectile and target decreases by 0.2 fm for each successive

curve. The dot corresponds to the calculated value of the one-dimensional “Coulomb barrier”

in a macroscopic model. The arrow indicates the fusion-barrier height obtained by the method

corresponding to column 3 in Table 1. It is plotted at an energy that is slightly different from

the energy in the table to be “consistent” with the curves in the figure, see text for a discussion.

condition but for a 208Pb target the effect on the barrier is usually less than 1 MeV.
For comparison we also present, in column one, the conventional Coulomb barrier.

The potential energy curves in Figs. 3 and 4 have all been calculated assuming
that target and projectile zero-point energies do not change as the ions approach.
However when projectile stability with respect to deformation is lost the projectile
zero-point energy vanishes. The correct fusion barrier in this approximation (column
2 in Table 1) is therefore obtained by subtracting the projectile zero-point energy at
infinity from the saddles obtained from the energies in this figure. For the case when
we calculate the point of instability by taking into account the changing projectile
zero-point energy (column 3 in Table 1) we also subtract this zero-point energy and
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Fig. 4. Same as Fig. 3, but for the collision 70Zn+208Pb. Here the difference between the conven-

tional Coulomb barrier and the collision-surface saddle-point height is substantial.

add the appropriate projectile zero-point energy at the current separation. The
arrow energies in Figures 3 and 4 are “consistent” with the energy curves, that is
the projectile zero-point energies at infinite separation have not been subtracted
out. They are therefore located at slightly different energies than the fusion barrier
energies listed in Table 1 which are normalized so that they are consistent with
experimental energies given in the center-of-mass frame.

In Fig. 4 we observe that the energy curves versus projectile deformation are
very flat for a succession of distances before stability with respect to projectile de-
formation is lost. Therefore the exact energy and deformation where this occurs
depends somewhat on the procedure used to find the minimum energy with respect
to projectile and target deformation at each separation and on other minor details
of the calculations. We therefore consider an improved model for determining the
collision-surface saddle point.

We consider the target to be inert, that is, based on the observations above,
we keep its shape spherical. For each separation we then calculate the zero-point
energy with respect to projectile deformation. That is we calculate the zero-point
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energies for each of the one-dimensional curves shown in Figs. 3–5. The curves are
approximated by parabolas whose minima coincide with the actual function minima
and pass through the saddle towards prolate projectile deformations (or when a
saddle is non-existent pass through the maxima at the touching point). For the
inertia with respect to ε vibrations we use exactly the same model as we have used
to calculate the ground-state zero-point energies in our mass model12) and in fission
half-life calculations.13) When the sum of the zero-point energy and the minimum
energy of the curve is equal to the saddle energy towards the right in Figs. 3 and
4 we claim we have found the collision-surface saddle point. We only calculate the
zero-point energy for a set of curves at separation distances . . . 14.0, 13.8, 13.6,
13.4 . . . and then determine by interpolation the point where the zero-point energy
coincides with the saddle occurring towards the right on the curves. The collision-
surface saddle-point energies determined in this way are given in the third column
of numbers in Table 1. We have also calculated the zero-point energies with a WKB
method. The collision-surface saddle-point energy obtained by WKB differs from the
value obtained in the parabolic approximation by less than 0.1 MeV on the average,
despite the non-parabolic appearance of many of the curves in Figs. 3 and 4.

In Fig. 5 we plot the collision-surface saddle relative to the ground-state energy
of the compound system. We compare this realistic model of the fusion barrier
to two models of the Coulomb barrier. The “Total fusion” takes into account the
effect of microscopic corrections on the nuclear masses, whereas “Macroscopic fusion”
does not. The “total-fusion” macroscopic-microscopic barrier is considerably lower
than the macroscopic barrier, relative to the ground state of the compound system.
However, relative to the separated projectile and target configuration the two barriers
are equally high. This is the well-known “cold-fusion” effect: The total fusion barrier
relative to the ground state of the compound system is lowered due to the extra
binding associated with the doubly-magic nucleus 208Pb. Other contributions, which
can be positive or negative, arise from the microscopic corrections in the projectile
and evaporation residue nuclei. Thus, in a cold fusion reaction “at the Coulomb
barrier” the compound system will form at lower excitation energies than in non-
cold-fusion reactions leading to the same system. This effect is thought to enhance
the evaporation-residue cross section.

We also plot the fission barriers of the compound systems. They are compared
to the ground-state microscopic corrections. The “Enhancement to binding” curve
shows the ground-state microscopic correction multiplied by −1, to make it more
obviously comparable to the fission-barrier height. Since the macroscopic fission
barrier is almost non-existent for these systems, the fission-barrier height will be
roughly equal to the (negative of the) ground-state microscopic correction.14),15) Of
interest here is that the calculated fusion-barrier height drops down to about the
fission-barrier height at around compound-system proton number Z = 112. This
means that for higher proton number it is roughly the fission-barrier peak that is
the highest point on the fusion path. We initially discussed this at the ENAM98
conference, Fig. 3 in that paper.16) (However, the fusion-barrier calculations there
are inaccurate due to incorrect coding of the Wigner-term shape dependence.) An
important consequence is that when the fusion-barrier height drops down to the
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Fig. 5. Potential-energy-surface barrier and ground-state systematics for cold-fusion reactions lead-

ing to compound systems from No to Z = 126. The “Enhancement to binding” curve is exactly

the ground-state microscopic correction multiplied by −1. Curves labeled ”Total” are calculated

with the full macroscopic-microscopic approach. However, both the “Macroscopic fusion” and

“Total fusion” results were obtained assuming that target and projectile are spherical during the

collision. The “Collision-surface saddle” curve was calculated permitting projectile deformation;

otherwise the model is identical to “Total Fusion”. See text for further discussions.

fission barrier, one must expect a break in the systematics for the optimum energy for
evaporation residue formation that is now, for unknown systems typically obtained
from the trend of this energy extrapolated from lighter systems.

§4. Conclusions

Traditionally in dynamical models of colliding heavy ions the potential energy
has been described in terms of a macroscopic model. Deformations of target and
projectile are sometimes also ignored. We have shown here that for collisions at
low energy, that is “at the Coulomb barrier” deformations and microscopic effects
contribute to a dramatically different picture of the potential energy.

Inside the touching point we find a substantial “cold-fusion” valley where the
shape configuration corresponds closely to the shape of target and projectile just
before touching, that is an almost spherical target-like part joined with a deformed
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projectile part, with a deformation similar to what develops just before touching.
Outside the touching point our more realistic model shows that in collisions

leading to very heavy systems, for example 272112 the collision-surface saddle point
where stability with respect to projectile deformation is lost is about 14 MeV lower
in energy than the conventional Coulomb barrier. This gives a more reasonable
correspondence between calculated fusion-barrier heights, which we now equate with
the collision-surface saddle-point energy, and the observed most-favorable energies
for evaporation residue formation.

Clearly there is a need to go further to understand more completely the mech-
anism of evaporation-residue formation. Just as shape and microscopic corrections
bring major changes to our picture of the static aspects of heavy-ion collisions lead-
ing to very heavy systems, there is also a need to consider these in modeling other
quantities, for example the inertia and the dissipation mechanisms associated with
the collision, and when compound-nucleus formation has occurred the various de-
excitation mechanisms need to be described. However, we hope our more realistic
modeling of some static aspects of heavy-ion collisions will lead to productive steps
also in these directions.

An alternative heavy-element production method is neutron capture in ther-
monuclear explosions. We have shown above that our calculated barriers and neutron-
separation energies for a long sequence of uranium isotopes is roughly consistent with
the result that no nuclei heavier than A = 257 were observed in explosions with ura-
nium targets. However, a more complete understanding of the isotope production in
these events require further analysis.

This research is supported by the US DOE.
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