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Fission half-lives of superheavy nuclei in a microscopic approach
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A systematic study of 160 heavy and superheavy nuclei is performed in the Hartree-Fock-Bogoliubov (HFB)

approach with the finite-range and density-dependent Gogny force with the D1S parameter set. We show

calculations in several approximations: with axially symmetric and reflection-symmetric wave functions, with

axially symmetric and non-reflection-symmetric wave functions, and finally with some representative triaxial

wave functions. Relevant properties of the ground state and along the fission path are thoroughly analyzed.

Fission barriers, Qα factors, and lifetimes with respect to fission and α decay as well as other observables are

discussed. Larger configuration spaces and more general HFB wave functions as compared to previous studies

provide a very good agreement with the experimental data.
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I. INTRODUCTION

The stability and structure of nuclei at the upper end of the

nuclear chart is a hot topic in contemporary nuclear physics. It

is a challenging task to answer which heavy nuclides may exist

and what properties they may have. Therefore strong efforts

have been made in the experimental developments as well as

in the theoretical description of superheavy elements (SHEs).

In the last decades huge progress in the synthesis of new

elements has been achieved in world-leading laboratories such

as the GSI, Darmstadt [1–8], the Joint Institute for Nuclear

Research (JINR), Dubna [9–14], and Rikagaku Kenkyusho

(Institute of Physical and Chemical Research, Japan; RIKEN),

Tokyo [15–18]. The first SHEs with Z � 113 and N � 165

were produced in cold fusion reactions. These experiments,

involving neutron-rich projectiles and spherical targets (208Pb

or 209Bi), produced weakly excited compound nuclei, which

cooled by the emission of only one or two neutrons. Further

experimental progress in the synthesis of the heaviest elements

was achieved by hot fusion reactions in which targets of

deformed actinides were bombarded with the doubly magic

nucleus 48Ca. The compound nucleus created in this way was

more excited and three or more neutrons were emitted. These

reactions succeeded in the synthesis of new elements up to

Z = 118 and N = 176 [10]. The first observation of element

117 has been made possible lately [13] using a radioactive
249Bk target. New possibilities for the synthesis of new isotopes

will be opened up in heavy-ion collisions with radioactive

ion beams [19,20]. Nowadays, many other laboratories are

involved in the exploration of SHEs. Thus the experimental

groups from Berkeley [21], the Grand Accélérateur National

d’Ions Lourds (GANIL) [19], Livermore [11,22], Jyväskylä

[23,24], and Oak Ridge [14] are working in this direction.

They would bring in the near future further information on
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the stability and properties of the SHEs and an independent

verification of the existing data.

In a parallel way to the experimental efforts, the properties

of the SHEs have been also investigated in various nuclear

models. A proper description of trans-fermium nuclei is a great

challenge for any theoretical model. Usually, the parameters

of the theories on atomic nuclei are adjusted to the stable

isotopes and then extrapolated to the region of heavier systems.

Therefore many tries in different theoretical approaches are

performed to foresee the stability and the structure of the

heaviest nuclei. A detailed review of the theoretical analysis

of SHEs can be found in Ref. [25]. The first theoretical

investigations on the stability of heavy nuclei were made in the

1960s. It was noticed that shell effects could stabilize nuclei

heavier than those known at that time [26,27]. Calculations

made in the macroscopic-microscopic model with a Strutinsky

shell correction predicted the “island of stability.” Large values

of shell energies were obtained at Z = 108, N = 162 for

prolate-deformed nuclei and Z = 114, N = 184 for spherical

ones [26,28]. In the last decades many calculations have

been made, providing more and more precise predictions.

The fission barriers and the ground-state properties were

calculated using macroscopic-microscopic methods over a

large range of deformation parameters and nuclear shapes,

including reflection- and axial-symmetry breaking [29–40].

Self-consistent methods also provided many results on

fission barriers and half-lives. Important results have been

obtained in the relativistic mean-field (RMF) [40–46] ap-

proach, the Hartree-Fock (HF) approach with Skyrme forces

[41,42,47–51], and the Hartree Fock-Bogoliubov (HFB) the-

ory with Gogny forces [52–54]. The first calculations of fission

barriers were performed in the axial- and reflection-symmetric

regime but later all relevant deformations were considered in

the minimization of the energy.

It is well known that the liquid drop model does not predict a

fission barrier in the heaviest nuclei and that the stability of the

trans-fermium nuclei is achieved by the shell effects. The self-

consistent quantum mechanical methods (RMF, HF, and HFB)
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as microscopic theories are the perfect tools for the analysis of

SHEs. Moreover, in the self-consistent calculations all possible

shapes of a nucleus are considered in the minimization process.

In contrast, most of the macroscopic-microscopic models are

restricted to some predefined classes of deformations and only

“optimal shapes” [55] allow us to obtain any configuration of

a nucleus. Therefore they are very suitable to describe large

deformations of nuclei around the scission point. It is well

known that pairing correlations play an important role along

the fission path [56]. Since in the HFB theory the particle-hole

and the particle-particle matrix elements are treated on the

same footing, the proper consideration of pairing along the

whole fission path is guaranteed. This method has been

successfully applied in many aspects of low-energy nuclear

physics, in particular in the description of fission barriers

of heavy nuclei [52,53,57]. Another theoretical quest was

to discover a semiempirical formula describing α-emission

half-lives [58,59]. These investigations are very important as

α radioactivity is the dominant decay channel in many SHEs.

The purpose of this article is to perform a systematic

study of SHEs with respect to their stability and ground-state

properties in the framework of the HFB theory with the

density-dependent finite-range Gogny force and the D1S

parametrization. In our analysis we include the region of the

well-known fermium (Fm, Z = 100) and nobelium (No, Z =
102) elements to compare our predictions with the available

experimental data. We show results for the heavier even-

even nuclei rutherfordium (Rf, Z = 104), seaborgium (Sg,

Z = 106), hassium (Hs, Z = 108), darmstadtium (Ds, Z =
110), and copernicium (Cn, Z = 112, which was named two

years ago [60]). Heavier elements with Z = 114–124, without

having been given names so far, are also considered. We limit

our study to N � 190 isotopes. These nuclei are nowadays in

the mainstream of interest of experiments with SHEs.

A large amount of information on nuclear structure and

stability can be obtained from properties of the ground states

of the SHEs. Consequently, we start our investigation with the

description of the ground-state characteristics. Deformations,

pairing energies, and two-nucleon separation energies are

analyzed and collated with the single-particle energy level

scheme. The ground-state energies can be used to evaluate the

Qα values which are necessary to calculate the probability

of α emission—one of the dominant decay modes in SHEs.

A competing process to α decay is spontaneous fission. To

analyze this mode we determine the fission barriers for all

mentioned SHEs as a function of the quadrupole moment Q2.

The calculations were performed in an axial basis, although we

are aware of nonaxial effects on the height of the barrier and we

discuss them in a few selected cases. The impact of the octupole

deformation on the potential energy along the fission path is

crucial in the determination of fission barriers of SHEs. This

is taken into account by allowing non-reflection-symmetrical

shapes. The calculations were performed in a large deformed

harmonic oscillator basis, paying special attention to the proper

optimization of the oscillator lengths and to the convergence of

the calculations with the size of the basis. Next, using the WKB

approximation, we calculate the fission half-lives. Finally, the

comparison of the half-lives for α decay and spontaneous

fission allows us to predict the stability of the heaviest nuclei.

This article is organized as follows. In Sec. II we briefly

describe the constrained Hartree-Fock-Bogoliubov calcula-

tions. The description of the ground-state properties of SHEs

is shown in Sec. III, fission barriers are discussed in Sec. IV,

and half-lives of SHEs are discussed in Sec. V. Finally, Sec. VI

contains a summary and some concluding remarks.

II. THEORETICAL MODEL

In our research we will apply the self consistent

Hartree-Fock-Bogoliubov theory with the finite-range density-

dependent Gogny force. In the numerical applications we use

the D1S [61,62] parametrization of the Gogny interaction. The

D1S parameters were adjusted [61] to give a better surface

energy term (which is crucial for a proper description of the

fission phenomenon). The choice of the Gogny force with

the D1S parametrization is based on the fact that whenever

this interaction has been used to describe low-energy nuclear

structure phenomena an at least reasonable agreement with

experiment has been obtained. This degree of agreement has

been obtained for calculations at both the mean-field level and

beyond [63–79].

A. Details of self-consistent HFB calculations

In the microscopic HFB calculations we have used the

computer code presented in Ref. [80] (see also [57] where

special attention was paid to an accurate computation of the

matrix elements of the Gogny interaction for very large basis

like the one used in this paper). The self-consistent equations

have been solved by expanding the quasiparticle creation and

annihilation operators on finite bases of axially symmetric

deformed harmonic oscillator (HO) eigenfunctions. The size

of the bases used depends upon two parameters, N0 and q,

which are related to the allowed range of the HO quantum

numbers through the relation

1

q
nz + (2n⊥ + |m|) � N0.

Along the perpendicular direction we take N0 shells (i.e.,

2n⊥ + |m| = 0, . . . , N0) and along the z direction we include

up to qN0 shells depending on the value of 2n⊥ + |m|. In the

present study we have used q = 1.5, a value which is suited

for the elongated shapes along the z direction typical of the

fission process, and N0 = 15. Other parameters characterizing

the HO bases are the oscillator lengths b⊥ and bz. These two

quantities have been determined, for each calculated wave

function, so as to minimize the HFB energy. In order to study

the different paths to fission, in our calculations we have

used as constraints the axial quadrupole (Q2) and octupole

(Q3) moments, with Q̂λ = rλPλ(cos θ ). Higher multipolarities

are adjusted in the self-consistent process to minimize the

energy. To study the impact of triaxiality effects we have

also carried out calculations for a few nuclei where the

axial symmetry requirement was released but the left-right

symmetry was imposed. For the deformation parameters βn,

since most of the studies on these parameters have been

done in the macroscopic-microscopic models we will use
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a definition in the spirit of these models. The deformation

parameters βn entering in R(θ ) = R0[1 +
∑10

n=2 βnPn(cos θ )]

are determined in such a way that the multipole moments

(Qλ, λ = 2–10) calculated with R(θ ) and the HFB self-

consistent ones coincide.

In the calculations the Coulomb exchange energy has been

treated in the Slater approximation [81,82]. Additionally, the

Coulomb and the spin-orbit contributions to the pairing field

have been neglected. Finally, the two-body kinetic energy

correction (2b-KEC) is not included in the variation process

because, for heavy nuclei, it remains almost constant for most

of the physical configurations. As this term was included in

the fitting of the force, we have to include its contribution at

the end of the variational process in order to obtain reasonable

binding energies. For a quantitative discussion of the terms

relevant to fission see Fig. 2 of Ref. [57]. For the quantitative

discussion of all terms in the general case see Ref. [82].

We have also subtracted from the HFB energy the rotational

energy corrections (RECs) stemming from the restoration

of rotational symmetry. This correction has a considerable

influence on the energy landscape (and therefore on the height

of the fission barriers) as it is somehow proportional to the

degree of symmetry breaking and therefore proportional to

the quadrupole moment. A full calculation of the REC would

imply an angular momentum projection [72,83–85] which is

only feasible for light nuclei. In order to estimate the REC

we have followed the usual recipe [86] of subtracting from

the HFB energy the quantity 〈� �J 2〉/(2JY ), where 〈� �J 2〉
is the fluctuation associated with the angular momentum

operators in the HFB wave function and JY is the Yoccoz

moment of inertia [86]. This moment of inertia has been

computed using the “cranking” approximation in which the

full linear response matrix appearing in its expression is

replaced by the zero-order approximation. The effect of the

cranking approximation in the Yoccoz moment of inertia

was analyzed with the Gogny interaction for heavy nuclei

in [87] by comparing it with the one extracted from an

angular-momentum-projected calculation (see also [84] for a

comparison in light nuclei). The conclusion is that the exact

REC is a factor of 0.7 smaller than the one computed with

the cranking approximation to the Yoccoz moment of inertia

for strongly deformed configurations (and a similar behavior

has been observed for the Thouless-Valatin moment of inertia

in [88]). We have taken this phenomenological factor into

account in our calculation of the REC.

B. Evaluation of lifetimes

The evaluation of the spontaneous fission half-life is carried

out in the standard WKB framework where Tsf is given (in

seconds) by [89]

Tsf = 2.86 × 10−21[1 + exp(2S)]. (1)

In this expression S is the action along the Q2-constrained

path, which is given by

S =

∫ b

a

dQ2

√

2B(Q2)(V (Q2) − E0). (2)

a corresponds to the Q2 value of the ground state and b to the

Q2 value where the potential energy equals that of the ground

state. For the collective quadrupole inertia B(Q2) we have

used the adiabatic time-dependent HFB (ATDHFB) expression

computed again in the cranking approximation and given by

[90]

BATDHFB(Q2) =
M−3(Q2)

M2
−1(Q2)

, (3)

with

M−n(Q2) =
∑

μν

∣

∣Q20
μν

∣

∣

2

(Eμ + Eν)n
. (4)

Here Q20
μν is the two-particle-zero-hole component of the

quadrupole operator Q̂2 in the quasiparticle representation [86]

and Eμ are the quasiparticle energies obtained in the solution

of the HFB equation.

In the expression for the action the collective potential

V (Q2) is given by the HFB energy (with the two-body

kinetic energy and rotational energy corrections) minus the

zero-point-energy (ZPE) correction ǫ0(Q2) associated with the

quadrupole motion. This ZPE correction is given by

ǫ0(Q2) = 1
2
G(Q2)B−1

ATDHFB(Q2), (5)

where

G(Q2) =
M−2(Q2)

2M2
−1(Q2)

. (6)

Finally, in the expression for the action an additional parameter

E0 is introduced. This parameter can be taken as the HFB

energy of the (metastable) ground state. However, it is argued

that in a quantal treatment of the problem the ground-state

energy is given by the HFB energy plus the zero-point energy

associated with the collective motion. To account for this fact,

the usual recipe [91] is to add an estimation of the zero-point

energy to the HFB energy in order to obtain E0. In our

calculations we have taken a zero-point energy of 0.5 MeV

for all the isotopes considered.

In some SHEs around N = 176 a weakly oblate-deformed

ground state can be found. The fission path in these nuclei

obviously does not go along axial-symmetric shapes through

the spherical configuration. Such a nucleus rather takes triaxial

shapes to reach the prolate saddle point with an absolute value

similar to that of the quadrupole moment. As the energies

on the triaxial part of the fission barrier are very small in

comparison with the saddle point [92] they will contribute

insignificantly to the action integral. Therefore we will neglect

them in the calculation of half-lives.

To calculate the α-decay half-lives we use the phenomeno-

logical formula of Viola and Seaborg [93],

log Tα[yr] = (aZ + b)(Qα)−1/2 + (cZ + d) − 7.5, (7)

with Z the atomic number of the parent nucleus. The Q factor

of the decay, Qα , is obtained from the calculated ground-

state binding energies with the experimental value E(2, 2) =
−28.295674 MeV [94]:

Qα(Z,N ) = E(Z,N ) − E(Z − 2, N − 2) − E(2, 2). (8)
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The constants in Eq. (7) are a = 1.66175, b = −8.5166, c =
−0.20228, and d = −33.9069 (taken from [95]).

III. GROUND-STATE PROPERTIES

In Fig. 1 we present an overview of all the nuclei covered in

the present work. In the calculations we limit ourselves to even-

even isotopes. The chosen region ranges from the heaviest

trans-actinides, well known from numerous experiments, up

to beyond the neutron magic shell number N = 184 predicted

by many theoretical models. The upper limit is provided by

the vanishing of the two-proton separation energy. The latter

approximates the proton drip line, which is determined by

the one-proton separation energy with some correction due

to the influence of the centrifugal barrier [96]. The region of

neutron-rich isotopes beyond the β-stability line (indicated

in Fig. 1 by black squares) has been omitted as it is out of

reach for the current experimental methods and cannot be

produced in heavy-ion collisions. As can be seen in Fig. 1

the experimentally known SHEs are located in the center of

the investigated region. Since we consider the ground-state

properties as especially relevant for the understanding of the

underlying physics we present these properties first while the

following section is entirely devoted to the study of the fission

barriers.

The theoretical approach discussed in the previous section

has been applied to perform a systematic study of the properties

of 160 superheavy nuclei in the region 150 � N � 190,

100 � Z � 126. Earlier calculations in this region have

been performed in the microscopic-macroscopic approach

[32,33,39], in the HF plus BCS approach with the Skyrme

force in the particle-hole channel and a monopole pairing

force in the particle-particle channel [41,42,47–51], and in

the full HFB approach by [52,53,97] with the Gogny force.

The calculations by Berger et al. are rather similar to ours

in the basic aspects. However, in our work the configuration

space is larger, more appropriate for fission, and we allow

more general HFB wave functions (with more simultaneously

broken symmetries). Furthermore, our study is rather detailed

and systematic.

 100
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FIG. 1. (Color online) Isotopes considered in this work.

A. Single-particle energies

To gain insight into the relevant physics of the SHEs we

display in Fig. 2 the single-particle energies for the nucleus
270Hs in reflection-symmetric configurations as a function of

the quadrupole deformation β2 and the quadrupole moment

Q2. We have chosen this nucleus as a representative of the

whole region for the following reasons. Since it is in the center

of the area of the calculated nuclei its single-particle energy

(s.p.e.) spectrum is characteristic for all SHEs; furthermore,

its proton and neutron pairing energies are small and the

extraction of the s.p.e. values from the HFB calculations is

more reliable. The s.p.e.’s are obtained as usual: After the

HFB equations are solved the one-body HF Hamiltonian is

diagonalized in that basis. For the neutron system we find

large spherical gaps at neutron numbers of 164, 184, and 228,

prolate gaps at 162, and oblate gaps at 172 and 178. In nuclei

with neutron number close to 160 the spherical minimum at

164 is overwhelmed by the prolate one at 162. For protons

there are several gaps. The more relevant are the spherical

ones for Z values of 92, 114, and 126, the spherical-oblate

one at 120, and the prolate ones at 104 and 108. As we will

see below many nuclear properties can be understood just by

looking at these s.p.e.’s.

B. Deformations

Let us now discuss some ground-state properties starting

with the deformation parameters βn. The deformation pa-

rameters β2 of the calculated SHEs are given in the third

column of Table I and they are visualized in Fig. 3(a).

The quadrupole deformation parameter β2 barely depends on

the proton number Z and decreases slowly with increasing

neutron number. For all Z values the nuclei with N < 170

have a prolate deformation with β2 > 0.25. In the neutron

number region 170 � N � 182, the potential energy surfaces

(PESs) [54,98] of these nuclei present coexisting prolate

and oblate minima. The quoted values for those nuclei are

the ones corresponding to the deeper minimum. The prolate

minimum is deeper in lighter nuclei with N � 174 and

Z � 118, while the oblate one is deeper in the heavier ones.

With increasing neutron number the depth of the prolate well

becomes smaller compared to the oblate one with the oblate

minimum becoming the lowest one around N = 174 (see also

Fig. 10). At the same time the absolute value of the quadrupole

deformation parameter of the ground state decreases from

|β2| = 0.2 for N = 172 to |β2| = 0.05 for N = 182. The

barrier between the two wells diminishes and finally disappears

at N = 184, where the nuclei become spherical. We also

observe in this region a weak Z dependency. For isotopes with

N > 184 small prolate deformation can be observed in the

ground state. As compared with other calculations [99–102]

of SHEs our β2 values are somewhat larger but this may be

connected to the slightly different methods of computation of

the deformation parameters βn. In the presence of coexisting

minima, one must be aware that when the restriction to axially

symmetric shapes is released one of the two minima may

not be a true minimum, but rather a saddle point [92]. A

clear example is the case of the heavier Ds isotopes. In
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FIG. 2. (Color online) Single-particle energies of the nucleus 270Hs as a function of the deformation parameter β2 (top x axis) and the

quadrupole moment Q2 (bottom x axis). Continuous and dashed lines represent positive- and negative-parity states, respectively, and the bullets

indicate the Fermi level.

Fig. 10 one observes two minima (prolate and oblate) around

±5 b, but looking at triaxial calculations one finds that the

prolate minimum is a saddle point. The gross behavior of

the deformation parameter can be qualitatively understood by

looking at Fig. 2. Here we observe that shell effects favor strong

prolate deformations for the nuclei with 150 � N � 162

and 100 � Z � 108, i.e., deformation-driving (down-sloping)

levels are being populated and spherical-driving (up-sloping)

levels are being depopulated. In the region 164 � N � 170

and 108 � Z � 116 neutron shell effects favor smaller prolate

deformations while in the proton system small prolate and

spherical shapes are favored. Around N = 172 the oblate

shapes are favored while larger N values prefer smaller

oblaticity. This effect is reinforced by the soft oblate proton

gap at Z = 120. The spherical shape is the privileged one

for neutron shell structure at N = 184. This coincides with

the subsequent proton spherical gaps at Z = 114, Z = 120,

and Z = 126, which cover most of the N = 184 isotones

considered here.

In columns 4 to 7 of Table I as well as in Figs. 3(b)–3(d) we

present the deformation parameters of higher multipolarities.

Most of the nuclei are reflection symmetric in the ground states

and only for nuclei with N > 184 do we obtain octupole-

deformed ground states independent of the proton number.

Möller et al. [99] also found nonzero β3 deformations for the

SHEs in this region. The odd multipolarities β5, β7, and β9, not

shown here, are different from zero only for those nuclei whose

ground state is octupole deformed; however, the numerical

values are very small (e.g., β5 values are less than 0.009).

For the even deformations higher than two [see Figs. 3(c) and

3(d)], they are different from zero only for nuclei with β2 �= 0,

i.e., for all nuclei with the exception of the few isotopes around

N = 186. As we can observe there is a smaller dependence

with Z than with N . Nuclei with N ≈ 150 have small negative

hexadecapole deformations. For increasing N , |β4| increases

up to N = 168 where it reaches the largest absolute value.

A large negative hexadecapole moment together with a large

positive quadrupole moment produces barrel-like shapes in

the ground state of nuclei in this region. From here on |β4|
decreases rather smoothly up to N = 176, where it sharply

decreases to very small deformations and zero values at

the largest neutron number analyzed. This sharp decrease is

associated with the prolate-oblate shape transition that takes

place at this neutron number. For N values 150 � N � 176,

i.e., the prolate part, there is a clear tendency with Z for a

given N : with increasing proton number |β4| gets larger. For

the oblate-spherical part, there is almost no dependence with Z.

The behavior of the deformation parameter β6 is quite different

from that of β4. For 150 � N � 160 we obtain negative

values decreasing in absolute value as N increases. Around
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TABLE I. Selected properties of superheavy nuclei: ground-state deformation parameters, pairing energies, Qα , two-nucleon separation

energies, and half-lives for α emission and spontaneous fission calculated in HFB theory. The energies are given in MeV and half-lives are in

seconds.

Z N β2 β3 β4 β6 β8 EPAIR
N EPAIR

P Qα S2N S2P log10(Tα) log10(Tsf )

100 150 0.329 0.000 0.003 -0.028 0.005 −4.28 −7.31 7.35 13.20 8.86 4.04 13.17

100 152 0.331 0.000 −0.009 −0.029 0.007 −3.85 −7.69 7.12 12.32 9.93 4.97 14.32

100 154 0.332 0.000 −0.021 −0.028 0.010 −5.87 −8.29 7.02 11.35 10.87 5.39 12.82

100 156 0.329 0.000 −0.032 −0.024 0.011 −6.88 −9.26 6.66 10.77 11.74 6.98 7.07

100 158 0.321 0.000 −0.044 −0.018 0.011 −7.01 −10.66 6.21 10.35 12.57 9.15 −0.06

100 160 0.310 0.000 −0.056 −0.011 0.009 −5.80 −12.25 5.72 10.01 13.37 11.81 0.37

100 162 0.300 0.000 −0.069 −0.004 0.008 −0.70 −13.67 5.43 9.50 14.16 13.55 0.16

100 164 0.285 0.000 −0.071 0.003 0.005 −6.73 −14.36 5.73 8.41 14.72 11.75 −3.02

100 166 0.267 0.000 −0.074 0.009 0.001 −9.02 −15.28 5.56 8.02 15.25 12.75 −6.38

102 150 0.331 0.000 −0.006 −0.027 0.005 −4.47 −6.59 8.12 14.29 6.98 1.97 7.63

102 152 0.334 0.000 −0.017 −0.028 0.007 −3.43 −6.51 7.93 13.39 8.05 2.64 10.02

102 154 0.335 0.000 −0.029 −0.028 0.010 −5.55 −6.77 7.91 12.34 9.04 2.71 8.23

102 156 0.332 0.000 −0.040 −0.024 0.012 −6.62 −7.45 7.57 11.69 9.96 3.99 0.76

102 158 0.325 0.000 −0.050 −0.018 0.011 −6.88 −8.61 7.09 11.25 10.86 5.94 0.57

102 160 0.315 0.000 −0.060 −0.011 0.009 −5.60 −9.93 6.55 10.89 11.74 8.38 1.65

102 162 0.305 0.000 −0.073 −0.004 0.009 −0.33 −11.43 6.19 10.37 12.61 10.19 2.23

102 164 0.293 0.000 −0.075 0.003 0.005 −6.53 −12.43 6.72 8.97 13.17 7.58 −1.43

102 166 0.276 0.000 −0.079 0.010 0.001 −8.91 −13.85 6.54 8.59 13.74 8.43 −4.70

104 150 0.331 0.000 −0.016 −0.025 0.005 −4.85 −4.76 8.91 15.35 5.10 0.11 −0.41

104 152 0.333 0.000 −0.026 −0.026 0.007 −3.35 −4.37 8.78 14.42 6.13 0.52 1.85

104 154 0.334 0.000 −0.037 −0.025 0.010 −5.63 −4.53 8.85 13.32 7.11 0.30 1.77

104 156 0.332 0.000 −0.047 −0.021 0.011 −6.78 −5.03 8.52 12.67 8.09 1.36 1.90

104 158 0.325 0.000 −0.057 −0.016 0.010 −6.92 −5.99 7.98 12.23 9.07 3.24 2.03

104 160 0.317 0.000 −0.067 −0.010 0.009 −5.39 −7.17 7.40 11.83 10.01 5.47 3.86

104 162 0.309 0.000 −0.078 −0.004 0.009 −0.06 −8.76 6.99 11.30 10.94 7.22 5.36

104 164 0.299 0.000 −0.081 0.004 0.005 −6.28 −9.99 7.75 9.61 11.58 4.09 1.11

104 166 0.285 0.000 −0.085 0.011 0.001 −8.87 −11.54 7.54 9.18 12.17 4.91 −2.64

106 150 0.329 0.000 −0.024 −0.021 0.004 −5.50 −6.23 10.04 16.27 2.91 −2.43 −3.01

106 152 0.331 0.000 −0.035 −0.022 0.006 −3.81 −5.49 9.98 15.41 3.90 −2.28 −0.11

106 154 0.331 0.000 −0.046 −0.020 0.009 −6.10 −5.02 10.03 14.37 4.95 −2.41 0.70

106 156 0.328 0.000 −0.057 −0.017 0.010 −7.21 −5.03 9.61 13.74 6.02 −1.26 1.20

106 158 0.324 0.000 −0.066 −0.012 0.010 −7.08 −5.22 8.97 13.31 7.10 0.63 2.68

106 160 0.317 0.000 −0.075 −0.007 0.009 −5.25 −5.66 8.31 12.89 8.16 2.82 5.75

106 162 0.310 0.000 −0.084 −0.002 0.009 −0.01 −6.39 7.81 12.33 9.19 4.65 9.30

106 164 0.301 0.000 −0.088 0.006 0.004 −5.87 −7.37 8.77 10.34 9.92 1.27 3.72

106 166 0.288 0.000 −0.092 0.013 0.001 −8.28 −8.84 8.46 9.92 10.66 2.30 −0.11

106 168 0.272 0.000 −0.095 0.019 −0.002 −8.81 −10.72 8.03 9.61 11.24 3.82 −4.13

106 170 0.246 0.000 −0.092 0.022 −0.004 −8.29 −13.34 7.69 9.37 11.82 5.12 −5.79

106 172 0.196 0.000 −0.071 0.016 −0.002 −6.31 −17.22 7.18 9.30 12.40 7.23 −5.47

108 150 0.324 0.000 −0.029 −0.017 0.004 −6.11 −7.61 11.11 17.08 0.92 −4.45 −5.43

108 152 0.327 0.000 −0.041 −0.018 0.006 −4.46 −6.01 11.06 16.32 1.83 −4.34 −2.77

108 154 0.327 0.000 −0.054 −0.016 0.008 −6.76 −4.49 11.10 15.37 2.83 −4.43 −0.95

108 156 0.325 0.000 −0.065 −0.012 0.009 −7.82 −3.47 10.66 14.81 3.90 −3.38 0.35

108 158 0.321 0.000 −0.075 −0.007 0.009 −7.40 −3.05 10.01 14.39 4.98 −1.71 2.64

108 160 0.316 0.000 −0.083 −0.003 0.009 −5.33 −2.89 9.36 13.96 6.05 0.14 6.49

108 162 0.310 0.000 −0.092 0.001 0.008 −0.02 −3.04 8.84 13.41 7.13 1.76 12.83

108 164 0.300 0.000 −0.096 0.009 0.004 −5.29 −4.26 10.02 11.15 7.94 −1.74 5.89

108 166 0.290 0.000 −0.100 0.016 0.000 −7.58 −5.88 9.65 10.71 8.73 −0.71 2.66

108 168 0.276 0.000 −0.103 0.022 −0.003 −8.16 −8.10 9.22 10.35 9.47 0.56 −1.41

108 170 0.250 0.000 −0.098 0.025 −0.004 −7.84 −11.26 8.68 10.15 10.25 2.29 −3.84

108 172 0.195 0.000 −0.071 0.016 −0.002 −6.07 −15.49 8.08 9.97 10.92 4.40 −3.54

108 174 0.170 0.000 −0.070 0.018 −0.003 −3.95 −17.17 7.32 10.06 11.56 7.45 −4.43

108 176 −0.162 0.000 −0.022 0.005 0.002 −4.53 −19.62 6.72 10.02 11.99 10.21 6.25

108 178 −0.146 0.000 −0.031 0.008 0.006 −0.01 −20.36 6.49 9.82 12.67 11.37 14.21
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TABLE I. (Continued.)

Z N β2 β3 β4 β6 β8 EPAIR
N EPAIR

P Qα S2N S2P log10(Tα) log10(Tsf )

108 180 −0.090 0.000 −0.024 −0.002 0.001 −3.12 −22.30 6.69 8.94 13.23 10.36 5.76

108 182 −0.060 0.000 −0.030 −0.008 −0.001 0.00 −23.23 6.44 8.63 13.83 11.63 14.10

108 184 −0.037 0.000 0.000 0.000 0.000 0.00 −23.95 7.06 7.41 14.28 8.61 8.40

108 186 0.034 −0.062 0.005 0.000 0.000 −5.76 −23.57 7.00 7.02 14.50 8.88 0.68

110 154 0.319 0.000 −0.052 −0.012 0.006 −7.43 −8.77 12.31 16.15 0.62 −6.48 −4.27

110 156 0.314 0.000 −0.065 −0.007 0.007 −8.68 −7.91 11.97 15.71 1.52 −5.78 −2.38

110 158 0.310 0.000 −0.076 −0.002 0.007 −8.12 −7.25 11.41 15.37 2.50 −4.55 0.14

110 160 0.306 0.000 −0.087 0.002 0.006 −5.66 −6.75 10.79 15.01 3.55 −3.09 3.94

110 162 0.303 0.000 −0.096 0.006 0.007 −0.03 −6.39 10.32 14.43 4.57 −1.90 9.02

110 164 0.293 0.000 −0.101 0.014 0.003 −4.93 −6.71 11.41 12.32 5.74 −4.55 5.87

110 166 0.283 0.000 −0.106 0.021 −0.001 −6.63 −7.26 10.77 11.79 6.82 −3.04 3.63

110 168 0.271 0.000 −0.110 0.027 −0.004 −6.90 −8.28 10.14 11.34 7.81 −1.42 1.94

110 170 0.247 0.000 −0.103 0.027 −0.005 −7.25 −10.38 9.63 10.86 8.52 0.01 −1.98

110 172 0.197 0.000 −0.076 0.017 −0.002 −5.86 −13.21 8.99 10.79 9.34 1.98 −0.76

110 174 0.175 0.000 −0.075 0.021 −0.004 −3.28 −14.84 8.24 10.72 10.00 4.57 −1.87

110 176 −0.160 0.000 −0.023 0.004 0.002 −4.45 −18.70 7.72 10.58 10.56 6.58 −0.48

110 178 −0.145 0.000 −0.032 0.008 0.006 0.00 −19.31 7.24 10.50 11.24 8.63 4.61

110 180 −0.090 0.000 −0.024 −0.002 0.001 −3.08 −21.19 7.53 9.53 11.83 7.37 5.67

110 182 −0.060 0.000 −0.030 −0.008 −0.001 −0.01 −22.18 7.24 9.23 12.43 8.63 13.90

110 184 0.000 −0.002 0.000 0.000 0.000 0.00 −23.43 8.03 7.84 12.86 5.36 6.25

110 186 0.035 −0.035 0.004 0.000 0.000 −6.59 −23.04 8.29 7.15 12.99 4.39 −10.25

112 158 0.297 0.000 −0.076 0.002 0.004 −8.73 −9.36 12.07 16.32 0.86 −5.43 −2.42

112 160 0.295 0.000 −0.088 0.006 0.005 −6.01 −8.62 11.50 15.94 1.79 −4.18 1.58

112 162 0.294 0.000 −0.098 0.009 0.005 −0.04 −7.98 11.17 15.34 2.70 −3.41 6.17

112 164 0.283 0.000 −0.103 0.017 0.001 −4.70 −7.77 12.10 13.50 3.88 −5.50 4.78

112 166 0.273 0.000 −0.109 0.025 −0.002 −6.09 −7.78 11.52 12.90 4.99 −4.23 3.56

112 168 0.262 0.000 −0.113 0.031 −0.005 −6.12 −8.13 10.94 12.37 6.02 −2.86 2.87

112 170 0.253 0.000 −0.114 0.035 −0.007 −6.00 −8.62 10.32 11.96 7.12 −1.27 −0.27

112 172 0.211 0.000 −0.087 0.024 −0.004 −5.83 −10.26 9.46 11.72 8.05 1.19 2.36

112 174 0.191 0.000 −0.086 0.026 −0.005 −1.90 −11.45 8.76 11.49 8.82 3.46 3.11

112 176 −0.157 0.000 −0.023 0.004 0.002 −4.34 −17.21 8.60 10.88 9.12 4.01 8.14

112 178 −0.144 0.000 −0.032 0.008 0.006 −0.01 −17.75 8.00 11.18 9.80 6.25 16.60

112 180 −0.088 0.000 −0.023 −0.002 0.001 −3.07 −19.53 8.36 10.14 10.41 4.88 7.05

112 182 −0.060 0.000 −0.030 −0.008 −0.001 0.00 −20.57 8.02 9.87 11.05 6.17 15.09

112 184 0.000 −0.001 0.000 0.000 0.000 0.00 −21.93 8.82 8.43 11.64 3.25 7.29

112 186 0.052 −0.007 0.005 0.001 0.001 −7.35 −20.94 9.80 6.86 11.35 0.18 −8.67

112 188 0.015 −0.072 0.004 −0.001 0.000 −11.05 −22.03 8.68 8.27 12.86 3.73 −8.10

112 190 0.028 −0.123 0.011 −0.005 0.000 −10.70 −21.64 9.01 6.43 13.26 2.62 −14.23

114 160 0.284 0.000 −0.089 0.010 0.003 −6.36 −8.58 12.08 16.84 0.28 −4.90 −0.80

114 162 0.285 0.000 −0.100 0.012 0.004 −0.10 −7.72 11.87 16.15 1.09 −4.44 3.72

114 164 0.272 0.000 −0.105 0.020 0.000 −4.62 −6.79 12.53 14.68 2.27 −5.85 3.62

114 166 0.262 0.000 −0.110 0.027 −0.003 −5.88 −6.35 12.05 13.98 3.35 −4.84 3.27

114 168 0.251 0.000 −0.113 0.032 −0.005 −6.00 −6.29 11.56 13.39 4.37 −3.74 3.65

114 170 0.231 0.000 −0.106 0.031 −0.006 −6.70 −6.67 10.97 12.96 5.37 −2.33 1.60

114 172 0.210 0.000 −0.094 0.028 −0.005 −5.48 −7.17 10.28 12.65 6.30 −0.53 5.00

114 174 0.190 0.000 −0.091 0.030 −0.006 −1.13 −8.09 9.69 12.31 7.12 1.17 6.38

114 176 −0.153 0.000 −0.022 0.005 0.002 −4.32 −15.07 9.74 11.44 7.68 1.02 10.60

114 178 −0.141 0.000 −0.031 0.008 0.006 −0.01 −15.58 8.76 11.86 8.36 4.18 18.54

114 180 −0.085 0.000 −0.022 −0.002 0.000 −3.10 −17.31 9.13 10.81 9.03 2.92 9.45

114 182 −0.059 0.000 −0.029 −0.007 −0.001 −0.01 −18.41 8.78 10.49 9.65 4.11 17.10

114 184 0.000 0.000 0.000 0.000 0.000 0.00 −19.84 9.68 8.97 10.19 1.20 8.59

114 186 0.052 −0.005 0.004 0.001 0.001 −7.66 −18.85 10.60 7.51 10.84 −1.39 −6.76

114 188 0.032 −0.064 0.006 0.000 0.000 −10.96 −20.07 8.81 8.65 11.22 4.00 −7.58

114 190 −0.019 −0.072 0.003 −0.001 0.000 −16.36 −19.89 9.91 7.17 11.96 0.52 −12.52

116 164 0.262 0.000 −0.106 0.023 0.000 −4.71 −3.91 13.12 15.74 0.50 −6.50 1.17

116 166 0.252 0.000 −0.112 0.030 −0.004 −5.81 −2.26 12.76 15.04 1.56 −5.78 3.84
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TABLE I. (Continued.)

Z N β2 β3 β4 β6 β8 EPAIR
N EPAIR

P Qα S2N S2P log10(Tα) log10(Tsf )

116 168 0.242 0.000 −0.115 0.035 −0.006 −5.83 −1.49 12.32 14.42 2.59 −4.87 5.14

116 170 0.231 0.000 −0.114 0.037 −0.007 −6.02 −1.32 11.74 13.97 3.60 −3.59 2.78

116 172 0.189 0.000 −0.089 0.027 −0.005 −5.08 −4.87 11.20 13.50 4.45 −2.31 6.02

116 174 0.188 0.000 −0.095 0.033 −0.007 −0.44 −4.55 10.67 13.18 5.32 −0.96 8.01

116 176 −0.147 0.000 −0.021 0.005 0.002 −4.30 −12.14 10.66 12.32 6.20 −0.93 13.72

116 178 −0.138 0.000 −0.029 0.008 0.006 −0.01 −12.67 9.55 12.55 6.89 2.26 21.11

116 180 −0.081 0.000 −0.020 −0.002 0.000 −3.17 −14.50 9.90 11.51 7.59 1.20 12.61

116 182 −0.057 0.000 −0.028 −0.007 −0.001 −0.01 −15.68 9.57 11.14 8.24 2.20 19.87

116 184 0.000 0.000 0.000 0.000 0.000 0.00 −17.19 10.51 9.55 8.82 −0.53 11.02

116 186 0.051 −0.008 0.003 0.001 0.001 −7.91 −16.20 11.31 8.17 9.48 −2.58 −4.28

116 188 0.033 −0.039 0.004 0.000 0.000 −12.40 −17.04 9.89 8.93 9.76 1.23 −6.10

116 190 0.015 −0.078 0.004 −0.002 0.000 −15.32 −18.02 10.38 8.16 10.75 −0.17 −9.85

118 170 0.208 0.000 −0.095 0.029 −0.005 −7.20 −2.98 13.37 15.09 0.96 −6.47 1.39

118 172 0.171 0.000 −0.081 0.024 −0.004 −4.96 −3.14 12.57 14.77 2.23 −4.86 6.27

118 174 0.168 0.000 −0.088 0.030 −0.006 −1.39 −2.40 11.92 14.15 3.20 −3.44 9.44

118 176 −0.143 0.000 −0.020 0.006 0.002 −4.32 −8.21 11.33 13.77 4.65 −2.04 17.87

118 178 −0.135 0.000 −0.027 0.009 0.005 −0.01 −8.89 10.42 13.23 5.33 0.34 24.12

118 180 −0.075 0.000 −0.020 −0.002 0.000 −3.30 −11.26 10.70 12.27 6.09 −0.42 16.37

118 182 −0.056 0.000 −0.028 −0.007 −0.001 −0.01 −12.42 10.40 11.81 6.76 0.40 22.89

118 184 0.000 0.000 0.000 0.000 0.000 0.00 −14.04 11.37 10.17 7.38 −2.14 13.92

118 186 0.051 −0.008 0.001 0.001 0.000 −8.12 −13.06 12.15 8.77 7.98 −3.95 −2.03

118 188 0.049 −0.054 0.006 0.001 0.000 −11.50 −13.75 10.73 9.59 8.64 −0.50 −4.10

118 190 0.016 −0.054 0.003 −0.001 0.000 −16.98 −14.30 10.80 8.86 9.34 −0.69 −7.35

120 172 −0.176 0.000 −0.002 0.011 0.000 −3.70 −2.47 12.63 15.84 0.90 −4.46 12.15

120 174 −0.154 0.000 −0.010 0.008 0.001 −5.41 −1.89 12.26 15.14 1.89 −3.65 15.82

120 176 −0.138 0.000 −0.018 0.007 0.003 −4.35 −3.44 11.73 14.68 2.80 −2.43 19.57

120 178 −0.130 0.000 −0.025 0.009 0.005 −0.01 −4.81 11.53 13.97 3.54 −1.95 24.62

120 180 −0.066 0.000 −0.019 −0.003 0.000 −3.56 −7.97 11.60 13.16 4.43 −2.12 19.80

120 182 −0.055 0.000 −0.029 −0.008 −0.001 −0.01 −8.83 11.29 12.58 5.20 −1.36 25.60

120 184 0.000 0.000 0.000 0.000 0.000 0.00 −10.57 12.30 10.80 5.83 −3.74 16.29

120 186 0.050 −0.012 0.001 0.001 0.000 −8.16 −9.69 13.05 9.42 6.48 −5.33 0.27

120 188 0.048 −0.059 0.005 0.001 0.000 −11.37 −10.34 11.57 10.25 7.14 −2.05 −1.88

120 190 0.016 −0.052 0.002 0.000 0.000 −17.16 −10.62 11.61 9.55 7.83 −2.15 −5.01

122 176 −0.109 0.000 −0.020 0.002 0.002 −5.35 −4.68 13.02 15.62 0.60 −4.75 17.54

122 178 −0.109 0.000 −0.024 0.004 0.003 −1.11 −4.56 12.93 14.77 1.40 −4.56 19.76

122 180 −0.062 0.000 −0.023 −0.004 0.000 −3.62 −4.98 12.50 14.40 2.64 −3.64 21.94

122 182 −0.055 0.000 −0.031 −0.008 −0.001 0.00 −5.24 12.27 13.39 3.45 −3.13 28.05

122 184 0.000 0.000 0.000 0.000 0.000 0.00 −7.19 13.33 11.52 4.17 −5.38 18.02

122 186 0.049 −0.036 0.000 0.001 0.000 −7.63 −6.64 13.52 10.61 5.36 −5.76 3.69

122 188 0.031 −0.059 0.002 0.001 0.000 −11.75 −7.17 12.10 10.84 5.95 −2.74 1.10

122 190 0.015 −0.068 0.002 0.000 0.000 −16.17 −7.55 12.47 9.88 6.28 −3.58 −3.44

124 180 −0.065 0.000 −0.028 −0.006 0.000 −3.44 −1.51 13.59 15.21 0.31 −5.40 20.40

124 182 −0.058 0.000 −0.033 −0.010 −0.001 0.00 −1.15 13.76 14.23 1.15 −5.73 29.94

124 184 0.000 −0.001 0.000 0.000 0.000 0.00 −4.30 14.62 12.53 2.16 −7.32 17.90

124 186 0.032 −0.050 0.001 0.002 0.000 −6.81 −4.27 13.95 12.19 3.74 −6.09 9.63

124 188 0.015 −0.068 0.002 0.002 0.000 −11.72 −4.48 13.55 11.01 3.91 −5.32 2.93

124 190 −0.002 −0.078 0.002 0.001 0.000 −16.02 −4.73 14.21 10.18 4.21 −6.58 −2.94

126 186 0.015 −0.073 0.001 0.003 0.000 −6.38 −1.22 15.04 13.53 1.07 −7.59 9.82

126 188 −0.002 −0.086 0.002 0.004 0.000 −11.40 −1.03 16.13 11.10 1.16 −9.37 1.03

126 190 0.011 −0.121 0.003 0.004 0.000 −13.12 −0.48 16.05 11.09 2.07 −9.25 −4.06

N = 162, β6 becomes almost zero and for 164 � N � 174 we

obtain increasing values of β6 as N increases. For N � 176

we obtain rather small β6 deformations. Our results for β4

and β6 are rather similar to those of Möller et al. [99] and

Sobiczewski and co-workers [32]. In contrast to the β4 and

β6 parameters, β8 is positive in the region 150 � N � 162.
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FIG. 3. (Color online) Ground-state deformation parameters: (a) β2, (b) β3, (c) β4, and (d) β6 for superheavy nuclei. Notice that the

deformation scale is panel dependent.

The nuclei with N = 164 and 166 have either zero or very

small β8 values. The nuclei with 168 � N � 174 have mostly

negative β8 values. With the exception of the N = 178 isotopes

that have positive deformations, all the nuclei with N � 176

have β8 deformations of almost zero. We have to notice that

the maximal absolute values of the deformation parameters

decrease with increasing multipolarity, indicating a decreasing

relevance. This means that higher multipolarities can be

omitted in the minimization of the energy of the ground state

in non-self-consistent approximations.

C. Pairing energies

In the HFB approach [82], the pairing energy is given by

EPAIR = − 1
2
Tr(�κ∗), (9)

with

�k1k2
=

1

2

∑

k3k4

v̄k1k2k3k4
κk3k4

(10)

as the pairing field and

κk1,k2
= 〈HFB|ck2

ck1
|HFB〉 (11)

as the pairing tensor.

The neutron pairing energies of each nucleus are given

in the eighth column of Table I and in the upper panel of

Fig. 4. The general behavior of these results can be easily

understood by looking again at Fig. 2. We know that small

pairing energies correspond to situations of low level density of

the neutron s.p.e.’s. In particular we expect zero neutron pairing

energies at N = 162, 178, 182, and 184. Notice that the fact

that for N = 162 the pairing energies are zero is consistent

with the prolate deformation of these nuclei and for N = 178

with the oblate one. For N = 182 and 184 we have spherical

nuclei. Appropriate neutron shell gaps can be found in Fig. 2

for the mentioned cases. For the same reason large pairing

energies are associated with high level density; for example,

we find large pairing energies for N = 158, 168, and 190.

We observe that the general pattern, qualitatively, does not

depend on the proton number. The proton pairing energies are

given in the ninth column of Table I and the lower panel of

Fig. 4. In this case the general pattern looks more complicated.

For the same proton number some nuclei are prolate, some

oblate, and some spherical, and therefore only part of them fit

into the proton shell gaps in Fig. 2. Again the small pairing

energies found at Z values of 104, 108, 116, 120, and 126

have to do with the low proton level density found in Fig. 2 for

those proton numbers. The behavior is different for different

isotopes; for example, for Z = 112, from N = 158 up to N =
174 we have proton pairing energies of around −9 MeV and

from N = 176 they are around −20 MeV. The reason for this

difference is that in the first interval the nuclei are prolate

and in the second they are either oblate or spherical. Similar

arguments apply for other cases. It is interesting to notice that

with the exception of the few nuclei with N � 188 none of

the nuclei studied has absolute values of the neutron pairing

energies larger than 9 MeV. On the other hand, many of the

analyzed nuclei have proton pairing energies much larger than

10 MeV.
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FIG. 4. (Color online) Ground-state pairing energies for super-

heavy nuclei: (a) protons and (b) neutrons.

D. Qα values

In Fig. 5 the Qα values are plotted as a function of the

neutron number [see Eq. (8)]. The exact numerical values are

also given in column 10 of Table I. The patterns displayed

by the different isotopes are easily understood by just looking

at Eq. (8): minima appear when the mother nucleus is more

bound than the average and maxima correspond to more bound

daughter nuclei. Thus we observe minima corresponding to the

neutron numbers for which energy gaps appear in the single-

particle energies of Fig. 2, namely, 162, 178, and 182–184. For

the N values of 164 and 172 there is no structure because the

energy gaps that one finds for these neutron numbers are not

large enough to provide energy minima at those deformations

(see column 3 of Table I). Experimental values [10,94] for

some isotopes of the nuclei Fm, No, Rf, Sg, Hs, Ds, 114

116, and 120 are also displayed in the figure. The agreement

between theory and experiment is very satisfactory; in most of

the cases we obtain a quantitative agreement and for the others

at least the tendency is the right one. For the proton dependence

we observe a similar situation: we find large energy spacing

for the lines whose Z numbers correspond to energy gaps in

the single-particle diagram of Fig. 2, for example, Hs, 116,

120, etc.
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FIG. 5. (Color online) Qα values: theoretical values marked by

dots are compared with experimental data [10,94]. The different lines

correspond to the indicated isotope.

E. Two-nucleon separation energies

In Fig. 6 (upper panel), we present the two-neutron

separation energy as a function of the neutron number (see also

column 11 of Table I). As expected, we obtain a decreasing

behavior of S2N with increasing neutron number since we get

closer to the neutron drip line. The smooth decline of S2N

is only disturbed at the neutron numbers corresponding to

the single-particle shell gaps 162, 184, etc. The two-proton

separation energies are shown, in the lower panel of Fig. 6,

as a function of the proton number (see also column 12

of Table I). The general behavior of decreasing S2P for a

given isotonic chain with growing Z illustrates the fact that

we are getting closer to the proton drip line. The fact that

the S2P energies present less structure than the S2N ones is

obviously related with the fact that, in the region of interest,

the shell gaps in Fig. 2 are smaller for protons than for

neutrons. Figure 6 also includes the available experimental

values for some Fm and No isotopes. We observe that in

the case of S2N the theoretical values are around 1 MeV

smaller compared to experimental one while in the case of

S2P they are around 1 MeV larger. In both cases, however, the

trend is correctly described. This is the well-known binding

energy drift that takes place with the D1S parametrization

of the Gogny force for most isotopic chains. To correct

this drift Chappert et al. [103] have recently devised a new

parametrization of the Gogny force, the D1N, which reduces

considerably the drift but otherwise keeps the quality of the

D1S parametrization. In Table II we have included calculations

with the D1N parametrization and we observe a considerable

improvement in the agreement. We also include in the table

the results of calculations with the D1M parametrization of

the Gogny force obtained by including beyond-mean-field

effects in the fit [104], which also do not present the mentioned

drift.

The D1N and D1M parametrizations also improve slightly

the agreement of Qα with the experiment (see Table II), but

this effect is much less pronounced than in the case of the
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FIG. 6. (Color online) (a) Two-neutron separation energies as a

function of the neutron number. (b) Two-proton separation energies as

a function of the proton number. The lines represent isotonic chains;

the one at the lower left corner corresponds to N = 150, and the one

closer to the upper right corner corresponds to A = 190. Experimental

data are taken from Ref. [94].

separation energies as the influence of protons and neutrons

cancel each other.

IV. SPONTANEOUS FISSION

A. Symmetry-breaking effects in the fission paths

The large size basis used in these calculations and the

large number of nuclei studied prevents us from making a

systematic study with totally unrestricted symmetry-breaking

wave functions. To clarify the effects of these restrictions

we show in Fig. 7, as an example, the behavior of several

relevant quantities along the fission path for the nuclei 274Hs

(left panel), 278Ds (middle panel), and 282Cn (right panel) in

different approximations. Panels (d), in the middle row of

Fig. 7, display three different fission paths for each nucleus cor-

responding to the following constraints on the wave functions:

1. the axially symmetric (γ = 0) and reflection-symmetric

(Q3 = 0) fission path (continuous line), which we shall call

in the following the AS-RS path, 2. the axially symmet-

ric and non-reflection-symmetric (AS-NRS) (Q3 �= 0) path

TABLE II. Two-nucleon separation energies and Qα in Fm

isotopes calculated with various Gogny forces compared with

experimental (Expt.) data [94] (in units of MeV).

N D1S D1N D1M Expt.

S2N 150 13.20 13.86 14.00 13.98

152 12.32 13.01 13.14 13.40

154 11.35 12.13 12.23 12.06

156 10.77 11.64 11.73 11.56

S2P 150 8.86 7.80 7.62 7.74

152 9.93 8.79 8.59 8.93

154 10.87 9.67 9.47 9.71

156 11.74 10.50 10.31 10.43

Qα 150 7.35 7.66 7.70 7.56

152 7.12 7.49 7.54 7.15

154 7.02 7.38 7.48 7.31

156 6.66 6.99 7.10 7.03

(long-dashed lines), and 3. the non-axially-symmetric (γ �=
0) and reflection-symmetric (NAS-RS) path (short-dashed

lines).

In the ground state these nuclei are well quadrupole

deformed, with Q2 ≈ 15 b [see panels (d)], and to fission they

have to tunnel through a barrier with a height of several MeV.

The barriers represent the potential energy needed to deform

the nucleus. They are related, therefore, to the single-particle

levels around the Fermi surface available at the corresponding

deformation along the path. For the three nuclei the paths in

the AS-RS case present two-hump barriers where the height of

the second barrier decreases with the mass number while the

first one remains more or less constant for 274Hs and 278Ds and

increases for 282Cn. The width of the barrier in this approach is

also similar for the three nuclei. The origin of the two humps

can be easily understood by looking at the single-particle

energies of Fig. 2. If we follow the neutron Fermi level to

the prolate side we find two regions with a clearly developed

low level density. The first one at Q2 ≈ 15 b with the shell

gaps N = 162 and Z = 108 corresponds to the ground-state

minimum. On the way from this point to larger deformations

we find a larger level density region, which corresponds to

the energy increase of the first barrier. Behind that we arrive

at the second region at Q2 ≈ 32 b, which corresponds to the

superdeformed minimum. At even larger deformations one

finds a high level density region that provides the energy

rise of the second barrier. Finally, above 40 b, we observe

intruder states of a high-lying νi13/2 orbital, which could be an

indication of the scission point. Incidentally, since the neutron

shell gap is at N = 162 and the proton one is at Z = 112 the

superdeformed minimum is deeper in 282Cn than in the lighter

nuclei displayed in Fig. 7.

This behavior changes remarkably in the AS-NRS ap-

proach. One can follow in panels (f) the portion of the paths

where a lower solution with Q3 �= 0 is found. As one can

see in panels (f) the octupole degree of freedom plays an

important role for quadrupole deformations starting around

Q2 ≈ 30–35 b, i.e., close to the superdeformed minima. In

fact, in this channel the second hump of the barriers diminishes
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FIG. 7. (Color online) Behavior of several magnitudes for the nuclei 274Hs, 278Ds, and 282Cn along different fission paths. Neutron and

proton pairing energies EN
P (a) and EP

P (b) are in MeV, (c) inertia parameter B is in 10−6 b−2 MeV−1, (d) HFB potential energy is in MeV,

(e) triaxial deformation parameter γ is in degrees, (f) octupole moment Q3 is in b3/2, (g) hexadecapole moment Q4 is in b2, and (h) the

subintegral function of the action integral dS/dQ2 is in b−1.

strongly and the paths in this region look like the continuation

of the first hump. The AS-NRS path reaches up to large

deformations, Q2 ≈ 108 b for 274Hs and Q2 ≈ 77 b for 278Ds,

and decreases to Q2 ≈ 67 b for 282Cn.

We can understand the onset of octupole deformation by

looking again at Fig. 2. Here we observe that the K = 1/2

and K = 3/2 levels of the νk17/2 shell cross the Fermi surface

around 26 b, while the K = 5/2 level crosses around 35 b.

Interestingly, at these Q2 values the K = 5/2 level of the

νh11/2 orbit also approaches the Fermi surface. In Fig. 2

and at zero deformations the νk17/2 subshell lies at about

0.4 MeV and the νh11/2 one lies at about −10.4 MeV. The

k17/2 and h11/2 subshells interact strongly through the octupole

interaction, since �L = �J = 3. That means if we allow for

reflection-symmetry breaking we can increase the quadrupole

deformation at a lower energy cost [105]. We can observe in

Fig. 7 that around these values the AS-NRS fission paths get

lower in energy than the AS-RS ones. In the (g) panels we

can follow the behavior of the hexadecapole moment along

the fission path. In the ground state it is close to zero in both

approximations and from this point on it grows linearly with

Q2 in the AS-NRS approach. In the AS-RS approach, however,

first it increases linearly up to the scission point, where a kink

is observed followed by a linear increase.

In the NAS-RS path we can observe the effect of the triaxial

shapes along the fission paths. In panels (e) we can see the two

portions of the trajectory where triaxial solutions are found.

The first one, close to the ground state, spans a smaller interval

of Q2 values than the second one and does not have a large

impact on the energy. The second one, as in the AS-NRS

case, is relevant around the second hump, causing a significant

lowering of its height; i.e., in this case we still have to deal

with two humped barriers. The width of the barrier, at variance

with the AS-NRS case, is more or less like the AS-RS one.

Though the shape of the barriers is very relevant to calculate

lifetimes, one has to consider, however, that other quantities

entering in the corresponding formulas, Eqs. (1) and (2),

also play an important role. A relevant parameter is the

collective quadrupole inertia B(Q2), since mass parameters

are strongly influenced by pairing correlations and these are

influenced by the single-particle level density, which we expect

to vary along the different fission paths. In panels (a) and

(b) of Fig. 7 we display the neutron and proton pairing

energies, respectively. We indeed observe big differences in

both of them along the portions of the paths where symmetry

breaking takes place. In particular, we observe that the AS-RS

solutions always provide the largest pairing energies. As we

can observe in panels (c), where the B(Q2) values are plotted
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in the different approaches, in the relevant parts the AS-RS

approach provides smaller masses followed by the AS-NRS

ones. This implies that not necessarily the smallest fission

barriers provide the shortest lifetimes [29]. Since the action

S in Eq. (2) can be seen as a line integral of the function

dS(Q2)/dQ2 = {2B(Q2)[V (Q2) − E0]}1/2, the area of the

surface delimited by this line and the x axis provides the

value of the action S. In panel (h) we display dS(Q2)/dQ2

in the three approaches. For the nucleus 274Hs we find that

though the NAS-RS fission path has a smaller fission barrier

than the AS-RS one, the actions S for both approaches are

very close. The actual values of S are 26.69 (AS-RS) and

26.49 (NAS-RS), while in the AS-NRS case we obtain a much

larger value, namely 41.66. In the nucleus 278Ds, the fission

paths alone would predict that the AS-NRS and the NAS-RS

approaches would provide much shorter lifetimes than the

AS-RS one. However, in panel (h) one finds that the three

areas look rather similar. Actually, the precise numbers 25.88

(AS-RS), 26.97 (AS-NRS), and 26.49 (NAS-RS) show this

to be the case. Lastly, for 282Cn, the prediction of the fission

paths is more or less in accordance with the one of panel (h)

and the actual numbers 23.34 (AS-RS), 18.32 (AS-NRS), and

22.52 (NAS-RS) corroborate that. We can conclude that the

restriction to axially symmetric paths is, in general, a good

approximation, though as we we will see later one can find

some exceptions.

The low and short non-reflection-symmetric barrier in

nuclei with N � 170 makes the most probable fission through

octupole-deformed shapes. In these nuclei we expect to find

an asymmetric mass distribution of fission fragments [106].

In the one-dimensional fission paths plotted in Fig. 7 we

find crossings between the two paths, giving the impression

that one could switch from one path to the other without further

problem. However, if we look at a higher dimensional plot one

can see that this is not the case. To illustrate this point we have

drawn in Fig. 8 potential energy contour lines versus the quad-

rupole moment, Q2, and the octupole moment, Q3, for the

nuclei 274Hs and 282Cn. In this figure we can follow the AS-RS

and the AS-NRS paths of Fig. 7 for the respective nucleus. The

AS-RS path corresponds to Q3 = 0 and goes along the x axis

and the AS-NRS one goes along the bullets. It is interesting

to see how the self-consistent path goes along a valley in both

nuclei. We can also see that no alternative paths are present.

In the 274Hs case we find that, at Q2 = 50 b where both paths

seem to cross in Fig. 7(d), in reality both paths are separated

by a 4- to 5-MeV-high barrier.

B. Fission barriers in the axially symmetric approaches

In the following to perform a systematic description of the

fission barriers of the 160 SHEs, we restrict ourselves to the

axial approximation in which we have performed two kinds

of calculations, namely, the reflection-symmetric, AS-RS, and

the non-reflection-symmetric, AS-NRS. All the fission barriers

are presented in Figs. 9–13.

In Fig. 9 we present the fission barriers for the isotopes of the

elements Fm, No, and Rf for quadrupole values from −20 to

80 b (continuous line for AS-RS and dashed line for AS-NRS).

We first discuss the AS-RS results. In panel (a) we present the
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FIG. 8. (Color online) The PES as a function of quadrupole and

octupole moments for (a) 274Hs and (b) 282Cn. The energy origin has

been set at the energy minimum.

Fm results for neutron number 150 up to 166. All isotopes

present a well-prolate-deformed minimum around 15 b. In

addition in the lighter isotopes a shallow superdeformed (SD)

minimum appears around 50 b, at N = 156 we find a very

flat minimum, and for the heavier isotopes no SD minimum

is found. The common characteristic of these nuclei is the

presence of a big broad barrier. For N = 150 the barrier is

centered at Q2 = 30 b, has a height of about 12 MeV, and

has a width of 18 b. With increasing neutron number the

center of the barrier shifts to larger deformations and the height

diminishes. For N = 166 the center is around Q2 = 38 b and

the height is about 8 MeV. In the heavier isotopes we find

some structure in the first barrier, namely, the development of

a shoulder around Q2 = 27 b with increasing neutron number.

The presence of a SD minimum in the lighter isotopes drives

the existence of a second barrier. Since the minima are rather

shallow the second barriers are broad but not high. These

properties will contribute in general to a tendency of shorter

lifetimes with increasing neutron number, though the particular

behavior must be analyzed case by case.

The fission paths for the No isotopes are shown in panel (b)

for the same neutron numbers as the Fm case. The structures of
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axis the ground-state energy of each isotope has been set to zero and shifted by 10 MeV in each isotope.

the first barriers look roughly like the ones in Fm. An important

point is the fact that the SD minimum is somewhat lower in

energy than in the Fm case and its role is therefore much less

relevant. The results for the Rf isotopes are displayed in panel

(c). The tendency observed in the No isotopes is reinforced,

the SD minimum gets even deeper, and the second barrier

disappears for most isotopes. This trend will provide in general

shorter lifetimes for Rf than for No and for No shorter than

for Fm. These are general tendencies but since the lifetimes

are very sensitive to small energy differences along the fission

path, to make quantitative predictions calculations involving

also collective inertia have to be performed.

Let us now describe the AS-NRS results. For all isotopes of

the three elements, the fission barriers are much larger along

the non-reflection-symmetric paths than along the reflection-

symmetric path. The lifetimes are therefore considerably

longer in the AS-NRS path than in the AS-RS one. Fission

in the AS-NRS mode is completely impossible.

An exhaustive discussion of the fission barriers of the

nuclei 254Fm, 256Fm, 258Fm, 258No, and 260Rf can be found

in Ref. [57]. In these nuclei the “elongated fission” mode can

be observed. This mode is connected to octupole-deformed

fission paths which start at Q2 > 50 b (see the short-dashed

lines in Fig. 9). We have not observed the “elongated fission”

in heavier nuclei and therefore we will not discuss it here.

In Fig. 10 we present the paths for the nuclei of Sg, Hs,

and Ds elements. In panel (a) we display the results from

N = 150 up to N = 174 for the Sg isotopes. These nuclei

have a trend somewhat different from the preceding ones: the

SD minimum does not play a relevant role in the fission process

since it is always deeper than the ground state and, in fact, if

the SD minimum were not that shallow it would be the ground

state for the lightest Sg isotopes. Furthermore, the barriers

get flatter, most of them being lower than 10 MeV. Apart

from this feature the situation for the isotopes N = 150–166 is

similar to the nuclei Fm, No, and Rf; i.e., the ground states are

prolate deformed (Q2 = 15 b) with large negative deformation

energies and high barriers at larger Q2 values. For N =
168–174 the situation changes very fast, and the following

properties get reinforced as the neutron number increases: the

ground states get less deformed, the shoulders around Q2 = 30

b get deeper and become real minima, and as a consequence

the original barrier becomes a two-humped one. The height

of the spherical maximum decreases and a coexisting oblate

minimum develops at Q2 = −10 b. In particular for N = 172

the oblate and prolate minima are degenerated. We therefore

expect a strong reduction in the fission lifetime of heavier

isotopes as compared to the lighter ones.

In panel (b) the N = 150 up to N = 186 Hs isotopes are

shown. In the lighter isotopes the fission barriers are flatter

and the SD minima are deeper than in the corresponding Sg

isotones. The effect of the SD minima on the fission process is

much smaller. Furthermore, the second fission barrier develops

much earlier. Since the single-particle energies of Fig. 2 are for
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FIG. 10. (Color online) Fission barriers for the Sg, Hs, and Ds isotopes along the AS-RS (continuous lines) and the AS-NRS path (dashed

lines). The green short-dashed lines around the ground state for A > 184 correspond to NRS solutions. For clarity reasons the ground-state

energy of each isotope has been set to zero and shifted by 10 MeV in each isotope in the ordinate axis.

270Hs we can refer to the general discussion of Sec. IV A for

the shape of the fission path in this nucleus. Aside from these

facts the Hs isotopes from N = 150 up to N = 174 behave to a

large extent like the corresponding isotones of the Sg isotopes.

For N = 176 the oblate minimum becomes the ground state

and the two humps of the fission barrier are very similar in

size and height (about 5 MeV). With increasing number of

neutrons, the prolate minimum shifts toward Q2 = 0 and the

spherical minimum becomes the ground state at the N = 184

shell closure. As a consequence, the two humps separate from

each other, the outer one shifting to larger Q2 values and the

inner one to smaller ones. At the same time the inner barrier
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FIG. 11. (Color online) Same as Fig. 10, but for the Cn and Z = 114 and 116 isotopes.

gets bigger and the outer smaller. From this behavior one

expects the lifetimes for fission to be smaller around neutron

number 170–174.

The nucleus 294Hs is octupole deformed in its ground state

(see Fig. 3). In the self-consistent Q2-constrained calculations

this nucleus remains weakly octupole deformed up to Q2 =
10 b, where it turns reflection symmetric (see short dashed part

of the fission path). Since the fission fragments at the scission

point are characteristic of reflection-symmetric fission we still

denote this mode as RS fission. The same situation is found

with the N > 184 isotones for the heavier SHEs. The paths

along Q3 �= 0 close to the ground state are plotted with short

dash lines in the corresponding figures.

The Ds results for the isotopes N = 154 up to N = 188

are displayed in panel (c). The main characteristics of these

fission paths are the following: For the lighter isotopes the

fission barriers are flatter than for the corresponding isotones

in Hs and Sg. For the light and medium-mass isotopes, for a

given isotone number, we find an increase of the first barrier

moving from Sg to Hs and from this to Ds. The opposite effect

is observed for the second barrier; in particular, for the very

heavy isotopes this barrier disappears at the highest neutron

number studied.

For the AS-NRS results of Fig. 10 and for the Sg isotopes,

we find that though the AS-NRS fission barriers are smaller

than the AS-RS ones for medium Q2 values, for larger ones

014322-16



FISSION HALF-LIVES OF SUPERHEAVY NUCLEI IN A . . . PHYSICAL REVIEW C 86, 014322 (2012)

-10

0

10

20

30

40

50

60

70

80

90

100

110

-20 0 20 40 60

E
 [

M
eV

]

Q2 [b]

170

172

174

176

178

180

182

184

186

188

190

118

(a)

-20 0 20 40 60

Q2 [b]

172

174

176

178

180

182

184

186

188

190

120
(b)

-20 0 20 40 60

Q2 [b]

176

178

180

182

184

186

188

190

122
(c)

FIG. 12. (Color online) Same as Fig. 10, but for the Z = 118, 120, and 122 isotopes.

they are much higher and as a result the non-reflection-

symmetric fission paths are not favored compared with the

reflection-symmetric ones. For the Hs isotopes the same

behavior as the Sg isotopes is observed: for lighter isotopes

up-bending tails of the fission paths make the AS-NRS paths

very unfavored, but for medium-heavy N values the tails

bend downward and though the path is longer the second

barrier is smaller for the AS-NRS path than for the AS-RS

one, i.e., around N = 170 and above the AS-NRS path may

compete with the AS-RS one (cf. Fig. 8). For the heaviest Hs

isotopes in the AS-RS approach the second barrier decreases

considerably and the AS-NRS barrier becomes longer than the

other one. For the Ds isotopes the AS-NRS path is even more

favorable because the down-bending tendency gets reinforced

and we have some AS-NRS paths which are clearly favored, for

example for the nuclei with N = 170–176. For larger N values

the vanishing of the second barrier in the AS-RS case again

favors this approach. Notice that in general octupole effects

set in for larger Q2 values as the neutron number increases.

In Fig. 11 we present the fission paths for the isotopes of

the elements Cn and Z = 114 and 116. As before, we first

discuss the AS-RS paths. In panel (a), where the isotopes

N = 160–188 of Cn are shown, we observe that compared

with the corresponding isotones discussed before, the second

hump of the barriers is lower and that the slopes of the tails

of the fission paths are more pronounced. These facts point

to shorter lifetimes of the Cn isotopes compared with lighter

isotones. In panel (b) of the figure the Z = 114 isotopes are

shown. The main difference with respect to the Cn isotopes is

the increase of the first hump and the decrease of the second

one. In the isotopes with one-hump barriers these are higher

and a bit broader than for the corresponding isotones in Cn.

Altogether, it seems that, in general, the lifetimes of the Z =
114 isotopes will be somewhat longer than the one at the

corresponding Z = 112 isotones. In panel (c) we display the

Z = 116 isotopes. Here the same trend as in the previous

nuclei is observed: a reinforcement of the tendency to increase

the first hump of the double-humped barriers and in the case

of only one hump an increase of this.

For the AS-NRS results for Cn and the Z = 114 and 116

elements, we find that the onset of octupolarity is energetically

favored after the level crossing of the “higher shells” and with

the exception of the lightest isotopes the barriers are much

smaller in the AS-NRS path. This is due to the disappearance

of the second hump of the barrier; i.e., in the AS-NRS path

we have only one-humped barriers. We expect therefore a

shortening of the fission lifetimes along these paths.
In Fig. 12 the results for the Z = 118, 120, and 122

isotopes is shown. The same tendency as before is observed
in the AS-RS calculations: larger first barriers as Z increases.
The role of the octupole degree of freedom is also relevant and
all AS-NRS fission paths have smaller fission barriers. The
same comments also apply to the Z = 124 and 126 isotopes
in Fig. 13.
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FIG. 13. (Color online) Same as Fig. 10, but for

the Z = 124 and 126 isotopes.

V. HALF-LIVES OF SHEs

One of the key issues in the theoretical description is

the prediction of the decay modes and the half-lives of the

SHEs. The agreement between the experimental data and

the theoretical predictions not only affirms their quality but

may also be a criterion for the identification of a particular

isotope synthesized in the corresponding fusion reaction.

Moreover, since the contemporary experimental techniques do

not allow the detection of nuclei with half-lives shorter than

T = 10 μs one must estimate which isotopes can survive long

enough to be detected and the way in which they disintegrate.

Therefore, the half-lives of the two main competing processes,

spontaneous fission and α emission, should be evaluated. The

shortest half-life determines the dominant decay channel and

the total half-life. If the branching ratio between two modes

is equal to 50% the logarithm of the total half-life would be

smaller than the shorter partial half-life by not more than 0.3.

Differences in half-lives between two modes of one order of

magnitude lead to a logarithm of the total half-life only 0.05

smaller than the logarithm of the half-life of the fastest decay.

The half-lives for α decay and spontaneous fission calcu-

lated in the HFB theory are collected in the last two columns of

Table I. For an easier analysis these data are also presented in

Fig. 14 where the isotopic chain of each element is shown

in a separate panel. In some nuclei two fission half-lives

can be calculated along paths leading to distinct fragment

mass asymmetry. Both solutions are depicted in Fig. 14 and

discussed below; however, in Table I only the shorter half-life

of the dominant mode is given. The available experimental

data are also plotted in Fig. 14.

A first look at the panels of Fig. 14 reveals similar tenden-

cies for the different isotopic chains. It is easy to distinguish

the intervals of neutron number where common features are

characteristic for many elements despite differences in the

absolute values. Therefore we will discuss our results collected

in groups of similar neutron number, starting from the lighter

ones.

As we have seen in the discussion of the last section NRS

effects influence the fission paths, and thereby the fission half-

lives, in three Q2 regions: 1. For small Q2 values, Q2 < 20 b,

they affect nuclei with octupole-deformed ground states, i.e.,

nuclei with N > 184. 2. Starting at medium (Q2 > 20 b) and

extending up to large Q2 values, these effects are present in

all nuclei. 3. For larger Q2 values, Q2 > 50 b, they appear

in the light isotopes of the elements Fm, No, Rf, and Sg.

According to these effects we are using three symbols in Fig. 14

for the fission half-lives depending on the paths used in the

calculations: AS-RS (upward-pointing triangles) includes the

genuine AS-RS ones plus those with octupole effects close to

the ground state. The reason for including the latter under an

“AS-RS” denomination is that at Q2 ≈ 20 b the nucleus takes

an AS-RS shape and the fission takes place exactly in the same

way as in the pure AS-RS case with symmetric fragment mass

distribution. AS-NRS (downward-pointing triangles) denotes

the “real” non-reflection-symmetric paths leading to fission

with fragments of different masses, which correspond to the

long dashed lines in the fission barrier plots. AS-RS/NRS

(stars) labels the paths where the first part is AS-RS and

only for Q2 > 50 b one follows the non-reflection-symmetric

branch.

A. The region 150 � N � 162

The first characteristic region covers the lighter isotopes

with 150 � N � 162, clearly delimited by the N = 162

deformed “shell closure.” In this range of N the half-lives for

α emission increase monotonically with the neutron number in
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FIG. 14. (Color online) The spontaneous fission and the α-emission half-lives in SHEs. Experimental data are taken from Refs. [9,10,107].

all elements from Fm to Z = 114. It can be also noticed that an

increase of the proton number by two units leads to the decrease

of the α half-lives by two or three orders of magnitude. As we

will also see for the other regions, this tendency is a direct

consequence of the calculated values of Qα shown in Fig. 5

and is consistent with well-known properties of α decay in

heavy nuclei.

The three lightest Fm and No isotopes comprise a specific

group of nuclei in which the HFB calculations predict

relatively long fission half-lives. The small fission probability

is the consequence of the shape of the fission barrier in these

nuclei, which extends to large quadrupole deformation. In the

AS-RS path the second barrier extends up to 120 b, providing

very long half-lives. A somewhat shorter half-life is obtained

in the AS-NRS approach where the barrier is constructed from

two humps: a reflection-symmetric one and a non-reflection-

symmetric one starting at Q2 ≈ 60 b (Fig. 9). In the slightly

heavier isotopes the second non-reflection-symmetric barrier
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also can be noticed in the PES (Fig. 10), but in contrast to the

group of lighter Fm and No nuclei the second, superdeformed

minimum has an energy below the ground state. Thus the

second hump does not affect the barrier tunneling but it governs

the fragment mass asymmetry. In these nuclei the reduction of

the width of the barrier leads to a decrease of the half-lives

by a few orders of magnitude, which can be seen in the Fm

and No isotopes with N � 156 as well as the Rf and the Sg

isotopes. All nuclei with the second non-reflection-symmetric

hump leading to “elongated fission” [57] (i.e., Fm and No with

N � 158 as well as Rf and Sg with N � 156) are marked in

Fig. 14 by blue stars.

In the heavier isotopes of the 150 � N � 162 interval,

where only the single reflection-symmetric barrier remains,

one observes a rise of the fission half-lives with the neutron

number. The slope of this trend changes from an almost flat

dependence in Fm to a very steep one in Sg, Ds, Cn, and

Z = 114. This trend is caused by a broadening of the barrier,

which eventually becomes a two-humped one (Figs. 9, 10,

and 11).

The local maximum found in all elements in the partial

half-lives at N = 162 with respect to α and fission decays

indicates the special character of this neutron number in the

chart of nuclides (see also Fig. 2) These isotones are the most

stable in the close vicinity and hence, in many papers N = 162

is called a “deformed magic number.” This name stresses the

significant difference from the classical magic nuclei, which

are spherical in their ground states.

Many experimental data coming from the “cold fusion”

reactions are available in the region of isotopes with N � 162

[9,107]. The agreement of the α-decay half-lives with the the-

oretical predictions is noticeable, although some discrepancies

are observed. Most calculated fission half-lives overestimate

the experimental data. The agreement would be better if triaxial

effects were taken into account in the saddle point of the

first barrier. The consideration of the γ deformation in the

calculations of nuclei in the Fm region reduces the barrier

heights by around 2 MeV, decreasing thereby the theoretical

fission half-lives by around two orders of magnitude [57].

At variance with the discussion of Sec. IV A in these nuclei

this reduction is not fully compensated by an increase of

the inertia parameters. Therefore discrepancies between the

theory and the experiment diminish considerably. It should

be pointed out that the fastest decay is properly predicted

in all cases. Furthermore, when the experimental data for α

emission and fission provide comparable decay probability

for both processes the theoretical predictions are also similar

for both partial half-lives. Almost all nuclei in this region do

have half-lives long enough to be considered of experimental

interest.

B. The region 164 � N � 178

The next region covers nuclei with neutron number from

N = 164 to N = 178. At N = 164 a kink of two to four

orders of magnitude in the α-decay half-lives can be observed

corresponding to a local maximum in Qα (see Fig. 5). The

increase of the neutron number for a given isotope causes a

linear growth in the α half-life following the tendency already

observed in the lighter nuclei. The half-life rises up to the

neutron number N = 178 where the locally longest living

isotopes are found (see also Fig. 5). They reach values from

T = 0.1 s in Z = 118 to T = 1011 s in Hs. Again, the half-lives

calculated for heavier isotones are smaller and, consequently,

α emission becomes the most probable decay channel in the

proton-rich nuclei.

The AS-RS fission half-lives for nuclei with 164 � N �

178 behave completely different from those for 150 � N �

162. After passing the maximum at N = 162 they decrease up

to the local minimum at N = 170. The drop is very steep for

the lighter elements (Rf, Sg, and Hs) and gentler for the heavier

ones (Ds and Cn), whereas for the isotopes of Z = 114 almost

no change is observed. This behavior can be explained by the

decreasing potential energy along almost the whole barrier,

associated with a diminishing of the saddle point energy and

the clear development of the second minimum (Figs. 9, 10,

and 11). The inverse trend of increasing the potential energy

at small deformations is noticed in heavier elements, starting

from Cn (Fig. 11). The first RS hump of the barrier grows

with increasing mass of the nucleus. In the heavy isotopes

with A � 280 it is higher than the second reflection-symmetric

barrier.

The half-lives calculated for 162 � N � 170 along the

non-reflection-symmetric path diminish more rapidly with

the increase of N than in the reflection-symmetric mode.

This is induced by the changes that take place in the non-

reflection-symmetric barrier, namely, the fast decrease of

its height and, more important, the narrowing of its width

(see Figs. 10 and 11). In nuclei with N � 170 the non-

reflection-symmetric fission barrier allows the second hump

of the reflection-symmetric barrier to be avoided, making

asymmetric fission the most probable mode. Very short fission

half-lives, even below T = 1 ms, can be found in the Hs, Ds,

Cn, and Z = 114 isotopes, where non-reflection-symmetric

fission is the dominant decay mode, being even faster than

α emission. In Z = 114 non-axially-symmetric fission has

half-lives comparable to that of α decay.

The available experimental data around N = 172 obtained

from the “hot fusion” experiments [8,9] fit the theoretical

predictions perfectly. In Cn two spontaneous fission half-lives

correspond to the prediction of the non-reflection-symmetric

fission mode. In Z = 114, N = 172 the observed 50% branch-

ing ratio is very well reproduced. In the isotope with two more

neutrons the detected α decay is predicted with only slightly

longer half-life than in the dominant fission channel. Finally, in

Z = 116 and Z = 118 the dominant α radioactivity is properly

predicted by the theoretical analysis with a good estimation of

the half-lives.

While approaching N = 178 the fission half-lives increase

with a slope which grows with the proton number. This effect is

governed by two trends observed in the evolution of the PESs.

The first one is the aforementioned growth of the first hump

of the barrier, which is the highest one in almost all nuclei

with N > 170. The other factor is the lowering of the energy

of the oblate minimum, which becomes the ground state in the

nuclei around N = 178 (see also the discussions of ground-

state deformations in Sec. III). The shift of the ground state

from the prolate to the oblate minimum (see also Fig. 2) gives
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an additional increase of the barrier height up to over 1 MeV.

The energy difference between prolate and oblate minima has

its largest value in the N = 178 isotones, which, when added

to the large first barrier, produces extremely long half-lives.

They exceed (in the non-reflection-symmetric mode) T = 107

s in Cn and Z = 114 and T = 1014 s in Z = 120.

In the neutron-rich Hs isotopes the non-reflection-

symmetric barriers extend up to relatively large values of the

quadrupole moment. Therefore their transition probabilities

are smaller than in the reflection-symmetric mode. This fact

together with the long α decay half-lives implies that in

this region one can find isotopes with very long half-lives.

Here reflection-symmetric fission is the dominant decay mode.

However, these very neutron rich Hs isotopes are extremely

difficult to synthesize using contemporary experimental tech-

niques.

C. The region N � 180

The saddle point of the first hump of the barrier takes its

maximal energy value at N = 182. We can observe in these

isotones another very high maximum of the fission half-lives

in all elements. In contrast, the N = 180 isotones decay a few

orders of magnitude faster than the neighboring nuclei with

N = 178 and N = 182. The influence of the oblate minimum

and the high first barrier is not strong enough to enlarge

the fission half-lives here. In two isotones with N = 180,

namely, Cn and Z = 114, non-reflection-symmetric fission is

the dominant process with half-lives shorter than for α decay.

The energy difference between the oblate and the prolate

minima as well as between the absolute values of their

quadrupole moments shrink in N = 180 and N = 182 con-

tinuously. Finally, one finds that all N = 184 isotones have

a spherical ground state. This indicates a magic number at

N = 184. Nevertheless, this feature does not have a big impact

on the fission half-lives and the region of the most stable nuclei

is slightly shifted toward the neutron-deficient isotopes.

At N = 178 and N = 182 the α-decay half-lives also reach

their maxima although they are less pronounced than for the

fission half-lives. They correspond to the minima of Qα that

can be observed for these neutron numbers (see Fig. 5). For the

Z � 116 elements α emission is the fastest decay process for

isotopes lighter than N = 184. Most of them live long enough

to allow the synthesis of these nuclei. The extremely long

fission half-lives for the N = 178 and N = 182 isotopes are

larger than the α-decay half-lives in Cn and Z = 114 whereas

for N = 180 non-reflection-symmetric fission is the dominant

mode.

The isotopes with neutron number larger than the magic

N = 184 are characterized by a rapid decrease of the fission

half-lives with increasing neutron number. This is a conse-

quence of the decrease of energy along the whole energy

barrier. The second minimum goes down below the ground

state and the height of the first barrier reduces substantially

when heavier nuclei are considered. These strong trends cannot

be balanced by the few-MeV decrease of the ground-state

energy due to the octupole deformation. Consequently, for the

elements from Ds to Z = 120, fission becomes the dominant

decay mode with half-lives below T = 10 μs. The α-decay
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FIG. 15. (Color online) The dominant decay modes of SHEs. The

logarithm of the shortest half-lives (in seconds) is also indicated.

half-lives do not vary strongly along the isotopic chain in this

region. The fluctuations are associated with the changes of

the ground-state deformations of the parent and the daughter

nuclei. In this region the decrease of the α-decay half-lives

with the proton number is also visible. Most isotopes in this

region cannot be synthesized due to the very short fission (in

the proton-deficient nuclei) or α emission (in the proton-rich

isotones) half-lives. The experimental limit of T = 1 ms is

exceeded only for a few nuclei.

To conclude this section we would like to present in Fig. 15

the shortest half-lives of each isotope in the form of the chart

of SHEs. From this figure it is easy to distinguish the regions

where each decay mode plays the most important role. The

predominant decay mode, especially in the proton-rich region,

is α emission. Roughly speaking, the spontaneous fission in the

reflection-symmetric mode is dominant in the proton-deficient

nuclei with Z � 104 for N � 158, Z � 108 for N � 170, and

Z � 116 for N � 186. In the central part of the diagram the

region with the fastest decay in the non-reflection-symmetric

fission channel is defined by 108 � Z � 114 and 170 � N �

180.

Two regions of long-living nuclei can be found also in

Fig. 15. The first one includes nuclei around 268Sg162, where

half-lives reach T = 104 s. The other “island of stability” is

associated with the anomalous long fission half-lives at N =
178 and N = 182. At these neutron numbers (and also at

N = 184) long-living isotopes of Cn and Z = 114 elements

can be found. The half-lives of these isotopes are also longer

than T = 106 s. Very long half-lives characterize also the Hs

isotopes decaying through reflection-symmetric fission.

VI. SUMMARY AND CONCLUSIONS

In this work Hatree-Fock-Bogoliubov theory with large

basis size and the density-dependent Gogny force as inter-

action have been used to study the most relevant properties

of 160 heavy and superheavy elements as well as their

predominant decay modes. In order to keep the calculations

as general as possible we allow for wave functions with

different symmetries, namely, axially symmetric and reflection
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symmetric, axially symmetric and non-reflection symmetric,

and lastly triaxial wave functions. After a thorough analysis

along different fission paths and considering that our calcu-

lations are extremely demanding of computation time due to

the large basis needed to study 160 nuclei we perform most

calculations in the axially symmetric approaches.

The ground-state deformations β2, β3, β4, and β6 as

well as Qα factors, pairing properties, and the two-neutron

and two proton-separation energies are thoroughly discussed.

The single-particle energies are used as a guide for the

interpretation of these properties.

The fission paths for three representative nuclei, namely,
274Hs, 278Ds, and 282Cn, are analyzed in detail. Properties such

as mass parameters, pairing features, and the variation of the

action among others are calculated along the fission path with

wave functions of the three types mentioned above. We find

that though the shape of the fission barrier has a large impact

on the fission half-lives, the mass parameter also plays an

important role, in such a way that wave functions with larger

barriers and smaller mass parameter may tunnel more easily

than alternative ones with smaller barriers and larger mass.

Since in general axially symmetric wave functions do have

smaller masses than the triaxial ones, the restriction to axial

symmetry is a good option for performing a systematic study

of the half-lives of SHEs. In the second part of the paper a

thorough study of the shapes of the barriers in the AS-RS

and AS-NRS cases is performed. A reasonable explanation of

heights and shapes as well as of octupole effects is obtained

on the basis of the single-particle energy levels. The two-

dimensional (Q2,Q3) energy contour plots for the nuclei 274Hs

and 282Cn allow us to disentangle the different fission paths

and their possible interconnections.

In the third part of the paper the half-lives of all studied

nuclei are calculated for the different decay modes, namely,

α decay and along the different fission paths. We find clear

tendencies with the neutron number that are easily explainable

on the basis of the behavior of Qα factors and barrier

shapes, respectively. In particular, we find that α emission

is the predominant decay mode, especially in the proton-rich

region. For spontaneous fission we obtain that the reflection-

symmetric mode is dominant for the proton-deficient nuclei

in medium-mass SHEs with Z � 104 for N � 158 and with

Z � 108 for N � 170 and in the region of the heaviest

SHEs with Z � 116 for N � 186. The fastest decay in

the non-reflection-symmetric fission channel takes place for

108 � Z � 114 and 170 � N � 180. The long-living nuclei

can be found in two regions. The first one is in the vicinity

of 268Sg162, where half-lives around T = 104 s are obtained.

The anomalous long fission half-lives for proton-deficient

isotones with N = 178, N = 182, and N = 184 create the

second region. At these neutron numbers several isotopes of

the elements Cn and Z = 114 are found with half-lives longer

than T = 106 s. Very long half-lives characterize also the Hs

isotopes decaying through reflection-symmetric fission. The

nuclei beyond Z = 120 and N = 184 have half-lives too short

to be detected within the contemporary experimental limit of

T = 10 μs.

In conclusion, we have presented a systematic study of

SHEs within self-consistent HFB theory with very general

wave functions and large configuration space. Our calculations

provide an overall interpretation of the systematics and global

properties of these elements and its decay modes. In general

we find a reasonably good agreement with the experimental

data.
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[27] W. D. Myers and W. J. Świątecki, Nucl. Phys. 81, 1 (1966).

[28] U. Mosel and W. Greiner, Z. Phys. 222, 261 (1969).

014322-22

http://dx.doi.org/10.1016/0375-9474(89)90652-0
http://dx.doi.org/10.1016/S0375-9474(00)88561-9
http://dx.doi.org/10.1140/epja/i2007-10373-x
http://dx.doi.org/10.1140/epja/i2009-10826-2
http://dx.doi.org/10.1103/PhysRevLett.104.252701
http://dx.doi.org/10.1140/epja/i2010-10913-3
http://dx.doi.org/10.1140/epja/i2010-11026-9
http://dx.doi.org/10.1103/PhysRevC.83.054618
http://dx.doi.org/10.1103/PhysRevC.72.034611
http://dx.doi.org/10.1088/0954-3899/34/4/R01
http://dx.doi.org/10.1103/PhysRevC.76.011601
http://dx.doi.org/10.1103/PhysRevC.79.024603
http://dx.doi.org/10.1103/PhysRevLett.104.142502
http://dx.doi.org/10.1103/PhysRevLett.104.142502
http://dx.doi.org/10.1103/PhysRevLett.108.022502
http://dx.doi.org/10.1143/JPSJ.73.2593
http://dx.doi.org/10.1143/JPSJ.76.045001
http://dx.doi.org/10.1143/JPSJ.78.064201
http://dx.doi.org/10.1103/PhysRevC.83.034602
http://dx.doi.org/10.1103/PhysRevLett.103.132502
http://dx.doi.org/10.1103/PhysRevLett.103.132502
http://dx.doi.org/10.1016/j.nuclphysa.2004.01.031
http://dx.doi.org/10.1016/j.nuclphysa.2004.01.031
http://dx.doi.org/10.1016/j.nuclphysa.2009.12.016
http://dx.doi.org/10.1016/j.ppnp.2006.05.001
http://dx.doi.org/10.1016/j.ppnp.2006.05.001
http://dx.doi.org/10.1016/0031-9163(66)91243-1
http://dx.doi.org/10.1016/0031-9163(66)91243-1
http://dx.doi.org/10.1007/BF01392125


FISSION HALF-LIVES OF SUPERHEAVY NUCLEI IN A . . . PHYSICAL REVIEW C 86, 014322 (2012)

[29] A. Baran, K. Pomorski, A. Łukasiak, and A. Sobiczewski,

Nucl. Phys. A 361, 83 (1981).

[30] Z. Łojewski and A. Baran, Z. Phys. A 322, 695 (1985).

[31] A. Staszczak and Z. Łojewski, Nucl. Phys. A 657, 134

(1999).

[32] I. Muntian, S. Hofmann, Z. Patyk, and A. Sobiczewski, Acta

Phys. Pol. B 34, 2073 (2003).

[33] M. Kowal, P. Jachimowicz, and A. Sobiczewski, Phys. Rev. C

82, 014303 (2010).
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[78] N. López Vaquero, T. R. Rodrı́guez, and J. L. Egido, Phys. Lett.

B 704, 520 (2011).

[79] M. Warda and L. M. Robledo, Phys. Rev. C 84, 044608 (2011).

[80] J. L. Egido, L. M. Robledo, and R. R. Chasman, Phys. Lett. B

393, 13 (1997).

[81] C. Titin-Schnaider and Ph. Quentin, Phys. Lett. B 49, 213

(1974).

[82] M. Anguiano, J. L. Egido, and L. M. Robledo, Nucl. Phys. A

683, 227 (2001).

[83] J. L. Egido and L. M. Robledo, Angular Momentum Projection

and Quadrupole Correlations Effects in Atomic Nuclei, Lecture

Notes in Physics Vol. 641 (Springer, New York, 2004) p. 269.

[84] R. R. Rodrı́guez-Guzmán, J. L. Egido, and L. M. Robledo,

Phys. Rev. C 62, 054319 (2000); Phys. Lett. B 474, 15 (2000);

Acta Phys. Pol. B 32, 2385 (2001).

[85] K. Dietrich, H. J. Mang, and J. H. Pradal, Phys. Rev. 135, B22

(1964).

[86] P. Ring and P. Schuck, The Nuclear Many-Body Problem

(Springer-Verlag, Berlin, 1980).

[87] J. L. Egido and L. M. Robledo, Phys. Rev. Lett. 85, 1198

(2000).

[88] M. Girod, J. P. Delaroche, J. Libert, and I. Deloncle, Phys. Rev.

C 45, R1420 (1992).

[89] D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953).

[90] M. J. Giannoni and Ph. Quentin, Phys. Rev. C 21, 2060

(1980).

[91] S. G. Nilsson, C. F. Tsang, A. Sobiczewski, Z. Szymański,
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