TITLI DISCIF P QUALI	: F	TSC.									13	SUE	: 31	JIVI	VIAI	nr											
ľ			ION·	-PR	DUUC	CT S	iC	REA	ACT	ION	IN	HT	<u>GR</u> I	FUEI	, T] R] D\] DI	& D / & S ESIG	5		APP	ROV	'AL	LEV	EL _	3	
QUAL			SYST	ГЕМ 18		00C. R(TYPI Ge	3		JJE C 400	т	DO	CUM	ENT		583						1	SSUE	NO. 1	/LTR		
	TY AS	SSUR	ANC	ELE	VEL		SAI	ETY		ASSIF 1	-ICA	FION		SEI		C CAT	rego C	IRY	delen Getinto		ELEC	TRI	CAL (N	CLAS /A	SIFIC	CATI	٦N
ISSU	E	C	DATE	E	F		PARI BY	ED	EN		IEEF			207/	AL A			ROJI					DES	ISSU CRII		IN	
1		JUL.	13	1981	siĝosi Stens	. Mor	ntgo	ome	Q ry 0.			ielo	ed										ial 020			•	
			NOTICE		PORTIONS OF THIS REPORT ARE ILLEGIBLE	/ to permit the broder -	bility.		fr	7	3	181	د										E/E 82	-			
CONT	INUE	ISS	UES	UMI	- WARRING	- 5m3	60	A FC	RM	148	5—1.	,			\$\$ * *	y .	-16 Å					NE)CUI	ИEN		D
Nerthe warran comple repress commi- not ni- States	ok was pret the Unitec y express teness or nts that tt rcs al produ cessarily or Governmen rily state or	d States G or mpl usefulnes s use wou ict proces onstitute it or any	iovernmen ked or a ss of an uld not if ss or serv or mply agency th	of work s at nor any assumes a y nform fringe pr ce by tr ts endo ereof Th	r agency th any legal nation ap r vately ow ade name prsement e views ani	oyan ager ner⊾of no labity paratus vned rgh trademan recomme d op nom	r any of or respon product ts Reference rk manuf ndation is of auth	or proc or proc ance here acturer o or favors	for the cess discl an to am or otherv ng by th ssed here	acc racγ losed or y specific vise does ne United		A second s	۷	ERI PH 1	FY Doct	issi Mer	LLE UE S UT C O US	Stat Ont Se	"US 'ROL	t - Fr	of th	115 00	9 Icumei	055 VT IS		NTED	4
REV																											Ĺ
SH																											
REV																											
SH	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	5
REV SH	<u> </u>	2	3		5	6	7	8	 	10	11	12	13		15		17	18	19		21	22	23		25	26	L

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

DOE/ET/35300--T3

TABLE OF CONTENTS

*

¥,

1.	INTRO	DDUCTION
2.	EXPEF	RIMENTAL PROCEDURES
	2.1	Sample Descriptions • • • • • • • • • • • • • • • • • • •
	2.2	Pre-test Fuel Particle Characterization • • • • • • • • • • • • 12
	2.3	Thermal Gradient Heating ••••••••••••••••••••••••••••••••••••
	2.4	Silicon Carbide Thinning Rates ••••••••••••••••••••••••••••••••••••
	2.5	Fission Product Release • • • • • • • • • • • • • • • • • • •
	2.6	Post-test Heating Examinations ••••••••••••••••••••••••••••••••••••
3.	EXPER	RIMENTAL RESULTS ••••••••••••••••••••••••••••••••••••
	3.1	Radiography and Ceramography ••••••••••••••••••••••••••••••••••••
		3.1.1 TRISO HEU UC ₂ · · · · · · · · · · · · · · · · · · ·
		3.1.2 TRISO LEU Fissile Fuel Candidates · · · · · · · · · 37
	3.2	Electron Microprobe Examination • • • • • • • • • • • • • • • • • • •
		3.2.1 TRISO HEU UC ₂ · · · · · · · · · · · · · · · · · · ·
		3.2.2 TRISO LEU Fissile Fuel Candidates · · · · · · · · 50
		3.2.2.1 TRISO LEU UC $_2$ · · · · · · · · · · · · · · · · · · ·
		3.2.2.2 TRISO LEU $uo_2^2 \cdot $
		3.2.2.3 TRISO LEU $uo_2^{2} * \cdots * \cdots * \cdots * \cdots * \cdots * 58$
	3.3	-
		3.3.1 TRISO HEU UC ₂
		3.3.2 TRISO LEU Fissile Fuel Candidates
	3.4	Rate of SiC Thinning
		3.4.1 TRISO HEU UC ₂
		3.4.2 TRISO LEU Fissile Fuels
4.	DISCU	JSSION
	4.1	Reacting Fission Products
	4.2	Influence of Kernel Composition
	4.3	Time Dependence of SiC-Fission Product Reactions
	4.4	Temperature Dependence • • • • • • • • • • • • • • • • • • •
		2 Distribution of this document is unlimited

	4.5	Comparison \rightarrow f Measured and Predicted SiC Penetration in Peach
		Bottom Test Element Fuel for Linear and Square Root Time
		Dependence Models
	4.6	Additional SiC Corrosion Mechanisms
	4.7	SiC Failure Criterion
5.	CONCLU	USIONS
6.	REFER	ENCES • • • • • • • • • • • • • • • • • • •

4

*

LIST OF TABLES

٠ •

2.1	Coating and Kernel Characteristics of Particles Tested at General	
	Atomic in Out-of-Pile Thermal Gradient Tests	13
2.2	Irradiation Parameters for Particles used in Out-of-Pile Thermal	
	Gradient Heating Tests	14
2.3	Coating and Kernel Characteristics of TRISO Particles which	
	Exhibited Fission Product Reaction with SiC During Irradiation	15
2.4	Irradiation Parameters for Particles which Exhibited Fission	
	Product Reaction with SiC During Irradiation	19
2.5	Emission Spectrographic Analysis of Impurities in Graphite Materials	
2.9	Used in Out-of-Pile Thermal Gradient Tests	28
3.1	Out-of-Pile Thermal Gradient Heating Test Parameters	30
3.2	Atomic Ratio of Elements Found in the Vicinity of the SiC Corrosion	
	in TRISO LEU UC ₂	59
3.3	Release Fractions for Samples of LEU Fissile Fuel Heated in Out-of-	
	Pile Thermal Gradient Tests	61
3.4	Change in SiC Thickness Caused by Fission Product - SiC Reactions in	
		70
0 F		
3.5	Change in SiC Thickness Caused by Fission Product - SiC Reactions in	74
	TRISO HEU UC ₂ (60% FIMA) at Approximately $1350^{\circ}C$	71
3.6	Change in SiC Thickness Caused by Fission Product - SiC Reactions in	
	TRISO HEU UC ₂ (60% FIMA) at Approximately $1500^{\circ}C$	72
3.7	Change in SiC Thickness Caused by Fission Product - SiC Reactions in	
	TRISO HEU UC ₂ (60% FIMA) at Approximately 1700°C	73

LIST OF TABLES (continued)

ب ک

3.8	Comparison of Metallographic and X-Ray Techniques for Measuring SiC Thinning	75
3.9	Change in Silicon Carbide Thickness Caused by Fission Product - SiC Reactions in TRISO LEU UC ₂ (\sim 25% FIMA)	76
4.1	SiC Penetration Observed at General Atomic During Out-of-Pile Thermal Gradient Heating Tests of TRISO HTGR Fuel	94
4.2	SiC Penetration Observed During Accelerated Irradiation Testing of TRISO HTGR Fuel ••••••••••••••••••••••••••••••••••••	96
4.3	SiC Penetration Observed During Real Time Irradiation Testing of HTGR Fuel in Peach Bottom Test Elements ••••••••••••••••••••••••••••••••••••	00
4.4	ORNL Out-of-Pile Fission Product Reaction Results for Synthetically Doped Kernels	01
4.5	ORNL Raw Data for NdC ₂ -SiC Interaction in SiC-Coated Particles at 278°C/cm • • • • • • • • • • • • • • • • • • •	02
4.6	ORNL Raw Data for LaC ₂ -SiC interaction in SiC-Coated Particles at 278°C/cm • • • • • • • • • • • • • • • • • • •	05
4.7	ORNL Raw Data for Pd-SiC Interaction in SiC Coated Particles at 278°C/cm • • • • • • • • • • • • • • • • • • •	2 7
4.8	Comparison of Measured and Predicted SiC Penetration in Peach Bottom Test Element	09

LIST OF FIGURES

* *

2.1	Schematic representation of (a) heating configuration, (b) crucible containing fuel particles, and (c) thermal	
	gradient across crucible	25
3.1	Effect of one hour out-of-pile heat treatment on fission product distribution in irradiated TRISO HEU UC ₂ (6151-17-016) \ldots	31
3.2	Effect of one hour out-of-pile heat treatment on fission product distribution in irradiated TRISO HEU UC $_2$ (6151-17-025)	32
3.3	Fission product-SiC reactions resulting from out-of-pile thermal gradient heating of TRISO HEU UC $_2$ at 1101°C \ldots \ldots \ldots \ldots \ldots	33
3.4	Fission product-SiC reactions resulting from out-of-pile thermal gradient heating of TRISO HEU UC ₂ at 1351°C • • • • • • • • • • • • • • • • • • •	34
3.5	Fission product-SiC reactions resulting from out-of-pile thermal gradient heating of TRISO HEU UC ₂ at 1508°C ••••••••••••••••••••••••••••••••••••	35
3.6	Fission product-SiC reactions resulting from out-of-pile thermal gradient heating of TRISO HEU UC ₂ at $1727^{\circ}C$ · · · · · · · · · · · · · · · · · · ·	36
3.7	Effect of one hour, out-of-pile heat treatment on fission product distribution in irradiated TRISO LEU UC $_2$ (6251-21-0111-5)	38
3.8	Effect of one hour, out-of-pile heat treatment on fission product distribution in irradiated TRISO LEU UC _{0.34} 01.66 (6157-09-0120-1)	39
3.9	Effect of one hour, out-of-pile heat treatment on fission product distribution in irradiated TRISO LEU UO $_2$ (6152-01-0111-3)	40
3.10	Effect of one hour, out-of-pile heat treatment on fission product distribution in irradiated TRISO LEU UO_2^* (6152-03-0111-6)	41

LIST OF FIGURES (continued)

۰ A

3.11	Fission product-SiC reactions resulting from out-of-pile thermal gradient heating of LEU UC ₂ at 1510°C
3.12	Pretest and posttest radiograph and posttest photomicrograph of TRISO LEU UO ₂ annealed at 1513°C in an out-of-pile thermal gradient
3.13	Pretest and posttest radiographs and posttest photomicrograph of TRISO LEU UO ₂ * annealed at 1508°C in an out-of-pile thermal gradient ••••••••••••••••••••••••••••••••••••
3.14	SiC corrosion observed in TRISO LEU UC ₂ after out-of-pile thermal gradient heating at 1510°C • • • • • • • • • • • • • • • • • • •
3.15	SiC corrosion in TRISO LEU UO ₂ caused by out-of-pile thermal gradient heating at 1513°C · · · · · · · · · · · · · · · · · · ·
3.16	Regions in irradiated LEU TRISO particles which were examined by electron microprobe analysis after 163.5 hr thermal gradient anneal at ∿1500°C • • • • • • • • • • • • • • • • • • •
3.17	Fission product attack on SiC layer in TRISO HEU UC ₂ (60% FIMA) heated at 1508°C in an out-of-pile thermal gradient test •••••• 49
3.18	Fission product distribution near SiC attack resulting from out-of-pile thermal gradient heating of TRISO HEU UC ₂ at $1351^{\circ}C \cdot \cdot \cdot 51$
3.19	Fission product distribution near SiC attack resulting from out- of-pile thermal gradient heating of TRISO HEU UC ₂ at 1101°C · · · · 52
3.20	Electron microprobe line scans across SiC for HEU UC ₂ (60% FIMA) annealed 10,763 hr. at 1101°C
3.21	Nd, Pd, and Si profiles measured by electron microprobe on TRISO HEU UC ₂ (60% FIMA) particles annealed 8222 hr. at $1351^{\circ}C$

۰ ب

3.22	Fission products in the SiC corrosion zone after heating TRISO LEU UC ₂ at 1510°C for 163.5 hr	55
3.23	Metal distribution on hot side of TRISO LEU UC ₂ particle heated in a thermal gradient at 1514°C	57
3.24	Specific regions in TRISO LEU UC $_2$ where elemental ratios were determined by electron microprobe X-ray analysis \ldots	62
3.25	Distribution of Pd at inner surface of SiC on hot and cool side of TRISO LEU UO $_2$ annealed in a thermal gradient at 1513°C $\ .$.	53
3.26	Electron microprobe line scans across SiC for LEU UO ₂ * after heating out-of-pile for 163.5 h r at 1508°C	° -
3.27	Variation in the Cs-137 content of TRISO HEU UC ₂ particles heated in a thermal gradient at 1101°C	65
3.28	Variation in the Cs-137 content of TRISO HEU UC ₂ particles heated in a thermal gradient at 1351°C	66
3.29	Variation in the Cs-137 content of TRISO HEU UC ₂ particles heated in a thermal gradient at 1508°C	67
3.30	Variation in the Cs-137 content of TRISO HEU UC ₂ particles heated in a thermal gradient at 1709°C	68
4.1	Comparison of the Observed Change in SiC Thickness with Time to that Predicted at 1500°C Using the CY-80 Linear Model for SiC- Fission Product Reaction	82
4.2	Change in SiC Thickness as a Function of Square Root Time for HEU UC ₂ Heated at 1511°C in Out-of-Pile Thermal Gradient Test	83
4.3	Time Dependence of Fission Product-SiC Reactions in TRISO HEU UC ₂ (6151-17-016) During Out-of-Pile Thermal Gradient Testing at 1709°C	84

LIST OF FIGURES (continued)

و با

4.4	Temperature Dependence of Fission Product-SiC Reaction Rate	
	Constant for Linear Time Dependence Model	86
4.5	Temperature Dependence of Fission Product-SiC Reaction Rate	
4.5		
	Constant for Square Root Time Dependence Model ••••••••••••••••••••••••••••••••••••	87

1. INTRODUCTION

Fuel for the High-Temperature Gas-Cooled Reactor (HTGR) consists of coated fuel particles bonded into fuel rods. The active core of the HTGR is comprised of these fuel rods contained in graphite fuel elements. TRISO fissile and fertile particles currently under development consist of a fuel kernel surrounded by successive coatings of a pyrolytic carbon buffer, an isotropic pyrolytic carbon (IPyC), silicon carbide (SiC), and a second isotropic pyrolytic carbon (OPyC).

Prior to 1977, the reference fuel cycle for the HTGR was the highly enriched uranium (HEU)^a cycle using uranium dicarbide (UC₂) fissile particles and thorium dioxide (ThO2) fertile particles. However, concerns about nuclear proliferation with the HEU cycle led to an evaluation of the performance of low enriched uranium (LEU)^b fissile fuel. Associated with this change in fuel enrichment was an evaluation of the performance of uranium dioxide (UO2), uranium oxycarbide (UC_xO_y) and UC_2 as the fissile kernel material. In addition, a new fuel type, TRISO U02*, was tested in which a U02 kernel was first coated with a 5-10 μm ZrC layer and then TRISO coated.

The primary barrier to release of fission product from any of the fuel types into the primary circuit of the HTGR are the coatings on the fuel particles. Both pyrolytic carbon (Ref. 1) and silicon carbide coatings are very effective in retaining fission gases under normal operating conditions. Silicon carbide is also effective in retaining most fission metals (Ref. 2). Thus, release of fission products from fuel particles under normal operating conditions depends on failure of these coatings. Coating failures can be caused during manufacturing, as well as during irradiation. One of the possible performance limitations which has been observed in irradiation tests of TRISO fuel is chemical interaction of the SiC layer with fission products (Ref. 3). This reaction reduces the thickness of the SiC layer in TRISO particles and can lead to release of fission products

a bDefined as fuel with 93% U-235 Defined as fuel with $\sim 20\%$ U-235

from the particles if the SiC layer is completely penetrated.

The experimental section of this report describes the results of work at General Atomic concerning the reaction of fission products with silicon carbide. The discussion section describes data obtained by various laboratories and includes (1) a description of the fission products which have been found to react with SiC; (2) a description of the kinetics of silicon carbide thinning caused by fission product reaction during out-of-pile thermal gradient heating and the application of these kinetics to in-pile irradiation; and (3) a comparison of silicon carbide thinning in LEU and HEU fuels.

2. EXPERIMENTAL PROCEDURES

The rate at which fission products react with SiC in irradiated, TRISO HTGR fuel was studied during out-of-pile thermal gradient heating. The samples tested and the techniques used in these tests are described in this section.

2.1 Sample Descriptions

The TRISO particles used in these experiments had been irradiated prior to the out-of-pile tests. The kernels and coatings were prepared using standard fuel fabrication procedures and then irradiated as loose particles in accelerated tests under conditions similar to those expected in HTGR operation. Description of the kernel and coating characteristics of the particles is given in Table 2.1. Table 2.2 gives the conditions of the accelerated irradiation tests. Characteristics of the kernels and coatings for particles which exhibited fission product-SiC reactions during irradiation are given in Table 2.3. Table 2.4 gives the conditions of the irradiation tests.

2.2 Pre-test Fuel Particle Characterization

The fuel particles used in the out-of-pile heating are characterized before testing using gamma-ray spectroscopy to measure fission product inventories and x-ray radiography to determine fission product distribution within the fuel particles. Measurement of the gamma-ray spectrum from irradiated fuel particles is useful in determining the performance and fission product retention characteristics of fuel particles during irradiation (Refs. 4, 5). This is accomplished by comparing the ratio of volatile-to-nonvolatile fission products in the particles to the calculated ratio. In particular, the activity ratios of Cs-137, Ru-106, Zr-95 and Ce-144

COATING AND KERNEL CHARACTERISTICS OF PARTICLES TESTED AT GENERAL ATOMIC IN OUT-OF-PILE THERMAL GRADIENT TESTS

5 10.78 310.4 9.4 5 0.91 84.1
310.4 9.4 5 0.91
9.4
5 0.91
84.1
9.3
1.92
10 ⁻³ 7.02 x 10 ⁻³
35.3
3.2
3.2
) ^{-3'} 8.19 x 10 ⁻³
39.1
3.5
1.87
7.02 x 10-3
40,8
40.8 4.3
7 1 2 1 0 7 2 87

(a)_{Data} from parent batch

905837/1

IRRADIATION PARAMETERS FOR PARTICLES USED IN OUT-OF-PILE THERMAL GRADIENT HEATING TESTS

Out-of- Pile		Irradiation Test			Sample	Fast Flux > 29 fJ	Fast Fluence > 29 fJ	Kernel	Irra- diation	Irra- diation Tempera-
Exper- iment Number	Data Retrieval Number	Vehicle	Posi- tion	Reactor	Config- uration	n/m^2-s x 10 ¹⁷	n/m ² x 10 ²⁵	Burnup (% FIMA)	Length hr	ture °C
78TG 78TG 80TG 80TG 80TG 80TG 5217-5 7013	6151-17-016 6151-17-025 6151-21-0111-5 6157-09-0120-1 6152-01-0111-3 6152-03-0111-6 4413-5E 4161-01-030	HB-5 HB-5 HRB-15B HRB-15B HRB-15B HRB-15B P13L FTE-14	T210 T250 T172 T22 T174 T176 C3T3 TS56	GETR GETR HFIR-RB HFIR-RB HFIR-RB HFIR-RB ETR Peach Bottom	Unbonded	(c) (c) (c) (c) (c) (c) (c) 4.6	5.5 5.5 3.6 HTGR 4.5 HTGR 3.5 HTGR 3.4 HTGR 7.8 1.44 ^(a)		2300 2300 4055 4055 4055 4055 6552 8712	<600 <600 $915^{(d)}$ $860^{(d)}$ $915^{(d)}$ $1250^{(b)}$ $1400^{(e)}$
6804	4161-01-030	FTE-14	TS 36	Peach Bottom		4.5	1.40 ^(a)	24.16	8712	∿1100 ^(e)
6804	4161-01-032-002	P13P	CIP4	ETR		6.8	6.0	60.6	4752	1350 ^(b)
7013	4161-01-034-002	P13P	CIP2	ETR	V	6.7	5.9	60.2	4752	1420 ^(b)

(a) Calculated by GAUGE/Fever

(b) Not known if particle surface or kernel temperature

(c)_{Not reported}

(d)_{Maximum} particle surface temperature

(e) Linear time weighted maximum temperature

COATING AND KERNEL CHARACTERISTICS OF TRISO PARTICLES WHICH EXHIBITED FISSION PRODUCT REACTION WITH SiC DURING IRRADIATION

Particle Parameters	ThO ₂ 6252-17-010	LEU (Th/U)0 ₂ 6155-05-020	LEU UO ₂ 6152-01-010	LEU ^{UC} 0.7 ⁰ 0.5 6157-08-010	LEU ^{UC} 0.7 ⁰ 0.5 6157-08-020	ThO ₂ 6252-14-0161	ThO ₂ 6252-15-0161	ThO ₂ 6252-16-0161	HEU UC ₂ 4161-01-031 4161-01-030
KERNEL									
Density, Mg/m ³	9.78	10.40	10.55	11.91	12.03	9.9 ^(a)	9.90 ^(a)	9.90 ^(a)	10.90
Diameter, µm	455	360	299	354	353	448	450	451	203
Std. Dev.	8.9	10.1	8.11	15.0	15.6	7.6	7.2	6.8	25.40
BUFFER									
Density, Mg/m ³	0.93	1.09	1.15	1.20	1.15	1.1	1.07	1.07	1.26
Thickness, µm	90	110	122	108	90	63	56	57	87.00
Std. Dev.	22.32	12.98	20.0	15.15	15.41	7.0	6.9	6.5	9.57
1PyC									
Density, Mg/m ³	1.79	1.89	1.91	1.88	1.87	1.84	1.85	1.85	1.91
Std. Dev.	1.37×10^{-2}	1.63 x 10 ⁻²	4.66×10^{-3}	9.27 x 10 ⁻³	1.0×10^{-2}	2.8 x 10 ^{-2(a)}	1.99×10^{-2} (a)	1.99 x 10 ^{-2(a)}	9.0 x 10 ⁻³
Thickness, µm	40	32	41	37	35	32	36	36	28.00
Std. Dev.	5.1	3.89	3.07	4.35	4.61	4.4	4.4	4.4	3.98
SiC									
Density, Mg/m ³	3.22	3.22	3.21	3.21	3.21	3.22	3.22	3.21	3.20
Std. Dev.	4.82 x 10 ⁻³	8.5 x 10 ⁻⁶	8.0 x 10 ⁻⁶	4.64×10^{-3}	4.0×10^{-3}	$3.1 \times 10^{-3(a)}$	$3.10 \times 10^{-3(a)}$	4.6×10^{-3}	7.0 x 10 ⁻³
Thickness, µm	36	36	32	36	30	37	38	39	29.00
Std. Dev.	3.36	3.69	5.55	4.24	5.55	2.6	2.1	2.0	3.95
ОРуС									
Density, Mg/m ³	1.95	1.86	1.87	1.90	1.91	1.97	1.81	1.96	1.81
Std. Dev.	4.26 x 10 ³	3.0×10^{-3}	5.08 x 10 ⁻³	1.96 x 10 ⁻³	2.0×10^{-3}	$4.5 \times 10^{-3(a)}$	$1.1 \times 10^{-2(a)}$	2.72 x $10^{-3(a)}$	1.0×10^{-2}
Thickness, µm	49	48	40	48	49	44	45	48	32.00
Std. Dev.	7.1	6.63	5.53	4.92	5.77	4.8	5.1	5.8	5.0

(a)_{Data} from parent batch

			•			
Particle Parameters	TRISO ^(c) WAR-A UC4.12 ⁰ 0.47 A615	TRISO WAR-D UC _{4.83} 0 _{1.09} OR-2458-H	TRISO WAR-D UC _{4.80} 01.06 OR-2460-H	TRISO WAR-D ^{UC} 4.48 ⁰ 0.62 OR-2471-H	TRISO WAR-A UC4.58 ⁰ 1.13 OR-2486-H	TRISO WAR-A UC4.60 ⁰ 1.10 OR-2494-H
KERNEL			-			
Density, Mg/m ³	3.076	2.47	2.45	2.53	3.186	3.203
Diameter, µm	354.1	413.4	396.1	391.4	361.4	363.3
Std. Dev.	15.7	21.7	20.7	20.0	22.2	23.1
BUFFER						
Den si ty, Mg/m ³	1.33 ^(d)	1.25	(f)	1.25	1.27	1.304
Thickness, µm	51.0	45.9	(f)	47.6	48.2	43.3
Std. Dev.	12.3	4.9	-	5.6	6.5	6.6
IPyC						
Density, Mg/m ³	1.857 ^(e)	1.962	1.95	1.956	2.004	2.010
Std. Dev.	0.009	0.008	(f)	0.009	0.008	0.007
Thickness, µm	30.7	34.3	36.3	34.7	40.2	36.6
Std. Dev.	3.3	2.4	3.4	2.6	3.37	3.9
S1C						
Density, Mg/m ³	3,200	3.203	3.159	3.194	3.190	3.197
Std. Dev.	0,008	0.007	0.004	0.008	0.004	0.004
Thickness, µm	29.5	36.0	35.3	34.4	30.7	32.2
Std. Dev.	1.5	2.0	2.4	1.3	1.5	1.3
ОРуС						
Density, Mg/m ³	1.910 ^(e)	2.005	2.008	1.992	2.020	2.027
Std. Dev.	0.004	0.005	0.010	0.007	0.006	0.006
Thickness, µm	32.4	38.4	33.8	33.9	40.4	36.4
Std. Dev.	4.2	2.8	2.5	3.8	2.9	3.0

COATING AND KERNEL CHARACTERISTICS OF TRISO PARTICLES WHICH EXHIBITED FISSION PRODUCT REACTION WITH SiC DURING IRRADIATION

(d) After depositing

(e) Corrected gradient density

(f)_{Not reported}

Table 2.3 (continued)

				HEU (P)	LEU WAR ^(b)	HEU ^(b)	HEU (P)
	HEU TRISO UC ₂	HEU TRISO UC ₂	HEU TRISO UC ₂	HEU TRISO UC ₂	LEU WAR	HEU TRISO UC ₂	TRISO UC ₂
Particle Parameters	4000-302	4000-325 ²	2 6151-12-015	6151-00-010	OR 52A	6151-00-035	6151-08-015
KERNEL							
Density, Mg/m ³	10.43	10.43	10.46	10.99	6.2	10.99	10.99
Diameter, µm	100.0	93.00	191.1	199	367	201	202
Std. Dev.	(f)	15.56	16.4	14.4	53	13.8	12.58
BUFFER							
Density, Mg/m ³	1.31	1.29	1.11	1.18	0.95	1.07	1.07
Thickness, µm	50.0	50.0	96.75	97	44.6	87	95
Std. Dev.	(f)	(f)	13.64	11.5	6	12.4	13.58
ІРуС							
Density, Mg/m ³	1.84	1.82	1.93 ·	1.94	1.95	1.92	1.92
Std. Dev.	(f)	(f)	1.5×10^{-2}	0	(f)	9 x 10 ⁻³	9 x 10 ⁻³
Thickness, µm	18.00	22.00	23.20	35	31	33	33
Std. Dev.	(f)	(f)	3.44	4.95	4	3.5	3.5
SiC							
Density, Mg/m ³	3.19	3.19	3.21	3.20	(f)	3.20	3.21
Std. Dev.	(f)	1.00 x 10 ⁻²	4.74×10^{-3}	0	(f)	4.6 x 10^{-3}	4.74×10^{-3}
Thickness, µm	20.00	20.00	27.70	31	34	27	26
Std. Dev.	(f)	2.04	2.51	4.1	5.6	2.4	3.82
ОРуС							
Density, Mg/m ³	1.71	1.71	1.78	1.80	1.96	1.85	1.76
Std. Dev.	(f)	6.0×10^{-3}	7.12 x 10 ⁻³	1.1 x 10 ⁻²	(f)	6.4 x 10 ⁻³	1.65 x 10 ⁻²
Thickness, µm	36.00	27.00	42.56	44	30	37	36
Std. Dev.	(f)	2.98	4.12	4.5	3.9	4.71	5.54

COATING AND KERNEL CHARACTERISTICS OF TRISO PARTICLES WHICH EXHIBITED FISSION PRODUCT REACTION WITH S1C DURING IRRADIATION

(b)_{Kernels} doped with Th

Table 2.3 (continued)

Particle Parameters	TRISO PuO _{2-x} ORNL-13-1	TRISO 3 ThO ₂ , PuO _{2-x} ORNL-13-2	TRISO PuO _{2-x} ORNL-13-4	TRISO 3 ThO ₂ , PuO _{2-x} ORNL-13-5	TRISO PuO _{2-x} ORNL-13-6	TRISO WAR UC4.40°01.43 OR 2576H	TRISO HEU UC ₂ 4000-307
KERNEL							
Density, Mg/m ³	10.70	10.09	10.36	9.9	10.80	3.26	Composite of
Diameter, µm	110	346	190	343	198	376.1	4000-302, 303,
Std. Dev.	10	31	17	23	14	10.10	304, 305
BUFFER				۰.			
Density, Mg/m ³	0.76	0.981	0.99	1.24	1.39	1.12	See 4000-302
Thickness, µm	49	94	79	91	93	53.7	specifications
Std. Dev.	11	8	17	9	15	7.02	
ІРуС							
Density, Mg/m ³	1.900	1.743	1.833	1.789	1.798	1.939	
Std. Dev.	0.01	0.0105	0.010	0.011	0.017	0.007	
Thickness, µm	19	29	32	36	24	34.57	
Std. Dev.	5	5	4	4	2	3.20	
SiC							
Density, Mg/m ³	3.219	3.216	3.202	3.220	3.201	3.200	
Std. Dev.	0.001	0.003	0.001	0.0033	0.001	0.00066	
Thickness, µm	21	37	39	30	41	35.6	
Std. Dev.	2	13	2	1	2	1.50	
ОРуС							
Density, Mg/m ³	1.910	1.865	1.845	1.816	1.821	2.020	
Std. Dev.	0.020	0.009	0.015	0.0179	0.008	0.0046	
Thickness, µm	25	46	35	53	38	37.18	
Std. Dev.	5	10	4	4	4	2.60	ų.

COATING AND KERNEL CHARACTERISTICS OF TRISO PARTICLES WHICH EXHIBITED FISSION PRODUCT REACTION WITH Sic DURING IRRADIATION

IRRADIATION PARAMETERS FOR PARTICLES WHICH EXHIBITED FISSION PRODUCT REACTION WITH SiC DURING IRRADIATION

			Fast Flux			Irra-		1	
Test Vehicle	Po si- tion	Reactor	E > 29 fJ x 10 ¹² n/m ² -sec.	Fast Fluence E > 29 fJ $x \ 10^{25} \ n/m^2$	Burnup % FIMA	dia- tion hr	Data Retrieval Number	Particle Config- uration	Reference
P13Q	G2-1B	ORNL ORR	27	9.1	76	9401	615 1-00-0 10	Rođ	GA-A14174
	G1-3A	1	30	10.1	77.1	9401		Rod	
	G1-2B		31	10.5	77.3	9401		Rođ	
+	G1-3B	₩	31	10.5	77.3	9401		Rod	
P13R	2B	GETR	60	13.3	75	6192	6151-00-035	Rod	GA-A13827
+	2C	¥	61	13.7	75	6192		Rođ	
P135	5C	GETR	42	9.4	66	6192		Rod	
+	5D	ţ	40	8.9	65	6192	6151-08-015	Rod	↓
P13T	1-1B4	ORNL ORR	(f)	7.67 _{HTGR}	74.7	8800	6151-12- 015	Rod	GA-A15608
	1-1B2			4.84 _{HTGR}	69.1		↓ ↓	Rođ	
	2-4A1			4.64 _{HTGR}	62.7		6151-17- 025	Rod	
	1-1C4			7.67 _{HTGR}	74.7			Rođ	
•	1-101	*	•	3.45 _{HTGR}	67.7	V	V	Rod	T
HT-33	6	ORNL HFIR	73	7.25	84.7 ^(a) /13.7 ^(b)	2759	OR2576H	Rođ	ORNL-5539
ł	19	Target G5	111.7	11.1	84.7 ^(a) /21.9 ^(b)	2759	OR2576H	Rod	¥
HT-34 ^(c)	10	ORNL HFIR	(f)	7.5 ^(c)	8.3 ^(c)	2686	6252-14- 0161-001	Loose	ORNL HTGR Base Program Monthly
	11	Target C6		7.7	8.6	2686	6252-15- 0161-001	Loose	Progress Report Dec. 1977-Jan. 1978 ORNL/GCR/B-78/1
	13			8.2	9.2	2686	6252-16- 0161-001	Loose	1
	28			10.2	86.7 ^(a) /20.5 ^(b)	2686	OR2576H	Rod	
	37			9.3	$86.4^{(a)}/18.8^{(b)}$	2686	OR2576H	Rod	
	41			8.0	$85.9^{(a)}/15.9^{(b)}$ $85.7^{(a)}/14.6^{(b)}$	2686	OR2576H	Rod	
	44			7.2 6.4	85.7 ^(a) /14.6 ^(b) 85.5 ^(a) /13.2 ^(b)	2686 2686	OR2576H OR2576H	Rod Rod	
↓	50	↓	+	5.5	85.2 ^(a) /11.7 ^(b)	2686	OR2576H	Rod	¥

(a)_{U-235} burnup

_ _ _

4

~

(b) U-238 burnup

(c) Calculated by ORNL

(d) Total from both reactor positions

(e)_{WAR-Weak-Acid} resin

(continued)

IRRADIATION PARAMETERS FOR PARTICLES WHICH EXHIBITED FISSION PRODUCT REACTION WITH SIC DURING IRRADIATION

Test Vehicle	Posi- tion	Reactor	Average Fast Flux E > 29 fJ x 1017 n/m^2 -sec.	Average Fast Fluence E > 29 fJ x 10 ²⁵ n/m ²	Burnup % FIMA	Irra- dia- tion hr	Retrieval	Particle Config- uration	Reference
HRB-4	3 A	ORNL HFIR RB-7	4.56	9.61	84.0 ^(a) /23.5 ^(b)	5855	0 R- 52A	Rod	ORNL-5115
(d) HRB-11	2	ORNL HFIR	(f)	4.89 _{HTGR}	84.9 ^(a) /17.8 ^(b)	6559	0R-2460-H		ORNL-5584
	16	VXF-13 PB-13		7.26 _{HTGR}	86.6 ^(a) /27.5 ^(b)		OR-2458-H		
•	21	3 Cycles RB-7 9 cycles		5.68 _{HTGR}	85.5 ^(a) /21.3 ^(b)	¥	OR-2471-H		
(d) HRB-12 (d) HRB-12	4 5	'' RB-5		5.84 _{HTGR} 6.25 _{HTGR}	86 ^(a) /22.1 ^(b) 86 ^(a) /23.8 ^(b)	6602	ОR-2486-н ОR-2494-н		V
HRB-14	1	ORNL		8.3 ^(c) HTGR	8.5 ^(h)	5124	6252-17-010	×	GA-A15969
	4	RB		8.1 ^(c)	19.1 ^(h)		6155-05-020	×	
	6		,	7.8 ^(c) HTGR	29.5 ^(h)		6152-01-010		
	8			7.5 ^(c) HTGR	28.6 ^(h)		6157-08-010		
	10			7.1(c) HTGR	27.8 ^(h)		6157-08-020		
	12			6.6 ^(c) HTGR	26.4 ^(h)		6157-08-010	X	
*	14	*		6.2(c) HTGR	26.1 ^(h)	▼	6157-08-010		•
0F-2	C-2-1	ORNL ORR E-7	•	8.5	79 ^(a,g) / 12.7 ^(b,g)	8440	A615	•	ORNL-5428

(f) Not reported

. .

(g) Preliminary estimate

(h) Calculated at GA

Table 2.4 (continued)

Test Vehicle	Posi- tion	React	tor	Average Fast Flux E > 29 fJ x 10 ¹⁷ n/m ² -s	Average Fast Fluence E > 29 fJ x 10 ²⁵ n/m ²	Burnup % FIMA	Irra- dia- tion Time (hr)	Data Retrieval Number	Particle Config- uration	Reference
FTE-13	2-2-2	Peach I	Bottom	(f)	2.23	∿43	12285	ORNL ⁽¹⁾ 13-6	Rođ	ORNL-TM-4207 GA-A15999
,	2-2-6				2.26					
	2-2-9				2.56					
	2-2-12				2.22			•		
	2-5-9				2.56			OR NL 13-1		
	2-5-12				2.22			•		
	2-6-2				2.23			ORNL 13-4		
	2-6-6				2.26					_
	2-6-9				2.56	•				
	2-6-12				2.22	10		V		
	2-7-6				2.26	10		ORNL 13-2		
	2-7-12				2.22	10		ORNL 13-2		
•	2-8-9			•	2.56	10	¥	ORNL 13-5	¥	
FTE-14	TS8-3			∿3.3	1.24	19.3	8712	(f)	Loose	GA-A13944
	TS5-6			∿3.3	1.44	23.0		(f)	Loose	1
	TS4-6			∿3.3	1.45	23.9		4161-01- 030	Loose	
•	2-1-7			∿3.3	1.438	23.9	*	4161-01- 031	Rođ	
FTE-15	TS8-3			∿3.0	1.90	31.0	14901	4161-01- 030	Loose	
	TS5-6			∿3.0	2.02	36.5		4161-01- 030	Loose	
	TS4-6			∿3.0	1.99	37.6		(f)	Loose	
	2-2-5			∿3.0	2.01	37.6		4161-01- 031	Rođ	
	2-1-9			∿3.0	2.02	36.5		4161-01- 031	Rod	
↓	2-1-5	↓		∿3.0	2.01	37.6	*	4161-01- 031	Rod	₩ [

IRRADIATION PARAMETERS FOR PARTICLES WHICH EXHIBITED FISSION PRODUCT REACTION WITH SiC DURING IRRADIATION

(i) Fabricated at ORNL, FTE-13 particle type 6

*

*

Table 2.4 (continued)

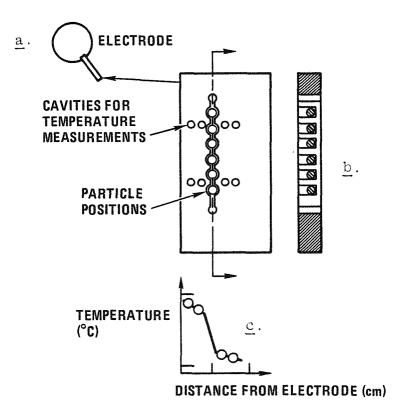
IRRADIATION PARAMETERS FOR PARTICLES WHICH EXHIBITED FISSION PRODUCT REACTION WITH SIC DURING IRRADIATION

\$ F

Test Vehicle	Posi- tion	Reactor	Fast Flux	Average Fast Fluence E > 29 fJ x 10^{25} n/m ²	Burnup % FIMA	Irra- dia- tion Time hr	Data Retrieval Number	Particle Config- uration	Reference
FTE-5	2-5-7 3-5-2	Peach Bottom	(f)	3.79 2.98	55.7 50.5	24832	4000307 4000307	Rod	GA-905285 ♥
RTE-1	3-6-6			3.03	49.4	18358	4000-325		ORNL-5422
RTE-2	6-1-1 6-1-3 Body 3			1.98 1.64 3.1	31.4 28.0 45.2	18641 18641 18641	4000-307 4000-307 4000-307		
RTE-4	4-7-3 4-1-3			1.80 1.80	29.8 29.8	9930 9930	4000307 4000307		
RTE-5	35-6			4.13	58.3	24832	4000-307		
RTE-6	4-1-1			4.13	58.8	24832	4000-307		
RTE-7	5-5-5			0.79	13.7	6473	4000-307		
RTE-8	5-7-1	•	•	3.94	54.9	24832	4000-307	₩	•

are of interest. Zirconium has been shown to be retained in both oxide and carbide kernels (Ref. 6). Cesium is generally released from the kernel, but is retained in the particle by the intact SiC layer (Ref. 7). Thus, the Cs-137/Zr-95 ratio is a good indication of the integrity of the SiC coating and can be used to monitor the impact of out-of-pile heating on the SiC layer. Particles with a Cs-137/Zr-95 ratio that deviated by $\pm 2\sigma$ from the average value were not tested. In addition, particles with Cs-137/Zr-95 ratios that differed from the calculated value by +20% were not used. Expected fission product inventories were calculated by two different computer codes: FISPROD and CURIE. FISPROD (Ref. 8) calculates heavy metal and fission product concentrations for high enriched irradiated fuel from the experimental fluence and the measured amount of any fission product. CURIE (Ref. 9) calculates the amount of a specified number of fission products and the amount of heavy metal nuclides in the chain from Th-232 to Pa-242 formed during the irradiation. This calcuation is based on the irradiation history and the initial uranium composition of the sample.

2.3 <u>Thermal Gradient Heating</u>


The basic methods used for thermal gradient heating are outlined in Refs. 10 and 11 and are briefly described here. It should be emphasized that this experimental technique has been applied in the characterization of amoeba migration in carbide (Ref. 10), and in ThO₂ (Ref. 11) fuels. The test temperatures and thermal gradients were established by bonding particles in a slotted graphite crucible and positioning the crucible between a graphite heating element and a cold furnace wall. A crucible consists of a graphite slab in which a vertical slot is cut. Two types of graphite were used during these tests: the tests designated, FY-78 used H-327 graphite (Great Lake Carbon Co.) and the FY-80 tests used 20/20 (Stack Pole Carbon Co.). After rough machine work, the blank crucibles were heated under vacuum at 2100°C for one hour to remove any major impurities in the graphite. Table 2.5 gives the impurities found by emission spectrocopy in both types of graphite crucibles.

Test particles were placed in individual holes drilled perpendicular to the slot, and were held in place with a matrix consisting of 25 wt % natural flake graphite flour (Asbury No. 6353) and 75 wt % binder. The binder was 5 wt % maleic acid, 45 wt % furfural alcohol, and 50 wt % methyl alcohol. The matrix was cured by heating isothermally at \sim 450°C to drive off the volatile constituents of the binder.

Loaded crucibles were fired isothermally for a minimum of one hour at \$100°C above the nominal test temperature to stabilize the matrix prior to thermal gradient heating. The crucible heating and loading configurations are shown schematically in Fig. 2.1. The temperature across a crucible was monitored at the drilled cavities shown in Fig. 2.1.b with a micro-optical pyrometer. The temperature gradient across the coated particles in the crucible was determined by assuming (1) the thermal gradient is linear through the graphite and across the slot, and (2) the thermal gradient across the particle is the same as the gradient across the drilled hole as shown in Fig. 2.1.c. The mean particle test temperature was taken as the average temperature across the particle hole diameter. Four crucibles were tested in a furnace at one time. Each crucible contained six or seven irradiated particles from a single sample and one unirradiated particle to serve as a standard.

2.4 Silicon Carbide Thinning Rate

Contact x-radiographs of each crucible were prepared before heating and at intervals when tests were interrupted. The minimum silicon carbide thickness between the outer edge of the SiC and the advancing fission product front was measured from 300x magnifications of the x-radiographs. The SiC thickness of the as-received, irradiated particles was difficult to measure because the contact radiographic image of the SiC-inner PyC interface was diffuse. For this reason, the initial SiC thickness of each particle was obtained after the first heating period when fission product accumulation at the SiC increased the clarity of the inner SiC boundary. Section 3.4.1 discusses the accuracy of the radiographic measurement and compares the amount of SiC thinning determined by radiography and by metallography.

\$

.

Fig. 2.1 Schematic representation of (a) heating configuration, (b) crucible containing fuel particles, and (c) thermal gradient across crucible

2.5 Fission Product Release

Fission product inventories were monitored during testing. Metallic fission product release was detected by gamma counting loaded crucibles during test interruptions. Gaseous release was detected by periodically purging the furnace atmosphere through a liquid nitrogen cooled charcoal trap and gamma counting the trap for Kr-85. Gamma-counting was done using a lithium-drifted germanium detector and either a Sigma II computer-analyzer with appropriate codes or a NDS6620 (Nuclear Data System) γ ray spectrometer. The uncertaintainty in fission product inventories measured by gamma-ray spectroscopy depends on the accuracy of the spectrometer calibration and on the specific activity of the nuclide in the sample. For fission products with high specific activities (i.e., Cs-137), calibration of the spectrometer limits the accuracy of the measurement. Calibrations using NBS standards generally result in errors of <±5%. Fission products with low specific activities (i.e. Ag-110m) are difficult to detect above the background noise of the Ge(Li) detector. The concentration of these fission products as measured by gamma ray spectroscopy have correspondingly larger absolute errors associated with the counting statistics. In general, Ag-110m measurements had standard deviations in the counts per minute (cpm) of approximately ±20%.

Occasionally, particle failure occurred early during the tests. This failure could usually be attributed to interaction between the binder used to hold the particle in the crucible and the particle coatings. Silicon carbide thinning data was not obtained from any particle after coating failure was detected.

2.6 <u>Post-test Heating Examination</u>

After the particles were heat treated in the laboratory, the behavior of several samples was examined by standard optical metallographic techniques and by electron microprobe x-ray analysis (EMP).

To minimize exposure to irradiation, ceramography was conducted in the General Atomic hot cell. This facility is equipped with remotely operated grinding and polishing wheels and a MM5RT Leitz Research Metallograph. The metallograph is equipped with Bright field and polarized lighting. The

sample crucibles were mounted in an epoxy molding compound consisting of 71
Vol. % EPON 815 (Shell Chemical), 11 Vol. % EPON 812 (Shell Chemical) and 11
Vol. % AGE (E. V. Roberts) with 7 Vol. % DMP-30 (E. V. Roberts) as catalyst.

After ceramography, the polished samples were ultrasonically cleaned in methanol to remove any surface contamination caused by the polishing process. The samples were then examined in an ARL-EMX electron beam microprobe (Applied Research Laboratories). The EMP has three wavelength spectrometers and crystals of LiF, ADP, TAP, and pb stearate, as well as a Si(Li) x-ray energy spectrometer. The qualitative distribution of fission products in the particle was obtained from x-ray distribution patterns using the ADP and LiF crystals.

л г

EMISSION SPECTROGRAPHIC ANALYSIS OF IMPURITIES IN GRAPHITE MATERIALS USED IN OUT-OF-PILE THERMAL GRADIENT TESTS

	, <u>, , , , , , , , , , , , , , , , , , </u>	Graphite Crucibles		
Element	Graphite ^(a) Flour	787G Experi- ment	80TG Experi- ment	
Al	39.9	100	300	
В	N1.3	3.0	3.0	
Ba	13.3	N10.0	N10.0	
Ca	N66.5	50.0	N50.0	
Cu	39.9	N1.0	N1.0	
Fe	26.6	30.0	N10.0	
Mg	39.9	1.0	1.0	
Mn	6.7	N5.0	N5.0	
Ni	N6.7	N5.0	10	
Si	665	75.0	30.0	
Ti	6.7	50.0	7.0	
v	9.3	15.0	30.0	

- a. Used in binder to cement particles into graphite crucible
- N. Not detected at the sensitivity level shown

3. EXPERIMENTAL RESULTS

The crucibles containing the test particles were heat treated out-of-pile as described in Table 3.1. The results of radiographic and ceramographic examination of the test particles are described in Section 3.1. Section 3.2 gives fission product distributions based on electron microprobe examinations. The extent of SiC thinning as a function of time and temperature is described in Section 3.4.

3.1 Radiography and Ceramography

3.1.1 TRISO HEU UC2

Contact X-radiographs of particles from TRISO HEU UC₂ batches 6151-17-016 and 6151-17-025 are shown in Figs. 3.1 and 3.2. Fission product distribution in, each sample are typical of those observed after irradiation and after a one-hour out-of-pile thermal anneal. Figures 3.1 and 3.2 show that when irradiated TRISO UC₂ particles were heated at 1600°C and above, a random distribution of heavy metals was dispersed from the kernel into the surrounding buffer layer. In some instances, Fig. 3.2 for example, this redistribution of fission products resulted in penetration through the inner PyC and accumulation of fission products at the boundary of the SiC layer. Below 1450°C the one-hour isothermal anneal did not result in any observable fission product redistribution.

Pre-test and post-test contact X-radiographs and post-test metallography of the HEU UC2 particles are shown in Figs. 3.3 through 3.6. A relocation of the fission products occurs during the thermal gradient anneal. Concentrations of fission products on the cool side of the heat-treated TRISO HEU UC2 particles are evident from the radiographs. The radiographs clearly show fission products penetrating into the SiC layer after thermal gradient heating at time-averaged centerline temperatures of 1351°C, 1508°C and 1727°C.

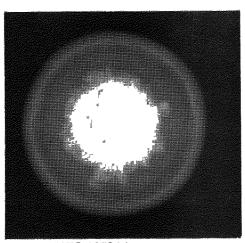
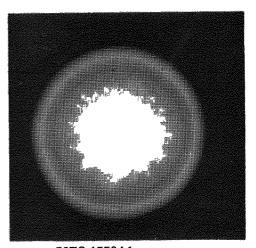
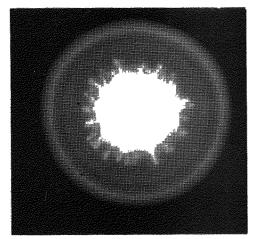
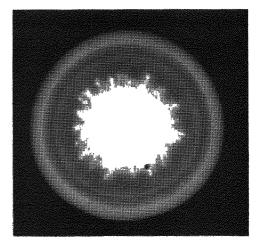

The metallographic cross sections confirm the results obtained by contact radiography. The photomicrographs in Figs. 3.3 through 3.6 show that the fission product-SiC reactions occurred on the cool side of the particles; that no visible

Table 3.1

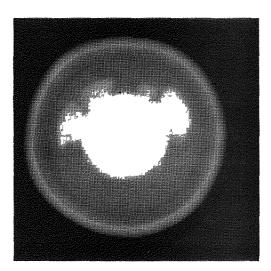

i ,

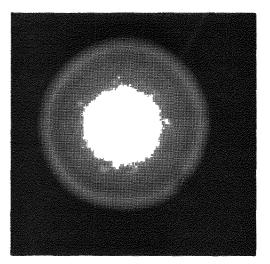
OUT-OF-PILE, THERMAL GRADIENT HEATING TEST PARAMETERS


Experiment Designation Number	Kernel Composition	Particle Data Retrieval Number	Time Weighted Center- line Heat Treat- ment Tempera- ture °C	Time Weighted Thermal Gradient °C/cm	Total Time hr
5217-5	HEU UC2	4413-5E	1306	260	2566
5217-5	-	4413-5E	1460	260	575
6804		4161-01-030	1551	348.5	617
6804		4161-01-032-002	1525	388	617
7013		4161-01-030	1692	974	87.25
7013		4161-01-034-002	1704	1193	87.25
7013		4161-01-032-002	1707	93 9	87.25
78TG 1623A1		6151-17-025	1362	746	8222
78TG 1623A1		6151-17-016	1351	706	8222
78TG 1773A1		6151-17-016	1514	375	6396
78TG 1773A1		6151-17-025	1508	420	• 6396
78TG 1973A1		6151-17-016	1709	532	325
78TG 1973A1	V	6151-17-025	1727	474	325
80TG 1373A1	LEU UC.36 ⁰ 1.64	6157-09-0120-1	1108	289	2158
	LEU UC2	6151-21-0111-5	1093	231	2158
	LEU UO2	6152-01-0111-3	1100	196	2158
▼	LEU UO2*	6152-03-0111-6	1109	312	2158
80TG 1473A1	LEU UC. 36 ⁰ 1.64	6157-09-0120-1	1204	252	2051.5
	LEU UC2	6151-21-0111-5	1207	314	2051.5
	LEU UO2	6152-01-0111-3	1203	295	2051.5
♦	LEU UO2*	6152-03-0111-6	1210	354	2051.5
80TG 1623A1	LEU UC. 3601.64	6157-09-0120-1	1322	371	2253.5
	LEU UC2	6151-21-0111-5	1368	590	2253.5
	LEU UO2	6152-01-0111-3	1333	322	2253.5
V	LEU UO2*	6152-03-0111-6	1364	541	2253.5
80TG 1773A1	LEU UC.36 ⁰ 1.64		1500	522	163.5
1	LEU UC2	6151-21-0111-5	1510	574	163.5
	LEU UO2	6152-01-0111-3	1513	602	163.5
★	LEU UO2*	6152-03-0111-6	1508	594	163.5
80TG-1973A1	LEU UC.3601.64		1717	655	116
1	LEU UC2	6151-21-0111-5	1704	605	116
	LEU UO2	6152-01-0111-3	1705	617	116
↓	LEU UO2*	6152-03-0111-6	1713	615	116
L	4				

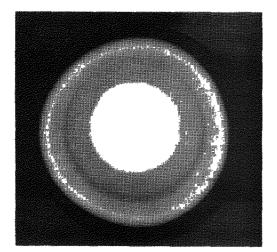

78TG 1973A1 CRUCIBLE 1 PARTICLE 3 ANNEAL TEMP.: 1750⁰C

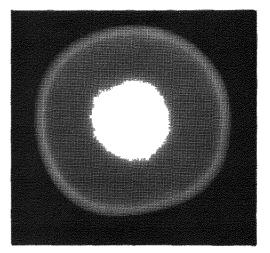
78TG 1773A1 CRUCIBLE 2 PARTICLE 7 ANNEAL TEMP.: 1600⁰C


78TG 1623A1 CRUCIBLE 1 PARTICLE 3 ANNEAL TEMP.: 1450⁰C

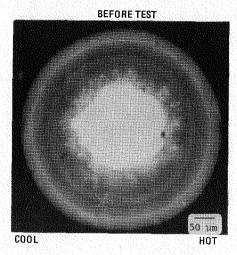

78TG 1623A1 CRUCIBLE 1 PARTICLE 3 AS RECEIVED

100 µm


Fig. 3.1 Effect of one hour out-of-pile heat treatment on fission product distribution in irradiated TRISO HEU UC₂ (6151-17-016)


78TG 1973A1 CRUCIBLE 2 PARTICLE 7 ANNEAL TEMP.: 1750⁰C

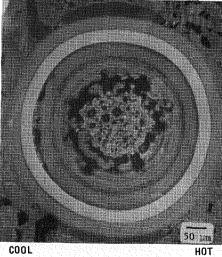
78TG 1773A1 CRUCIBLE 2 PARTICLE 4 ANNEAL TEMP.: 1500⁰C

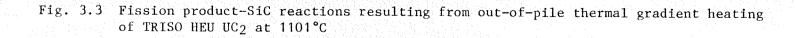

78TG 1623A1 CRUCIBLE 2 PARTICLE 2 ANNEAL TEMP.: 1450⁰C

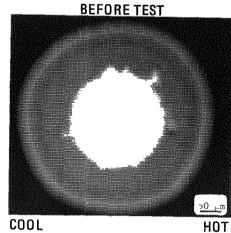
78TG 1373A1 CRUCIBLE 2 PARTICLE 7 AS IRRADIATED

100 μm

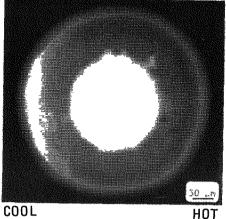
Fig. 3.2 Effect of one hour out-of-pile heat treatment on fission product distribution in irradiated TRISO HEU UC₂ (6151-17-025)


ω ω


TRISO HEU UC₂ 60% FIMA AVG. Ç TEMPERATURE: 1101⁰C THERMAL GRADIENT: 394⁰C/cm TOTAL ANNEAL TIME: 10,794 h


AFTER THERMAL GRADIENT HEATING

AFTER THERMAL GRADIENT HEATING

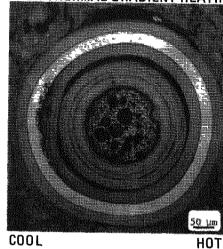
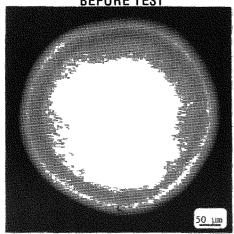


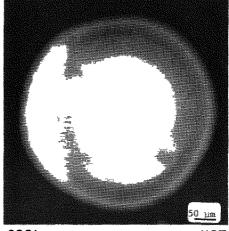
COOL

TRISO HEU UC₂ 60% FIMA AVG. & TEMPERATURE: 1351^oC THERMAL GRADIENT: 406^oC/cm TOTAL ANNEAL TIME: 8222 h

AFTER THERMAL GRADIENT HEATING

HOT


Fig. 3.4 Fission product-SiC reactions resulting from out-of-pile thermal gradient heating of TRISO HEU UC₂ at 1351°C

BEFORE TEST

TRISO HEU UC₂ 60% FIMA AVG. G TEMPERATURE. 1508⁰C THERMAL GRADIENT. 420⁰C/cm TOTAL ANNEAL TIME: 6400 h

AFTER THERMAL GRADIENT HEATING

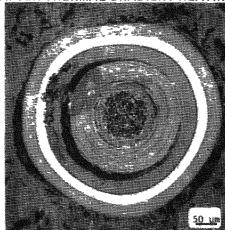
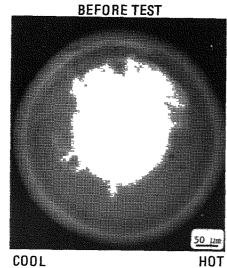
COOL

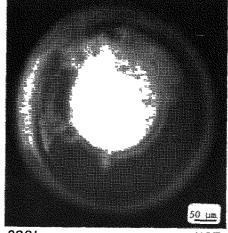
НОТ

COOL

нот

AFTER THERMAL GRADIENT HEATING


Fig. 3.5 Fission product-SiC reactions resulting from out-of-pile thermal gladient heating of TRISO HEU UC2 at 1508°C

COOL

TRISO HEU UC₂ 60% FIMA AVG. & TEMPERATURE: 1727⁰C THERMAL GRADIENT: 474⁰C/cm TOTAL ANNEAL TIME: 350 h

AFTER THERMAL GRADIENT HEATING

COOL

HOT

AFTER THERMAL GRADIENT HEATING

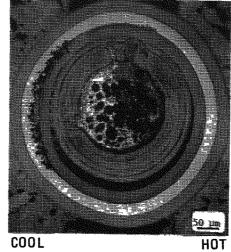
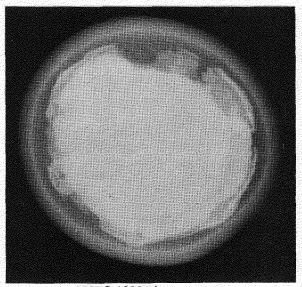


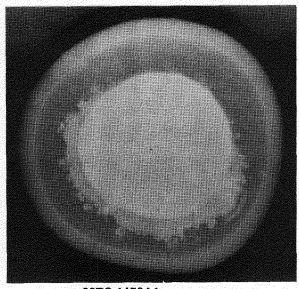
Fig. 3.6 Fission product-SiC reactions resulting from out-of-pile thermal gradient heating of TRISO HEU UC2 at 1727°C

reactions occurred in particles tested at approximately 1100°C; and that, although the SiC thickness was reduced by reactions occurring in particles tested at higher temperatures, the SiC layer had not been breached by the reactions.

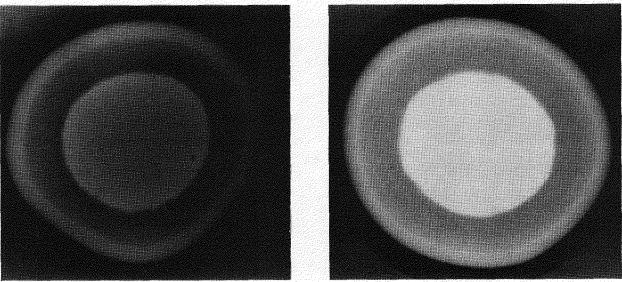
3.1.2 TRISO LEU Fissile Fuel Candidates


Figures 3.7 through 3.10 show contact X-radiographs of representative particles of each of the candidate TRISO LEU fuel types as received after irradiation and after a one-hour anneal at 1200°, 1300° and 1450°C. The radiographs of the as-received particles show that, during irradiation, fission products were not released from the kernel in sufficient quantity to be observed by X-ray radiography. This is due to the low irradiation temperatures (approximately 950°C) of the HRB-15B (Ref. 12) capsule and is consistent with the behavior of the highenriched TRISO UC2 which showed dispersion only after heating at >1450°C.

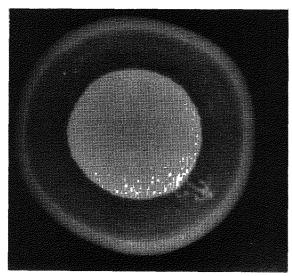
Fission product dispersion is evident in the TRISO LEU UC₂ and TRISO LEU UC_{.36} $0_{1.64}$ after annealing at a temperature exceeding 1200°C and 1300°C, respectively. These temperatures are significantly lower than that observed to cause dispersion in the HEU UC₂.

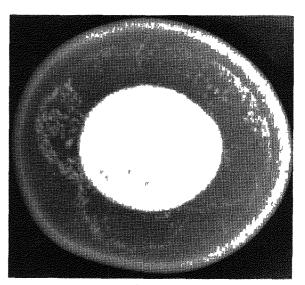

A slight amount of fission product dispersion was evident in the LEU UO_2 heated at 1450°C for one hour. No dispersion was detected in any of the LEU UO_2^* particles after the one-hour anneal. These qualitative observations agree with earlier studies which show that rare earth fission products are not released from kernels that have an O/U ratio greater than 1.1 (Ref. 13); that is, sufficient oxygen to stabilize rare earth fission products as oxides in the kernel.

Pre-test and post-test radiographs as well as post-test photomicrographs on TRISO LEU UC₂, UO₂ and UO₂* thermal gradient annealed for 163 hours at approximately 1500°C are given in Figs. 3.11 through 3.13. Ceramography of the TRISO LEU $UC_{0.36}O_{1.64}$ was not attempted because of FY-81 funding constraints. These radiographs show that because of the thermal gradient heating, fission products accumulated on the cool side of both the TRISO LEU UC₂ and the TRISO LEU UO_2^* . The SiC layer in the TRISO LEU UC₂ had been breached by the fission products.

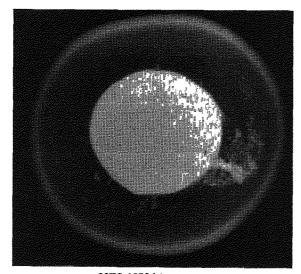

Ceramography of the LEU particles showed three apparently different types of SiC corrosion. In the LEU UC₂, fission products had accumulated on the cool side of the particle and had reacted with the SiC. Figure 3.14 shows that the

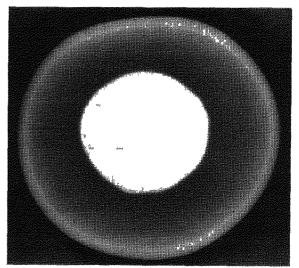
80TG 1623A1 CRUCIBLE 2 PARTICLE 3 ANNEAL TEMP.: 1450⁰C


80TG 1473A1 CRUCIBLE 2 PARTICLE 3 ANNEAL TEMP.: 1300°C

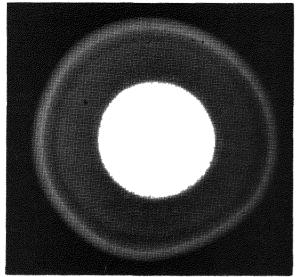

80TG 1373A1 CRUCIBLE 2 PARTICLE 1 ANNEAL TEMP.: 1200⁰C 80TG 1623A1 CRUCIBLE 2 PARTICLE 3 AS RECEIVED

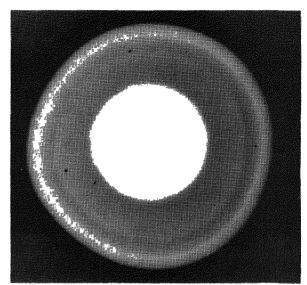
100 µm


Fig. 3.7 Effect of one hour, out-of-pile heat treatment on fission product distribution in irradiated TRISO LEU UC₂ (6251-21-0111-5)

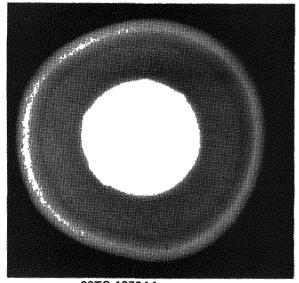

80TG 1623A1 CRUCIBLE 1 PARTICLE 6 ANNEAL TEMP. 1450^oC

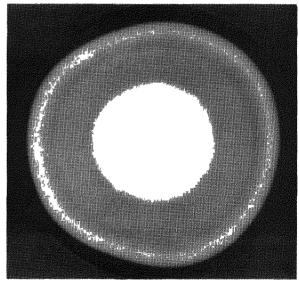
80TG 1473A1 CRUCIBLE 1 PARTICLE 6 ANNEAL TEMP 1300⁰C


80TG 1373A1 CRUCIBLE 1 PARTICLE 5 ANNEAL TEMP 1200⁰C

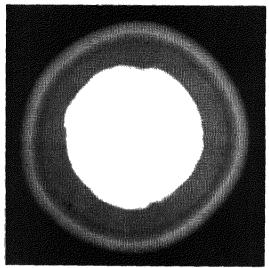

80TG 1373A1 CRUCIBLE 1 PARTICLE 5 AS RECEIVED

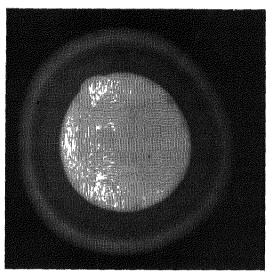
100 μm


Fig. 3.8 Effect of one hour, out-of-pile heat treatment on fission product distribution in irradiated TRISO LEU UC0.3601.64 (6157-09-0120-1)

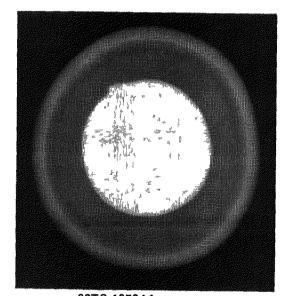

80TG 1623A1 CRUCIBLE 4 PARTICLE 1 ANNEAL TEMP.: 1450⁰C

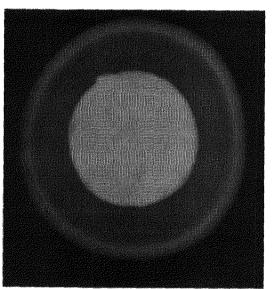
80TG 1473A1 CRUCIBLE 4 PARTICLE 1 ANNEAL TEMP.: 1300⁰C


80TG 1373A1 CRUCIBLE 4 PARTICLE 1 ANNEAL TEMP.: 1200⁰C


80TG 1373A1 CRUCIBLE 4 PARTICLE 1 AS RECEIVED

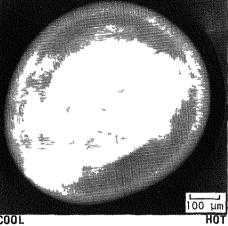
100 µm


Fig. 3.9 Effect of one hour, out-of-pile heat treatment on fission product distribution in irradiated TRISO LEU UO₂ (6152-01-0111-3)


80TG 1623A1 CRUCIBLE 3 PARTICLE 6 ANNEAL TEMP.: 1450⁰C

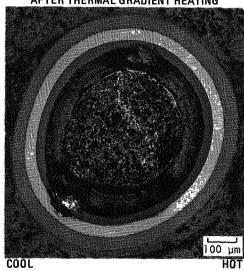
80TG 1473A1 CRUCIBLE 3 PARTICLE 1 ANNEAL TEMP.: 1300⁰C

80TG 1373A1 CRUCIBLE 3 PARTICLE 5 ANNEAL TEMP.: 1200⁰C

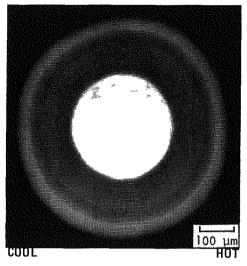

80TG 1373A1 CRUCIBLE 3 PARTICLE 5 AS RECEIVED

100 µm

Fig. 3.10 Effect of one hour, out-of-pile heat treatment on fission product distribution in irradiated TRISO LEU U02* (6152-03-0111-6)


BEFORE THERMAL GRADIENT ANNEAL TRISO LEU UC₂ (6251 21-0111-5) \sim 25% FIMA AVG. G TEMPERATURE 1510°C THERMAL GRADIENT \cdot 574°C/cm TOTAL ANNEAL TIME: 163 5 h 100 μm¹ HOT

AFTER THERMAL GRADIENT ANNEAL


COOL

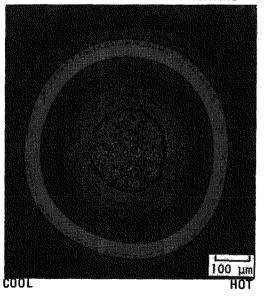
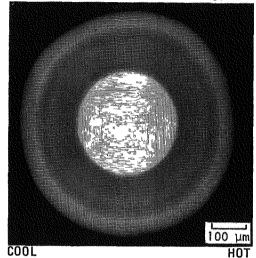
AFTER THERMAL GRADIENT HEATING

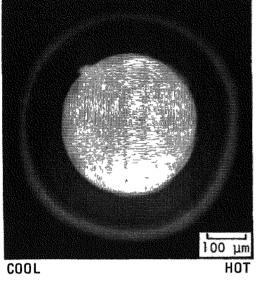
COOL

BEFORE THERMAL GRADIENT TEST

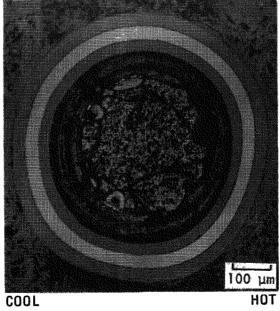
TRISO LEU UO2 ~25% FIMA AVG. G TEMPERATURE. 1513^OC THERMAL GRADIENT: 602^OC/cm TOTAL ANNEAL TIME: 163.5 h

AFTER THERMAL GRADIENT HEATING


Fig. 3.12 Pretest and posttest radiograph and posttest photomicrograph of TRISO LEU UO₂ annealed at 1513°C in an out-of-pile thermal gradient

AFTER THERMAL GRADIENT TEST


905837/1

BEFORE THERMAL GRADIENT TEST

TRISO LEU UO2^{*} ~25% FIMA AVG. G TEMPERATURE: 1508⁰C THERMAL GRADIENT: 594⁰C/cm TOTAL ANNEAL TIME: 163.5 h

AFTER THERMAL GRADIENT HEATING

AFTER THERMAL GRADIENT TEST

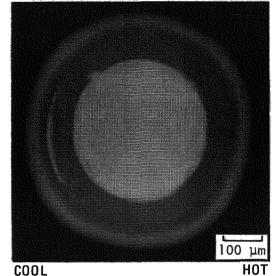
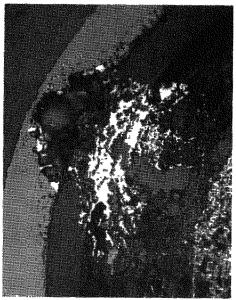


Fig. 3.13 Pretest and posttest radiographs and posttest photomicrograph of TRISO LEU UO2* annealed at 1508°C in an out-of-pile thermal gradient

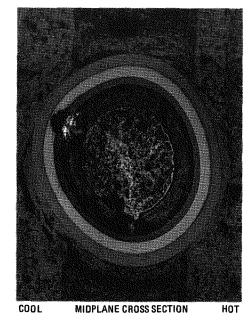
reaction caused substantial thinning of the SiC thickness. Associated with this reaction are distinct localized nodules of fission products which appear white in the photomicrographs.

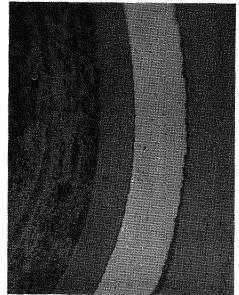
The second type of SiC corrosion occurred on the hot side of the LEU UC_2 particles. This corrosion, shown in Fig. 3.14C, appears to be as small, pin-hole voids in the SiC. These voids were uniformly distributed through the SiC but only on the hot side of the particle.


The third type of SiC corrosion, shown in Fig. 3.15, occurred only in the TRISO LEU UO_2 . This corrosion was observed when TRISO LEU UO_2 (Data Retrieval No. 6152-01-0111-3) was heated above 1500°C. The large voids observed in the SiC layer in Fig. 3.15 are evenly distributed around the circumference of the SiC layer. The majority of these voids occurred in the outer 50% of the SiC layer near the interface of the SiC and outer PyC layers. No fission products reacted with the SiC at the inner surface of the SiC layer in the TRISO LEU UO_2 .

3.2 Electron Microprobe (EMP) Examination

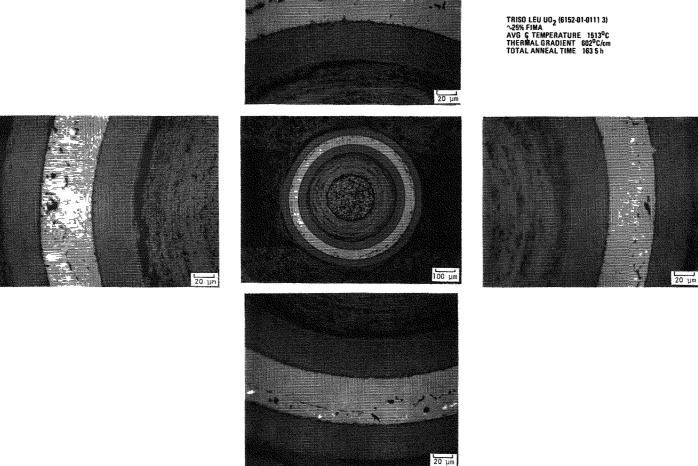
To determine which fission products reacted with the SiC, electron microprobe analysis was completed on samples of TRISO HEU UC₂, TRISO LEU UC₂, TRISO LEU UO₂ and TRISO LEU UO₂*. Figure 3.16 shows the areas in each particle that were studied by EMP x-ray analyses. The darkened areas in the photomicrographs are carbon accumulations on the surface of the particle caused when the electron beam swept over the area. The thin darkened lines on the UO₂ particle show where EMP line traces were obtained.


3.2.1 TRISO HEU UC2


Electron microprobe analysis was done on samples from batch 6151-17-016 that were heated at 1508°, 1351°, and 1101°C. Figure 3.17 is a photomicrograph of the cool side of a particle heated at 1508°C for 6400 h. Superimposed on the photomicrograph is the location of the fission products found near the fission product - SiC reaction zone. Palladium and ruthenium accumulated in distinct nodules that appear white in the photomicrograph. The nodules are located at

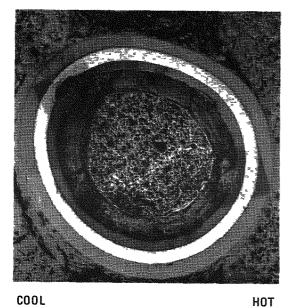
COOL SIDE SIC AFTER HEATING

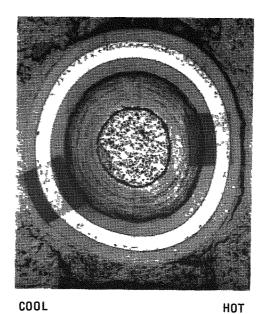
TRISO LEU UC₂ ~25% FIMA AVG. Ç TEMPERATURE: 1510⁰C THERMAL GRADIENT: 574⁰C/cm TOTAL ANNEAL TIME: 163.5 h

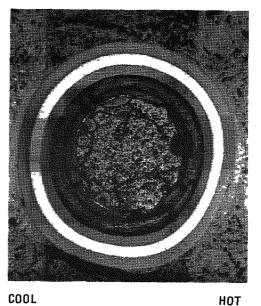


HOT SIDE SIC AFTER HEATING

<u>___</u> 20 μm

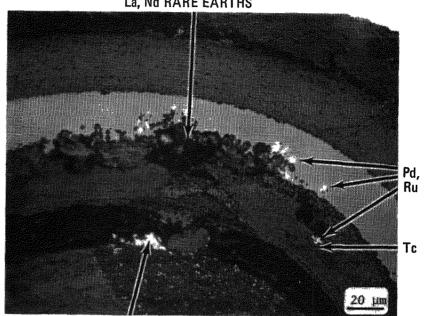

905837/1


Fig. 3.14 SiC corrosion observed in TRISO LEU UC2 after out-of-pile thermal gradient heating at 1510°C



COOL SIDE

Fig. 3.15 SiC corrosion in TRISO LEU UO2 caused by out-of-pile thermal gradient heating at 1513°C


TRISO LEU UC2 6151-21-0111-5 ANNEAL TEMPERATURE[、] 1510⁰C THERMAL GRADIENT 574⁰C/cm

TRISO LEU UO2 6152-01-0111-3 ANNEAL TEMPERATURE[.] 1513⁰C THERMAL GRADIENT: 602⁰C/cm

TRISO LEU UO^{*} 6152-03-0111-6 ANNEAL TEMPERATURE: 1508⁰C THERMAL GRADIENT: 594⁰C/cm

100 µm

Fig. 3.16 Regions in irradiated LEU TRISO particles which were examined by electron microprobe analysis after 163.5 hr thermal gradient anneal at 1500° C

La, Nd RARE EARTHS

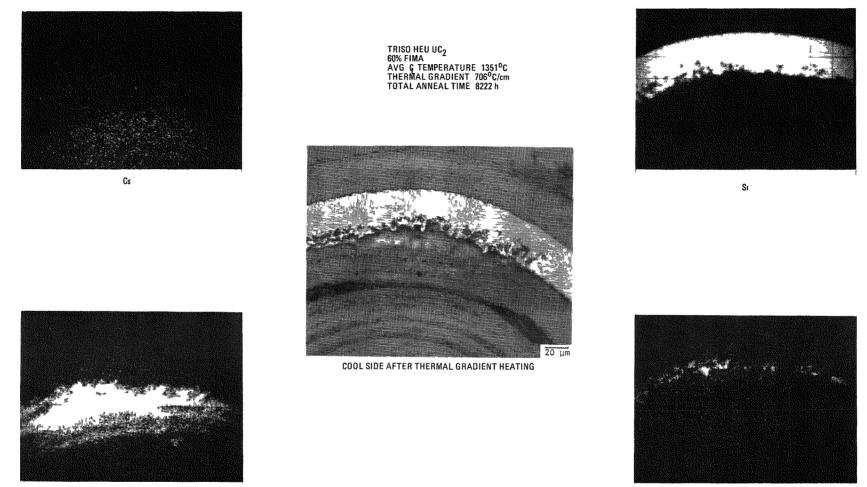
Pd, Rh, Ru

Fission product attack on SiC layer in TRISO HEU $\rm UC_2$ (60% FIMA) heated at 1508°C in an out-of-pile thermal gradient test Fig. 3.17

the leading edge of the reaction zone in the SiC. Rare earth fission products are also concentrated in the reaction zone but are not associated with the white phases that contain palladium and ruthenium.

Figures 3.18 and 3.19 show photomicrographs and electron microprobe results obtained on TRISO HEU UC₂ fuels tested at 1351° and 1101°C. General observations are qualitatively the same as those discussed for Fig. 3.17.

Line scans were also made from the kernel through the SiC to show, in a more precise way, the actual locations of palladium, rare earths, and silicon. Samples from particles tested at 1101° and 1351°C are shown in Figs. 3.20 and 3.21. The results show that the depths of palladium and rare earth (neodymium) penetration into the SiC are the same. They also suggest some palladium and rare earth penetration occurred at 1101°C even though no visible reactions occurred.


3.2.2 TRISO LEU Fissile Fuel Candidates

Electron microprobe analysis was completed on samples of TRISO LEU UC₂ (6151-21-0111-5), UO₂ (6152-01-0111-3) and UO₂* (6152-03-0111-6). Due to the FT-6⁺ funding constraint, the sample of TRISO LEU UC_{0.36}O_{1.64} (6157-09-0120-1) was not mounted and sectioned. These particles had been heated for 163.5 hours in a thermal gradient at approximately 1500°C.

3.2.2.1 <u>TRISO LEU UC</u>₂. EMP X-ray analysis of the LEU UC₂ showed fission product behavior similar to that obtained with HEU UC₂: U, Ru, Rh, Pd and rare earth elements were found in the zone of SiC attack (Fig. 3.22).

Silicon had been transported from the SiC and accumulated in the inner PyC associated with concentrations of the above elements.

X-ray distribution patterns for the hot side of a LEU UC₂ particle heated at 1514°C are shown in Fig. 3.23. Uranium had migrated into the inner pyrocarbon but had not reached the SiC. The only fission product found on the hot side was a small amount of Nd located at the inner surface of the SiC.

Nd

Fig. 3.18 Fission product distribution near SiC attack resulting from out-of-pile thermal gradient heating of TRISO HEU UC₂ at 1351°C

Pd

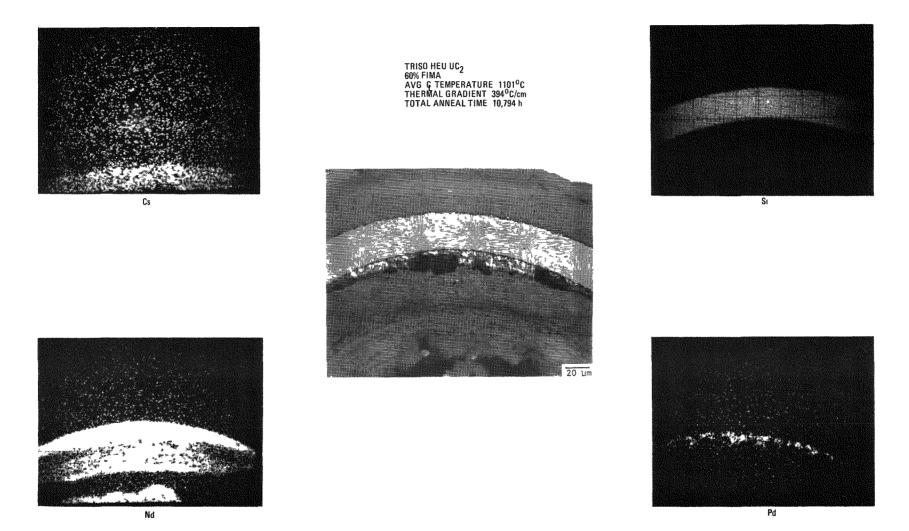
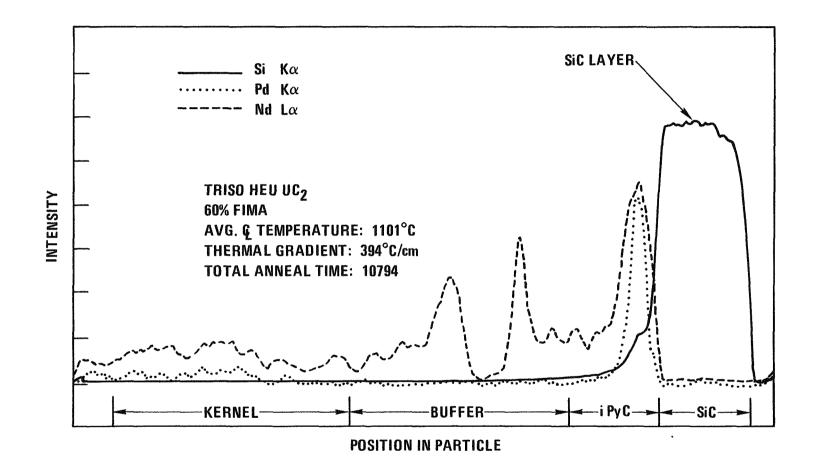
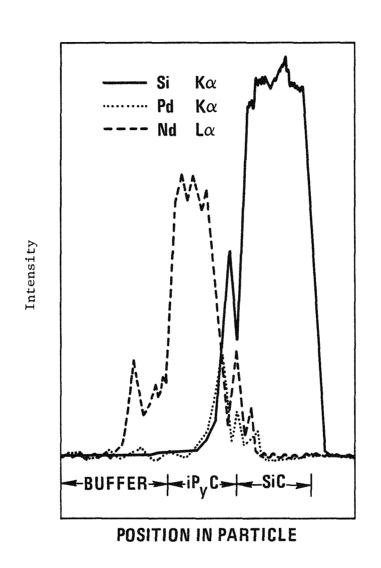
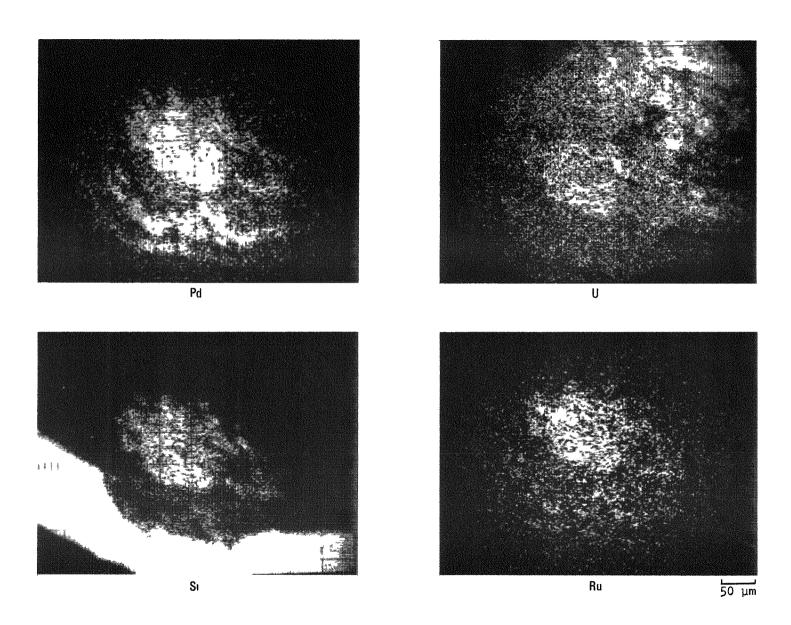


Fig. 3.19 Fission product distribution near SiC attack resulting from out-of-pile thermal gradient heating of TRISO HEU UC $_2$ at 1101°C


Fig. 3.20 Electron microprobe line scans across SiC for HEU UC₂ (60% FIMA) annealed 10,763 hr. at 1101°C

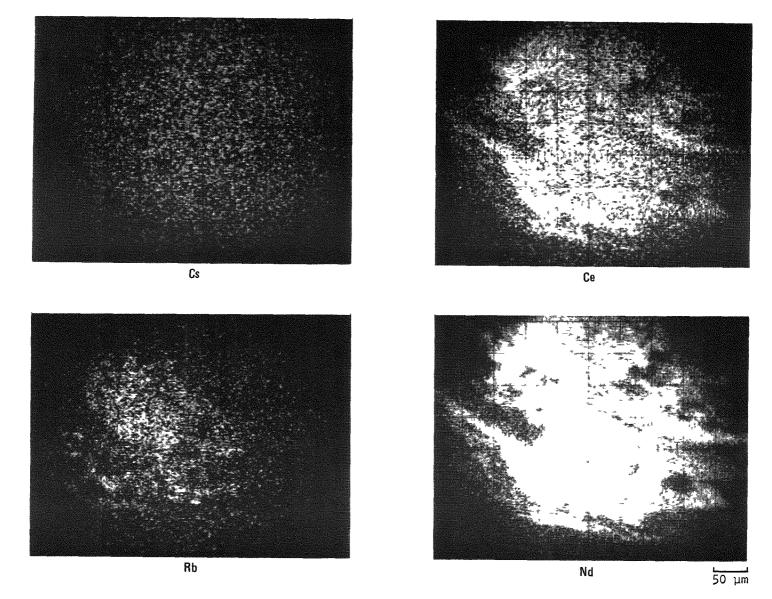
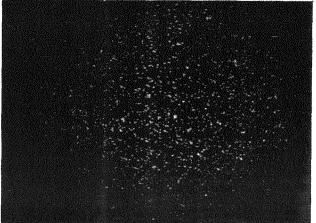
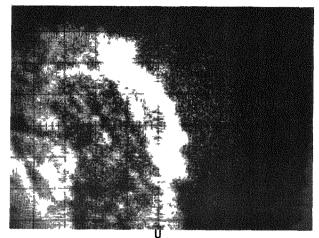
3

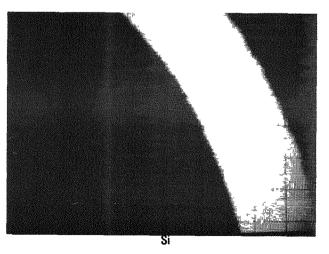
,

Fig. 3.21 Nd, Pd, and Si profiles measured by electron microprobe on TRISO HEU UC₂ (60% FIMA) particles annealed 8222 hr. at 1351°C

905837/1

Fig. 3.22 Fission products in the SiC corrosion zone after heating TRISO LEU UC₂ at 1510°C for 163.5 hr


Fig. 3.22 Fission products in the SiC corrosion zone after heating TRISO LEU UC₂ at 1510°C for 163.5 hr (continued)

Pd (BACKGROUND)

TRISO LEU UC₂ ~25% FIMA AVG. G TEMPERATURE: 1510⁰C THERMAL GRADIENT: 631⁰C/cm ANNEAL TIME: 163.5 h

at 1514°C

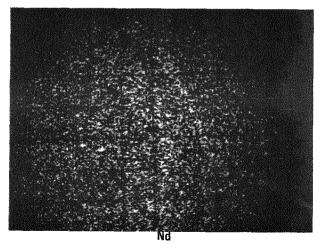


Fig. 3.23 Metal distribution on hot side of TRISO LEU UC2 particle heated in a thermal gradient

An attempt was made to identify the chemical form of the fission products found on the cold side of the particle. The atom fractions of Si, U, Ru, Rh, Nd, Pd and C were measured in two regions. The first region, designated X_1-X_y in Fig. 3.24 was bound by the original SiC thickness and included the area of fission product corrosion of the SiC. The second region, designated by .1 - .4, was the white phase in the inner PyC in which the fission products had concentrated. The atomic ratios are given in Table 3.2.

3.2.2.2 TRISO LEU UO2

Figure 3.25 shows EMP X-ray distribution patterns for Si and Pd on the hot and cool side of the particles after heating at 1513° C. Although the SiC had numerous holes (Fig. 3.15), Pd had accumulated at the SiC surface on both the hot and cool sides of the particle. Nd, Ce, Ag, Sr, Ru, Rh, Co, U and Mo could not be detected near the SiC layer. EMP determination of the Pd/Si ratio at the SiC boundary indicated that Pd had reacted with the silicon to form Pd₃Si. In addition the white metallic inclusions in the SiC layer of the TRISO LEU UO₂ were shown by EMP to be $\sim 100\%$ silicon.

3.2.2.3 TRISO LEU UO2*

Irradiated, thermal gradient annealed, LEU UO_2^* exhibited fission product distributions similar to the LEU UO_2 . Pd was the only fission product found at the SiC interface, and it was found only on the cool side of the particle. Si and Pd line traces across the SiC are shown in Figure 3.26. These traces show that Pd has diffused at least 2/3 of the way through the SiC even though no visual SiC corrosion has occurred.

3.3 Fission Product Release

Fission product - SiC reactions could penetrate the SiC layer if allowed to continue long enough at high enough teperatures or lead to premature cracking of the SiC in regions where the cross section was reduced by the reactions. In either case, cesium release would be expected and could be used as a SiC failure criterion. Noble gases, on the other hand, are retained in the particle by the intact outer PyC layer. Thus noble gas release indicates failure of both the outer PyC and the SiC layers. Ag release from particles is also of interest because of the influence of silver release on activity in the

58

905837/1

Colorisation and the second		ورجي ورجي ورجي المتحدين ورجيع						
Site	C/Pd	Si/Pd	U/Pd	Ru/Pd	Rh/Pd	Nd/Pd	Ce/Pd	La/Pd
.1	66	8.1	.36	7.4	.51	.56	.05	.03
.2	22	9.6	.32	5.1	.64	.37	.05	.03
.3	22	9.9	.36	4.6	.51	.38	.09	.04
.4	32	11.4	.65	7.3	.25	.25 .32		.04
X1	2	19	.20	2.1	.55	.37	.08	.02
X2	13	6.1	.86	2.1	.56	.37	.08	.45
X3	54	4.1	1.06	4.0	.68	59	.06	.41
X4	4	18	.15	2.0	.59	.44	.05	.03

Table 3.2

۰ ,

ATOMIC RATIO OF ELEMENTS FOUND IN THE VICINITY OF THE SIC CORROSION IN TRISO LEU UC₂

primary circuit and the attendant implications to maintenance of the reactor. Silver release has also been observed from particles that have successively retained cesium (Ref. 14).

Thus Cs-137, Kr-85 and Ag-110m were monitored during the out-of-pile thermal gradient heating tests to determine the integrity of the particle coatings.

3.3.1 TRISO HEU UC2

Cesium-137 inventories of the TRISO HEU UC₂ particles were monitored by gamma counting the samples during periodic test interruptions. The variation in Cs-137 inventory with time is shown for each test in Figs. 3.27 through 3.30. The results show that no detectable cesium release occurred during 10,763 h at \sim 1100°C, 8222 h at 1350°C, or 6400 h at \sim 1500°C. This suggests that fission products did not penetrate the SiC or lead to mechanical failure of the SiC and is consistent with metallography, X-ray, and electron microprobe analyses of the samples. One of the samples heated at 1709°C for 348.5 h released \sim 15% of its inventory after 100 to 150 h at temperature (Fig. 3.30). This is equivalent to one failed particle. The other sample showed no cesium release, implying no SiC failure.

3.3.2 TRISO LEU Fissile Fuel Candidates

The fraction of Cs-137, Kr-85 and Ag-110m released from the LEU fuel samples during the out-of-pile thermal gradient tests are given in Table 3.3 Cs-137 release was observed from the LEU UO₂ samples that were heated at 1500°C. The release fractions include Cs-137 that was released during the one hour carbonizing anneal. The 1773A1 tests were fired at \sim 1600°C and LEU UO₂ released \sim 7% of its initial Cs-137. The UO₂ particles in the 1973A1 test were annealed at 1700°C and \sim 58% of the Cs-137 was lost. The high release of Cs-137 from the LEU UO₂ samples was unexpected, since HEU UC₂ tested for 6400 hours at 1500°C did not release Cs-137 (see 3.3.1).

Release of Kr-85 indicates failure of the outer PyC layer. Table 3.3 shows that even though Cs-137 was released from the LEU UO₂ samples at 1500°C and 1700°C, the outer PyC was still intact and capable of retaining Kr-85.

Table 3.3

RELEASE FRACTIONS FOR SAMPLES OF LEU FISSILE FUEL HEATED IN OUT-OF-PILE THERMAL GRADIENT TESTS

	Experiment											
Parameter	1373A1	1473A1	1623A1	1773A1	1973A1							
Accumulated Hours	2158	2051.5	2253.5	163.5	116							
Test Temperature, °C UC2 UC0.3601.64 U02 U02*	1093 1108 1100 1109	1207 1204 1203 1210	1368 1322 1333 1364	1510 1500 1513 1508	1704 1717 1705 1713							
Cs-137 Release Fraction UC2 UC0.36 ⁰ 1.64 UO2 UO2*	0.0 0.0 0.0 0.0	0.06 0.07 0.09 0.09	.05 0 .14 .06	0.01 0.05 0.65 0.0	.04 .04 .9 .04							
Kr-85 Release Fraction per experiment	0	0	0	0	10 ⁻⁴							
Ag-110M Release Fraction ^(a) UC ₂ UC0.36 ⁰ 1.64 UO ₂ UO ₂ *	.10 .14 .16 .08	0.11 0.32 0 0.30	.35 .23	0.16 0.21 0.82 0.03	1 .23 1 .37							

 $^{(a)}_{Based}$ on initial particle counts.

905837/1

TRISO LEU UC₂ ~25% FIMA AVG. G TEMPERATURE: 1510^oC THERMAL GRADIENT: 631^oC/cm TOTAL ANNEAL TIME: 163.3 h

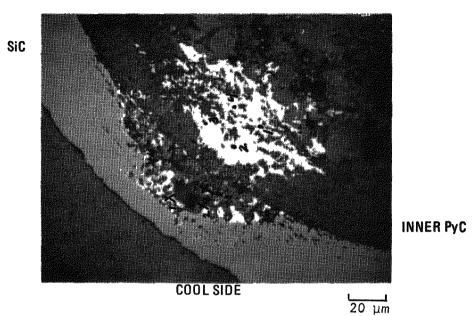
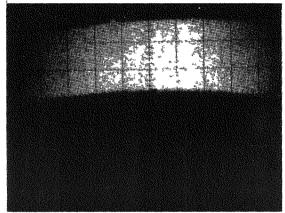
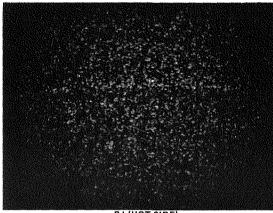
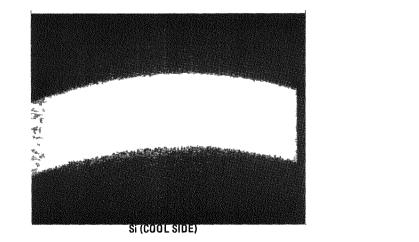
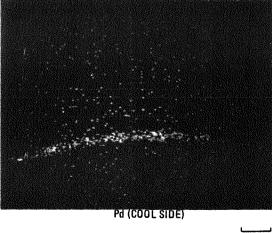




Fig. 3.24 Specific regions in TRISO LEU $\rm UC_2$ where elemental ratios were determined by electron microprobe X-ray analysis




SI (HOT SIDE)

Pd (HOT SIDE)

TRISO LEU UO₂ ~25% FIMA AVG Ç TEMPERATURE 1513⁰C THERMAL GRADIENT 602⁰C/cm TOTAL ANNEAL TIME 1635h

50 µm

Fig. 3.25 Distribution of Pd at inner surface of SiC on hot and cool side of TRISO LEU UO₂ annealed in a thermal gradient at 1513°C

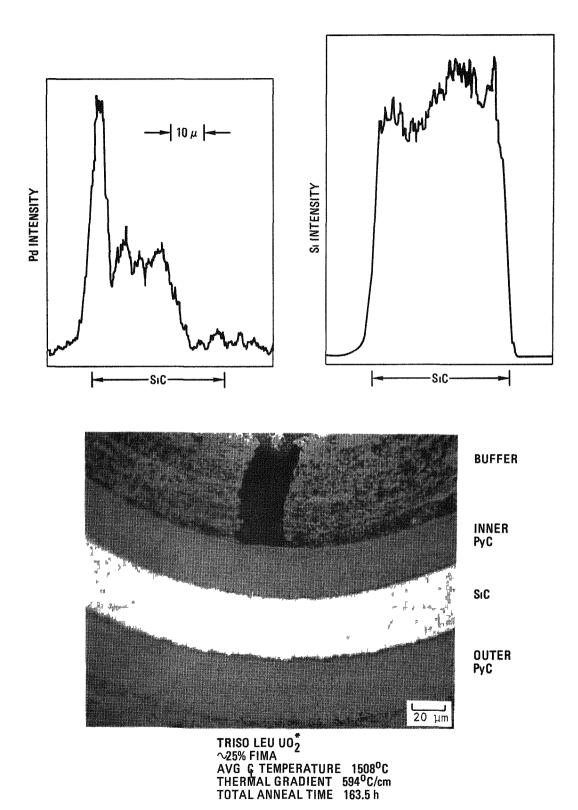


Fig. 3.26 Electron microprobe line scans across SiC for LEU U0₂* after heating out-of-pile for 163.5 hr at 1508°C

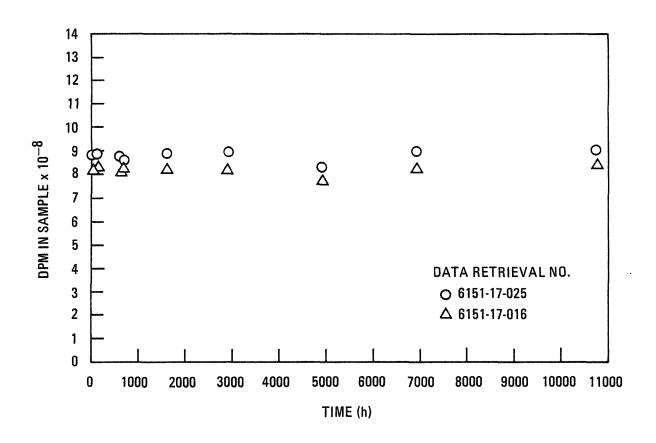


Fig. 3.27 Variation in the Cs-137 content of TRISO HEU $\rm UC_2$ particles heated in a thermal gradient at 1101°C

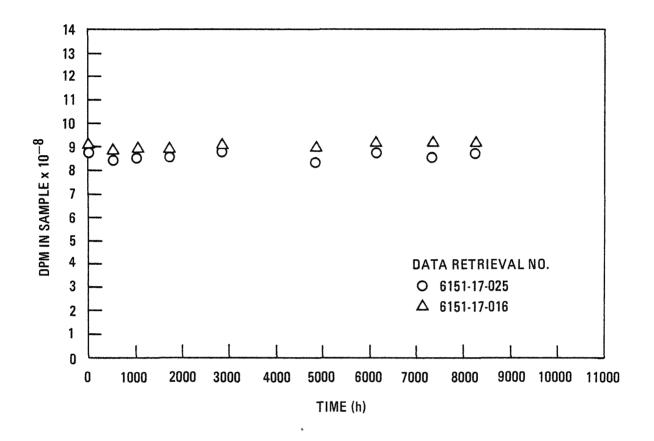


Fig. 3.28 Variation in the Cs-137 content of TRISO HEU UC_2 particles heated in a thermal gradient at $1351^{\circ}C$

905837/1

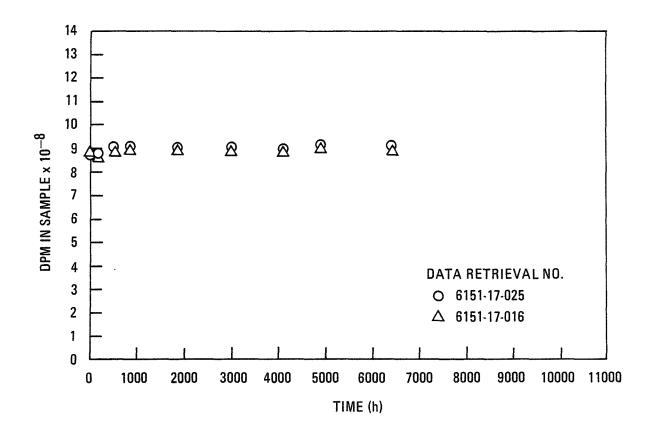
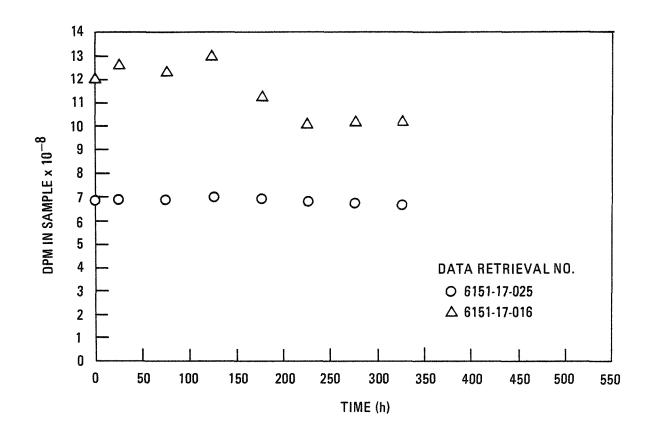



Fig. 3.29 Variation in the Cs-137 content of TRISO HEU UC $_2$ particles heated in a thermal gradient at 1508°C

,

Fig. 3.30 Variation in the Cs-137 content of TRISO HEU UC_2 particles heated in a thermal gradient at $1709^{\circ}C$

Ag-110m was released from all the LEU particles. Since Ag was released in many experiments when neither Cs-137 or Kr-85 was released, Ag migration through the SiC probably occurred by diffusion and not by corrosive chemical attack.

3.4 Rate of SiC Thinning

3.4.1 TRISO HEU UC₂

The decrease in SiC thickness caused by fission product reactions in TRISO HEU UC₂ is given as a function of time for different reaction temperatures in Tables 3.4 through 3.7. The final thickness changes, which were obtained from contact X-radiographs, were compared to changes in SiC thickness measured during the post test metallographic examinations.

Metallographic values and end-of-test radiographic values are shown in Table 3.8. A comparison of the data determined by X-ray analysis and by metallography shows that below ~1350°C both techniques give approximately the same change in SiC thickness. At 1508° and 1709°C, metallographic measurement of the visible penetration of the SiC coating shows greater values than measured by the X-ray technique. The radiographic technique does not measure the penetration depth unless the concentration of fission products in the corrosion zone is sufficiently high. Although it has not been proven, at temperatures \geq 1500°C, the rare earth elements appear not to have penetrated the SiC in sufficient concentration to allow radiographic measurement of the maximum penetration. Although changes in SiC thickness measured by metallographic techniques are somewhat larger than those obtained from X-ray analysis, the X-ray values were used as differences remain small relative to the data scatter.

3.4.2 TRISO LEU Fissile Fuels

The change in the thickness of the SiC layer was measured using a radiographic procedure. This technique relies on accumulating rare earth elements in the fission product - SiC reaction zone. Since rare earths are not easily released from UO₂ kernels, (Ref. 13) this technique cannot be used to follow SiC reactions in UO₂. In particles that have $0/U \ge 1$, end-of-test metallography is conducted to measure the extent of SiC thinning.

Data Retrieval	Crucible No.	Temp. (°C)	Time (h)	1(a)		2		3		4		5		6		7		8		Average	
No.				t(b)	∆t(c)	t	∆t	t	Δt	t	Δt	t	Δt	t	∆t	t	Δt	t	Δt	Δt	σ
6151-17-016	1	1101	0	0 Unirradiated		34.5		33		32		32.5		32.5		32		32.5			
			96			31	3.5	33	0	32	0	32.5	0	32.5	0	(d)		32	0.5	0.67	1.4
			624			32.5	2	33	0	32	0	32	0.5	32.5	0	32.5	0	32	0.5	0.43	0.73
			694			32.5	2	33	0	32	0	32	0.5	32.5	0	32	0	32	0.5	0.43	0.73
			1,596			32.5	2	32	0	31	1	32	0.5	32.5	0	31.5	0.5	32	0.5	0.64	0.69
			2,886			32.5	2	32	1	31	1	32	0.5	31	1.5	31.5		32	0.5	1.0	0.58
			4,898			33	1.5	32	1	31	1	32	0.5	32.5	0	31.5	0.5	33	0	0.64	0.56
			6,940			32.5	2	32	1	31	1	31.5	1	32.5	0	31	1	33	0	0.86	0.69
			10,763			32	2.5	31.5	1.5	31	1	32	0.5	30.5	2	30.5	1.5	31.5	1	1.4	0.67
6151-17-025	2	1106	0	29.3		27		Unirr	adi-	28		26.5		24.5		27		26			
			96	28.7	0.6	27	0	ate	đ	28	0	26.5	0	24.5	0	26.5	0.5	(d)		0.18	0.29
			624	29.5	0	26.9	0.3		1	28.7	0.3	26.5	0	24.5	0	26.5	0.5	25	1	0.27	0.39
			694	30	0	28	0			(d)		(đ)		(d)		26.5	0.5		1	0.38	0.48
			1,596	30.5	0	26.5	0.5			27.5	0.5	24.5	2	24.5	0	26.5		25	1	0.64	0.69
			2,886	30.5	0	26.5	0.5			29	0	24.5	2	24.5	0	25.8	1.2	25	1	0.67	0.77
			4,898	30.5	0	26	1			30	0	24.5	2	24.5	0	25	2	25	1	0.86	0.90
			6,940	27	2.3	27	0			28.5.		24.5	2	24.5	0	24.7			0	0.94	
			10,763	28.8	0.5	26.5	0.5			28.5	0	24	2.5	24.5	0	24.5	2.5	25.5	0.5	0.93	1.1

TABLE 3-4 CHANGE IN SIC THICKNESS CAUSED BY FISSION PRODUCT - SIC REACTIONS IN TRISO HEU UC₂ (60% FIMA) AT APPROXIMATELY 1100°C

(a) Particle number. (b) t = measured SiC thickness, μm . (c) Δt = change in SiC thickness, μm .

(d)_{X-ray out of focus.}

Data Retrieval	Crucible	Temp.	Time	1	(a)	2	2	3		4		5		6		7		٤	3	Aver	age
No.	No.	(°C)	(h)	t(b)	∆t (c)	t	Δt	t	Δt	t	Δt	t	Δt	t	Δt	t	Δt	t	Δt	Δt	σ
6151-17-016	1	1351	0 523 1048 1711 2818 4833 6106 7313 8222	Unirr	adiated	34.5 30 29 28 28 28 23.5 25.5 25	4.5 5.5 6.5 6.5 6.5 11	32.5 32.5 31 31 31 30 27 29.5 28	0 1.5 1.5 2.5 5.5 3 4	32.5 30 28.5 28.5 27.5 26 20 20 22.5	2.5 4 5 6.5 12.5 10.5 10	32 30 28 26 23.5 22.5 20 21.5 16.5	2 6 8.5 9.5 12 10.5 15.5	35 32 30 29.5 28.5 28.5 26 24.5 21	3 5.5 6.5 9 10.5 14	37 32 32 (d) (d) 32 29 (d) (d)	5 5 5 8 	35.5 31 30 27 27 27 26.5 26.5 26.5	4.5 5.5 8.5 8.5 9 9 9	3.1 4.4 5.3 6.1 6.4 9.6 9.1 10.3	1.8 1.4 2.4 2.6 2.3 2.4 3.2 4
6151-17-025	2	1361	0 523 1048 1711 2818 4833 6106 7311 8222	Unirr	adiated	26 25.5 25 24 24 23 22.5 22.5		28 25 24.5 23 24 24 24 23.5 22.5	3 3.5 5 4 4.5 5.5	31 (e) 27.5 27.5 25.5 25 25 25 24 23	3.5 3.5 5.5 6 7 8	27.5 (e) 23.5 23.5 23.5 23.5 23.5 22.5 22 21.5	 4 4 5 5.5 6	31 (e) 27.5 22.5 21 20.5 18.5 18.5 18	 3.5 8.5 10 10.5 12.5 12.5 13	27 (e) 23.5 19.5 19.5 16.5 10 (f) 16.5	 3.5 7.5 7.5 10.5 17 10.5	27 (e) 27 28 26 26.5 24 22.5 21	 0 1 0.5 3 4.5 6	1.8 4 5.4 7.2 6.3 7.5	1.8 3.1 3.9 5.4 3.3 3.3

TABLE 3-5 CHANGE IN SIC THICKNESS CAUSED BY FISSION PRODUCT - SIC REACTIONS IN TRISO HEU UC₂ (60% FIMA) AT APPROXIMATELY 1350°C

(a) Particle number. (b) t = measured SiC thickness, μm . (c) $\Delta t =$ change in SiC thickness, μm . (d) X-ray out of focus.

(e) X-ray too bright - poor contrast.

(f)_{No X-ray.}

Data Retrieval	Crucible	Temp.	Time	1	a)	2			3	4		5		6		7		8		Aver	age
No.	No.	(°C)	(h)	t ^(b)	Δt ^(c)	t	Δt	t	Δt	t	Δt	t	Δt	t	Δt	t	Δt	t	Δt	Δt	σ
6151-17-025	1	1508	0	26		26		24		28.5		24.5		Unirr	adiated	29		28			
			139	24	2	21	5	21	3	27.5	1	22	2.5			24.5	4.5	26	2	2.8	1.
			494	24	2	17	9			26.5	2	22	2.5			17	12	24.5	3.5	5.2	4.
			825	22	4	14.5	11.5			25	3.5	20.5	4			13.5	15.5	24	4	7.1	5.
			1855	16.5	9.5	14	12			26	2.5	18	6.5			(d)		(d)		7.6	4.
			2980	15.5	10.5	12.5	13.5			26	2.5	18	6.5			10	19	23.5	4.5	9.4	6.
			4055	14.5	11.5	12.5	13.5			26	2.5	17	7.5			7	22	16.5	11.5	11.4	6
			4888	14	12	9	17			24	4.5	7	17.5			0	29	14	14	15.7	8
			6396	13	13	5	21			24	4.5	7	17.5							14	7.
6151-17-016	2	1514	0	33		34.5		Unirra	adiated	33.5		33		34.5		32.5		31.5			
			139	31	2	31.5	3			31.5	2	27.5	5.5	33.5	1	28.5	4	30	1.5	2.7	1.
			494	29.5	3.5	31	3.5			30	3.5	29	4	31	3.5	27.5	5	28	3.5	3.8	0
			825	28	5	28	6.5			28.5	5	27.5	5.5	31	3.5	24	8.5	27.5	4	5.4	1
			1855	25.5	7.5	24.5	10			27.5	6	24.5	8.5	31	3.5	Į		25	6.5	7	2
			2980	20	13	23.5				25.5	8	23	10	28	6.5			18	13.5	10.3	2
			4055	21.5	11.5	23.5	11			21.5	12	23	10	27	7.5			18	13.5	10.9	2
			4888	20.5	12.5	21.5				21.5	12	21.5	11.5	25	9.5					11.7	1
			6396	20.5	12.5	21.5	13			21.5	12	21.5	11.5	25	9.5					11.7	1

TABLE 3-6 CHANGE IN SIC THICKNESS CAUSED BY FISSION PRODUCT - SIC REACTIONS IN TRISO HEU UC₂ (60% FIMA) AT APPROXIMATELY 1500°C

(a) Particle number. (b) $t = measured SiC thickness, \mu m.$ (c) $\Delta t = change in SiC thickness, \mu m.$ (d) X-ray out of focus.

,

Data Retrieval	Crucible	Temp.	Time	1	a)	2		3		4		5		6		7	,	8	;	Aver	age
No.	No.	(°C)	(h)	t(b)	Δt (c)	t	Δt	t	Δt	t	Δt	t	Δt	t	Δt	t	Δt	t	Δt	Δt	σ
6151-17-016	1	1709	0 24	34 30.5	3.5	32 30.5	1.5	33.5 30	3.5	Unirra	diated	35.5 30	5.5	(d)		Faile fire		33 27.5	5.5	3.9	1.7
			73 123 174.5 225 275 325	29 28.5 28.5 22 17.5 (d)	5 5.5 5.5 12 16.5 	28.5 25.5 (d) 21 (d) 16.5	3.5 6.5 11 	26 22.5 14.5 10	7.5 11 19 23.5			28 25.5 25 (d) 17.5	7.5 10 10.5 18					26 22.5 19.5 (d) (d) 16.5	7 10.5 13.5 	6.1 8.3 12.1 14.8 17.3 16	1.8 2.7 5.7 7.7 1.1 0.7
6151-17-025	2	1727	0 24 73 123 174.5 225 275 324	27.5 25 21.5 21.5 21.5 21 20 20	2.5 2.5 6 6.5 6.5 7.5 7.5	Faile fire		25 22.5 19.5 17.5 16.5 13 12 12	2.5 5.5 7.5 8.5 12 13 13	27.5 23 23 21 18.5 17.5 16	4.5 4.5 6.5 9 10 11.5	Unirra	diated	30.5 28.5 25.5 22.0 14 9 7 7	2 5 16.5 21.5 23.5 23.5	28.5 25 23.5 20 18.5 14 (d) 10	3.5 5 8.5 10 14.5 18.5	28.5	6.5	3.6 4.5 7.4 10.1 12.9 13.9 15.6	1.2 1.1 3.8 5.6 6.8

TABLE 3-7 CHANGE IN SIC THICKNESS CAUSED BY FISSION PRODUCT - SIC REACTIONS IN TRISO HEU UC₂ (60% FIMA) AT APPROXIMATELY 1700°C

(a) Particle number.
(b) t = measured SiC thickness, μm.
(c) Δt = change in SiC thickness, μm.
(d) X-ray out of focus.

Table 3.9 gives the change in the SiC thickness observed by radiography for the LEU UC₂ sample. The particles being tested at 1093°C were inadvertently heated at \sim 1600°C for less than 20 hr. During an additional 646 hr at 1083°C the SiC in one particle of the six tested was completely penetrated by the fission product SiC reaction. Neglecting this one particle, the change in SiC thickness is 2.9 <u>+</u> 1.5 µm. Tests on HEU UC₂ at 1100°C showed no SiC attack after 1100 hr.

,

Data Retrieval	Temp.	Crucible	Particle	Initial Si Thickness (SiC Thickne After Reaction		Change in S Thickness (
No.	(°C)	No.	No.	Metallography	X-ray	Metallography	X-ray	Metallography	X-ray
6151-17-016	1351	1	3	34.7	32.5	25.2	28.0	9.5	4.5
			4	31.5	32.5	15.5	22.5	16.0	10.0
			5	31.7	32.0	17.3	16.5	14.4	15.5
			6	32.6	35.0	22.5	21.0	10.1	14.0
			x	32.6	33.0	20.1	22.0	12.5	11.0
			σ	1.5	1.4	4.5	4.7	3.2	4.9
6151-17-025	1361	2	2	28.2	26.0	21.0	22.5	7.2	3.5
			3	26.2	28.0	21.5	22.5	4.7	5.5
		1	6	29.5	31.0	18.0	18.0	11.5	13.0
			7	25.2	27.0	18.5	16.5	6.7	10.5
			x	27.3	28.0	19.8	19.9	7.5	8.1
			σ	1.9	2.2	1.8	3.1	2.9	4.4
6151-17-025	1508	1	1	27.8	26.0	6.5	13.0	21.3	13.0
			5	25.6	24.5	5.25	7.0	20.4	17.5
			8	30.8	28.0	11.9	14.0	18.9	14.0
			x	28.1	26.2	7.9	11.3	20.2	14.8
			σ	2.6	1.8	3.5	3.8	1.2	2.4
6151-17-016	1709	1	1	32.3	34.0	11.7	17.5	21.0	16.5
		1	2	33.8	32.0	7.0	16.5	26.8	15.5
			3	33.7	33.5	5.0	12.5	28.7	21.0
			5	36.4	35.5	13.5	17.5	22.9	18.0
			6	32.0	38.0	2.5	3.0	29.5	35.0
			x	33.6	34.6	7.9	13.4	25.8	21.2
			σ	1.7	2.3	4.5	6.2	3.7	8.0
6151-17-016	1101	1	2	32.0	34.5	30.7	32	1.3	2.5
			3	30,9	33	30.4	32	0.5	0.5
			4	31.6	32	29.0	31	2.6	1.0
			5	31.6	32.5	28.0	32	3.6	1.5
	[6	32.6	32.5	31.0	30.5	1.6	2
			x	31.7	32.9	29.8	31.5	1.9	1.5
			σ	0.6	1.0	1.3	0.7	1.2	0.8

TABLE 3-8 COMPARISON OF METALLOGRAPHIC AND X-RAY TECHNIQUES

		Tempera-		1((a)		2	3		4		-	5	6	5	7		Aver	age
Data Retrieval Number	Crucible Number	ture °C	Time hr.	t ^(b)	Δt ^(c)	t	Δt	t	Δt	t	Δt	t	۵t	t	Δt	t	Δt	∆t	σ
6151-21-0111-5	2	1093	1201	40		43		38.5		36.5		38		39		Unirr	adi-		
			1512	38	2	40	3	35.5	3.0	36.5	0	36	2	35.5	3.5	ated		2.25	1.25
•		*	2158 ^(d)	38	2	40	3	35	3.5	35.5	1.0	33	5	2.0	37	· ·		2.9	1.5
6151-21-0111-5		1207	0	40		36.5		39		37		37		37					
			224	41.5		36		42		39		40.5		38.5			l.		
			535.5	41		36.5		40		38		38.5	~-	38					
			1088.5	38	2	37		38	1	34	3	37	~	37				1.0	1.26
•		*	2051.5	37	3	35	1.5	38	1	34	3	35	2	35	2			2.1	.8
6151-21-0111-5		1368	0	40		40		37.5		38	-	38		38					
			526	36.5	3.5	37.5	2.5	17	20.5	28	10	34.5	3.5	36	2			7.0	7.2
			764.5	32	8	35	5	14	23.5	29.5	8.5	34	4	34	4			8.8	7.4
			1174.5	32	8	31	9	13	24.5	27	11	28	10	24	14			12.8	6.1
Ÿ		*	2253	23	17	27	13	7	30.5	17	21	18	20	24	14			19.25	6.4
6151-21-0111-5		1510	0	37		37.5		41		39		38		38					
			92.5	31	6	10	27.5	38.5	2.5	38.5	0.5	19	19	10	28			13.9	12.5
*		•	163.5	7	30	5	32.5	23	18	29	10	5	33	3	35			26.4	10.1
6151-21-0111-5		1704	0	38.5		38.5		38.5		38.5		38.5		38.5					
			10	46		34	4.5	34	4.5	44	-	35	3.5	35	3.5			2.7	2.1
			36	26	12.5	24	14.5	31	7.5	(e)		26	12.5	30	8.5			11.1	3.0
			81	12	26.5	19	19.5	17	21.5	30	8.5	(e)		(e)				19.0	7.6
¥	+	†	116	13	25.5	(f)		(f)		(f)		(f)		(f)		'	r		
	1.	1	1	1	1	1	1	1	1	1.	1								

Table 3.9 CHANGE IN SILICON CARBIDE THICKNESS CAUSED BY FISSION PRODUCT -SIC REACTIONS IN TRISO LEU UC₂ (~25% FIMA)

>

,

(a) Particle number (b) t = measured SiC thickness, um

(c) Δt = change in SiC thickness, μm

(d) Includes <24 hr. at ~1600°C

(e) X-radiograph out of focus

(f) No distinct fission product front

4. DISCUSSION

4.1 Reacting Fission Products

A number of fission products have been associated with SiC-fission product reactions in TRISO fuel. These include the rare earth metals (cerium, neodymium, lanthanum, samarium, praseodymium, and europium); palladium, ruthenium, and rhodium of the platinum family; and strontium. Generally speaking, SiC-fission product reactions occur in two modes. The first is temperature gradient dependent and is attributed to rare earth-SiC reactions on the inner surface of the cooler side of SiC coatings. Many examples of this mode of attack can be found in the literature (Refs. 15, 16, 17). The second mode of attack appears as localized reaction sites and may be independent of temperature gradient. Although this mode of attack is generally attributed to palladium, evidence of ruthenium-, rhodium-, strontium-, and silver- SiC reactions has also been noted (Refs. 18, 19). The results of microprobe work on samples of irradiated HTGR fuel heated in out-of-pile thermal gradients were given in Section 3.2. These results agree with microprobe analysis of samples irradiated in capsule and fuel test elements, as discussed above.

The concentration of several of these fission products which affect SiC integrity is dependent on the isotopic composition of HTGR fuel. This occurs because the ratio of the fissioning isotopes (U-235, Pu-239, Pu-241) differs as the uranium enrichment changes and because the fission product yields from each isotope are not the same.

Smith (Ref. 20) and Lindemer (Ref. 21) have calculated the effect of change in isotopic composition from HEU (93% enriched U-235) to LEU (19.5% enriched U-235) HTGR fuel. At peak burnup (\sim 25% FIMA), the fission products that have greater inventories in typical LEU fuel particles are Mo, Ru, Rh, Pd, Ag and Cd. Of these, Ag, Pd and Cd are affected most by the change from HEU to LEU. Assuming a 200 μ m HEU kernel and a 300 μ m LEU kernel, there is approximately 11 times more Ag and 4.5 times more Pd and Cd in a LEU particle than in a HEU particle. There are, however, still more rare

earth elements than either Ag, Pd or Cd.

4.2 Influence of Kernel Composition

The composition of the kernel may indirectly affect the rates of fission product-SiC reactions by affecting the release of Pd and other fission products from the kernel. Obviously, if fission products were completely retained in the kernel, no reactions could occur at the inner surface of the SiC.

Extensive microprobe work has been done concerning the release of fission products from various kernel compositions (Refs. 13, 22, 23, 24, 25). Tiegs has reviewed that data (Ref. 26) at ORNL and has concluded that the rare earth fission products are released from kernels with $0/U \leq 1.1$ and migrate down the temperature gradient to the cool side of the particle. With higher 0/U ratios the rare-earth metals are retained in the kernel (Ref. 13).

Pd, however, is not significantly retained in the kernel of any U-C-O composition. In irradiated kernels of dense LEU UO_2 , PuO_{2-x} , and 2 $ThO_2 \cdot PuO_{2-x}$, some Pd was tied up in noble metal inclusions but most of the Pd had been released from the kernel and resided at the SiC coating (Refs. 25, 27).

Kernels which are less than theoretically dense do not retain any amount of Pd. In LEU and HEU UC_XO_y kernels made from low-density, weak acid resins, no holdup of Pd was apparent (Ref. 28). SiC attack associated with palladium and strontium was observed in LEU DRAGON TRISO UO₂ which had an 80% theoretically dense kernel (Ref. 18). After irradiation for 1 year at 1550°C to 4% FIMA, Pd, Ru and Rh were found along with Sr at the inner PyC-SiC interface. It was suggested that these elements might have catalyzed the Sr-SiC reaction. It can be inferred from this discussion that fission product Pd is of most concern, and that variations of kernel composition do not affect the release of Pd from the kernel.

905837/1

4.3 Time Dependence of SiC-Fission Product Reactions

Reactions at high temperature may take many courses and forms depending on the reactants, the temperature, and the elapsed time of reaction. Kinetic studies of solid-state reactions usually relate the amount of reaction, (α) , to the time of reaction in an equation of the form

$$\mathbf{F}(\alpha) = \mathbf{k}\mathbf{t} \tag{1}$$

where the function $F(\alpha)$ depends on the mechanism controlling the reaction. Many forms of $F(\alpha)$ have been derived depending on what process is assumed to be controlling the rate of the reaction (Ref. 29). If, for example, the reaction products remain at the reaction surface as a continuous, compact layer, the reaction rate is often governed by solid-state transport through the increasing thickness of the layer. Kinetically, the reaction rate decreases with time. When lattice diffusion through the compact layer predominates, the reaction kinetics follow the well known parabolic rate equation in which the rate is inversely proportional to the thickness of the product layer, x,

$$\frac{\mathrm{dx}}{\mathrm{dt}} = \frac{\mathrm{k}_{\mathrm{p}}}{\mathrm{x}} \tag{2}$$

where t is the time, and k_p is the parabolic rate constant.

Integration of eq. 2 within limits t_{i-1} and t_i leads to eq. 3:

$$x_{i}^{2} - x_{i-1}^{2} = 2 k_{p} (t_{i} - t_{i-1})$$
 (3)

During out-of-pile testing, $t_{i-1} = 0$ and $X_{i-1} = 0$ because at the start of the thermal anneal no product layer has been formed. For this special case, Equation 3 reduces to an expression in which the extent of reaction is proportional to the square root of the time,

$$x = k_p' t^{0.5}$$
⁽⁴⁾

where

 $k'_{p} = (2 k_{p})^{0.5}$

Solid-state reactions which are not controlled by transport through a product layer often do not slow down until one of the reactants is depleted. This type of reaction mechanism can result in a rate equation of the type

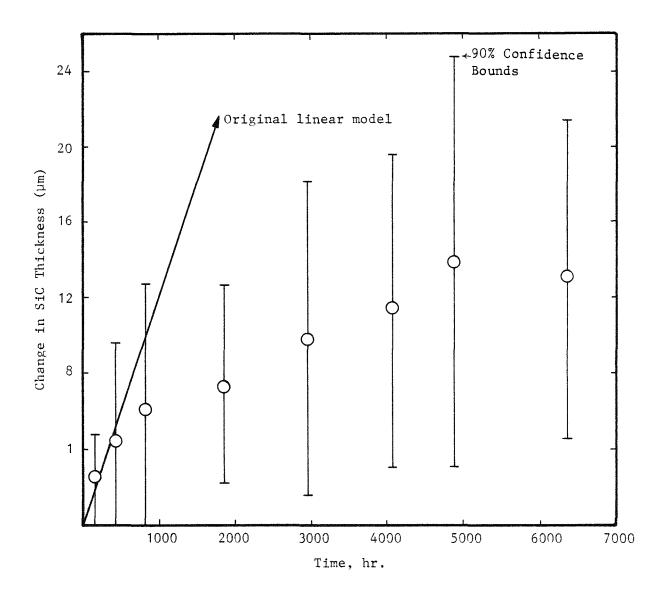
$$\frac{\mathrm{d}x}{\mathrm{d}t} = k_{\mathcal{L}} \tag{5}$$

where k_{ℓ} is the linear rate constant. The extent of reaction, then becomes directly proportional to time:

$$\mathbf{x} = \mathbf{k}_{\ell} \mathbf{t} \tag{6}$$

The original model used to calculate changes in SiC thickness during core design studies (prior to CY-80) assumed that the reaction rate at a given temperature was constant with time (eq. 6) and therefore, the decrease in SiC thickness was linear with time. This "linear" model was based upon data collected from out-of-pile testing of irradiated fuel at temperatures ≥ 1300 °C, and from results obtained during postirradiation examination of accelerated irradiation experiments. Each out-of-pile test was conducted at constant temperature and initial fission product concentration and allowed determination of the change in SiC thickness with time and temperature. The accelerated irradiation data included the effects of fission product concentrations and temperatures (≥ 1400 °C) that vary with time; however, the resulting change in SiC thickness could only be measured at one time Point (i.e. the end of the irradiation). The single time point precludes any direct empirical verification of the fundamental kinetic expression from the irradiation data.

The changes in SiC thickness as a function of test time during the FY-78 thermal gradient heating tests on irradiated TRISO HEU UC₂ are given in Table 3.4 through 3.7. Comparison of these results with the original linear model, shows that the original linear model overpredicts the change in SiC thickness for samples heated out-of-pile at <1500°C (Ref. 30). Figure 4.1 gives the


905837/1

change in SiC thickness and the 90% confidence bound (1.80) on the mean change in thickness caused by fission product-SiC reaction at 1500°C in an out-ofpile thermal gradient test. Also included is the change predicted by the original model. It is quite apparent that the original model does not reflect the actual rate-time behavior of SiC thinning.

A reanalysis of the data results in a better description of the outof-pile tests at temperatures ≤ 1500 °C (Ref. 31). This analysis assumed that the change in SiC thickness was proportional to the square root (Eq. 4) of the anneal time. Figure 4.2 demonstrates the validity-of-the assumption that for the UC₂ samples studied, the change in SiC thickness caused by outof-pile fission product attack on the SiC layer was proportional to the square root of time, when the temperature was \$1500°C.

When the reaction temperature was >1500°C, Fig. 4.3 shows that the out-of-pile reaction can be described by either a linear time dependence or by a square root time dependence. This agrees with high temperature work by Lindemer in which the rate of change in SiC thickness caused by interaction of LaC₂ and NdC₂ was found to be time independent between \sim 1500°C and \sim 1700°C (Ref. 32).

The purpose of any out-of-pile study is to obtain data to support a predictive model which can be shown to be valid during fuel irradiations. Since the change in SiC thickness during the irradiation tests was only measured at one time point, neither the linear or square root model has a firm basis for calculations of SiC thinning during irradiation. There is evidence that palladium is diffusing out of TRISO particles during the out-of-pile testing. Kaae has observed that the solubility and diffusivity of Pd in SiC are relatively high and therefore Pd is lost from particles during thermal annealing (Ref. 33). Our out-of-pile thermal gradients tests provide additional evidence for Pd diffusion through SiC. Figure 3.26 shows electron microprobe line traces for Si and Pd across the SiC in LEU TRISO UO₂*. This sample had been irradiated to $\sim 25\%$ FIMA at $\sim 950^{\circ}$ C and then heated at $\sim 1500^{\circ}$ C for 163.5 hr during

٠

٠

Fig. 4.1 Comparison of the observed change in SiC thickness with time to that predicted at 1500°C using the CY-80 linear model for SiC-fission product reaction

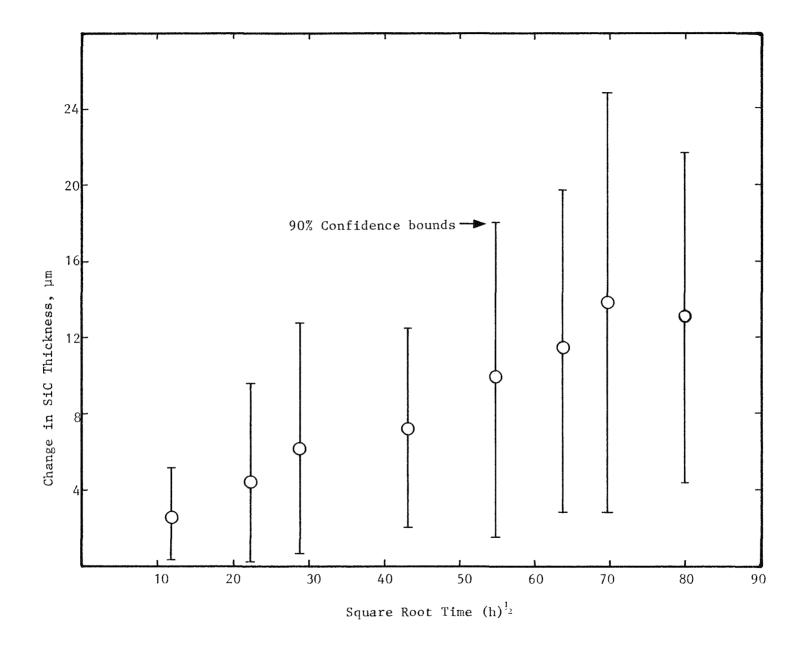


Fig. 4.2 Change in SiC thickness as a function of square root time for HEU UC₂ heated at 1511°C in out-of-pile thermal gradient test

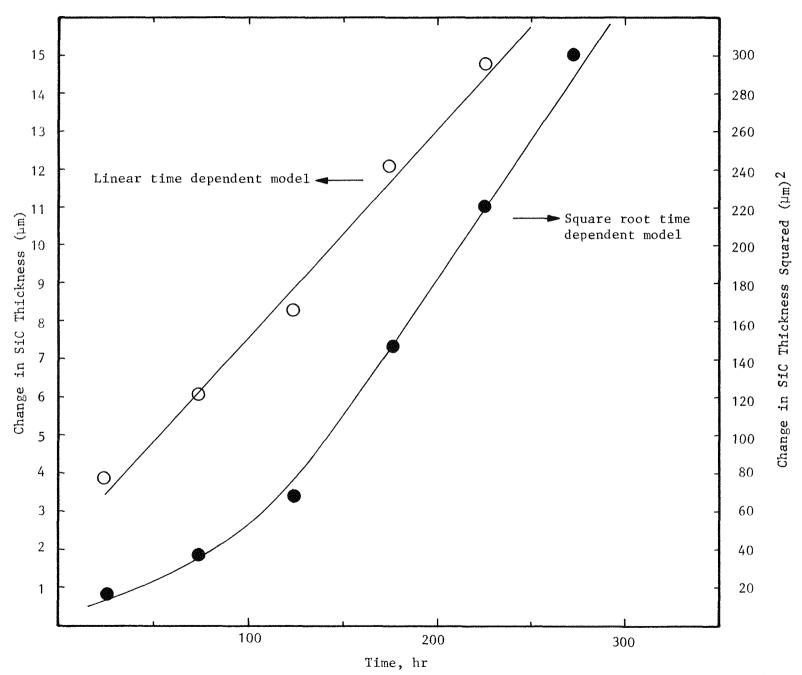


Fig. 4.3 Time dependence of fission product-SiC reactions in TRISO HEU UC₂ (6151-17-016) during out-of-pile thermal gradient testing at 1709°C

905837/1

an out-of-pile test. Comparison of the locations of Pd and Si shows that the Pd has diffused at least 2/3 of the way through the SiC. The photomicrograph of the SiC in the region of the line traces shows no Pd corrosion of the SiC. If, indeed, Pd is being released from the particles during the out-of-pile tests, then the concentration of Pd in the particle decreases with time. Kaae has suggested that this decreasing Pd source causes the apparent square root time dependence for the out-of-pile tests. During irradiation, the concentration of Pd in a particle does not decrease with time but in fact increases because it is continuously being generated by fissioning. Neither model has yet been shown to be the best description of the time dependence of in-pile fission product-SiC reactions.

4.4 Temperature Dependence

The rate constants for SiC thinning caused by fission product - SiC reactions defined by eqs. 2 and 5 are given as a function of 1/T in figure 4.4 assuming the linear time dependence model; and in figure 4.5, assuming the square root time dependence model. These figures show that both models for fission product-SiC reactions generally follow the Arrhenius relation-ship with temperature

$$k = A \exp(-Q/RT)$$
(7)

where

- k = proportionality constant defined by eqs. 2 and 5, μ m/hr or μ m²/hr
- A = preexponential factor, μ m/hr or μ m²/hr
- Q = activation energy J/mole
- R = gas constant, 8.314 J/mole-K
- T = temperature, K

The 50% confidence lines shown in the figures were obtained by a least squares fit of $\ln k$ versus 1/T. The 90% confidence bounds are for the estimation of the rate constant for a single observed temperature (Ref. 34).

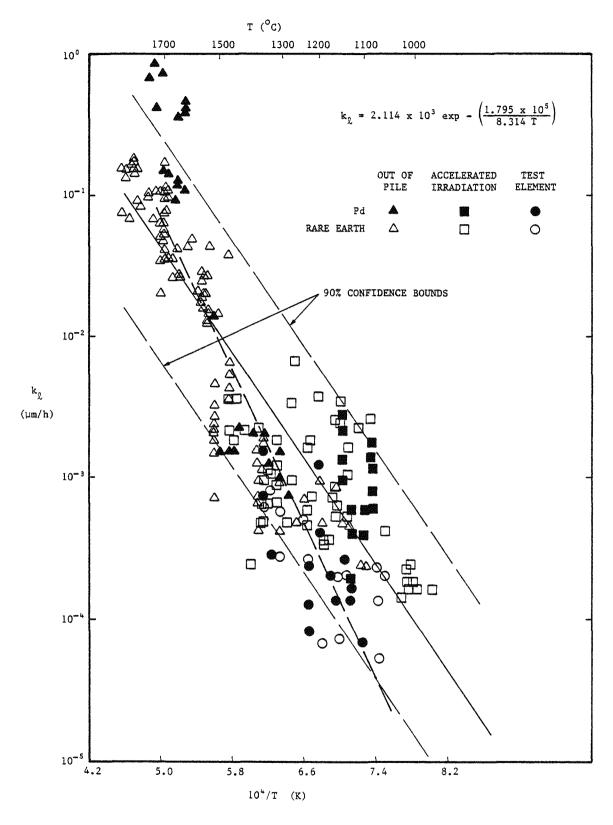
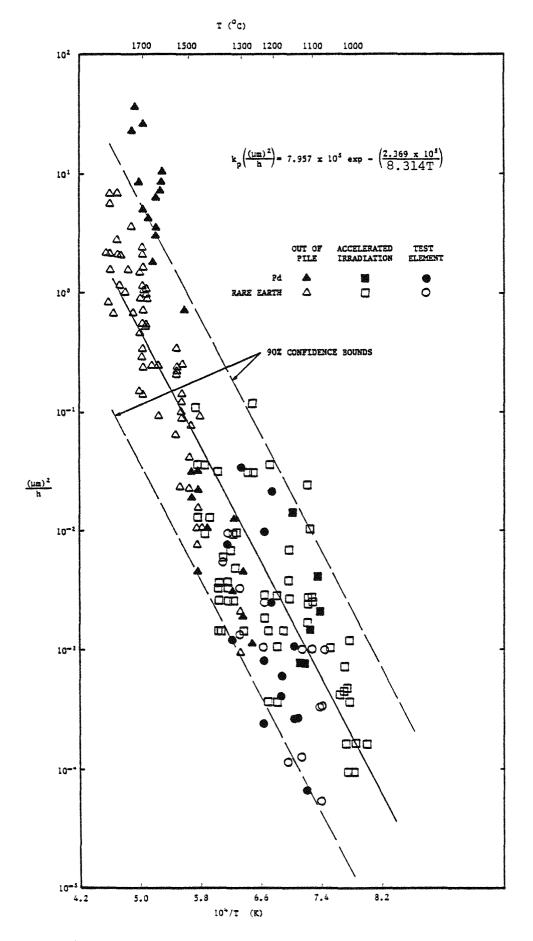



Fig. 4.4 Temperature dependence of fission product-SiC reaction rate constant for linear time dependence model

1

Fig. 4.5 Temperature dependence of fission product-SiC reaction rate constant for square root time dependence model

905837/1

For the linear time dependence model

τ.

$$A_{\ell} = 2.114 \times 10^3 \ \mu m/hr$$

 $Q_{\ell} = 1.795 \times 10^5 \ J/mole \pm 0.081 \times 10^5 \ J/mole$

and for the square root time dependence model

$$A_P = 7.957 \times 10^5 \ \mu m^2/hr$$

 $Q_P = 2.369 \times 10^5 \ J/mole + 0.114 \times 10^5 \ J/mole$

The correlation coefficients for both Arrhenius plots (0.8751 for the linear model; 0.8613 for the square root model) are similar and thus do not allow any conclusion as to which time dependence is correct. In compiling the data for figures 4.4 and 4.5 no distinction was made between in-pile and out-of-pile data; rare earth or Pd attack; accelerated or real time irradiations; or between HEU and LEU fuel.

The data used in the Arrhenius plots are given in Tables 4.1-4.7 and include measurements of SiC thinning from the following types of experiments:

- (1) out-of-pile thermal gradient tests at ORNL by Lindemer, <u>et. al.</u>, on SiC interaction with NdC₂ and LaC₂ (Refs. 21 and 32) and with Pd (Ref. 21) in SiC coated kernels doped with simulated fission products
- (2) out-of-pile thermal gradient tests at ORNL by Lauf on Pd-SiC interaction in SiC coated particles with Pd doped kernels (Ref. 19)

905837/1

- (3) out-of-pile thermal gradient tests on irradiated HEU UC₂ conducted at GA by Smith (Ref. 17)
- (4) in-pile irradiation testing of TRISO HTGR fuel during accelerated capsule tests from data obtained by Tiegs, <u>et. al.</u>, at ORNL (Ref. 26) and by various experimenters at GA
- (5) in-pile irradiation testing of TRISO HTGR fuel during real time irradiation testing from the Peach Bottom test element program (Refs. 35 and 36)

The temperatures used in the Arrhenius plots for the out-of-pile data are those given in the documents cited in the tables. For the in-pile data, however, the temperatures used were activation energy weighted. Activation energy weighting defines an effective temperature, $T_{eff.}$, at which the irradiation can be considered to have taken place and accounts for the fact that the irradiations were non-isothermal. Activation energy weighting of non-isothermal data is appropriate for chemical reactions or for processes in which the rate is an exponential function of temperature (i.e. diffusion). A computer program was written which calculated $T_{eff.}$ from the time-temperature history for each irradiation experiment using equation 8

$$e^{-Q/RT}_{eff.} = \frac{\sum_{i} \Delta t_{i} e^{-Q/RT_{i}}}{\sum_{i} \Delta t_{i}}$$
(8)

where Q is the Arrhenius activation energy and Δt_i is the length of time that the sample was at temperature $T_i(K)$. Equation 8 is analogous to the well known statistical formula for calculating the weighted mean of a population (Ref. 37). To use equation 8, the Activation Energy, Q, for the fission product-SiC reaction was needed. Since this is determined from the Arrhenius plot, an iterative procedure was used to arrive at the best value. Initially, the out-of-pile data, which was obtained isothermally, was used to calculate Q. This Q was used to weight the temperatures of the in-pile data and then the out-of-pile and in-pile data were combined to compute a new Q. This procedure was repeated until Q did not change on successive runs.

When possible, the time-temperature history of the in-pile samples was taken from computer outputs of the thermal analysis of the capsule and test element experiments. In some instances, however, the thermal analyses were not available. For capsule HRB-14, only rods 2, 10, and 17 had detailed thermal analysis. An estimate of T_{eff} for the other rods which showed SiC attack was obtained from a linear interpolation of T_{eff} for rods 2, 10 and 17 based on their relative location in the reactor. No attempt was made to account for different fuel types and thus different fission heat rates. Temperature data for HRB-4, HRB-5, HRB-11, HRB-12 and for P13Q were taken from plots of the irradiation temperature versus the irradiation time given in the postirradiation examination reports. Temperatures for particles in capsules P13R, P13S, and HT-33 were calculated by eqs. 9 and 10 from the location of the particle within the fuel rod (Ref. 15)

$$T = T_{c.l.} - bx^2$$
(9)

$$b = \frac{T_{c.l} - T_s}{r^2}$$
(10)

where

905837/1

The final activation energy weighted temperatures for both the linear and square root time dependence models are given along with the linear time weighted vol. average temperature in tables 4.2-4.3.

Two sources of error in the SiC thinning rate are prevalent in the irradiation data. The first is intrinsic in the ceramographic technique used to measure the extent of SiC corrosion in the particles: unless the grinding and polishing coincides exactly with the position of maximum SiC corrosion, the measured amount of SiC thinning is biased low. The magnitude of this error is very difficult to estimate and depends on the care with which the ceramographic grinding was completed.

The second source of error is in the uncertainty in the temperature of the particle during irradiation. Young has identified three primary sources of error in the method used for the thermal analysis of the P13Q capsule (Ref. 3). The root mean square of these errors was calculated to be approximately ± 100 °C.

Another uncertainty in the reaction temperature is caused by the fact that there is a thermal gradient across a fuel rod; with the center hotter than the edges. With the exception of P13R and P13S, postirradiation examination of fuel rods done by General Atomic did not record the location in the fuel rods of the particles that had fission product-SiC attack. Thus it is not known whether peak fuel rod temperature, fuel rod surface temperature or fuel rod volume averaged temperature is the best estimate of reaction temperature. As mentioned earlier, postirradiation examination of P13R and P13S did include particle locations, and the particle temperature was calculated using the location, the rod centerline temperature and assuming a parabolic temperature profile across the rod. The location of the particles in which SiC thinning was observed was, on the average, 56% of the way between the rod centerline and the rod surface. This is approximately the location of the volume average temperature and thus, activation energy weighted, volume average temperature were used for most of the data in the Arrhenius plots. For the FTE-13 samples, however, the maximum fuel rod temperature was used since SiC thinning data was taken only from particles at the fuel rod centerline.

¥.

4.5 Comparison of Measured and Predicted SiC Penetration in Peach Bottom Test Element Fuel for Linear and Square Root Time Dependence Models

Saurwein has calculated the nominal SiC penetration (50% confidence) for samples of HTGR fuel used in Peach Bottom test elements (Ref. 38). This calculation used the Arrhenius activation parameters discussed in the previous section and compared both the linear and square root time dependence models.

The nominal SiC penetration, $\Delta SiC_N,$ was calculated based on temperature histories obtained for the Peach Bottom test elements using the TREVOR code. For the linear model,

$$\Delta \text{SiC}_{N} = \sum_{i=1}^{N} \Delta t_{i} A_{\ell} e^{-Q_{\ell}/RT_{i}}$$
(11)

where the symbols are defined for eq. 8. To calculate the penetration using the square root model, the Arrhenius expression was substituted into eq. 3 and eq. 3 was rearranged to give

$$\Delta SiC_{N} = \sqrt{\sum_{i=1}^{N} \Delta t_{i} A_{p} e^{-Q_{p}/RT_{i}}}$$
(12)

The 90% confidence range was calculated by propagating the error associated with the Arrhenius fit along with a \pm 130°K uncertainty in the test element temperature.

905837/1

The results of this calculation are given in Table 4.8, and show that both models overpredict the amount of SiC thinning observed in the test element samples. Both models predict fairly well the observed penetration at temperatures $\stackrel{<}{_{\sim}}1100$ °C. However, as the temperature of the sample increases the linear model considerably overpredicts the penetration. At effective temperatures >1300°C, the ratio of predicted penetration to measured penetration is $\stackrel{<}{_{\sim}}6$ for the linear model. The square root model also overpredicts at temperature >1100, but not as severly as does the linear model. When T_{eff} , >1300, the predicted penetration is about twice the measured value.

A linear time dependence model developed from the out-of-pile data and the test element data does predict the penetration observed in the test elements. The model, shown as a dashed line in Fig. 4.4, has the following Arrhenius constants:

 $Q = 2.608 \times 10^5 + 0.013 \times 10^5 J/mole$

 $A = 4.515 \times 10^5 \,\mu m/hr$

In order to use this model, it would be necessary to rationalize why the accelerated irradiation data exhibits rates of SiC - fission product attack much greater than real time irradiations. This could be justified by the following considerations: (1) neutron flux enhancing the reaction rate, (2) fuel samples used in the capsule tests which were contaminated or had inferior coatings. The effect of neutron fluence on SiC - fission product corrosion was studied by Grübmeier (Ref. 39). He found that fast neutrons cause a change in the SiC and that a high neutron fluence can be accompanied by strong SiC corrosion. Substantial fuel performance gains could be realized, i.e. a factor of 2-20 reduction in reaction rates between 1300° and 900°C, if additional empirical evidence is developed to support a linear model based on exclusion of accelerated capsule data (refer to dashed line in Fig. 4.4)

× - r

SIC PENETRATION OBSERVED DURING OUT-OF-PILE THERMAL GRADIENT HEATING TESTS OF TRISO HTGR FUEL AT GENERAL ATOMIC

Experi- ment			Out-of- Pile Time Weighted	Out-of-	Ch	Re	ite	
Desig- nation Number	Data Retrieval Number	Irradia- tion Test	Tempera- ture °C	Pile Test Time hr	Change in SiC µm	μm/hr x 10 ⁴	µm/ /hr x 10 ²	Reference
5217-5 ^(a)	4413-5E	P13L	1306	2541	2.3	9.05	4.56	GA-905239/1
1 1	1	1	1306	5549	2.3	4.14	3.09	1
			1306	5549	2.3	4.14	3.09	
			1306	5549	2.7	4.87	3.62	
			1306	5549	5.1	9.19	6.85	
			1460	575	3.0	52.2	12.5	
			1460	575	3.7	64.3	15.4	
			1460	575	2.5	43.4	10.4	
↓	↓	V	1460	575	2.1	36.5	8.76	
6804 ^(a)	4161-01-030	ETE 14	1551	617	11 /	185	45.9	
0004	4101-01-030	FTE-14 TS5-6	1551 1551	617 617	11.4	191	45.9	
			1551	617	12.1	196	47.5	
			1551	617	14.8	240	40.7 59.6	
				617	10.9	177	43.9	
			1551	617	12.2		43.9	
			1551			198	49.1	
*	V	V	1551	617	12.2	198	49.1	
7013 ^(a)	4161-01-030	FTE-14	1692	87.25	6.9	791	73.9	
		TS3-6	1692	87.25	6.9	1029	95.3	
			1692	87.25	9.8	1123	105	
•	¥	₩	1692	87.25	9.3	1066	99.6	
/013 ^(a)	4161-01-034	P13P	1704	87.25	6.7	768	71.7	
	-002	CIP2	1704	87.25	8.0	917	85.6	
			1704	87.25	8.4	963	89.9	
			1704	87.25	8.4	963	89.9	
•	V	↓	1704	87.25	9.4	1077	101	
7013 ^(a)	/1/1 01 020	D12D	1707	07.05		630	50.0	
/013**	4161-01-032 -002	P13P CIP4	1707	87.25	5.5	630	58.9	
	1		1707	87.25	3.5	401	37.5	
			1707	87.25	5.1	585	54.6	
			1707	87.25	4.6	527	49.2	
*	*	•	1707	37	6.3	1703	104	
6804 ^(a)	4161-01-032	P13P	1525	331	9.2	278	50.6	
	-002	CIP4	1525	617	7.5	122	30.2	
		1	1525	617	9.5	154	38.2	
			1525	617	7.9	128	31.8	
	↓ ↓	♦	1525	617	8.7	141	35.0	+
		1	4		<u> </u>	<u> </u>		L

 $^{(a)}{}_{\text{Data}}$ on which original linear model was based.

Table 4.1 (continued)

SIC PENETRATION OBSERVED DURING OUT-OF-PILE THERMAL GRADIENT HEATING TESTS OF TRISO HTGR FUEL AT GENERAL ATOMIC

x ,

Experi- ment			Out-of- Pile Time Weighted	Out-of-		Ra	ite	
Desig- nation	Data Retrieval	Irradia- tion	Tempera- ture	Pile Test Time	Change in SiC	µm/hr x 10 ⁴	$\mu m/\sqrt{hr}$ x 10 ²	P-6
Number	Number	Test	°C	hr	μm	x 10.	x 10-	Reference
78TG ^(b)	6151-17-025	HB2 T250	1362	8222	3.5	4.26	3.86	GA-905239/1
				8222	5.5	6.69	6.07	
				8222	8.0	9.73	8.82	
				8222	6.0	7.30	6.62	
				8222	13	15.8	14.3	
•				8222	10.5	12.8	11.6	
, Y	T T	Y	V	8222	5.5	6.69	6.07	
78TG ^(b)	6151-17-016	HB5 T210	1351	8222	9.5	11.6	10.5	
,				8222	4.5	5.47	4.96	
				8222	10	12.2	11.0	
				8222	15.5	18.9	17.1	
				8222	14	17.0	15.4	
Y	*	*	•	8222	9	10.9	9.93	
78TG ^(b)	6151-17-025	HB2 T250	1508	6396	13	20.3	16.3	
				6396	21	32.8	26.3	
				6396	4.5	7.04	5.63	
				6396	17.5	27.4	21.9	
				6396	29	45.3	36.3	
*	V	¥	, v	6396	14	21.9	17.5	
78TG ^(b)	6151-17-016	HB5 T210	1514	6396	15.5	24.2	19.4	
			1	6396	13	20.3	16.3	
				6396	12	18.8	15.0	
				6396	11.5	18.0	14.4	
				6396	9.5	14.9	11.9	
↓	+	•	♦	6396	13.5	21.1	16.9	
78TG ^(b)	(151 17 005	1100 0050	1707	075	1.1 -	/10	60.2	
/01G	6151-17-025	HB2 T250	1727	275	11.5	418 200	69.3 38.7	
				375	7.5	1	38.7 67.1	
				375	13	347 627	121.4	
				375 375	23.5	627 493	95.5	
T T	T	T	▼	2,2	10.0	473	L.C.	
78TG ^(b)	6151-17-016	HB5 T210	1709	275	16.5	600	99.5	
	1			275	26.0	945	156.8	
				325	15.5	477	86.0	
				325	23	708	128	
				325	17.5	538	97.1	
*	↓ ★	*	♥	325	16.5	508	91.5	V

× ,

SIC PENETRATION OBSERVED DURING ACCELERATED IRRADIATION TESTING OF TRISO HTGR FUEL

[_		Irra ^(c) dia- tion	Activ Ene Weig	rgy	Irra-		Decrease			
Data	Irra- dia-		Tem- pera-	Linear	Square Root	dia- tion		in SiC Thick-	Ka	te	
Retrieval Number	tion Test	Posi- tion	ture °C	Model °C	Model °C	Time hr.	PIE	ness Um	µm/hr. x 10 ⁴	$\mu m/\sqrt{hr}$. x 10 ²	Reference
6151-12-015	P13T	1 - 1B4	1215	1227	1231	8800	GA	5	5.68	5.33	GA-A15608
		1-1B2	1177	1190	1194		1	5	5.68	5.33	W.J. Scheffel
		2-4 A 1	995	1018	1027			2	2.27	2.13	private
			995					2	2.27	2.13	communi- cation
	Y	¥	995	¥	¥			2	2.27	2.13	
6151-17-025	P13T	1-1C4	1215	1227	1231			4	4.55	4.26	
*	+	1-101	1177	1190	1194	•		3	3.41	3.20	*
6151-00-010	P13Q	G2-1B	932	936	938	9401		5	5.32	5.16	GA-A14174
1		G1-3A	1105	1113	1114	1		4	4.25	4.13	
		1						10	10.6	10.3	
								10	10.6	10.3	
								5	5.32	5.16	
								5			
								5			
								5			
								5	•	•	
	•	ł	ł	•	V			15	16.0	15.5	
6151-00-010	P13Q	G1-2B	1161	1163	1164	9401		6	6.38	6.19	
+		¥				ł		8	8.51	8.25	
6151-00-010	P13Q	G1-3B	1161	1163	1164	9401		5	5.32	5.16	+
6151-00-035	P13R	_{2B} (a)	1037	1053	1058	6192		2.5	4.04	3.18	GA-A13827
10100-005		28	1037	1015	1021	0192		<1	<1.61	<1.27	1
, v	, T	·	1000								
6151-00-035	P13R	2C ^(a)	981	996	1002			<1.0	<1.61	<1.27	
			954	971	977			<1.0	<1.61	<1.27	
			977	992	997			<1.0	<1.61	<1.27	
			994	1008	1013			1.5	2.42	1.91	
			1038 979	1050	1055			<1.0 <1.0	<1.61	<1.27	
, v	Y	Y	979	994	1000			<1.0	1	\$1.27	
6151-00-035	P135	5C ^(a)	1321	1356	1372			3.0	4.84	3.81	
1			1274	1311	1326			5.5	8.88	6.99	
			1332	1367	1382			1.5	2.42	1.91	
			1274	1311	1326		Low Server	4.0	6.46	5.08	
			1325	1360	1375		Ĺ	3.0	4.84	3.81	
			1330	1365	1380			4.0	6.46	5.08	
+			1243	1282	1297	•	Y	3.0	4.84	3.81	↓ ↓
l	1	'	1249	1288	1303			3.0	4.04	1	1

(a) Calculated temperature using time weighted fuel rod centerline temperature and hyperbolic temperature profile across rod.

Table 4.2 (continued)

SIC PENETRATION OBSERVED DURING ACCELERATED IRRADIATION TESTING OF TRISO HTGR FUEL

	Irra-		Irra- ^(c) dia- tion Tem-	Activ Ene Weig	hted	Irra- dia-		Decrease in	Ra	te	
Data	dia-	Deed	pera-	Linear	Square Root	tion		SiC Thick-			
Retrieval Number	tion Test	Posi- tion	ture °C	Model °C	Model °C	Time hr	PIE	ness µm	μm/hr x 10 ⁴	μm/hr x 10 ²	Reference
6151-00-035	(a) P135	5C	1327	1362	1377	6192	GA	4.5	7.27	5.72	GA-A13827
			1298	1335	1350			1.5	2.42	1.91	
V	7	Ý	1331	1366	1381	*		14.0	22.6	17.8	
6151-08-015	P135 ^(a)	5D	1299	1336	1351	6192		4.0	6.46	5.08	
1	1	1	1312	1349	1365	1		6.0	9.69	7.62	
[[1307	1343	1359			6.0	9.69	7.62	
			1237	1276	1291			6.0	9.69	7.62	
			1278	1316	1331			7.5	12.1	9.53	
t t	♦	*	1288	1325	1340	•	ł	6.5	10.5	8.26	Ť
OR2576H	(a) HT-33	19	1416	1454	1455	2759	ORNL	6	21.7	11.4	ORNL-5539
			1410	1448	1449			5	18.1	9.52	Private
			1418	1456	1457			10	36.2	19.0	communi- cation
			1425	1463	1464			18	65.2	34.3	T. N. Tiegs,
			1372	1408	1409			6	21.7	11.4	ORNL
			1372	1408	1409			6	21.7	11.4	
		*	1399	1437	1437			10	36.2	19.0	
		6	1157	1189	1190			1	3.62	1.90	
		1	1188	1222	1223			5	18.1	9.52	
			1183	1217	1218			2	7.25	3.80	
			1182	1215	1217			2	7.25	3.80	
			1152	1184	1185			1	3.62	1.90	
	*	¥	1144	1175	1176	¥		2	7.25	3.80	
	HT-34	28	1335	1341	1342	2686		3	11.2	5.79	
		37	1311	1316	1318			5	18.6	9.65	
		41	997	1004	1006			0.5	1.86	0.96	
		44	1017	1023	1025			1.4	5.21	2.70	
		47	1022	1028	1030			1.8	6.70	3.47	
*	*	50	1006	1011	1013			0.5	1.86	0.96	•
6252-14- 0161-001	(b) HT-34	10	1242	1263	1268			18	67.0	34.7	GA-A15612
6252-15- 0161-001		11	1252	1274	1279			9	33.5	17.4	
		11	1252	1274	1279			9	33.5	17.4	
6252-16- 0161-001		13	1181	1204	1209			10	37.2	19.3	
	*	13	1181	1204	1209	+	+	10	37.2	19.3	•

(b) Time weighted particle surface temperature(c) Time weighted

× .

Table 4.2 (continued)

SIC PENETRATION OBSERVED DURING ACCELERATED IRRADIATION TESTING OF TRISO HTGR FUEL

	Irra-		Irra- ^(c) dia- tion Tem-	Activ Ene Weig	rgy hted	Irra- dia-		Decrease in	Ra	te	
Data Retrieval	dia- tion	Posi-	pera- ture	Linear	Square Root	tion Time		SiC Thick- ness	um/hr	um/vhr	
Number	Test	tion	°C	Model °C	Model °C	hr	PIE	μm	x 10 ⁴	$\frac{\mu m}{\sqrt{hr}} \times 10^2$	Reference
6252-17-010	HRB-14	1	1130	1145	1151	5124	GA	5	9.76	6.98	GA-A15969
								7	13.7	9.78 9.78	
								7	13.7	9.78	
								11	21.5	15.4	
Y		, v	V	·				14	27.3	19.6	
6155-05-020		4	1090	1126	1132			1	1.95	1.40	
								2	3.90	2.79	
	ł							2	3.90	2.79	
								2	3.90	2.79	
								2 2	3.90	2.79	
				•	🕴			3	5.85	4.19	
6152-01-010		6	1070	1048	1119			1	1.95	1.40	
								1 2	1.95	1.40	
								2	3.90	2.79	
								2	3.90	2.79	
							•	2	3.90	2.79	
								2	3.90	2.79	
		*	•					2	3.90	2.79	
6157-08-010		8	1055	1100	1107			2	3.90	2.79	
								3	5.85	4.19	
								3	5.85	4.19	
		↓	+	7	*			3	5.85	4.19	
6157-08-020		10	1042	1081	1087			3	5.85	4.19	
	l							3	5.85	4.19	
								3	5.85	4.19	
								3	5.85	4.19	
								3	5.85	4.19	
								3	5.85 5.85	4.19	
								4	7.81	5.59	
								4	/.81	5.59	
								4	/.81	5.59	
								4	7.81	5.59	
								4	7.81	5.59	
								5	9.76	6.98	
								6	11.7	8.38	
								6	11.7	8.38	
								6	11.7	8.38	
								7	13.7	9.78	
	ł			•				7	13.7	9.78	
		L	<u> </u>	<u> </u>				9	17.6		

(c) Time weighted

Table 4.2 (continued)

SIC PENETRATION OBSERVED DURING ACCELERATED IRRADIATION TESTING OF TRISO HTGR FUEL

	Irra-		(c) Irra- dia- tion Tem-	Activa Ener Weigi	rgy nted	Irra- dia-		Decrease in SiC			
Rate	dia-		pera-	Linear	Square Root	tion		Thick-	Ra	te	
Retrieval Number	tion Test	Posi- tion	°C	Model °C	Model °C	Time hr	PIE	ness µm	µm/hr x 10 ⁴	$\frac{\mu m}{\sqrt{hr}}$ x 10 ²	Reference
6157-08-010	HRB-14	12	1025	1073	1082	5124	GA	2	3.90	2.79	GA-A15969
	1							3	5.85	4.19	
								3			
								3			
								3			
								3			
								3			
								3 4	7.81	7	
								4 4	7.81	5.59 5.59	
			+		l v			4 5	9.76	5.39 6.98	
					l			2	9./0	0.98	
		14	1010	1060	1069			2	3.90	2.79	
		1						3	5.85	4.19	
								3	5.85	4.19	
↓ ↓	↓		•	V		•	¥	4	7.81	5.59	¥
OR2486-H	HRB-12	4	1155	1155	1165	6602	ORNL	16.3	24.7	20.1	Private communication
OR2494-H	₩	5	1260	1165	1175	₩	1	16.9	25.6	20.8	T. N. Tiegs (ORNL) ORNL-5584
	HRB-11	2	1000	1091	1099	6559		17	25.9	21.0	
0R2460-H		16	1250	1230	1241	1		17	16.8	13.5	
OR2458-H		21	1220	(d)	(d)			11	16.8	13.5	
OR2471-H	T T	21	1220						1010		₹
OR52-A	HRB-4	3A	1300	1153	1161	5855		20	34.2	26.1	ORNL-5115
OR52-A	∳	3B	1300	1118	1126	🕴		13	22.2	17.0	
A615	OF-2	C2-1	1200	(d)	(d)	8440	4	1.8	2.13	1.96	Private communication T. N. Tiegs (ORNL) ORNL-5428

(d)_{Not} determined

•

Data Retrieval	Irradia- tion		Time Weighted Irradia- tion Tempera- ture	Energy	ation Weighted Square Root	Irradia- tion		Decrease in SiC Thick- ness	Rai um/hr	un/var		
Number	Test	Position	•c	•c	Model,*C	Time	PIE	Цma	x 10 ⁴	x 10 ²	Refer	ence.
4161-01-030	FTE-14	TS83	1534 ^(b)	(e)	(e)	8712	GA	10	11.5	10.7	GA-A13	3944
1		T\$5-6	1418 ^(b)	(c)	(c)			10	11.5	10.7		
7		T\$4-6	1364 ^(b)	(c)	(c)			4.5	5.17	4.82		
4161-01-031	*	2-1-7	1275	1305	1313	, Y		5.0	5.74	5.36		
4161-01-030	FTE-15	TS8-3	1468 ^(b)	(c)	(c)	14901		2	1.34	1.64		
1		T\$5-6	1389 ^(b)	(c)	(e)			15	10.1	12.3		
+		TS4-6	1355 ^(b)	(c)	(e)			5	3.36	4.10		
4161-01-031		2-2-5	1299	1333	1343			12	5.05	9.83		
1		2-1-5	1319	1354	1365		11	9	6.04	7.37		
ŧ	+	2-1-9	1185	1227	1238	•	•	4	2.68	3.27		
4000-325	RTE-1	3-6-6	1267	1302	1310	18358	ORNL	5	2.72	3.69		
	RTE-2	6-1-1	1036	1068	1079	18641	11		0	0.732		
4000-307	RTE-2	6-1-3	1036	1074	1084	18641		1.0	0.536			
		body 3	1044	(e)	(c)		GA	2.5	1.34	1.83		
		1, -			ļ			, i				
	ate-4	4-7-3	1237	1240	1241	9931	GA	5	5.03	5.02		
	+	4-1-3	1237	1240	1241	•	ORNL	5	5.03	5.02		
	RTE-5	3-5-6	1034	1061	1066	24832	ORNIL	5	2.01	3.17		
	RTE-6	4-1-1	1095	1119	1124	24832		s	2.01	3.17		
	RTE-7	5-5-5	1056	1076	1077	6474		· 1.5	2.32	1.86		
	RTE~8	5-7-1	1072	1097	1101	24832		5	2.01	3.17		
	FTE-S	2-5-7	1110	1155	1164	24832	GA	1.7	0.685	1.08		
Ļ	FTE-5	3-5-2	1085	1115	1124	24832	GA	1.8	0.725	1.14		
,		1	1					[[
ORNL-13-6	FTE-13	2-2-2	1186	1226	1237	12288	ORNL	1.9	15.5	17.1	1	m -7203
ł		2-2-6	1306	1348	1358		11	23	18.3	20.3	GA-904	
		2-2-6	1306	1348	1358			22)	1	Į	1	⊡ 47203
		2-2-9	1162	1200	1210 1138			18	14.6	16.2	1	M-7203
Ŷ		2-2-12	1091	1				2	1.63	1.80	1	M-7203
ORNL-13-1		2-5-9	1135	1173	1183		11	4	2.03	2.25	GA-904	
		2-5-9	1135	1173	1183			115	1		1	M-7203
7		2-5-12	1068	1106	1115			1	0.814	0.902	ORNL/1	M −7203
ORNL-13-4		2-6-2	1186	1226	1237			4)			GA-904	053A
		1 1	1186	1226	1237			3	2.85	3.16	ORNL/1	DM-7203
		•	1186	1226	1237			12	9.77	10.8	ORNL/1	M-7203
		2-6-6	1306	1348	1358			14 2	8.75	9.70	GA-904	
		2-6-6	1306	1348	1358			7.5\$	0.75	3.10	ORNL/1	M-7203
		2-6-9	1162	1200	1210			6	4.88	5.41	GA -904	
1		2-6-12	1091	1127	1138 1336			2	1.63	1.80	1	M-7203
ORNL-13-2		2-7-6	1279	1325	1336			4.5	3.46	3.83	GA-904	
		2-7-6	1279 1069	1325	1112			4)				M-7203
12 F		2-7-12	1137	1175	1185				3.26	3.61	1	M/7203
08NL-13-5		2-6-9	1.37	1'''			1'	3	2.44	2.71	G&=904	053A

SIC PENETRATION OBSERVED DURING REAL TIME IRRADIATION TESTING OF HTGR FUEL IN PEACH BOTTOM TEST ELEMENTS

(a) Volume averaged

* 5

(b) Maximum loose particle temperature

(c) Not determined

(d) Maximum fuel rod temperature

•

٠

.

ORNL	Tempera- ture	Out-of-Pile Heating Time	SiC Penetra- tion	Ra	ıte
Sample	°C	hr	μm	µm/hr	$\mu m/\sqrt{hr}$
1-2 ^(a)	1772	50	34	0.68	4.81
1-2	1760	50	43	0.86	6.08
1-2	1739	50	21	0.42	2.97
1-2	1703	50	37	0.74	5.23
1-2	1650	50	18	0.36	2.55
1-2	1632	50	19	0.38	2.69
1-2	1614	50	23	0.46	3.25
1-2	1614	50	21	0.42	2.97
1-2	1519	352.8	51	0.014	0.859
2-4 ^(b)	1661	215	20	0.093	1.36
2-4	1646	215	28	0.13	1.90
2-6 ^(c)	1688	215	30	0.14	2.05
2-6	1650	215	26	0.12	1.77
2-7 ^(d)	1715	215	33	0.15	2.25
2-7	1621	215	24.5	0.11	1.67

ORNL OUT-OF-PILE FISSION PRODUCT-SiC REACTION RESULTS FOR SYNTHETICALLY DOPED KERNELS FROM ORNL/TM-6991 (Ref. 21)

 $(a)_{UC_2}$ plus Mo-Ru-Rh-Pd (batch OR-2773)

(b)_{UO2} plus Mo-Ru-Pd (batch OR-2822)

(c) 90% UO₂/10% UC₂ plus Mo-Ru-Pd (batch OR-2823)

 $(d)_{65\%}$ UO₂/35% UC₂ plus Mo-Ru-Pd (batch OR-2807)

× •

ORNL RAW DATA	FOR NdC ₂ -SiC	INTERACTION	IN	SiC-COATED
	PARTICLES AT	278°C/cm ^(a)		

Run Number/		Pene- tration	Tempera-	Ra	te
Time (hr)	Particle Number	of SiC (µm)	ture °C	µm/hr x 104	$\frac{\mu m}{\sqrt{hr}} x 10^2$
1/144	1	11	1906	764	91.7
t	2	10	1882	694	83.3
	3	15	1789	1040	125
	4	13	1828	903	108
	6	10	1760	694	83.3
	8	5	1676	347	41.7
	9	9	1711	625	75.0
	10	5	1723	347	41.7
	11	6	1654	417	50.0
	12	6	1635	417	50.0
	5	12	1819	833	100
	7	9	1743	625	75.0
4/187	6	35	1855	1872	256
	9	16	1868	656	117
	18	8	1607	428	58.5
	19	8	1596	428	58.5
	21	9	1600	481	65.8
4/90	2	14	1920	1556	148
1	3	12	1901	1333	126
	4	14	1901	1556	148
	6	16	1855	1778	169
	7	14	1846	1556	148
	8	14	1832	1556	148
	9	15	1868	1667	158
	10	13	1841	1444	137
	11	14	1873	1556	148
	12	10	1819	1111	105
	13	9	1789	1000	94.9
	14	10	1747	1111	105
↓	15	7	1727	778	73.8

(a) Lindemer, T. B., <u>et. al.</u>, Ref. 21

.

ORNL RAW DATA FOR NdC₂-SiC INTERACTION IN SiC-COATED PARTICLES AT 278°C/cm^(a)

۲

+

Run Number/		Pene- tration	Tempera-	Ra	te
Time (hr)	Particle Number	of SiC (µm)	ture °C	µm/hr x 104	$\mu m/\sqrt{hr}$ x 10^2
4/90	16	10	1692	1111	105
	17	8	1639	889	84.3
	18	7	1607	778	73.8
	19	3	1596	333	31.6
	20	4	1614	444	42.2
♥	22	8	1614	888	84.3
6/500 ^(b)	1	9.7	1741	194	43.4
-	5	18.4	1720	368	82.2
	6	14.1	1670	282	63.1
	8	12.9	1700	258	57.7
	10	20.3	1682	406	90.8
	11	18.3	1686	366	81.8
	12	12.9	1668	258	57.7
	14	13.2	1650	264	59.0
	15	13.9	1636	278	62.2
	16	13.7	1641	274	61.3
	18	13.3	1550	266	59.5
	22	10.0	1552	200	44.7
	23	13.1	1614	262	^{58.6}
	24	14.2	1618	284	63.5
	26	6.7	1586	134	30.0
1	30	19.0	1470	380	85.0

(b) Linear fit of data obtained over 274h.

Table 4.5 (continued)

905837/1

ORNL RAW DATA	FOR NdC ₂ -SiC	INTERACTION	IN	SiC-COATED
	PARTICLÉS AT	278°C/cm ^(a)		

* *

Run Number/		Pene- tration	Tempera-	Rate	
Time (hr)	Particle Number	of SiC (µm)	ture °C	μ m/hr x 10 ⁴	µm/√hr x 10 ²
3/4265	1	5	1409	11.7	7.65
	2	5	1368	11.7	7.65
	3	3	1294	7.03	4.59
	4	4	1303	9.38	6.12
	5	2	1317	4.69	3.06
	6	5	1298	11.7	7.65
	7	4	1201	9.38	6.12
	8	2	1215	4.69	3.06
	9	2	1191	4.69	3.06
	10	2	1178	4.69	3.06
	11	2	1215	4.69	3.06
	12	2	1259	4.69	3.06
	13	1	1238	2.34	1.53
	15	2	1196	4.69	3.06
	16	2	1150	4.69	3.06
	17	2	1131	4.69	3.06
	18	1	1099	2.34	1.53
<u> </u>	19	1	1108	2.34	1.53

,

*

ORNL RAW			INTERACTION	SiC-COATED
	P	ARTICLES AT	278°C/cm ^(a)	

Run Number/		Pene- tration	Tomporta	Ra	te
Time (hr)	Particle Number	of SiC (µm)	Tempera- ture °C	µm/hr x 104	$\frac{\mu m}{\sqrt{hr}}$ x 10 ²
1/144	4	18	1828	1250	150
	5	16	1751	1110	133
	6	18	1772	1250	150
	8	15	1680	1040	125
	9	10	1646	694	83.3
	10	11	1614	764	91.7
Y	7	14	1747	972	117
2/386	4	6	1635	155	30.5
	9	5	1548	130	25.5
	10	5.5	1497	143	28.0
	13	3	1532	77.7	15.3
	14	4	1500	104	20.4
	15	3	1463	77.7	15.3
	17	2	1445	51.8	10.2
	19	2	1451	51.8	10.2
	20	3	1500	77.7	15.3
	21	6	1451	155	30.5
	1	10	1688	259	50.9
	2	7	1673	181	35.6
	3	7	1661	181	35.6
	5	10	1646	259	50.9
	7	7	1593	181	35.6
	8	7	1562	181	35.6
	2	4	1552	104	20.4
	16	6	1431	155	30.5
	18	7	1481	181	35.6

(a) Lindemer, T. B. <u>et. al.</u>, Ref. 21

ORNL RAW DATA FOR LaC₂-SiC INTERACTION IN SiC-COATED PARTICLES AT 278°C/cm^(a)

*

Run Number/		Pene- tration	Tempera-	Rate	
Time (hr)	Particle Number	of SiC (µm)	ture °C	µm/hr x 104	$\mu m/\sqrt{hr}$ x 10^2
3/3428	3	5	1396	14.6	8.54
	4	5	1411	14.6	8.54
	5	5	1399	14.6	8.54
	6	4	1388	11.7	6.83
	7	3	1372	8.75	5.12
	8	3	1364	8.75	5.12
	9	4	1343	11.7	6.83
	12	4	1335	11.7	6.83
	13	4	1377	11.7	6.83
	14	2	1302	5.83	3.42
•	15	3	1307	8.75	5.12
4/90	1	23	1901	2560	242
	3	25	1901	2780	264
	4	25	1850	2780	264
	5	24	1841	2670	250
	7	18	1772	2000	190
	9	19	1751	2110	200
	11	18	1731	2000	190
	13	17	1747	1890	、179
	15	19	1785	2110	200
	16	18	1785	2000	190
	17	15	1747	1670	158
	19	15	1723	1670	158
	20	14	1703	1560	148
	21	12	1676	1330	127
•	23	11	1635	1220	116

Table 4.7

ж т

ORNL RAW	DATA FOR	Pd-SiC	INTERACTION	IN	SiC	COATED
	PART	ICLES AT	275°C/cm(a))		

		Pene- tration	Tomport	Ra	te
Batch	Particle Number	of SiC (µm)	Tempera- ture °C	µm/hr x 104	$\mu m/\sqrt{hr}$ x 10^2
Pd-1	2	2.5	1335	12.5	5.59
	3	3.0	1305	15.0	6.71
	1	3.0	1460	15.0	6.71
¥	4	2.0	1300	10.0	4.47
Pd-2	6	4.5	1425	22.5	10.1
V	21	1.5	1275	7.5	3.35
Pd-3	3	2.0	1305	10.0	4.47
	1	3.0	1470	15.0	6.71
▼	2	2.0	1310	10.0	4.47
Pd-4	4	4.0	1350	20.0	8.94
Pd-5	1	3.0	1490	15.0	6.71
▼	11	4.0	1375	20.0	8.94
Pd-6	5	4.0	1420	20.0	8.94
	11		1360	22.5	10.1
♥	18	2.0	1320	10.0	, 4.4 7
Pd-7	2	6.0	1430	30.0	13.4
	6	5.5	1365	27.5	12.3
*	14	3.5	1290	17.5	7.83

(a)_{Lauf, R. J., Ref. 19} (b)_{After 2000 hr anneal time}

Table 4.7 (continued)

.

ORNL RAW DATA FOR Pd-SIC INTERACTION IN SIC COATED PARTICLES AT 275°C/cm^(a)

۰. ۲

4

		Pene- tration	Tempera-	Ra	te
Batch	Particle Number	of SiC (µm)	ture °C	µm/hr x 104	$\mu m/\sqrt{hr}$ x 10^2
Pd-8	1	7	1480	35.0	1.57
	2	8	1490	40.0	17.9
	3	6	1490	30.0	13.4
	5	8	1465	40.0	17.9
	9	6.5	1425	32.5	14.5
V	17	5	1330	25.0	11.2
Pd-9	3	6.5	1425	32.5	14.5
	4	3.0	1400	15.0	6.71
V	10	2.5	1340	12.5	5.59
Pd-10	2	7	1450	35.0	15.7
	10	7	1375	35.0	15.7
▼	13	4	1325	20.0	8.94
Pd-11	4	5	1390	25.0	11.2
	7	4.5	1370	22.5	10.1
♥	8	8	1345	40.0	17.9
Pd-12	1	6.5	1395	32.5	14.5
	2	6	1390	30.0	13.4
	3	11.5	1395	57.5	25.7
	8	7	1345	35.0	15.7
ļ				<u> </u>	

•

Table 4.8

*

1			Linear Model		Square Root Model			
Test Element	Rod	Measured μm	^T ęff.	Pre- dicted µm	90% Confi- dence Range	^T ęff.	Pre- dicted μm	90% Confi- dence Range
FTE-14	2-1-7	5	1305	21	11-87	1313	11	6-28
FTE-15	2-2-5 2-1-5 2-1-9	12 9 4	1333 1354 1227	46 54 18	31-147 12-59 29-138	1343 1365 1238	16 18 8.8	11–36 13–41 6–21
FTE-5	3-5-2 2-5-7	1.8 1.7	1115 1155	9.3 14	6-30 10-47	1124 1164	5.3 7.0	4-12 5-16
FTE-13	$\begin{array}{c} 2-2-2\\ 2-2-6\\ 2-2-9\\ 2-2-12\\ 2-5-9\\ 2-5-12\\ 2-6-2\\ 2-6-2\\ 2-6-2\\ 2-6-6\\ 2-6-9\\ 2-6-12\\ 2-7-6\\ 2-7-12\\ 2-8-9\end{array}$	2.5 1 3.5 12 10.8 6 2 4.5	1226 1348 1200 1127 1173 1106 1226 1226 1348 1200 1127 1325 1103 1175	$ 18 \\ 52 \\ 14 \\ 6.3 \\ 10 \\ \\ 18 \\ 18 \\ 52 \\ 14 \\ 6.3 \\ 43 \\ 4.8 \\ 11 \\ $	11-6432-1829-494-246-3911-6411-6432-1829-494-2426-1583-197-40	1237 1358 1210 1138 1185 1115 1237 1237 1358 1210 1138 1336 1112 1185	8.7 18 7.4 4.5 6.2 8.7 8.7 18 7.4 4.5 16 3.7 6.2	$ \begin{array}{c} 6-22\\ 12-42\\ 5-18\\ 3-12\\ 4-16\\\\ 6-22\\ 6-22\\ 12-42\\ 5-18\\ 3-12\\ 10-39\\ 2-10\\ 4-16\\ \end{array} $
RTE-1	3-6-6	5	1302	43	29–138	1310	15	10-33
RTE-2	6-1-1 6-1-3	1 2.5	1068 1074	4 4	2–16 3–17	1079 1084	3.2 3.4	1.9-9.0 2-9.4
RTE-4	4-7-3 4-1-3	5 5	1240 1240	13 13	8–52 8–52	1241 1241	7.3 7.3	5–19 5–19
RTE-5	3-5-6	5	1061	5	3-16	1066	3.4	2.4-7.7
RTE-6	4-1-1	5	1119	10	7-30	1124	5.2	3.9-11
RTE-7	5-5-5	15	1076	15	1-7	1077	1.9	1-6
RTE-8	5-7-1	5	1097	7.5	5-23	1101	4.4	3.3-9.4

COMPARISON OF MEASURED AND PREDICTED SIC PENETRATION IN PEACH BOTTOM TEST ELEMENT

4.6 Additional SiC Corrosion Mechanisms

Besides the fission products described in section 4.1, a number of materials have been shown to react with SiC. Particular care needs to be taken during fuel manufacturing to avoid contaminating fuel particles with these materials. Included in this section is a list of these materials which can react with SiC and a literature reference to the reaction. This list does not include all possible reactants; but those that may be present due to the coating process or as contaminates in the graphite fuel block or fuel rod resin.

- Fe and Cu; KORTEL, A. A., et. al., 1ZV, Akad, Nauk SSR, Neorg. Mater. 1970, 6(10), 1740-3, from Chemical Abstracts, <u>74</u>, 1971, Abstract No. 68923
- <u>CaO</u>; PANKON, V. A., <u>et. al.</u>, Viniti 4170-76 from Chemical Abstracts, 89, 1978 Abstract No. 94990m.
- Fe and Ni; Yurchenko, O. S., Porosh. Met. 1971, 11(1) 45-9, from Chemical Abstracts <u>74</u>, 1971 Abstract No. 114971a.
- <u>A1</u>; KORTEL, A. A., <u>et. al.</u>, Tr., Vs. Es. Gos. Inst. Nauchi-Issled. Pro Rab. Ogn Eupor. Prom., <u>1971</u> No. 42, 115-24, from Chemical Abstracts <u>76</u>, 1972 Abstract No. 1441869
- 5. <u>Ti, V, A1</u>; RATLIFF, J. L., PhD Thesis, Ohio State Univ., Columbus Ohio, 1969, from Diss. Abstr. Int. B 1970, 30(10), 4638-9
- 6. <u>C1</u>; GRUBMEIER, et. al., Nuclear Technology, Vol. 35, Sept. 1977, p. 413

Of particular concern are chlorine and iron. Chlorine can contaminate the particles during SiC deposition if the inner pyrocarbon layer is porous. Grübmeier has shown that CL, in combination with uranium or certain fission products is extremely corrosive to SiC (Refs. 39, 40). In addition, unirradiated particles have shown SiC corrosion during out-of-pile thermal gradient testing and the cause has been attributed to the presence of CL (Ref. 41).

Iron can be an impurity in the pitch which bonds the fuel particles into fuel rods. Deterioration of SiC, beginning at the outer PyC-SiC interface, has been observed in TRISO particles and was attributed to iron migrating through the outer pyrocarbon and reacting with the SiC to form iron silicides (Ref. 42).

SiC coating failure has also been attributed to the presence of free Si metal in the SiC coating. In a study on coated UC_2 particles containing free Si in the SiC layer, Fukuda, <u>et. al.</u>, found that the SiC layer deteriorated after heating above 1460°C (Ref. 42). This phenomenon may explain the deterioration of the SiC in the LEU UO_2 particles shown in Fig. 3.15. Microprobe X-ray analysis shows that these out-of-pile heat treated samples of TRISO UO_2 have islands of pure Si in the SiC. Since the samples were heated at 1500°C, it is probable that the void areas were caused by melting of the excess silicon.

4.7 SiC Failure Criterion

The extent that the SiC layer can be penetrated before it losses it capability to retain fission products is of concern when working with HTGR fuel that will remain in a reactor for ~ 6 years. The current model used to predict the impact of fission product-SiC reactions assumes that when the SiC thickness is reduced by 50%, metallic fission product release will begin at a rate controlled by diffusion through the intact outer pyrocarbon layer. Although the data are limited in this are, Tiegs has observed that no volatile Cs-137 loss occurred after Pd penetration 63% of the way through a 41.8 μ m SiC layer in a dense LEU UO₂ particle which was irradiated in capsule HT-31 (Ref. 26). In addition, results of GA out-of-pile tests show that Cs-137 is not released from irradiated TRISO UC₂ particles heated at ~ 1500 °C even though the SiC thickness is decreased by 73-80% (Ref. 44).

٠

--- --- -

•

5. CONCLUSIONS

The following are conclusions concerning the reaction of fission products with the SiC layer in TRISO coated HTGR fuel. These conclusions and recommendations are based on experiments discussed in this report which included data from out-of-pile thermal gradient heating tests and from irradiation tests of HTGR fuel.

- Fission products which react with SiC are the rare earth metals (cerium, neodymium, lanthanum, samarium, praseodymium, and europium); palladium, ruthenium, rhodium of the platinum family; strontium and silver. For low enriched fuels, oxide fuels and fuel operating at <1250°C, palladium is the major concern.
- 2. Chlorine, combined with uranium and fission products is extremely corrosive to SiC. Chlorine contamination of the particles tested during in-pile irradiation could have caused an accelerated SiC corrosion. This possibility needs to be studied further, and should include electron microprobe analysis of chlorine in historical samples of the particles used in capsule tests.
- 3. The data base on fission product-SiC reactions in LEU fuel candidates is not sufficiently large to warrant treating it separately from HEU data. In addition, the scatter in the rate data during in-pile fuel tests masks any differences in rate of fission product-SiC reactions in oxide, carbide or oxycarbide fuel. This data scatter may be caused by batch-to-batch differences in particle characteristics.
- 4. The time dependence of SiC thinning caused by fission product-SiC reactions during irradiation is not known. Both square-root time and a linear-time models fit the experimental data. During out-of-pile experiments, tests at <a>1500°C generally show linear time

dependence; while at $\lesssim 1500$ °C both square root time dependence and linear time dependence has been observed.

5. The temperature dependence of the rate coefficient of SiC thinning for both models follow an Arrhenius expression. For the linear time dependence model,

$$k_{\ell}(\mu m/hr) = 2.114 \times 10^3 \exp - \frac{1.795 \times 10^3}{8.314 T(K)}$$

and for the square root model,

$$k_{\rm p}(\mu m^2/hr) = 7.957 \times 10^5 \, {\rm exp.} - \frac{2.369 \times 10^5}{8.314 \, {\rm T}({\rm K})}$$

- 6. Because of the temperature gradient across a fuel rod, further postirradiation examinations should include measurement of the radial locations of the particles which exhibit SiC corrosion. This observation would allow a better estimate of particle temperatures.
- 7. The rate of SiC corrosion caused by fission product attack during real time irradiation testing in Peach Bottom test element fuel was slower than the rate observed during accelerated irradiation testing. The reason for this needs to be determined. Included in studies of this phenomenon should be a determination of the effect of thermal and fast neutron flux in the SiC-fission product reaction rate.
- 8. The amount of SiC thinning necessary before fission products are released from the particle needs to be determined. Design studies use a 50% reduction in the SiC thickness as the criteria for fission

product release. Two experiments suggest that this is a conservative factor and that the SiC layer may effectively retain fission products after 70% reduction in thickness has occurred. The effect of a reduced thickness on additional modes of failure also needs to be studied.

~

1

6. REFERENCES

- REAGAN, P. E., F. L. CARLSEN, and R. M. CARROLL, "Fission Gas Release from Pyrolytic-Carbon-Coated Fuel Particles During Irradiation", Nucl. Sci. Eng., 18, 301(1964)
- BENTZ, G., R. DOBROZEMSKY, F. P. VIEHBOCK and H. WOTKE, "Determination of the Distribution of Fission Products in Fuel Particles Coatings by the Spattering Technique", J. Nucl. Mater., <u>38</u>, 77 (1971)
- YOUNG, C. A. and C. B. SCOTT, "Postirradiation Examination of Capsule P13Q", General Atomic Report GA-A14174, General Atomic Co., 1977
- KANIA, M. J., <u>et. al</u>., "Irradiation Performance of HTGR Fertile Fuel in HFIR Target Capsules HT-12 through HT-15: Part 1, ORNL/TM-5305 (February 1977)
- 5. LONG, Jr., E. L., <u>et. al.</u>, "Performance of HTGR Fertile Particles Irradiated in HFIR Capsule HT-32, ORNL/TM-7035 (April 1980)
- FOERTHMANN, R., GRUBMEIER, H. J. KLEYKAMP, H., and A. NAOUMIDIS, Thermodyn, Nucl. Mater. 1974, Proc. of an IAEA Symposium in Vienna, Sept. 21-25, 1974, Vol. 1 (1975)
- 7. MORLEVAT, J. P., J. Nucl. Mater., 1974, 50(2) 119-26
- 8. Analytical Chemistry Department Procedure, ACO; CL-025
- Memo from Pam Koch, "Revised Stand-Alone Burnup Code", FMD:116:PK:78 (1978)
- 10. STANSFIELD, O. M., C. B. SCOTT, and J. CHIN, "Kernel Migration in Coated Carbide Fuel Particles", Nucl. Tech., 25, 517 (1975)

- SMITH, C. L., "Migration of ThO₂ Kernels under the Influence of a Temperature Gradient", GA-A14058, General Atomic Company, 1976
- 12. KETTERER, J. W. and R. E. BULLOCK, "Capsule HRB-15B Postirradiation Examination Report GA-A15940", General Atomic Company (October 1980)
- 13. HOMAN, F. J., T. B. LINDEMER, E. L. LONG, JR., T. N. TIEGS, and R. L. BEATTY, "Stoichiometric Effects on Performance of High-Temperature Gas Cooled Reactor Fuels from the U-C-O System", Nucl. Technol. 35(2): 428-41 (Sept. 1977)
- BROWN, P. E., BROWNSWORD, M., FAIRCLOTH, R. L., INSS, A. J. and
 E. W. HOOPER, "Metal Fission Product Behavior in HTR UO₂-Coated Particle Fuel", AERE-R-8065, AERE Harwell, 1975
- 15. SCOTT, C. B., D. P. HARMON, and J. F. HOLZGRAF, "Postirradiation Examination of Capsules P13R and P13S", ERDA Report GA-A13827, General Atomic Co., October 8, 1976
- HARMON, D. P., and C. B. SCOTT, "Development and Irradiation Performance of LHTGR Fuel", ERDA Report GA-A13173, General Atomic Company, October 31, 1975
- 17. SMITH, S. L., "SiC-Fission Product Reactions in TRISO UC₂ and WAR UC_xO_y Fissile Fuel, Part 1: Kinetics of Reactions in a Thermal Gradient", General Atomic Report GA-A14313, September 1977
- BROWN, P. E. and R. E. FAIRCLOTH, "Metal Fission Product Behavior in High-Temperature Reactors - UO₂ Coated Particle Fuel", J. Nucl. Mater. <u>59</u>, 29 (1976)
- 19. LAUF, R. J., "The Interaction of Silver and Palladium with Silicon Carbide in HTGR Fuel Particles - Preliminary Report", ORNL/TM-7393, July 1980

20. Memo from C. L. SMITH to T. D. GULDEN, "Pd-SiC Reactions in HEU and MEU Fuels", September 4, 1979, FCB:090:CLS:79

۴,

- 21. PEARSON, R. L., LINDEMER, T. B. and E. C. BEAHM, "Simulated Fission Product-SiC Interaction in TRISO-Coated LEU or MEU HTGR Fuel Particles", Oak Ridge National Laboratory Report ORNL/TM-6991, November 1980
- 22. KLEYKAMP, H., "Mikrosondenumtersuchungen zum Verhalten der Spaltproducte in Hoch Abgebrannten HTR-Brennstoffen", Kernforschungszentrum Karlsruhe Report KFK 2213, October 1975
- 23. HTGR Base Program Quarterly Progress Report for the Period Ending May 31, 1973", Gulf-GA-A12599, p. 87, Gulf General Atomic Company (1973)
- 24. HOMAN, F. J. and E. L. LONG, JR., "Irradiation Performance of HTGR Recycle Fissile Fuel", ORNL/TM 5502, Oak Ridge National Laboratory (1976)
- 25. TIEGS, T. N., "Irradiation Performance of Pu-Containing Coated Particle Fuels", Trans. Am. Nucl. Soc. (TANSO 28): 175-77 (June 1978)
- 26. TIEGS, T. N., "Fission Product Pd-SiC Interaction in Irradiated Coated Particle Fuels", ORNL/TM-7203, April 1980
- 27. TIEGS, T. N., et. al., "Irradiation Performance of HTGR Fuel on HFIR Capsule HT-31", ORNL-5510 (May 1979)
- 28. WEBER, G. W., R. L. BEATTY, and V. J. TENNERY, "Processing and Composition Control of Weak-Acid-Resin DerivedFuel Microspheres", Nucl. Technol. 35(2): 217-26 (September 1977)
- 29. SHARP, J. H., G. W. BRINLEY, and B. N. NARAHARI ACHAR, "Numerical Data for Some Commonly Used Solid State Reaction Equations", Journal of the American Ceramic Society, 49(7), p. 379

- 30. HTGR Fuel Development Department Technical Status Report for the Quarter Ending March 31, 1980, General Atomic Report 904457, Issue A, April 1980
- 31. MONTGOMERY, F. C., "Kinetics of Fission Product-SiC Reactions", General Atomic Report 905239, September 1980

Y

- 32. PEARSON, R. E. and T. B. LINDEMER, "The Interaction of LaC₂ and NdC₂ with SiC in HTGR Particles", CONF-770208-5, Oak Ridge National Laboratory, 1977
- 33. KAAE, J. L., "Chemical Attack of SiC and ZrC TRISO Coatings in Pd-Doped UO₂ Particles", General Atomic Document No. 905255/1. November 1980
- Introduction ot Statistical Analysis, 3rd Edition, DIXON, W. J. and
 F. J. MASSEY, JR., McGraw Hill Book Co., New York, 1969, p. 199
- 35. TIEGS, T. N. and E. L. LONG, Jr., "Postirradiation Examination of Recycle Test Elements from the Peach Bottom Reactor", ORNL-5422
- 36. SAURWEIN, J. J., <u>et. al.</u>, "Final Summary Report on the Peach Bottom Test Element Program", GA-15000, to be published
- 37. <u>Introductory Mathematical Statistics</u>, Erwin Kreyszig, John Wiley and Sons, Inc., New York, 1970, p. 352
- 38. Memo from J. J. SAURWEIN to F. C. MONTGOMERY, "Comparison of Measured and Calculated SiC Coating Penetration in Peach Bottom Test Element Fuel", JJS:004:CM:81, April 8, 1981
- 39. BENZ, R., H. GRÜMEIER and A. NAOUMIDIS, "Experimental Observations on In-Pile and Out-Of-Pile Fission Products SiC-Interactions", IRW-TN-119/80, October 1980
- 40. GRUBMEIER, H., A. NAOUMIDIS and B. A. THIELE, "Silicon Carbide Corrosion in High Temperature Gas-Cooled Reactor Fuel Particles", Nuclear Technology, 35, September 1977 (413)

- 41. BULLOCK, R. E. and S. A. STERLING, Private Communication, December 1976
- 42. BULLOCK, R. E., "Annealing Tests of Coated Fuel Particles", General Atomic, Document No. 905779, January 23, 1981
- 43. FUKUDA, K., KASHIMINA, S., TOBITA, T., and KAZUMI UOAMOTO, "Observations of Coating Failure at High Temperature in the Coated UC₂ Particles Containing UC and Free Si", J. Nucl. Sci. Technol., 10(10), 1973 (54)
- 44. HTGR Fuel Development Department Technical Status Report for the Quarter Ending June 30, 1980, General Atomic Report 904907, Issue A, August 1980