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Abstract: Metamorphosis is a common life-cycle transition in organisms as diverse as 
amphibians, insects, fishes and crustaceans, and the timing of this transition often affects an 
individual's fitness. Here, we manipulated the timing of the metamorphosis in the freshwater 
copepod, Diaptomus leptopus, and then followed individuals over their entire life cycle to assess 
the fitness consequences of variation in age and size at metamorphosis. In 3 separate 

experiments, individuals were raised in different food conditions: low food (0.2 J..Lg C/ml) 

switched to high food (0. 7J..Lg C/ml), or high food switched to low food, at several different larval 
and juvenile stages. Control individuals were reared on high or low food concentrations over 
their entire life cycles. For each individual, we measured age and size at metamorphosis and age 
and size at maturity; for females we also measured total lifetime egg production and calculated a 

composite fitness measure, A.. Statistical analyses showed few effects of treatment on age or size 
at metamorphosis; of these two traits, only age at metamorphosis correlated significantly with 
age at maturation, suggesting fitness effects. Changes in food conditions during juvenile stages 
also had no effect on size at maturity, but caused significant differences in age at maturity. Only 

age at maturity and egg production covaried significantly with A.. Because egg production was 
significantly correlated to age at maturity, the fitness differences we observed may be primarily 
due to variation in developmental rates and age at maturity. These results suggest that natural 
selection should favor rapid development in field populations, and that larvae should 
metamorphose (and perhaps mature) at minimum possible sizes. They also suggest that body 
size plays a different life-history role in these organisms than is recognized in most 
poikilotherms. 
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Abstract 

Metamorphosis is a common life-cycle transition in organisms as diverse as amphibians, 

insects, fishes and crustaceans, and the timing of this transition often affects an individual's 

fitness. Here, we manipulated the timing of metamorphosis in the freshwater copepod, 

Diaptomus /eptopus, and then followed individuals over their entire life cycle to assess the 

fitness consequences of variation in age and size at metamorphosis. In 3 separate experiments, 

individuals were raised in different food conditions: low food (0.2 ).lg C/ml) switched to high 

food (0. 7 ).lg C/ml), or high food switched to low food, at several different larval and juvenile 

stages. Control individuals were reared on high or low food concentrations over their entire life 

cycles. For each individual, we measured age and size at metamorphosis and age and size at 

maturity; for females, we also measured total lifetime egg production and calculated a composite 

fitness measure, A.. Statistical analyses showed few effects of treatment on age or size at 

metamorphosis; of these two traits, only age at metamorphosis correlated significantly with age 

at maturation, suggesting fitness effects. Changes in food conditions during juvenile stages also 

had no effect on size at maturity, but caused significant differences in age at maturity. Only age 

at maturity and egg production covaried significantly with A.. Because egg production was 

significantly correlated to age at maturity, the fitness differences we observed may be primarily 

due to variation in developmental rates and age at maturity. These results suggest that natural 

selection should favor rapid development in field populations, and that larvae should 

metamorphose (and perhaps mature) at minimum possible sizes. They also suggest that body size 

plays a different life-history role in these organisms than is recognized in most poikilotherms. 
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Introduction 

Complex life cycles are characterized by an abrupt ontogenetic change in an individual's 

morphology, physiology, behavior and ecology that is defined as metamorphosis (e.g.; Wilbur 

1980). This transition is common among diverse organisms ranging from amphibians and insects 

to fish and crustaceans. Within any of these taxa, the age and size at which metamorphosis 

occurs varies among individuals (e.g., Wilbur and Collins 1973; Semlitsch and Gibbons 1985; 

Chambers and Leggett 1987; Forrest 1987; Newman 1992; Twombly 1995). Because the timing 

of metamorphosis is often assumed to affect an individual's fitness, variation in these traits has 

attracted considerable theoretical and experimental interest (Alford and Harris 1988; Hensley 

1993; Leips and Travis 1994; Bradshaw and Johnson 1995; Hentschel1999; Morey and Reznick 

2000). 

Age and size at metamorphosis often affect components of fitness directly. These traits 

influence age and size at maturity in several amphibians (Berven and Gill1983; Smith 1987; 

Semlitsch et al. 1988; Skelly and Werner 1990) and insects (Moeur and Istock 1980; Blakley 

1981; Hard et al. 1989; Feltmate and Williams 1991; Bradshaw and Holzapfel1992; Peckarsky 

et al. 1993; Ball and Baker 1996); because body size at maturity affects clutch sizes or 

fecundities (females), mating success (males), and longevity (Taylor et al. 1998), and because 

age at maturity also affects lifetime fecundity, the fitness consequences of metamorphic timing in 



these species are large. Size and age at metamorphosis also affect other fitness components, 

including survival. Individuals of the teleost Pleuronectes platessa that are small at 

metamorphosis suffer increased risk of predation by Crangon crangon (van der Veer and 

Bergman 1987). In severallecithotrophic (non-feeding) marine invertebrates, delay of 

metamorphosis reduces post-metamorphic growth rates (e.g., Highsmith and Emlet 1986; Qian et 

al. 1991; Pechenik et al. 1993), development (e.g., Wollacott et al. 1989), survival (e.g., 

Highsmith and Emlet 1986; Pechenik and Cerulli 1991; Maldonado and Young 1999), or 

morphology (Wendt 1996). For example, inBugu/a neritina that delay metamorphosis, the 

lophophore (feeding appendage) is smaller than in those individuals that metamorphose earlier, 

resulting in reduced competitive ability (Wendt 1996). Similarly, delayed metamorphs of 

Balanus amphitrite are less competitive, and age at metamorphosis ultimately may affect both 

lifetime survival and reproduction (Pechenik et al. 1993). 

Fitness consequences of age or size at metamorphosis are not ubiquitous however. 

Among marine invertebrates, delayed metamorphosis incurs few costs in organisms with feeding 

(planktotrophic) larvae unless the larvae are starved (e.g., Pechenik and Eyster 1989; Miller and 

Hadfield 1990; Pechenik et al. 1996). It seems that feeding larvae that can delay, but still 

accomplish, metamorphosis without depleted energy stores experience few negative effects (on 

body size or subsequent growth and survival) of this delay. Fitness consequences of the timing of 

metamorphosis are also reduced or absent in insects that feed as adults and obtain resources 

affecting maturation or fecundity after metamorphosis (e.g., Anholt et al. 1991; McPeek 1997). 

However, Werner (1988) proposed that the effects of age or size at metamorphosis on fitness do 

not depend solely on the amount of growth accomplished before or after metamorphosis, because 
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metamorphosis is still considered an important fitness component in amphibians that accomplish 

substantial growth during their terrestrial (juvenile) phase. 

When the fitness consequences of the timing of metamorphosis are substantial, factors 

affecting larval growth and development will be important in molding individual life histories. 

Selection should prolong the larval period or maximize growth during this period when the 

fitness consequences of body size at metamorphosis are large (WJ.lbur and Collins 1973; 

Peckarsky et al. 1993; McPeek and Peckarsky 1998). In contrast, if there are few or no fitness 

consequences of size at metamorphosis, this transition should be accomplished at the minimum 

possible size and as early as is developmentally possible (McPeek and Peckarsky 1998). 

Environmental conditions, including mortality due to predation, can have profoundly different 

effects on the evolution of life histories depending on the relative contribution of stag~-specific 

growth and development to individual fitness. Identification offitness consequences of age and 

size at metamorphosis is important both to understand how variation in these traits is maintained 

and to identifY selection pressures important in the evolution of life histories among populations 

and taxa. 

Many crustaceans have a metamorphosis as part of their life cycles. For the majority of 

crustaceans studied, feeding and growth continue throughout the juvenile period and adults also 

continue to feed but may not grow. Both age and size at metamorphosis are variable in 

crustaceans (e.g., Hartnoll and Dalley 1981; Twombly 1995; James-Pirri 1996) and one or both 

of these traits responds to environmental conditions during the larval period (Twombly 1996; 

Hentschel and Emlet in press). The fitness consequences of age or size at metamorphosis (or 
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variation in these traits) are unknown in crustaceans, with the exception ofPechenik et al.'s 

(1993) data showing that older metamorphs ofthe barnacle, Balanus amphitrite, experience 

reduced growth which may affect competitive ability and fitness. Copepod crustaceans, for 

example, experience the majority of their growth after metamorphosis, so that size at 

metamorphosis may have fewer fitness consequences in these organisms than in many insects or 

amphibians. 

In this study, we quantified fitness consequences of age and size at metamorphosis in the 

freshwater copepod Diaptomus /eptopus. Our previous studies have shown that age and size at 

metamorphosis vary in this species, and that age is more variable than size (Twombly and Tisch 

2000). We suggested that body size throughout the copepod life cycle, including size at 

metamorphosis, is constrained {Twombly and Tisch 2000). In the following experiments, we 

manipulated food availability during the larval period to achieve a range of ages and sizes at 

metamorphosis. We then followed individuals to adulthood to determine the effects of 

metamorphic timing on size and age at maturity, reproductive output, and a composite fitness 

measure,/... We asked the following questions: 1) how responsive are age and size at · 

metamorphosis to growth conditions during the larval phase, 2) what is the relationship between 

age and size at metamorphosis and age and size at maturity, lifetime reproductive output and 

fitness, and 3) What is the relative importance of larval versus juvenile phases in determining 

individual fitness and therefore the evolution of D. /eptopus life histories? Based on the growth 

achieved in this species after metamorphosis, we predicted that age and size at metamorphosis 

would have few effects on the fitness components we measured. 



Materials and Methods 

General Experimental Design: Diaptomus leptopus ovigerous females were collected from Little 

Bullhead Pond, Perryville, RI, in June or July 1998 and 1999. Eggs were hatched in the 

laboratory, when individual nauplii were assigned to 8 experimental treatments- six of these 

manipulated food concentration (from low to high, or from high to low) during specific 

developmental stages and 2 served as controls (high food or low food throughout the entire life 

cycle). AJI individuals were raised in small petrie dishes in I 0 mL of modified MBL medium 

(Sternberger 1981) at l9°C and a 14:10 L:D photoperiod regime. Individuals were examined 

daily for developmental stage (molting was detected by the presence of exuviae); medium and 

food were changed every second day. We recorded age and size at metamorphosis for all 

individuals; size was measured non-destructively using N6 (the last larval stage) exuviae 

(Twombly and Bums 1996). Following metamorphosis, age and size at all successive juvenile 

stages were also recorded. Age and size at the molt from CS to adult were recorded as age and 

size at maturity. Following maturation, we paired each individual with a non-sibling member of 

the opposit~ sex raised on the same food treatment and maintained these pairs in 30 mL medium 

at their appropriate food concentration (high or low). Adults were examined every second day, 

when medium and food were changed. To measure egg production, we isolated females canying 

eggs in a small volume of water, briefly anaesthetized them with carbonated water, separated 

their egg sacs, and returned the females to their culture vessels {Twombly et al. 1998). Eggs were 

counted after removing the egg sac from the female as eggs often had to be taken out of the egg 

sac to be counted accurately. A few females produced no eggs, even after being paired with 

several males. Each experiment ended when individuals died or had stopped producing eggs for 
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2 weeks. We used development and egg production data for each surviving female to calculate 

the composite fitness measure, A. (McGraw and Caswell 1996; Twombly et al. 1998). 

All copepods were fed a mixture of two algal species, Cryptomonas erosa and 

Chlamydomonas reinhardtii, that were raised in modified MBL medium (Sternberger 1981) at 

19°C and a photoperiod regime of 14 hr L:IO hr D. The concentration of stock cultures was 

estimated daily with a hemacytometer and transformed to J,lg C/ mL following the equations in 

Strathmann (1967). Appropriate volumes of stock culture were added to MBL medium to yield 

0.10 J.lg C/mL of each species for low food conditions (total food concentration= 0.2 J.lg C/ml) 

or 0.35 J..Lg C/mL of each species for high food conditions (total concentration= 0.70 J,lg C/rnl). 

Algal cultures were maintained in log phase growth and transferred to new medium weekly. 

Experimental Manipulations 

Three different experiments were completed following this general procedure. In the first 

experiment (June 1998), 15 nauplii from mixed clutches were assigned haphazardly to each of 

the following 8 treatments: low food or high food over the entire life cycle (2 controls designated 

as LL or HH) and 6 treatments in which food concentration was switched (low to high or high to 

low) at the third (designated as LHN3 or HLN3), fourth (designated as LHN4 and HLN4), and 

fifth (designated as LHNS and HLNS) naupliar (larval) stages. As described above, individuals 

in all treatments were raised to maturity, mated, and followed until both members of a pair died 

or until females had stopped producing eggs for 2 weeks. 
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Because D. /eptopus individuals accomplish approx. 7 5% of their growth as juveniles, we 

began a second experiment {August 1998) to determine the effects of manipulated food 

concentrations during specific juvenile (copepodite) stages on maturation, egg production, and 

fitness. As described above, nauplii hatched in the laboratory from field-caught females were 

reared in batches at high or low food conditions until metamorphosis was achieved. Following 

metamorphosis 11-20 copepodites were assigned to the following treatments: 2 controls (high 

and low food for the duration of the life cycle, lffi and LL respectively) and 6 treatments in 

which food concentration was switched (low to high; high to low) at the second (LHC2, HLC2), 

fourth (LHC4, HLC4), and fifth (LHC5, HLC5) copepodite stages. Age and size at successive 

instars were recorded, along with adult parameters described above. 

Our third experiment (June 1999) repeated aspects ofboth previous experiments. Sixty 

nauplii hatched from field-caught females were assigned to and raised individually in low or high 

food controls (LL, lffi) or one of 6 treatments in which food concentration was switched (low to 

high~ high to low, as above) at the third naupliar (LHN3, lll..N3), first copepodite (LHCl, lll..C1) 

or third (LHC3, HLC3) copepodite stage. We initiated this experiment because overall survival 

in the laboratory was low (30-70%) so that sample sizes for fitness analyses from Experiments 1 

and 2 were small. 

Data Analyses: We used development and reproduction data obtained from individual females to 

construct age-based matrices (A) to calculate A., a composite fitness measure. Each matrix 

represented a single female, the subdiagonal contained survival probabilities ( 1 for all 

individuals) and the first row of the matrix contained age-specific fertilities (number of eggs per 



clutch multiplied by 0.5 to account for male contributions to fitness; McGraw and Caswell 

1996). The fitness measure, 'A, is the largest real root ofthe characteristic equation for the matrix 

A; all matrices were constructed and evaluated using MA TLAB software (Mathworks, Natick, 

MA). 

Relationships between age and size at metamorphosis, age and size at maturity (for all 

individuals), egg production and fitness (females only) were investigated using Spearman Rank 

correlations (because metamorphosis data were often not normally distributed) followed by a 

Bonferroni adjustment ofp values (a.=0.05/number of simultaneous correlations calcuiated). We 

used Multivariate Analyses ofVariance (MANOVA) to examine the contributions of treatment 

and sex to age and size at metamorphosis and age and size at maturity (all individuals), egg 

production and fitness (females only) and followed these with univariate ANOV A when 

significant effects were detected (after Bonferroni correction). When univariate analyses showed 

significant treatment effects, we used Tukey's HSD post hoc multiple comparison of means test 

to separate treatment effects. Although metamorphic data were frequently not normally 

distributed, transformation of these data did not change results of our ANOVA analysis and we 

performed all ANOV A analyses with untransformed data. 

Finally, we used binary logistic regressions followed by x2 goodness-of-fit tests to 

determine whether survivorship or reproductive failure (some females survived but failed to 

reproduce even after multiple matings) was affected by treatment. All statistical tests were run 

using SAS (SAS Institute 1985) 
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Results 

Changes in food concentration during several naupliar stages (Experiment 1: N3, N4, N5; 

Experiment 3: N3) had no effect on either age or size at metamorphosis (non-significant 

treatment effects, Table 1 ). Our inability to manipulate the timing of metamorphosis by changing 

food concentrations during the larval period may well be due to the short overall duration of the 

naupliar phase. 

Although the timing of metamorphosis did not differ among treatments in any 

experiment, age or size at metamorphosis could still covary with age or size at maturity, 

indicating fitness effects. Size at metamorphosis did not correlate significantly with size at 

maturity in Experiment 1 {r-0.064, p=0.66, n=50) and this correlation was only marginally 

significant (with Bonferroni correction) in Experiment 3 (r=0.22, p=0.005, n=166). Correlations 

between age at metamorphosis and age at maturity were positive and significant (Experiment 1: 

r=0.52, p=O.OOOI, n=50) or marginally so (Experiment 3: r-0.213, p=0.005, n=166): the 

consistent trend in both experiments was that individuals that metamorphosed at an early age 

also matured early. These correlations indicate that age at metamorphosis (and thus larval 

development rate) is more likely to contribute to fitness than is size at metamorphosis (or larval 

growth rates). 

Because the naupliar phase accounts for only 20-25% of the active growth period for D. 

leptopus (and for copepods more generally), we manipulated food concentrations during juvenile 

stages as well. Size at maturity remained relatively refractory to changes in food conditions 
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throughout the juvenile period (Table 1 ). Changes in food concentration during 3 (Experiment 2) 

or 2 (Experiment 3) copepodite stages had no effect on size at maturation, although in both 

experiments, females were larger at maturation than males (significant sex effects; Table 1). In 

contrast to size at maturity, age at maturity varied significantly with treatment but not with sex 

(Table 1 ). In both experiments 2 and 3, individuals that spent all (HH treatment) or the latter 

portion of copepodite development at high food concentrations matured earlier than those that 

spent all (LL treatment) or just a portion of their juvenile phase at low food (Figure 1). As shown 

above for the timing of metamorphosis, food conditions during the juvenile period primarily 

affect developmental rates and age at maturity. Only in Experiment 3 were size at maturity and 

age at maturity significantly correlated (r=-0.341, p=0.0001, n=166). 

Figure 1 shows that changes in food to high or low concentrations effected early in 

copepodite development resulted in an age at maturation equivalent to either the high or the low 

control individuals. In Experiment 3, individuals that spent the final three copepodite stages at 

low food matured at the same age as those raised in low food for their entire development, and 

the same results were obtained for individuals raised on high food (the high food control matured 

at a similar age as the LHC3 individuals). Although these results demonstrate that copepods 

respond quickly to changes in food supply, they show that individuals cannot respond 

immediately (that is, there is some developmental inertia; Bradshaw and Johnson 1995). In 

Experiment 2 (Figure 1 ), LHC5 individuals could not catch up with those raised in other high 

food treatments (HH, LHC2, LHC4) but individuals switched to low food slowed their 

development rapidly, so that D. leptopus responded more quickly to decreased than to increased 

food concentrations. 



Egg production varied greatly among individuals within a treatment in all experiments 

(Figure 2), with the result that treatment showed no statistically significantly effect on 

reproductive output (Table I). In Experiment 2, individuals initially reared on low food (LL, 

LHC2, LHC4) produced the largest number of eggs and the largest number of ovigerous females, 

but this pattern was not repeated in Experiment 3 (1999; Figure 2B). 

In all three experiments, changing food concentrations at different stages throughout the 

life cycle influenced A., the composite fitness measure we used (Table I). In both Experiments 2 

and 3, individuals switched from low food to high at all stages except the last copepodite (C5) 

stage had higher fitness than those switched from high food to low; this trend was particularly 

clear in Experiment 3 (Figure 3). Size at maturity was unrelated to fitness (Figure 4A; 

Experiment 1: r=O.I62, p=0.51, n=I9 (not shown in figure); Experiment 2: r=O.l3, p=0.37, n=52; 

Experiment 3: r=0.08, p=0.49, n=84): both small and large-bodied females achieved the same 

fitness. In contrast, age at maturation clearly varied with fitness: in both Experiments 2 (r=-0. 76, 

p=O.OOOI, n=52) and 3 (r=-0.46, p=O.OOOI, n=84), the first individuals to mature had the highest 

fitness (Figure 4B). Total egg production correlated significantly with fitness in Experiments 2 

and 3 (Figure 4C: Experiment 2: r=0.68, p=O.OOOI, n=52; Experiment 3: r=0.79, p=O.OOOI, 

n=84). Together, these results indicate that individuals achieved highest fitness by 

metamorphosing and maturing early or by producing a large number of eggs. In both 

Experiments 2 and 3, age at maturity correlated significantly with egg production (Experiment 2: 

r=-0.52, p=O.OOOI, n=52; Experiment 3: r=-0.36, p=0.003, n=84). The significant correlation we 

found between fecundity and fitness could be due primarily to the covariation of fecundity with 

age at maturity, providing further support for the importance of developmental rates and age at 
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maturity to fitness. Our results also show that factors affecting development during the juvenile 

phase of the life cycle have the strongest relationship to fitness or its components and suggest 

that this phase of the life cycle should be most sensitive to selection. Interestingly, in no 

experiment did body size affect egg production or fitness in D. leptopus. 

In all experiments and in all treatments, some females survived well but produced no 

eggs, even when mated with several males. As a result, fitness for these females was 0? and we 

eliminated them from our analyses. Binary logistic regression analysis showed no treatment 

effect on failure to reproduce (1.,2 = 7.002, p=0.32, df=6) so that elimination of these females 

from our analyses did not bias our ability to detect effects of treatment on fitness or egg 

production. Survivorship over all experiments ranged from 35-70%; treatment had no significant 

effect on survival rates (logistic regression 1.,2 = 7.17, p=0.31, df= 6). This indicates that none of 

the developmental stages during which food was manipulated was more sensitive than any other 

stage. Phenotypic correlations between age and size at metamorphosis in Experiments 1 and 3 

were negative but not significant (Experiment 1: r=-0.24, p=0.10, n=50; Experiment 3: r=-0.12, 

p=0.13, n=166). At maturity, age and size were significantly correlated only in Experiment 3 (r=-

0.34, p=O.OOOl, n=166). 

Discussion 

Diaptomus leptopus individuals attain 23-25% of their total adult body size by the time 

they reach metamorphosis. Given the post-metamorphic growth this species experiences, we 

predicted that the timing of metamorphosis would have few effects on the components of fitness 



we measured (age and size at maturation, egg production, and A.). Our results partially confirmed 

these predictions: body size at metamorphosis was unrelated to size at maturity, and size at 

maturity had no effect on egg production or fitness. On the one hand, our results agree with those 

for other organisms that grow substantially after metamorphosis and for which body size at this 

transition has· few significant fitness effects (e.g., Anholt 1991; McPeek 1990, 1997). On the 

other hand, these results were surprising because body size (at maturation, for example) is 

traditionally considered an important life history trait (e.g., Roff 1992; Peters 1983). Our results 

support the conclusion that the fitness consequences of size at metamorphosis depend 

fundamentally on the organization of an organism's life cycle. They are large when most growth 

is accomplished before metamorphosis and small or non-existent for organisms that grow as 

juveniles and adults (see references in McPeek and Peckarsky 1998; Maldonado and Young 

1999). While this basic distinction seems to be true most of the time, there are exceptions in the 

literature: Banks and Thompson (1987) suggested reduced fecundity among individual 

Coenagrion puel/a that metamorphosed at a small size, whereas McPeek ( 1997) and Anholt 

(1991) report few fitness consequences of size at metamorphosis in damselflies (Enallagma 

boreale) from the same family . 

Given that the larval period in D. /eptopus accounts for 20-30% of their total 

development time, we also predicted that age at metamorphosis should have few fitness effects. 

This prediction was not confirmed, however. Age at metamorphosis was significantly related to 

age at maturity in Experiment I, during which food was manipulated during several larval 

stages; small differences in the timing of metamorphosis were manifest as differences in 

maturation. Early metamorphosis corresponded with earlier maturation, which related 
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significantly with fitness. The non-significant relationship we found between age at 

metamorphosis and age at maturity in Experiment 3 may have resulted from the fact that we 

manipulated food during 1 naupliar stage only in this experiment, resulting in few opportunities 

for variation in the age at metamorphosis to translate into differences in age at maturity. 

While the fitness consequences of body size in organisms such as amphibians and insects 

are usually straightforward, because larger size confers greater reproductive success, documented 

consequences of variable ages at metamorphosis are more diverse. Pechenik et al. (1993) and 

Wendt (1996) showed, for two marine invertebrates that delayed metamorphosis, lowered 

juvenile growth rates, and suggested that this may lead to reduced fitness. More direct effects on 

fitness include reduced post-metamorphic survival as metamorphosis is delayed in lecithotrophic 

larvae of the polychaete Capitella sp. 1 (Pechenik and Cerulli 1991) and the demosponge 

Sigmadocia caerulea (Maldonado and Young 1999). Negative correlations between 

development time (specifically, age at metamorphosis) and fitness have been demonstrated for 

Aedes triseriatus (Hard et al. 1989) and for adult females of the damselfly Enallagma boreale 

(Anholt 1991), and both Semlitsch et al. (1988) and Smith (1987) showed that age at 

metamorphosis directly affects age and size at first reproduction in amphibians. Alternatively, no 

fitness consequences of delayed metamorphosis were detected in planktotrophic marine 

invertebrates unless larvae were starved (Pechenik et al. 1996). In fact, in diverse species with 

actively feeding larvae, delayed metamorphosis may have positive effects: mosquitoes (Moeur 

and Istock 1980), tadpoles (e.g., Wilbur and Collins 1973) and mayflies (e.g., Peckarsky et al. 

1993) become larger, and larger sizes confer fitness advantages. In D. leptopus, delaying 

metamorphosis has no fitness advantages because individuals do not grow larger as larval 



duration is prolonged (Twombly and Tisch 2000). Our results agree with those studie~ showing 

that younger metamorphs have higher fitness because they mature earlier (e.g., Semlitsch et al. 

1988) and indicate that natural selection should favor rapid larval development in field 

populations. 

Taken together, our results suggest that selection in field populations for growth rate or 

body size (of larvae or adults) should be weak, and that larvae should metamorphose at the 

minimum possible size. Concurrently, selection should favor rapid larval development, so that 

individual D. leptopus should metamorphose at a minimum size and as soon as developmentally 

possible. These suggestions match closely the predictions developed by McPeek and Peckarsky 

(1998) based on the degree to which size at metamorphosis affects adult fecundity. These authors 

used demographic models to contrast factors affecting fitness in two aquatic insects. In 

damselflies, size at emergence has little effect on adult fecundity (McPeek 1990, 1997), and 

fitness (measured as population level A.) is most susceptible to changes in larval mortality. In 

contrast, in mayflies of the genus Baetis, size at emergence directly affects fecundity (Peckarsky 

et al. 1993) and fitness varied primarily with larval growth rate rather than with mortality. Their 

predictions that 1) the timing of metamorphosis in Baetis should vary with environmental 

conditions while 2) individuals in different damselfly (Enal/agma boreale) populations should 

metamorphosis at the same, minimum body size were confirmed by field studies. Diaptomus 

leptopus most closely resembles McPeek's damselflies, suggesting that selection should act to 

shorten the larval period. 
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Field studies are needed to identify the effects of body size on mortality in D. leptopus. 

Substantial research documents the size selectivity of aquatic predators (e.g., Kerfoot and Sih 

1987); although body size does not affect reproductive components of fitness (as demonstrated in 

our laboratory study), it likely affects survival probabilities. In addition, mortality regi~es vary 

among habitats. For example, we collected D. leptopus from a temporary pond (Little Bullhead 

Pond, Perryville, RI) that is dominated by invertebrate predators. In this habitat, smaller 

individuals will suffer the highest mortality and selection will favor larger individuals. The 

opposite sort of pattern would be expected in ponds with vertebrate predators. Inter-habitat 

differences in size-selective predation likely account for large differences in D. leptopus body 

sizes among populations (E. Maly, personal communication) and may play a larger role in 

interpopulational size variation than in maintaining size variation within any particular 

population. 

Our results also show that developmental rates can vary independently from growth. In 

many studies of metamorphosis, and of life-histories more generally, the relationship between 

growth and development (are they interdependent or independent processes?) has been 

questioned. This question is usually answered using phenotypic correlations; the degree to which 

age and size at metamorphosis are positively, negatively, or un correlated indicates the ways in 

which these two fundamental processes are coupled (e.g., Wilbur and Collins 1973; Leips and 

Travis 1994). However Stearns and Koella (1986) argued that, to the extent that growth and 

development are plastic so that age and size at any transition vary with experimental conditions, 

phenotypic correlations are misleading. Neither in this study nor in previous research (e.g., 

Twombly et al. 1998) have we found consistent patterns in phenotypic correlations between age 

10 



and size (at either metamorphosis or maturity), highlighting difficulties in interpreting 

phenotypic correlations (e.g., Reznick 1985). The experiments we describe here give a clearer 

indication that development can vary independently of growth and suggest that growth and 

development are uncoupled in D. leptopus. 

Our finding that size at maturation did not correlate with egg production or fitness was 

surprising with respect to the importance given to body size, particularly in poikilotherms (e.g., 

Peters 1983; Forrest 1987 and references therein), but extends our previous findings that body 

size appears constrained in this species (Twombly and Tisch 2000). Regardless of whether a 

regulatory mechanism acts to constrain body size or not (D. Lytle, personal communication}, 

size at metamorphosis and at maturity vary little in this and other copepod species (Twombly 

1994; Twombly and Tisch 2000) and there are no obvious reproductive advantages of being 

large. In marine copepods, fecundity is influenced more by food quality or nutritional content 

(of either phytoplankton or zooplankton; Peterson 1985; Peterson and Bellantoni 1987; Peterson 

et al. 1991; Durbin et al. 1992) than it is by female body size. Limited advantages ofbody size 

are not universal among crustaceans, however; larger females produce more eggs in Daphnia and 

amphipods as well as in several decapod species (e.g., Lynch 1980; Wenner and Kuris 1991}. 

The relationship between female body size and egg number may depend partly on whether eggs 

are brooded internally for all or a portion of embryonic development. 

Patterns of growth observed in D. leptopus represent copepod life cycles more generally; 

that is, limited growth occurs during a relatively short larval period (which may be designed for 

dispersal) and the majority of growth occurs post-metamorphosis. The small or neglig~ble fitness 
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consequences of the timing of metamorphosis that we document for this species may therefore be 

widespread in copepods. Data from a second copepod species, Boecke/la triarticulata, raised in 

the laboratory on diets that differed in food quality (Twombly and Bums 1996) showed a 

significant relationship between age at metamorphosis and age at maturity (Spearman rank 

correlation coefficient r=0.469, p=O.OOOl, n=94), but not between size at metamorphosis and size 

at maturity (r=-0.086, p=0.41, n=94). As reported here for D. leptopus, age-based A. estimates 

and age at first reproduction were negatively correlated (r=-0.692, p=O.OOOl)~ in addition, the 

correlation between total reproductive output and A. was positive (r-0.603, p=0.0002) (Twombly 

et al. 1998). These results lend support to a more general conclusion that age at metamorphosis, 

but not body size, affects fitness in copepods. 

The next, important step in building an understanding of how life histories evolve in 

these numerous and ecologically-important organisms is to determine how predation and other 

environmental conditions (food quality, for example) affect stage-specific mortality in field 

populations. The research we have described here provides the foundation for our predictions 

that, among various field populations, selection will act to minimize the larval period and that 

differences in body size at metamorphosis will reflect selection on the length of the larval period. 
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Table 1. Results of multi- and univariate ANOVA for the effects oftreatment and sex on age and 

size at metamorphosis, age and size at maturity, egg production and fitness for A Experiment 1 

(food changed during 3 larval stages), B. Experiment 2 (food changed during 3 juvenile stages) 

and C. Experiment 3 (food changed during 1 larval and 2 juvenile stages). Egg production and 

fitness analyses were not performed for Experiment 1 due to small sample sizes (no replicates for 

some treatments). 

A. Experiment 1 

MANOV A test criteria: 

Wilks' Lambda F 

Treatment 

Sex 

Univariate Analyses: 

Source 

0.4665 

0.351 

DF 

Age at Metamorphosis: 

Treatment 7 

Sex 1 

Size at Metamorphosis: 

Treatment 7 

Sex 1 

Age at Maturity: 

Treatment 7 

0.952 

14.33 

TypeiDSS 

16.5157 

0.0256 

634.927 

2.134 

72.541 

NumDF 

28 

4 

F 

2.53 

0.03 

1.27 

0.03 

1.19 

DenDF 

113.9 

31 

p 

0.033 

0.87 

0.29 

0.86 

0.33 

p 

0.54 

0.0001 



Sex 

Size at Maturity: 

Treatment 

Sex 

7 

1 

B. Experiment 2 

MANOV A test criteria: 

7.519 

7773.9 

104737.75 

Wilks' Lambda F 

9.32 

3.99 

Treatment 

Sex 

Univariate Analyses: 

Source 

Age at Maturity: 

Treatment 

Sex 

Size at Maturity: 

Treatment 

Sex 

0.1475 

0.7496 

DF 

7 

I 

7 

1 

Egg Production (Females only): 

Treatment 7 

Fitness (Females only): 

Treatment 7 

TypeiDSS 

1004.486 

10.635 

76792.37 

161157.68 

149436.72 

0.0171 

30 

0.86 

0.62 

58.02 

NumDF 

28 

8 

F 

21.41 

0.74 

1.86 

13.65 

1.73 

7.53 

0.36 

0.74 

0.0001 

DenDF 

372.8 

206 

p 

0.0001. 

0.48 

0.08 

0.0001 

0.13 

0.0001 

p 

0.0001 

0.0002 



~ 

C. Experiment 3 

MANOV A test criteria: 

Wilks' Lambda 

Treatment 

Sex 

Univariate Analyses: 

Source 

0.4259 

0.7456 

Age at Metamorphosis: 

Treatment 

Sex 

Size at Metamorphosis 

Treatment 

Sex 

Age at Maturity 

Treatment 

Sex 

Size at Maturity: 

Treatment 

Sex 

DF 

7 

1 

7 

1 

7 

1 

7 

1 

Egg Production (females only): 

Treatment 7 

Fitness (females only); 

F NumDF 

5.07 28 

12.54 4 

TypeiDSS 

12.281 

0.0632 

840.532 

1084.41 

6253.21 

120.04 

109671.339 

174001.899 

183557.98 

DenDF 

531.43 

147 

F 

0.78 

0.03 

0.83 

7.51 

20.69 

2.87 

3.46 

38.45 

1.79 

p 

0.0001 

0.0001 

p 

0.60 

0.87 

0.56 

0.007 

0.0001 

0.09 

0.002 

0.0001 

0.11 



Treatment 7 0.0112 5.80 0.0001 



Figure Captions 

Figure 1. Box plots for age at maturation for Diaptomus /eptopus raised under different food 

conditions. A Results from Experiment 2, in which food concentrations were switched from low 

to high (LH) or high to low (HL) and the second (C2), fourth (C4) and fifth (C5) copepodite 

stages. B. Results from Experiment 3, in which food concentrations were switched from low to 

high (LH) or high to low (HL) at the first (C1) and third (C3) copepodite stages. Also shown for 

both experiments are ages at maturation for low food (LL) and high food (HH.) controls. The 

lower boundary of each box indicates the 25Ut percentile, the line within the box markes the 

median value {50th percentile), and the upper boundary of each box indicates the 75Ut percentile. 

Vertical bars show all data points that fall within± 1.5*interquartile range (IQR). Asterisks 

denote outliers defined as< 1.5*IQR >. Similar upper case letters above each boxpolot represent 

means that are not significantly different as identified by Tukey's HSD post hoc multiple 

comparisons of means test. Numbers within each box represent the sample size of each 

treatment. 

Figure 2. Box plots for mean total egg production for D. /eptopus females raised under different 

food regimes. A Results from Experiment 2, in which food concentrations were switched as 

described in Figure 1. B. Results from Experiment 3 in which food concentrations were 

switched, as described in Figure 1, for the third naupliar stage (N3) as well as for 2 copepodite 

stages. Also shown for all experiments are mean estimates for two controls, LL and HH. Boxes 

for each treatment represent individuals falling within quartiles, as described in Figure 1 ~ 

numbers within each box represent sample sizes of each treatment. 
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Figure 3. Box plots of mean fitness estimates for D. leptopus raised under different food regimes, 

as described in Figure I. Upper case letters above each boxplot identify means that are not 

significantly different following Tukey's HSD test. 

Figure 4. Spearman rank correlations, including correlation coefficients, statistical significance 

and sample size, for A Size at maturity vs. fitness in experiments 2 and 3. B. Age at maturity vs. 

fitness in experiments 2 and 3, and C. Total egg production per individual female vs. fitness for 

experiments 2 and 3. 
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