
 Open access Proceedings Article DOI:10.1109/CEC.2001.934319

Fitness evaluation for nurse scheduling problems — Source link

Edmund K. Burke, P. De Causmaecker, Sanja Petrovic, Greet Van den Berghe

Institutions: University of Nottingham

Published on: 27 May 2001 - Congress on Evolutionary Computation

Topics: Nurse scheduling problem, Evaluation function, Fitness function and Resource allocation

Related papers:

 The State of the Art of Nurse Rostering

 A Memetic Approach to the Nurse Rostering Problem

 A Multi-objective Approach to Nurse Scheduling with both Hard and Soft Constraints

 Preference scheduling for nurses using column generation

 Nurse rostering problems––a bibliographic survey

Share this paper:

View more about this paper here: https://typeset.io/papers/fitness-evaluation-for-nurse-scheduling-problems-
uys9679hgt

https://typeset.io/
https://www.doi.org/10.1109/CEC.2001.934319
https://typeset.io/papers/fitness-evaluation-for-nurse-scheduling-problems-uys9679hgt
https://typeset.io/authors/edmund-k-burke-478v63bg4k
https://typeset.io/authors/p-de-causmaecker-560xm12gah
https://typeset.io/authors/sanja-petrovic-1qkpaiext7
https://typeset.io/authors/greet-van-den-berghe-5bj91uv5ah
https://typeset.io/institutions/university-of-nottingham-3kb5u51w
https://typeset.io/conferences/congress-on-evolutionary-computation-189ojnjk
https://typeset.io/topics/nurse-scheduling-problem-2xmr3wvk
https://typeset.io/topics/evaluation-function-mwrd2bj5
https://typeset.io/topics/fitness-function-1r8qxzfq
https://typeset.io/topics/resource-allocation-3696qy02
https://typeset.io/papers/the-state-of-the-art-of-nurse-rostering-4uxzrvsub8
https://typeset.io/papers/a-memetic-approach-to-the-nurse-rostering-problem-55i60he3tc
https://typeset.io/papers/a-multi-objective-approach-to-nurse-scheduling-with-both-37pvkpbypn
https://typeset.io/papers/preference-scheduling-for-nurses-using-column-generation-d45gh4xtzj
https://typeset.io/papers/nurse-rostering-problems-a-bibliographic-survey-1n1g0v3ljp
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/fitness-evaluation-for-nurse-scheduling-problems-uys9679hgt
https://twitter.com/intent/tweet?text=Fitness%20evaluation%20for%20nurse%20scheduling%20problems&url=https://typeset.io/papers/fitness-evaluation-for-nurse-scheduling-problems-uys9679hgt
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/fitness-evaluation-for-nurse-scheduling-problems-uys9679hgt
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/fitness-evaluation-for-nurse-scheduling-problems-uys9679hgt
https://typeset.io/papers/fitness-evaluation-for-nurse-scheduling-problems-uys9679hgt

Fitness Evaluation for Nurse Scheduling Problems

Edmund K. Burke

University of Nottingham

School of Computer

Science & IT

Nottingham NG8 1BB, UK

ekb@cs.nott.ac.uk

Patrick De Causmaecker

KaHo St.-Lieven

Information Technology

Gebr. Desmetstraat 1, 9000

Gent, Belgium

patdc@kahosl.be

Sanja Petrovic

University of Nottingham

School of Computer

Science & IT

Nottingham NG8 1BB, UK

sxp@cs.nott.ac.uk

Greet Vanden Berghe

KaHo St.-Lieven

Information Technology

Gebr. Desmetstraat 1, 9000

Gent, Belgium

greetvb@kahosl.be

Abstract- When applying evolutionary algorithms to dif-

ficult real-world problems, the fitness function routinely

needs evaluating for a very high number of intermediary

cases.

This paper is concerned with real-world nurse rostering

problems with highly constrained resources. We consider

a particular approach, which allows for a quick evalua-

tion and is general enough to deal with other kinds of re-

source planning problems with time-related constraints.

The model developed for this approach handles the con-

straints in a modular way and the addition of new con-

straints is relatively straightforward. Simple constraints

(such as those affecting the personal wishes of employ-

ees) and global constraints (such as balancing the work-

load among people) can be formulated easily using this

approach. Our approach can also handle very complex

time-related constraints as well as conditions that are re-

lated to previously planned work. Moreover, it provides

clear feedback about violation of constraints.

The approach has been implemented successfully in a

nurse rostering program entitled “Plane” which is used

in hospitals all over Belgium. It can tackle a high number

of specific and modifiable constraints of a very different

nature. The benefits from this approach (in terms of soft-

ware requirements) are small memory use and a compu-

tationally simple, single evaluation function allowing for

the simultaneous rostering of several hospital wards at the

same time.

1 Introduction

The work presented in this paper describes the evaluation

method employed in Plane, a personnel rostering software

system developed for the Belgian hospital market (Burke et.

al., [2, 3]). Plane has been developed in conjunction with Im-

pakt1 and GET2. One of the main motivations for developing

this software was the discovery that none of the available per-

sonnel or nurse rostering tools on the market could cope with

the high number of very specific constraints that Belgian hos-

pitals have to deal with.

Employee rostering problems basically consist of assigning a

1Impakt N.V., Ham 64, B-9000 Gent
2GET, General Engineering & Technology, Antwerpse Steenweg 107, B-

2390 Oostmalle

number of tasks (or shifts) to personnel with different skills

over a defined period of time. The assignment is usually

subject to a large number of constraints. The automation of

personnel rostering has attracted the attention of researchers

since the sixties (cf. Hung, [8]). The problems are often re-

stricted to imposing constraints limiting the total work and

constraints limiting consecutive assignments (Chan and Weil,

[5]), (Chiarandini et. al., [6]), (Meisels and Lusternik, [9]),

(Meyer auf’m Hofe, [10]). Both (Aickelin and Dowsland,

[1]) and (Dowsland, [7]) work with a limited number of shift

type patterns whose value is predefined.

The majority of approaches described in the literature aim

at producing weekly rotating three-shift schedules (Aickelin

and Dowsland, [1]), (Chan and Weil, [5]), (Dowsland, [7]),

and (Weil et. al., [12]). Plane, however, attempts to solve

rostering problems of larger complexity. It attempts to sched-

ule people of different skill categories so that the demands

of the hospital can be met during a particular planning pe-

riod. The search algorithms implemented in Plane are based

on tabu search (Burke et. al., [2]). Experiments with genetic

and memetic approaches (Burke et. al., [3]) led to better qual-

ity timetables at the expense of computational time.

The aim of this paper is to present an approach for the eval-

uation of personnel schedules. The method is fast and re-

quires only a very simple algorithm, which is extremely use-

ful for evaluating all neighbourhood solutions for the meta-

heuristics applied. The evaluation method can be applied in

other timetabling or scheduling problems with time-related

constraints. Section 2 lists the requirements of Plane which

have an immediate effect on the cost function. In Section 3,

the main constraints imposed on the personnel schedules are

explained. We introduce the evaluation approach in Section 4

and explain that new constraints can easily be defined by only

designing a template with numbers. In Section 5 the evalua-

tion method is demonstrated using a simplified example of a

personnel roster. Some concluding remarks are presented in

Section 6.

2 Requirements

The objectives of Plane, which were formulated after an ex-

tensive market research effort, led us to the formulation of the

evaluation method described in this paper.

The first set of requirements is functional. We want to pro-

duce a solution satisfying all personnel demands and respect-

ing the constraints imposed on the resources as much as pos-

sible. To evaluate the latter we construct a fitness function

expressing the degree to which the constraints are satisfied.

Among the other objectives, there is a list of system specific

requirements: conceptual consistency and continuity, grace-

ful degradation, pertinent behaviour, explanatory power, and

extendibility.

The presented evaluation approach is aimed at meeting all

of these requirements. The criterion of graceful degradation

requires the system to come up with a reasonable schedule

when (very often) no solution satisfying all the constraints

can be found. Even in the middle of the search process,

the system should be prepared to provide the user with the

best schedule found when it is prompted for a solution. The

scheme selected for Plane is one in which the personnel de-

mands are fulfilled in the initial solution and remain fulfilled

while trying to improve on the resource constraints. Any ob-

tained solution must be explanatory, in that all constraint vio-

lations are explicitly shown to the user. A feature of the sys-

tem is that all constraints on personal schedules are treated

equally, both in the model and in the user interface. The ap-

proach provides a method for handling all characteristics of

the constraints such as cost parameters, minimum and maxi-

mum values, and consecutiveness in a modular way.

3 Constraints

3.1 Terminology

Planning Period

The planning period is the time interval over which the staff

have to be scheduled. Plane allows the user to define a plan-

ning period, which usually consists of 4 weeks.

Skill Category

This determines a class of staff who have a particular level of

qualification, skill or responsibility. For example, a particular

skill category might be a class of junior nurses. Staff in this

category would not normally be allowed to be allocated to a

ward manager’s shift. However, it might be the case that we

could allocate someone in the ward manager’s category to a

junior shift on a given day. It is usually possible to allocate

senior staff to a junior position on any given day but not the

other way round. However, in practice, very senior staff are

usually reluctant to stand in for junior staff. It is also the case

that, in practice, a regular (not a junior) nurse will temporar-

ily stand in for a head nurse.

Shift Type

Shift types are hospital tasks with a well-defined start and end

time. The ward manager can set the details of the shift types

in order to make them match the activities.

Time Units

Time Units represent time intervals of minimum allocation.

They are defined to handle the personnel constraints. In the

approach used in Plane, where personnel demands and sched-

ules make use of shift types, each shift type has a correspond-

ing time unit. The time units are ordered according to the start

times of the shift types they represent. When two shift types

have the same start time, the first time unit will match the shift

type with the earliest end time. The time units defined for this

approach do not represent consecutive or separate periods but

they will very often overlap in time. For the nurse rostering

problem considered in this paper, the number of time units

equals the number of shift types times the number of days in

the planning period. In the evaluation method (described in

Section 4), time units play a particularly important role.

Personnel Demands

Personnel demands express the number of personnel needed

for every skill category and for every shift during the entire

planning period. Plane provides other formulations for the

personnel demands as well but since they only affect the ini-

tialisation and the algorithmic calculations, we will not dis-

cuss them in this paper (see (Burke et. al., [2, 3]) for more

details).

3.2 Hard constraints

Hard constraints are those that must be satisfied at all costs.

Plane is organised so that the personnel demands form the

hard constraints. The system does not allow a user to de-

fine personnel demands which would need a larger number of

staff than are available. In addition, the system does not al-

low any violation of the hard constraints during the course of

the scheduling process. A schedule satisfying the hard con-

straints is a solution in which for every day of the planning

period, the required personnel for each skill category are as-

signed to the shift types needed.

3.3 Soft constraints

Soft constraints are those that are desirable but which may

need to be (usually will need to be) violated in order to gen-

erate a workable solution. Indeed, in most real-world cases

it is simply not possible to satisfy all soft constraints. All

constraints on the personal schedules are categorised as soft

constraints. The cost function sums all violations on these

constraints for all the personnel members in the solution.

Belgian healthcare institutions have a tradition of evaluat-

ing the personnel schedules on a large number of criteria.

Due to the, sometimes unpredictable, character of the work-

load, the schedules have to be very flexible. The constraints

are divided into a few categories, affecting certain groups of

personnel members. A full description of all the constraint

types in use in Plane is given on the following web page

http://www.cs.nott.ac.uk/ � gvb/constraints.ps. In this paper,

we restrict the description to the constraints most used in

practice.

3.3.1 Hospital constraints

Personnel scheduling in the hospitals we deal with is organ-

ised per ward. We consider a ward to be a group of personnel

working together in the same location (e.g. a certain floor in

a hospital) or having similar activities (e.g. the ambulance

team). There are certain rules which hold for the entire hos-

pital. Underneath these global rules, each ward can define its

own local rules, such as:

- Minimum time between two assignments

- Allow use of an alternative skill category in certain situa-

tions

3.3.2 Constraints defined by the work regulation

Every personnel member has a contract with the hospital,

called the work regulation or work agreement. There are dif-

ferent work regulations for full time personnel members, half

time and night nurses. In the real-world there are many hos-

pitals which allow for a personal work agreement per nurse.

This enables them to formulate personal constraints such as

‘Every Wednesday afternoon should be free’, ‘Work a week-

end every two weeks’, etc. . . When defining the work regu-

lation, either of the following constraints can be defined or

made idle.

- Maximum number of assignments in the planning period

- Minimum/Maximum number of consecutive days

- Minimum/Maximum number of hours worked

- Minimum/Maximum number of consecutive free days

- Maximum number of assignments per day of the week

- Maximum number of assignments for each shift type

- Maximum number of a shift type per week

- Number of consecutive shift types

- Assign 2 free days after night shifts

- Assign complete weekends

- Assign identical shift types during the weekend

- Maximum number of consecutive working weekends

- Maximum number of working weekends in a 4-week period

- Maximum number of assignments on bank holidays

- Restriction on the succession of shift types

- Patterns enabling specific cyclic constraints

- Balancing the workload among personnel

3.3.3 Personal constraints

When individual personnel members have an agreement with

the personnel manager or head nurse, the following con-

straints can be put into action:

- Day off; shifts off

- Requested assignments

- Tutorship (people not allowed to work alone)

- People not allowed to work together

4 The Evaluation Approach

Our method evaluates the group of very different constraints

that is outlined above. More generally, the method also pro-

vides a technique to calculate the extent to which constraints

on the schedule are violated. The main ideas of the approach,

as well as some guidelines to translate real-world constraints

into the model, are explained in this section.

From Till

M morning shift 06:45 14:45

L late shift 14:30 22:00

N night shift 22:00 07:00

Table 1: The shift types

The evaluation method allows for the evaluation of the solu-

tion per resource (in our nurse rostering example, a resource

is a person). The solution of every resource will be evaluated

against a schematic representation of the constraints (Section

4.5) in order to determine the value of the cost function for

the solution.

To facilitate the explanation of the evaluation method, we

consider a simple example consisting of a one-week planning

period for a ward with 5 people. The number of shift types

in use is restricted to the morning (M), late (L), and night (N)

shifts presented in Table 1. All personnel members have the

same work agreement. This implies that their personal sched-

ules are all subject to the same set of soft constraints. Each

requested shift can be assigned to any of the nurses because

they all belong to the same skill category.

Table 2 shows a personnel schedule especially constructed to

demonstrate the method. The rows in the table present the

schedules associated with each of the personnel members.

The schedule for the previous planning period is also pre-

sented in the table. The previous solution is used for defining

the start values of the constraints to be evaluated.

4.1 Formal description of the evaluation method

The ideas, which form the basis of the evaluation method,

will be presented formally in this section. The time units in-

troduced in Section 3.1 are basic concepts in the description

of this method. Suppose there are
�

days in the planning

period and that the problem consists of ✁✄✂ shift types then�✆☎ ✁✄✂ time units are used. The set of time units is denoted

by ✝ . As an example, the schedule for 5 people presented in

Table 2 is translated into a time unit schedule in Table 3. In

this example,
�✟✞✡✠

and ✁✄✂ ✞☞☛ . Since the example con-

sists of only 3 possible shift types, every day in the real-world

planning is represented by 3 columns in the time unit sched-

ule.

We introduce numberings as templates which are put on each

personal schedule in order to evaluate constraints in a uniform

way. Instead of writing a separate algorithm for the evalua-

tion of each constraint, we designed the numberings so that

all constraints can be evaluated using a single algorithm. The

evaluation of every personal schedule is performed in one

go, starting from the first time unit for which the person is

scheduled and ending at the last. For some easy constraints,

very simple numberings suffice. When we come to compli-

cations involving weekends, night work, etc., the numberings

are constructed in order to allow for sufficient abstractions

from the real-world details of the problem.

Definition 1 A numbering ✌✎✍ is a mapping of the set of time

Previous planning period Current planning period

Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

P1 M M M M L L N

P2 M L L N N N L L

P3 L L M M M M M M M

P4 L L M L N N N

P5 N N N N N M L L L L

Table 2: Shift type solution for 5 people (P1,. . . , P5) and 1 week; M,L, and N being the shift types introduced in Table 1

Previous planning period

P1 * *

P2 * * * *

P3 * *

P4 * *

P5 * * * * *

Current planning period

P1 * * * * *

P2 * * * *

P3 * * * * * * *

P4 * * * * * *

P5 * * * * *

Table 3: Time unit representation of the solution in Table 2: ”*” denotes ’used’ (scheduled) and ”-” denotes ’idle’ (free)

Soft constraints V C N

1 maximum assignments 6 1 �✂✁
2 minimum assignments 2 1 �✂✁
3 maximum consecutive days 4 1 �✂✁
4 minimum consecutive days 2 1 �✂✁
5 maximum consecutive free days 8 1 �✂✁
6 minimum consecutive free days 2 1 �✂✁
7 maximum assignments per day 1 1 �✂✁
8 maximum night shifts 3 1 �☎✄
9 minimum consecutive night shifts 2 1 �☎✄

10 work full weekends y 1 �✝✆
Table 4: Some soft constraints; the column V denotes the

value, C denotes the cost and N denotes the numbering asso-

ciated with the constraint

units to a set of numbers i.e.

✌ ✍✟✞ ✝✡✠ ☛✌☞✎✍✑✏✒☞✎✍✔✓✖✕✗✏✒✘✒✘✒✘✙✏✛✚✜✏✒✕✗✏✒✘✒✘✒✘✙✏✢✍✣☞✤✕✗✏✢✍✑✏✦✥★✧
where i=1, . . . , I and I is the total number of numberings.✍

is a positive integer and
✥

is a symbol introduced to rep-

resent the time units for which the numbering is undefined.

The mapping need not be into or onto, nor need it conserve

the sequence. A set of 10 constraints of a different nature was

selected from the real-world constraints to explain how the

approach covers the personnel rostering problem (see Table

4). Table 5 presents 3 numberings denoted by ✌✪✩ , ✌★✫ , and

✌★✬ , created for the schedule presented in Table 2. The value

for M in both ✌✭✩ and ✌★✫ is 6 and M is 1 in ✌✮✬ . Each number-

ing is assigned to one or more constraints. When constraints

are related to days, for example, the numbering will consist

of increasing numbers for the time units corresponding to the

days (as in numbering ✌✯✩). In Table 5, the appropriate num-

bers identifying the previous planning period are also shown.

These numbers will be used for the initialisation of the eval-

uation method. In fact, the 3 presented numberings are suffi-

cient to evaluate all 10 real-world constraints given in Table

4. The values in the numbering depend on the nature of the

real-world constraints. Numberings provide the possibility of

implementing irregular concepts such as days off, bank hol-

idays, etc. All numberings are potentially susceptible to the

same set of numbering constraints, introduced later on in this

section. One of the main aims of the approach presented in

this paper is the reduction of the effort of implementing new

real-world constraints to designing a proper numbering. The

following definitions allow us to be more specific.

Definition 2 A personal schedule for person p is a mapping

✁✱✰✮✞ ✝✡✠ ☛✳✲✵✴✳✶✸✷✱✏✺✹✻✷✌✼✽✶✗✧
.

In the personal schedule, an event occurs at every time unit

when the person is assigned to a shift (or when ✁✾✰ has value

”used”). At an event, each numbering associated with the

personal schedule will be checked against its constraints. The

events are generated following the order of the time units and

will be evaluated in that sequence in the algorithm (see Fig.

1).

Definition 3 For a given personal schedule ✁✾✰ an event is a

time unit
✶

for which ✁✿✰✱❀ ✶❂❁ ✞ ✲✵✴✳✶✸✷
. Denote by ❃❅❄✳❆ the set

of all events that are induced by ✁✿✰ .
Denote by ✝✵❇ the set of time units for which the numbering

✌ does not have value U (undefined). Denote by ❃❅❇✂❈ ❄✳❆ the

set of events of ✁✿✰ which are defined for the numbering N. In

other words, ❃✎❇✂❈ ❄✳❆ ✞ ✝✵❇❊❉❋❃✎❄✳❆ .
The basic idea of the evaluation method is to go through the

set ❃●❇✂❈ ❄✳❆ for each personal schedule of person p and con-

sider the values ✌❍❀ ✶❂❁ of each event in ❃✎❇✂❈ ❄✳❆ . The number of

constraint types per numbering is limited to 8 (see later on in

this section).

Previous planning period� ✁ -7 -7 -7 -6 -6 -6 -5 -5 -5 -4 -4 -4 -3 -3 -3 -2 -2 -2 -1 -1 -1�✝✄ U U -7 U U -6 U U -5 U U -4 U U -3 U U -2 U U -1� ✆ U U U U U U U U U U U U U U U -3 -3 -3 -2 -2 -2

Current planning period� ✁ 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6�✝✄ U U 0 U U 1 U U 2 U U 3 U U 4 U U 5 U U 6� ✆ U U U U U U U U U U U U U U U 0 0 0 1 1 1

Table 5: Numberings used for expressing the real-world constraints of Table 4

� ✁ �✝✄ � ✆
Constraints (Real-world constraint) Penalty costs

max total 6 (1) 1 3 (8) 1 cost max total

min total 2 (2) 1 cost min total

max pert 1 (7) 1 cost max pert

min pert cost min pert

max between 8 (5) 1 cost max between

min between 2 (6) 1 cost min between

max consecutive 4 (3) 1 cost max consecutive

min consecutive 2 (4) 1 2 (9) 1 2 (10) 1 cost min consecutive

Table 6: Constraint values and penalty costs for each of the

3 numberings in Table 5; the numbers between brackets refer

to the corresponding real-world constraint of Table 4

4.2 Numbering Constraints and Values

A formal description of the numbering constraints and their

values is given here. A numbering constraint is a condition,

which is checked against its value, during or at the end of the

evaluation. Numbering constraint values (between brackets

in Table 6) are derived from the real-world constraints’ values

(denoted by V in Table 4) as presented in the left part of the

columns.

Max total is an upper limit for the number of events✁ ❃●❇✂❈ ❄✳❆✄✂✆☎✞✝✠✟ ✡☞☛✌✡☞✝ ✼
The real-world constraints given in Table 4 are translated into

8 numbering constraints presented in Table 6. In the real-

world constraints 1 and 8 presented in Table 4 max total has

value 6 and 3 (see Table 6). The other real-world constraints

in Table 4 are not evaluated with the max total constraint.

Min total is a lower limit for the number of events✁ ❃●❇✂❈ ❄✳❆✎✍✏☎ ✹✒✑ ✡☞☛✌✡☞✝ ✼
The real-world constraint 2 in Table 4 makes use of min total

in numbering ✌✯✩ .
Max pert is an array of size

✍
representing for each number

in the numbering the maximum number of events that can be

mapped to it.

Min pert is an array of size
✍

which is similar to max pert

except that it represents a minimum instead of a maximum.

None of the constraints in Table 4 makes use of the min pert

constraint. In more realistic rostering problems, however, the

constraint is used to evaluate real-world constraints such as

patterns, requested assignments and balancing the workload

(see Section 3.3).

For convenience, we introduce a new operator:

Definition 4 Two numbers a and b (where ✝✓✂✕✔) are said to

be consecutive with respect to a numbering ✌ if and only if

for every number m in
☛
a,. . . ,b

✧
the numbering ✌ maps an

event in ❃●❇✂❈ ❄✳❆ to m.

This allows us to introduce four additional constraints:

Max consecutive is the maximum number of consecutive

events. The constraint max consecutive is used in number-

ing ✌✭✩ for the 3rd real-world constraint of Table 4 and its

value is 4.

Min consecutive is the minimum number of consecutive

events. 3 different real-world constraints are evaluated with

this constraint, and so 3 different numberings are required.

Constraints 4, 9 and 10 use numberings ✌✪✩ , ✌★✫ and ✌★✬ re-

spectively. In the example, the value of min consecutive is 2

for all the numberings.

Max between is the maximum gap between two non-conse-

cutive events a and b i.e. ✔ ☞ ✝✆✂✖☎✞✝✠✟ ✔ ✶ ✡✘✗ ✶✸✶✙✑ . The 5th

constraint in Table 4 is evaluated with Max between. It has

value 8.

Min between is the minimum gap between two non-conse-

cutive events a and b i.e. ✔ ☞ ✝✚✍✛☎ ✹✒✑ ✔ ✶ ✡✘✗ ✶✸✶✙✑ . For con-

straint number 6 in Table 4 the value of min between is 2 and

the numbering is ✌✯✩ .
4.3 Counters

A counter is a variable, which is initiated at the beginning

of the evaluation and which changes during the procedure in

order to calculate the constraint violations. Some real-world

constraints can be handled with a single counter, for others a

counter array is required. The counters will be adjusted dur-

ing the course of the evaluation and checked against the val-

ues of the constraints. The real-world constraints described

in Section 3.3 can be evaluated using not more than 8 dif-

ferent constraint types. The counters are: total, consecutive,

pert, and last; respectively representing the total number of

events for the numbering, the number of consecutive events,

the number of events per value in the numbering and the num-

ber of the last evaluated event. The pert counters are used to

count certain scheduling features for different time periods

(e.g., count night shifts in weekends). Of the real-world con-

straints in Table 4, only the 7th uses max pert as a constraint.

For every value of the numbering ✌✯✩ , max pert is set to 1.

The constraints introduced above can all be evaluated by one

single algorithm. In Section 5 we show, using the schedule of

Table 2 and the real-world constraints presented in Table 6 as

an example, how the evaluation approach is implemented.

Copy the start values (Fig. 2) into the numberings.

Find first element e of T belonging to �✂✁ ❆ .

DO

- Update all the numbering counters in the intermediate evalu-

ation (Fig. 3).

- Find next element e of T belonging to �✂✁ ❆ .

WHILE the end of the solution is not reached.

Perform a final evaluation on all numbering constraints (Fig. 4).

Communicate the results to an output device.

Figure 1: Overview of the fitness evaluation

4.4 Cost Parameters

The fitness function is completely modifiable. The approach

allows for the establishment of weight factors adapted to the

needs of the schedulers. Any violation of a constraint will

contribute to the overall value of the cost function in propor-

tion to the weight factor.

In the evaluation approach, weight factors are denoted by the

term ✄ ☛ ✴ ✡ followed by the type of the numbering constraint

as defined in Section 4.1. For the demonstration, all cost pa-

rameters for the real-world constraints of Table 4 (denoted by

C) are set to 1, as presented in the right part of Table 6.

4.5 Evaluation mechanism

Every personal schedule is evaluated separately. The proce-

dure can be presented schematically as in Fig. 1. An evalu-

ation starts with the initialisation of the numbering counters.

This initialisation sets the start values induced by the solution

of the previous planning period. The initialisation procedure

Denote by ☎✝✆ the personal schedule of the previous planning period for per-

son p.

FOR i=1,. . . ,I (I is the total number of numbering)

numbering initialised=False

consecutive=0

last nr= �✟✞ (t) t: the time unit for the smallest value of �✠✞
max nr= �✟✞ (t) t: the time unit for the highest value of �✠✞
Find last element e of T belonging to �✂✡ ❆
DO

☛✌☞✟✍ �✟✞✏✎✒✑✔✓
☛✌☞✟✍✕☛✌☞✗✖✙✘✛✚✢✜ ☛✌☞✂✖✤✣
IF ✎ ☛✌☞✦✥✍★✧ ✓

IF ✎ ☛✌☞✟✍✪✩ ✚✬✫✮✭ ☛✌☞✂✖✤✣ ✓ THEN

✯✮✰✱☛✲✫ ✑ ✯✴✳✵✭✷✶✒✸ ✑ ✍✪✯✮✰✱☛✲✫ ✑ ✯✴✳✵✭✷✶✒✸ ✑✺✹ ✣
ELSE IF ✎ ☛✌☞✼✻✽✩ ✚✬✫✮✭ ☛✌☞✗✖✾✣ ✓ THEN

numbering initialised=True

last nr=nr

Find previous element e of T belonging to �✂✡ ❆ .

WHILE (✿ ☛✌✳✵✘✛❀ ✑ ☞✔✶✒☛✌❁ ✶✒☛✌✶✒✭✷✶✷✚❂✩ ✶❃✫ ✑✱❄)
i=i+1

Save the results.

Figure 2: Pseudo code for the initialisation algorithm

is described in Fig. 2. The start values are only important

for the constraint types max consecutive, min consecutive,

max between and min between. After the initialisation pha-

se, the evaluation will go from one event to another adjust-

ing the counters for all the numberings. The procedure is

FOR i=1,. . . ,I☛✌☞✟✍ �✟✞✴✎✒✑✔✓
IF ✎ ☛✌☞❅✥✍❆✧ ✓

✭❃✰✱✭❃✚❂✩❇✍✕✭❃✰✱✭❃✚❂✩ ✹ ✣
IF ✎ ☛✌☞✟✍✪✩ ✚✬✫✮✭ ☛✌☞ ✹ ✣ ✓ THEN✯✮✰✱☛✲✫ ✑ ✯✴✳✵✭✷✶✒✸ ✑ ✍✪✯✮✰✱☛✲✫ ✑ ✯✴✳✵✭✷✶✒✸ ✑✺✹ ✣
ELSE IF ✎ ☛✌☞❉❈✽✩ ✚✬✫✮✭ ☛✌☞ ✹ ✣ ✓ THEN

IF ✎ ✯✮✰✱☛✲✫ ✑ ✯✴✳✵✭✷✶✒✸ ✑ ✻✾✘❅✶✒☛ ✯✮✰✱☛✲✫ ✑ ✯✴✳✵✭✷✶✒✸ ✑✔✓ THEN
❊ ✑ ☛❇✚❂✩ ✭✷❋ ✘❅✶✒☛ ✯✮✰✱☛✲✫ ✑ ✯✴✳✵✭✷✶✒✸ ✑ ✍❊ ✑ ☛❇✚❂✩ ✭✷❋ ✘❅✶✒☛ ✯✮✰✱☛✲✫ ✑ ✯✴✳✵✭✷✶✒✸ ✑✺✹✯✮✰●✫✮✭ ✘❅✶✒☛ ✯✮✰✱☛✲✫ ✑ ✯✴✳✵✭✷✶✒✸ ✑■❍❏✎ ✘❅✶✒☛ ✯✮✰✱☛✲✫ ✑ ✯✴✳✵✭✷✶✒✸ ✑ ✖✯✮✰✱☛✲✫ ✑ ✯✴✳✵✭✷✶✒✸ ✑✔✓❑✓

IF ✎ ✯✮✰✱☛✲✫ ✑ ✯✴✳✵✭✷✶✒✸ ✑ ❈✾✘✛✚✢✜ ✯✮✰✱☛✲✫ ✑ ✯✴✳✵✭✷✶✒✸ ✑✔✓ THEN

❊ ✑ ☛❇✚❂✩ ✭✷❋ ✘✛✚✢✜ ✯✮✰✱☛✲✫ ✑ ✯✴✳✵✭✷✶✒✸ ✑ ✍❊ ✑ ☛❇✚❂✩ ✭✷❋ ✘✛✚✢✜ ✯✮✰✱☛✲✫ ✑ ✯✴✳✵✭✷✶✒✸ ✑✺✹✯✮✰●✫✮✭ ✘✛✚✢✜ ✯✮✰✱☛✲✫ ✑ ✯✴✳✵✭✷✶✒✸ ✑✺❍
✎ ✘✛✚✢✜ ✯✮✰✱☛✲✫ ✑ ✯✴✳✵✭✷✶✒✸ ✑ ✖✙✯✮✰✱☛✲✫ ✑ ✯✴✳✵✭✷✶✒✸ ✑✔✓

IF ✎ ☛✌☞✂✖✙✩ ✚✬✫✮✭ ☛✌☞✂✖✤✣✟✻✾✘❅✶✒☛ ❀ ✑ ✭✷▲ ✑✱✑ ☛ ✓ THEN

❊ ✑ ☛❇✚❂✩ ✭✷❋ ✘❅✶✒☛ ❀ ✑ ✭✷▲ ✑✱✑ ☛▼✍❊ ✑ ☛❇✚❂✩ ✭✷❋ ✘❅✶✒☛ ❀ ✑ ✭✷▲ ✑✱✑ ☛ ✹ ✯✮✰●✫✮✭ ✘❅✶✒☛ ❀ ✑ ✭✷▲ ✑✱✑ ☛ ❍
✎ ✘❅✶✒☛ ❀ ✑ ✭✷▲ ✑✱✑ ☛❅✖ ✎ ☛✌☞✗✖◆✩ ✚✬✫✮✭ ☛✌☞✂✖✤✣ ✓❑✓

IF ✎ ☛✌☞✂✖✙✩ ✚✬✫✮✭ ☛✌☞✂✖✤✣✟❈✾✘✛✚✢✜ ❀ ✑ ✭✷▲ ✑✱✑ ☛ ✓ THEN

❊ ✑ ☛❇✚❂✩ ✭✷❋ ✘✛✚✢✜ ❀ ✑ ✭✷▲ ✑✱✑ ☛▼✍❊ ✑ ☛❇✚❂✩ ✭✷❋ ✘✛✚✢✜ ❀ ✑ ✭✷▲ ✑✱✑ ☛ ✹ ✯✮✰●✫✮✭ ✘✛✚✢✜ ❀ ✑ ✭✷▲ ✑✱✑ ☛ ❍
✎❑✎ ☛✌☞✂✖✙✩ ✚✬✫✮✭ ☛✌☞✗✖✾✣ ✓ ✖✙✘✛✚✢✜ ❀ ✑ ✭✷▲ ✑✱✑ ☛ ✓

❊ ✑ ☞✔✭✴❖ ☛✌☞✱P✵✍◗❊ ✑ ☞✔✭✴❖ ☛✌☞✱P ✹ ✣
✩ ✚✬✫✮✭ ☛✌☞✟✍✽☛✌☞

i=i+1

Figure 3: Pseudo code for the intermediate evaluation

schematically presented in Fig. 3. Suppose the number cor-

responding to the event is
✑

(different from
✥

) then the value

of total will be increased by 1, as will the value of pert[
✑

].

Depending on the relationship between
✑

and the number

of the last event encountered, either consecutive will be in-

creased by 1 or an intermediate evaluation on the ‘between’

and ‘consecutive’ counters will be performed. The details of

this intermediate evaluation are presented in Fig. 3. When the

evaluation has reached the last event in the planning period,

a final evaluation on the constraints is required (Fig. 4). This

provides the values of all the violations on the constraints for

the schedule. Since the violation values are stored in appro-

priate data structures, called ❘ ✶✙✑ ✝ ✼ ✡✴❙ ✟ where ✟ is one of the

numbering constraints (see Fig. 4), the quality of the sched-

ule in terms of each particular constraint can easily be traced

back. This approach reduces the difficulty of defining proper

cost parameters considerably because the impact of changes

to the parameters is immediately visible in the value of all the

constraints’ violations. In Section 5 the whole procedure is

executed on a particular personal schedule from the example

in Table 2.

Initial P1 Event 1 Event 2 Event 3 Event 4 Event 5� ✁ �✝✄ � ✆ � ✁ �✝✄ � ✆ � ✁ �✝✄ � ✆ � ✁ �✝✄ � ✆ � ✁ �✝✄ � ✆ � ✁ �✝✄ � ✆
-1 U -2 last 0 U -2 1 U -2 2 U -2 3 U -2 4 4 -2

0 0 0 total 1 0 0 2 0 0 3 0 0 4 0 0 5 1 0

2 0 2 consecutive 3 0 2 4 0 2 5 0 2 6 0 2 7 1 2

0 0 0 pert[0] 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

0 0 0 pert[1] 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0

0 0 0 pert[2] 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0

0 0 0 pert[3] 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

0 0 0 pert[4] 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 pert[5] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 pert[6] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

penalty max total 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

penalty min total 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

penalty max pert 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

penalty min pert 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

penalty max between 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

penalty min between 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

penalty max consecutive 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0

penalty min consecutive 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Table 7: Evaluation procedure for person 1 (P1)

5 Example

5.1 Demonstration of the method

In this section, a demonstration is given to show how the soft

constraints from Section 3.3 are formulated and evaluated us-

ing this approach. All the data is presented in Tables 1 - 6

in Section 4). We will follow the entire evaluation procedure

of Fig. 1 for one single personnel member. The results for

this person are presented in Table 7. The left part of the table

shows the initial values for the counters. The values can be

stored in memory since they will not change when evaluat-

ing new solutions. Some counters in the numbering do not

reflect any real-world constraints in this particular example

(see empty fields in Table 6). They hardly affect the evalu-

ation method; their impact on calculation time and memory

is very low indeed. For each numbering, only one value for

each counter and penalty is stored in the memory.

From left to right in the table, the chronological updating

of the counters is illustrated. Note that the values of the

counters can change each time a new event is found. The

personal solution we choose for this explanation (P1) con-

sists of 5 assignments (events) in the planning period. No

penalty is created during the intermediate evaluation phase

(see Fig. 3). After the last event was found, the evaluation

goes to the final evaluation phase of the algorithm (see Fig.

4). During this part of the evaluation, a penalty is created for

the max consecutive constraint in numbering ✌✪✩ and one for

min consecutive in ✌✮✫ .
Following the evaluation for the P4 solution step by step, the

second event already creates a penalty in the intermediate

evaluation phase of Fig. 3. The min between constraint of

numbering ✌✯✩ is violated when going from event 1 (where

the corresponding number is 0) to event 2 (the corresponding

number is 2). Since the ❀ ✑✁� ✞ ✼ ✝ ✴ ✡ ✑✁�✭✓ ✕✸❁
condition of

Fig. 3 is not fulfilled, the intermediate evaluations are exe-

cuted. One extra violation occurs during the final evaluation

because the min consecutive constraint of ✌✭✫ is violated.

5.2 Real-world issues

The following figures give an idea of the importance of a

quick evaluation scheme for the solutions of the nurse ros-

tering problem tackled in Plane. In a hospital, all wards (the

number of wards can be hundreds) have access to the soft-

ware system. An average ward consists of 20 people, has 6

different shift types and 30 different soft constraints per per-

sonal schedule. The length of the most encountered planning

period is 4 weeks. An iteration in the evolutionary algorithms

described in (Burke et. al., [2]) requires approximately 100

evaluations of the cost function. On an IBM RS6000, it takes

about one minute to perform 300 iterations.

The evaluation approach is suitable for other timetabling and

scheduling problems such as (Burke et. al., [4]) and (Paechter

et. al., [11]), especially when evolutionary algorithms are be-

ing employed.

6 Conclusions

The described approach for the formulation of the fitness

function in a personnel rostering environment has proven to

be very powerful.

The evaluation method introduced in this paper was origi-

nally developed to enable easy extendibility of real-world

nurse rostering problems and to provide a quick and ex-

planatory mechanism. During the course of the development,

special constraints and customer requirements forced us to

elaborate on the basic idea of the evaluation mechanism. All

the extra difficulties can still be tackled with the evaluation

method discussed in this paper. Explaining all these details is

beyond the scope of this paper.

The method makes use of one simple evaluation function,

FOR i=1,. . . ,I

IF ✎ ✭❃✰✱✭❃✚❂✩ ❈✾✘✛✚✢✜ ✭❃✰✱✭❃✚❂✩ ✓ THEN

❊ ✑ ☛❇✚❂✩ ✭✷❋ ✘✛✚✢✜ ✭❃✰✱✭❃✚❂✩❇✍◆❊ ✑ ☛❇✚❂✩ ✭✷❋ ✘✛✚✢✜ ✭❃✰✱✭❃✚❂✩ ✹✯✮✰●✫✮✭ ✘✛✚✢✜ ✭❃✰✱✭❃✚❂✩ ❍ ✎ ✭❃✰✱✭❃✚❂✩✌✖✙✘✛✚✢✜ ✭❃✰✱✭❃✚❂✩ ✓
IF ✎ ✭❃✰✱✭❃✚❂✩ ✻✾✘❅✶✒☛ ✭❃✰✱✭❃✚❂✩ ✓ THEN

❊ ✑ ☛❇✚❂✩ ✭✷❋ ✘❅✶✒☛ ✭❃✰✱✭❃✚❂✩❇✍◗❊ ✑ ☛❇✚❂✩ ✭✷❋ ✘❅✶✒☛ ✭❃✰✱✭❃✚❂✩ ✹✯✮✰●✫✮✭ ✘❅✶✒☛ ✭❃✰✱✭❃✚❂✩ ❍✗✎ ✘❅✶✒☛ ✭❃✰✱✭❃✚❂✩✝✖ ✭❃✰✱✭❃✚❂✩ ✓
IF ✎ ✯✮✰✱☛✲✫ ✑ ✯✴✳✵✭✷✶✒✸ ✑ ❈✾✘✛✚✢✜ ✯✮✰✱☛✲✫ ✑ ✯✴✳✵✭✷✶✒✸ ✑✔✓ THEN

❊ ✑ ☛❇✚❂✩ ✭✷❋ ✘✛✚✢✜ ✯✮✰✱☛✲✫ ✑ ✯✴✳✵✭✷✶✒✸ ✑ ✍❊ ✑ ☛❇✚❂✩ ✭✷❋ ✘✛✚✢✜ ✯✮✰✱☛✲✫ ✑ ✯✴✳✵✭✷✶✒✸ ✑✺✹ ✯✮✰●✫✮✭ ✘✛✚✢✜ ✯✮✰✱☛✲✫ ✑ ✯✴✳✵✭✷✶✒✸ ✑✺❍
✎ ✯✮✰✱☛✲✫ ✑ ✯✴✳✵✭✷✶✒✸ ✑ ✖ ✘✛✚✢✜ ✯✮✰✱☛✲✫ ✑ ✯✴✳✵✭✷✶✒✸ ✑✔✓

IF ✎ ✯✮✰✱☛✲✫ ✑ ✯✴✳✵✭✷✶✒✸ ✑ ✻✾✘❅✶✒☛ ✯✮✰✱☛✲✫ ✑ ✯✴✳✵✭✷✶✒✸ ✑✔✓ THEN

❊ ✑ ☛❇✚❂✩ ✭✷❋ ✘❅✶✒☛ ✯✮✰✱☛✲✫ ✑ ✯✴✳✵✭✷✶✒✸ ✑ ✍❊ ✑ ☛❇✚❂✩ ✭✷❋ ✘❅✶✒☛ ✯✮✰✱☛✲✫ ✑ ✯✴✳✵✭✷✶✒✸ ✑✺✹ ✯✮✰●✫✮✭ ✘❅✶✒☛ ✯✮✰✱☛✲✫ ✑ ✯✴✳✵✭✷✶✒✸ ✑✺❍
✎ ✘❅✶✒☛ ✯✮✰✱☛✲✫ ✑ ✯✴✳✵✭✷✶✒✸ ✑ ✖✙✯✮✰✱☛✲✫ ✑ ✯✴✳✵✭✷✶✒✸ ✑✔✓

� ✭✂✁●✶✒☛ �✟✞
IF ✎ ❊ ✑ ☞✔✭✴❖ ✭✒P❇❈✤✘✛✚✢✜ ❊ ✑ ☞✔✭✴❖ ✭✒P ✓ THEN

❊ ✑ ☛❇✚❂✩ ✭✷❋ ✘✛✚✢✜ ❊ ✑ ☞✔✭ ✍◗❊ ✑ ☛❇✚❂✩ ✭✷❋ ✘✛✚✢✜ ❊ ✑ ☞✔✭ ✹✯✮✰●✫✮✭ ✘✛✚✢✜ ❊ ✑ ☞✔✭ ❍✗✎ ❊ ✑ ☞✔✭✴❖ ✭✒P ✖✙✘✛✚✢✜ ❊ ✑ ☞✔✭✴❖ ✭✒P ✓
IF ✎ ❊ ✑ ☞✔✭✴❖ ✭✒P❇✻✤✘❅✶✒☛ ❊ ✑ ☞✔✭✴❖ ✭✒P ✓ THEN

❊ ✑ ☛❇✚❂✩ ✭✷❋ ✘❅✶✒☛ ❊ ✑ ☞✔✭ ✍◆❊ ✑ ☛❇✚❂✩ ✭✷❋ ✘❅✶✒☛ ❊ ✑ ☞✔✭ ✹✯✮✰●✫✮✭ ✘❅✶✒☛ ❊ ✑ ☞✔✭ ❍✗✎ ✘❅✶✒☛ ❊ ✑ ☞✔✭✴❖ ✭✒P ✖✛❊ ✑ ☞✔✭✴❖ ✭✒P ✓
IF ✎ �✟✞✏✎☎✄✢✓✝✹✭�✟✞✏✎ ✆✞✝❇✓ ✖ �✟✞✏✎ ✩ ✚✬✫✮✭ ✑ ✸ ✑ ☛✌✭ ✓ ❈✤✘✛✚✢✜ ❀ ✑ ✭✷▲ ✑✱✑ ☛ ✓ THEN

❊ ✑ ☛❇✚❂✩ ✭✷❋ ✘✛✚✢✜ ❀ ✑ ✭✷▲ ✑✱✑ ☛▼✍❊ ✑ ☛❇✚❂✩ ✭✷❋ ✘✛✚✢✜ ❀ ✑ ✭✷▲ ✑✱✑ ☛ ✹ ✯✮✰●✫✮✭ ✘✛✚✢✜ ❀ ✑ ✭✷▲ ✑✱✑ ☛ ❍
✎❑✎ �✟✞✴✎☎✄✢✓❇✹✪�✟✞✏✎ ✆✞✝❇✓ ✖ �✟✞✏✎ ✩ ✚✬✫✮✭ ✑ ✸ ✑ ☛✌✭ ✓ ✖ ✘✛✚✢✜ ❀ ✑ ✭✷▲ ✑✱✑ ☛ ✓

i=i+1

Figure 4: Pseudo code for the final evaluation of the algorithm

independent of the number and character of the constraints

imposed on the system. Although the problem is complex,

the current approach enables a quick evaluation of interme-

diate solutions in the search. This approach is fast and thus

especially interesting for meta-heuristic applications. The

memory used to model and evaluate the constraints is very

limited. A numbering requires memory for the numbers

(many constraints can be handled by the same numbering)

and for the numbering constraint counters. Since these

constraint counters change in the course of the evaluation,

they keep track of the value of the cost function without

requiring extra memory. Both the time and memory savings

are important for the practical use of Plane. A hospital

generally buys one licence and the head nurses or personnel

planners can log on from their own office to execute the

planning at any given time.

The evaluation method also provides a very structural

technique which can handle new constraints. Moreover it can

take start values for constraints related to previous planning

periods into account without interfering with the evaluation

method. The modular nature of the approach allows the

system to provide some feedback. This functionality assists

the user of the software with the interpretation of the quality

of the result.

Bibliography

[1] Aickelin, U., Dowsland, K.: Exploiting problem struc-

ture in a genetic algorithm approach to a nurse roster-

ing problem, Journal of Scheduling, Volume 3 Issue 3,

2000, 139–153

[2] Burke, E.K., De Causmaecker, P., Vanden Berghe, G.:

A Hybrid Tabu Search Algorithm for the Nurse Ros-

tering Problem, X. Yao et al. (Eds.): SEAL’98, LNCS

1585, 187-194, 1999

[3] Burke, E.K., Cowling, P., De Causmaecker, P., Vanden

Berghe, G.: A Memetic Approach to the Nurse Roster-

ing Problem, Applied Intelligence special issue on Sim-

ulated Evolution and Learning (to appear)

[4] Burke, E.K., Newall, J.P., Weare, R.F.: A Memetic Al-

gorithm for University Timetabling, Practice and The-

ory of Automated Timetabling, First International Con-

ference, Edinburgh, 1995, 241–250

[5] Chan, P., Weil, G.: Cyclical Staff Scheduling Using

Constraint Logic Programming, Proceedings of the 3rd

international PATAT conference, ISBN 3-00-003866-3,

2000, 261–276

[6] Chiarandini, M., Schaerf, A., Tiozzo, F.: Solving Em-

ployee Timetabling Problems with Flexible Workload

using Tabu Search, Proceedings of the 3rd international

PATAT conference, ISBN 3-00-003866-3, 2000, 298–

302

[7] Dowsland, K.: Nurse scheduling with Tabu Search and

Strategic Oscillation. European Journal of Operations

Research (106), 1998, 393–407

[8] Hung, R.: Hospital Nurse Scheduling. JONA, Volume

25, Number 7/8, 1995, 21–23, Lippincott-Raven Pub-

lishers

[9] Meisels, A., Lusternik, N.: Experiments on Networks

of Employee Timetabling Problems, PATAT II, Second

International Conference Toronto, 1997, 130–141

[10] Meyer auf’m Hofe, H.: Solving Rostering Tasks as

Constraint Optimization, Proceedings of the 3rd in-

ternational PATAT conference, ISBN 3-00-003866-3,

2000, 280–297

[11] Paechter, B., Rankin, R.C., Cumming, A.: Improving a

Lecture Timetabling System for University-Wide Use,

Practice and Theory of Automated Timetabling II, Sec-

ond International Conference, Toronto, 1997, 156–165

[12] Weil, G., Heus, K., Francois, P. et al: Constraint Pro-

gramming for Nurse Scheduling, IEEE Engineering in

Medicine and Biology, 1995, 417–422

