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Abstract
In this paper, we develop techniques based on evolvability statistics of the �tness land-
scape surrounding sampled solutions. Averaging the measures over a sample of equal
�tness solutions allows us to build up �tness evolvability portraits of the �tness land-
scape, which we show can be used to compare both the ruggedness and neutrality in a
set of tunably rugged and tunably neutral landscapes. We further show that the tech-
niques can be used with solution samples collected through both random sampling
of the landscapes and online sampling during optimization. Finally, we apply the
techniques to two real evolutionary electronics search spaces and highlight differences
between the two search spaces, comparing with the time taken to �nd good solutions
through search.

Keywords
Evolvability, �tness landscape, search space, neutral evolution, system, evolution-
ary electronics.

1 Introduction

In this paper, we develop novel techniques based on local characteristics of the �tness
landscape surrounding a solution. Averaging over a sample of equal �tness solutions
allows us to build up �tness evolvability portraits of the �tness landscape, which we show
can be used to compare both the ruggedness and neutrality in a set of tunably rugged
and tunably neutral landscapes.

A feature of most �tness landscape descriptions is that a single global metric, e.g.,
correlation lengths, is used to describe the entire �tness landscape. The techniques
presented in this paper develop a set of continuous metrics that vary with solution
�tness. This approach allows �tness landscape features to be investigated at different
�tness levels, leading to a fuller description of the space.

Many problems to which stochastic search techniques such as evolutionary com-
putation are typically applied, present such highly skewed distributions of solution �t-
nesses that random sampling (even when some imposed distribution is applied to the
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sample) is unlikely to represent �tnesses above a given level, even when such �tnesses
are easily found through direct search optimization. In such spaces, we must develop
descriptions that work with samples collected using online sampling techniques (in the
remainder of the paper, we will use the term online sample to refer to samples collected
during some search process, as opposed to samples collected through random sam-
pling). We show that the �tness evolvability portraits presented work with samples
of solutions collected both through random sampling techniques and through online
sampling of the best solution so far found during simple hill-climbing optimization.

Finally, we investigate the application of the �tness evolvability portraits to a real
evolutionary electronics problem, namely optimization of digital inverter circuits. We
show that the portraits can be used to compare two different solution mappings, high-
lighting differences between the two search spaces and comparing the time taken to
�nd good solutions through search.

The paper proceeds as follows: Section 2 outlines the concepts of �tness landscapes
and neutrality and describes the relationship between problem dif�culty and �tness
landscape structure. Section 3 introduces the notion of solution evolvability as de�ned
by local characteristics of the �tness landscape surrounding the solution and derives
and applies the �tness evolvability portraits used in the remainder of the paper. Sec-
tion 4 describes the tunably rugged and tunably neutral terraced landscapes used
as test problems in this work. Sections 5 and 6 use the portraits derived in Section 3
to describe the test landscapes and show that they can be used to compare the rugged-
ness and neutrality in the tunably rugged and tunably neutral landscapes. Section 7
investigates the case where the �tness evolvability portraits are derived from solution
samples collected during simple hill-climbing, showing that the portraits are robust
to such online sampling. Finally, two real evolutionary electronics search spaces are
investigated in Section 8, and the paper closes with discussion.

2 Fitness Landscapes and Neutrality

This section introduces two of the main concepts used in the paper. The �tness landscape
(Section 2.1), �rst introduced by Wright (1932), describes the search space as a multidi-
mensional landscape de�ned by the genotype-to-�tness mapping through which evo-
lution moves. The classical idea of searching this landscape for good genotypes focuses
on the dif�culty of climbing up to the globally optimal �tness solution and avoiding
locally optimal solutions. Here we argue that in dif�cult search problems, much of
the time may be spent in nonadaptive neutral evolution (Section 2.2). Thus techniques
aimed at describing the space in some way, must take account of the neutrality in the
space. Section 2.3 describes how the dif�culty of �nding good solutions is determined
by the structure of the �tness landscape, and Section 2.4 outlines different methods for
sampling the �tness landscape structure.

2.1 Fitness Landscapes

Wright (1932) introduced the �tness landscape as a nonmathematical aid to visualize
the action during evolution of selection and variation (in this paper, we will use the
term evolution to refer to both natural biological evolution and the arti�cial evolution
class of stochastic search processes that operate through some form of “generate-and-
test” algorithm, e.g., genetic algorithms (Holland, 1992), genetic programming (Koza,
1992), evolutionary strategies (Rechenberg, 1973), and evolutionary programming (Fo-
gel et al., 1966)). The description views the space in which evolution takes place as a
landscape, with one dimension per genotype locus and an extra dimension, or height,
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Figure 1: A two-dimensional model �tness landscape with one globally-optimal and
one locally-optimal peak. From a starting point chosen at random, the search process
tries to �nd good solutions. The process creates a new set of solutions through the
application of genetic operators to the current solution(s), evaluating whether the new
set is better than the current solutions. Evolving populations will tend to get stuck at
the locally-optimal peak due to its large basin of attraction, and from there will only
�nd the global optimum with dif�culty.

representing the phenotype, or �tness, of that particular genotype.1 The search space
de�ned by a two-locus representation can thus be viewed as a three-dimensional �t-
ness landscape (Figure 1) with each point corresponding to a single genotype and �t-
ness. Applying a mutation operator to a particular genotype typically produces a
cluster of offspring genotypes lying close to in the landscape, while recombination of
two different genotypes typically produces offspring genotypes lying somewhere
between and in the landscape. Evolution can thus be viewed as the movement of
the population, represented by a set of points (genotypes), towards higher (�tter) areas
of the landscape.

This view of the search space leads naturally to the identi�cation of the major prob-
lems with which evolution will have to cope: ruggedness and modality (Kauffman,
1993; Naudts and Kallel, 2000). Highly epistatic problems, where �tness is dependent
on multiple inter-gene interactions, will produce a rugged landscape in which the di-
rection to good solutions is obscured. Similarly, a high degree of modality, i.e., large
numbers of local optima, will be seen as large numbers of hill-tops in the landscape
with no neighbors of higher �tness. The majority of �tness landscape descriptions
are based around these features of ruggedness and modality (see Weinberger (1990),
Hordijk (1996), Jones and Forrest (1995), and Naudts and Kallel (2000)).

A more exact picture, especially when dealing with solutions represented by
discrete-valued genotypes, is the connected graph (Stadler, 1996). Solution vertices,
or nodes, are connected directly through the action of the genetic operators. The graph
may show the space in a very different way than the �tness landscape: mutation oper-
ators acting on more than one locus, and other operators such as recombination, may
not “see” �tness landscape hill-tops as local optima at all. However, local optima can

1Wright de�ned two forms of �tness landscapes. The �rst version, used in this work, de�nes each point on
the landscape as representing a single genotype with height corresponding to genotype �tness. The second
version has each landscape point representing an entire population, with the values along each dimension
representing the allele frequency over the population, and the height corresponding to the mean population
�tness. The two approaches may show markedly different properties (Coyne et al., 1997).
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(a) Unconnected peaks (b) Single neutral pathway (c) Broad neutral plateau

Figure 2: Three two-dimensional model �tness landscapes showing the possible ad-
vantage of neutrality in a simple landscape with one globally optimal and one (nearly)
locally optimal peak. (a) shows the two peaks as unconnected; populations evolving to
the locally optimal peak will have dif�culty moving to the global optimum. (b) shows
the two peaks connected by a single neutral pathway; a population on the suboptimal
peak may �nd the pathway. (c) shows the two peaks connected by a broad plateau; the
population will move easily from the suboptimal peak to the global optimum.

clearly exist in the graph, occurring as graph nodes from which all connected nodes
are of lower �tness. This de�nition may produce local optima with respect to genetic
operators other than mutation; for example, some solutions may be local optima with
respect to recombination operators.

The graph de�nition of the search space highlights the dangers in the simple visu-
alizable picture afforded to us by the �tness landscape description: our intuitive view
may not apply in higher-dimensional spaces. Fisher, for example, argued that local
optima may not exist in a large class of high-dimensional spaces; the probability that
a solution is optimal in every single dimension simultaneously is negligible (Provine,
1986, 274). However, it should be stressed that many problems clearly do show local
optimality, e.g., the traveling salesman problem (Lawler et al., 1985). The next section
introduces the idea of search space neutrality, one possible way in which some high-
dimension spaces may differ radically from our intuitive viewpoint.

2.2 Fitness Landscape Neutrality

In the neutral theory, it is argued that evolving populations may spend relatively large
periods of time undergoing nonadaptive neutral mutation (Kimura, 1983), staying at a
constant height in the �tness landscape. The evolutionary timescale may be dominated
by long periods of neutral epochs (van Nimwegen et al., 1999) interspersed with short
periods of rapid �tness increase, i.e., punctuated equilibrium (Eldredge and Gould, 1972;
Gould and Eldredge, 1977; Elena et al., 1996). During these neutral epochs, the popu-
lation will move in the space through random drift (note that this is a separate process
to Wright’s idea of genetic drift due to �nite population size (Provine, 1986)). Despite
the undirected nature of the population movement, neutrality can be of use in escaping
from (nearly) locally optimal solutions: Figure 2 shows three model landscapes illus-
trating the possible advantages of neutrality.
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Neutral mutation in a �tness landscape will occur as movement between solutions
of equal �tness, i.e., movement along neutral networks. Such neutral evolution cannot be
distinguished from a population stuck in a local optimum simply through the �tness of
the population over time. Instead, the underlying dynamics of the population must be
investigated. Two key features have been predicted that distinguish the behavior of the
population during these periods of neutral drift from the behavior of a population stuck
in a local optimum. The �rst key feature is movement, i.e., is the population moving
signi�cantly in genotype space. The second key feature is constant innovation, i.e., the
number of previously unencountered phenotypes seen over time is constant. Thus any
phenotype should be accessible from a large enough neutral network; neutral drift can
eventually �nd a higher �tness genotype and jump up to a higher neutral network.

These key features have been analyzed in many theoretical landscapes. Land-
scapes produced by RNA secondary structure folding algorithms show that neutral
walks (a neutral variant on the random walk, where successive genotypes are gener-
ated by application of the mutation operator) have the property of constant innovation
(Huynen et al., 1996; Huynen, 1996). Exhaustive analysis of some RNA landscapes
has even mapped out the extent of the neutral networks and calculated the transition
probabilities between the different networks (Forst et al., 1995; Grüner et al., 1996).
Barnett (1998) introduces the landscape, a tunably neutral variant on Kauffman’s

systems (Kauffman, 1993), and through calculation of population diffusion coef-
�cients, shows highly neutral landscapes produce much more population movement
during periods of no �tness change when compared to such periods in landscapes of
zero neutrality. An important result from the landscape work is that changing
the amount of neutrality in the landscape has no effect on the ruggedness correlation
function; correlation lengths do not predict the change in evolutionary dynamics seen
for landscapes of different neutrality (Barnett, 1998). Newman and Engelhardt
(1998) investigate a similar tunably neutral variant of the system, �nding that in-
creased neutrality allows high �tness solutions to be found more easily through search.
This is supported by Shackleton et al. (2000) who �nd that adding neutrality through
redundancy can improve the level of �tness found through arti�cial evolution.

Neutrality has also been shown in real-world problem landscapes: In experiments
on evolving tone recognition circuits, populations were seen to move in genotype space
during periods where �tness did not increase (Harvey and Thompson, 1996). Exper-
iments on evolution of digital circuits under two conditions – allowing neutral muta-
tions and not allowing such changes – have also shown the importance of neutrality to
the search process. Experiments where neutral changes were allowed consistently pro-
duced two-bit multiplier solutions of higher �tness than experiments without neutral
mutation (Vassilev and Miller, 2000). Also, Thompson (2001) reports on the presence of
neutral plateaus in evolving speech recognition circuits and shows through exhaustive
mutation of genotypes at the start of the plateau that no transitions exist to a higher
�tness level; the neutral evolution phase is necessary.

The degree of neutrality in a system is clearly a factor in the population dynamics
during evolution. However, many �tness landscape descriptions simply do not iden-
tify this factor, e.g., the work on landscapes showing that the autocorrelation
function does not change with the level of neutrality (Barnett, 1998). In the next sec-
tion, we describe the relationship between the structure of the �tness landscape and the
dif�culty of searching in the landscape, and we outline methods by which the �tness
landscape is typically described.
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2.3 Fitness Landscape Structure and Problem Dif�culty

Clearly, the dif�culty of searching in a given problem search space is related to the
structure of the �tness landscape. However, the exact relationship between different
landscape features and the time taken to �nd good solutions through optimization is
not so straightforward. For instance, although landscapes containing large numbers of
local optima are often hard to search, the dif�culty of �nding good solutions through
optimization will depend on the �tness, distribution, and accessibility of such local
optima. Similarly, landscape neutrality may be useful in both allowing optimization
processes to escape from (nearly) local optima and potentially moving to regions of the
landscape containing more good solutions but may be positively harmful if search pro-
cesses spend long periods wandering randomly in �at areas of the space with no gra-
dient information. In this paper, we recognize that the link between �tness landscape
structure and the dif�culty of �nding good solutions through optimization is not yet
fully understood and argue that extending techniques for �tness landscape description
is an important step along the road to making such a link. Thus the techniques devel-
oped in this paper should be seen as complementary to other descriptions of �tness
landscapes, some of which are outlined below.

Early work proposed that the correlation structure of the landscape was a key
feature corresponding to problem epistasis or landscape ruggedness (Kauffman, 1993;
Weinberger, 1990; Manderick et al., 1991; Lipsitch, 1991; Hordijk, 1996). Typically, the
correlation structure of the landscape is derived in terms of parent-offspring �tness cor-
relation or the �tness-distance autocorrelation function along a random nonadaptive
walk. Similarly, �tness-distance correlation uses the correlation of genotype �tnesses
with the �tness and distance of known optima as a metric (Jones and Forrest, 1995).

Related work de�nes the landscape in terms of the information required to de-
scribe the landscape. Fourier analysis decomposes the landscape into its Fourier com-
ponents; the ruggedness of the system is measured by the number of Fourier compo-
nents, especially those of high-frequency, required for the decomposition (Stadler and
Wagner, 1998). Epistasis variance calculates the level of variance in the system with
respect to a set of �rst order approximations to the system (Davidor, 1991). Similarly,
information content analysis relates the ruggedness of the system to the �tness entropy
encountered along a random walk (Vassilev, 1997; Vassilev et al., 2000)

However, the majority of such descriptions focus solely on the search space
ruggedness measured through such correlation or information analysis as described
above. No account is taken of the neutrality in the space; as described in Section 2.2,
the landscape correlation functions do not change when the degree of neutrality
is varied. In the remainder of this paper, we introduce the technique of �tness evolv-
ability portraits based on the characteristics of the �tness landscape surrounding sample
solutions and show that such measures can be used to compare both the ruggedness
and neutrality in a set of tunably rugged and tunably neutral landscapes.

2.4 Sampling the Fitness Landscape

In many hard problems, the distribution of solution �tnesses may be markedly non-
normal, with �tnesses additionally distributed heterogeneously throughout the search
space. In such problems, the set of solutions collected through random sampling meth-
ods will not accurately represent the set of solutions seen during optimization. All
descriptions of the �tness landscape based on random sampling will thus not accu-
rately re�ect the �tness landscape as a whole. One extreme example is investigated
by Smith et al. (2001a), where analysis of an evolutionary robotics search space shows
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that fewer than of solutions in a random sample have �tness above of
the maximum in a neural network robot control problem despite this �tness being rela-
tively easy to reach using optimization techniques. Two spaces that differ only in high
�tness regions may show markedly different times to �nd good solutions through opti-
mization, but �tness landscape descriptions based on random sampling will not show
these differences (Smith et al., 2001a)

One potential approach is to bias the random sample procedure, keeping only
some set percentage of solutions at each �tness. Even this method may fail to collect
solutions above some �tness level in reasonable time, and it may be necessary to per-
form some kind of directed search process to collect the sample. Clearly, there is some
point at which the time taken to collect such a sample may well approach a signi�cant
fraction of the time taken to solve the problem. For instance, if the sample required to
characterize the problem involves collecting solutions at or near the optimum, we will
have effectively solved the problem merely in the act of description. A useful analogy
could be drawn with Marr’s type II systems; the system may not be reducible to a sim-
pler level of description than the system itself (Marr, 1976). By contrast, type I systems
can be reduced to a simpler description, e.g., a �tness landscape that can usefully be
reduced to a single correlation length description.

In Section 7, we collect samples though simple hill-climbing, and show that the
�tness evolvability portraits based on the biased sample set make the same predictions
as those based on unbiased random samples. Although the landscapes used in this
paper have approximately normal �tness distributions, verifying that the portraits are
reasonably robust to sample bias is important if we are to use them on other problems
with highly skewed �tness distributions (Smith et al., 2001b).

In the next section, we introduce the notion of evolvability as the capacity of a
solution to evolve, closely tied to the �tness landscape neighboring that solution. We
then derive a set of solution and population evolvability metrics using them to build
�tness evolvability portraits of sample �tness landscapes.

3 Evolvability and the Transmission Function

Evolvability is loosely de�ned as the capacity to evolve, alternatively the ability of an
individual or population to generate �t variants (Altenberg, 1994; Marrow, 1999; Wag-
ner and Altenberg, 1996). Thus evolvability is more closely allied with the potential for
�tness than with �tness itself; two equal �tness individuals or populations can have
very different evolvabilities (Turney, 1999). Typically, researchers use some de�nition
of evolvability based on the offspring of current individuals or populations: in this
paper we follow Cavalli-Sforza and Feldman (1976) and Altenberg (1994) in using the
transmission function of all possible offspring from a parent to de�ne a set of metrics of
evolvability (see Section 3.1 for further details).

It is often argued that there may be long-term trends for evolvability to increase
during evolution (see Wilke (2001) and Turney (1999)). However, as evolvability is
more directly related to �tness potential than �tness itself, long-term change cannot be
due to straight �tness selection. Thus any trend towards change in evolvability can only
be understood through some second order selection mechanism by which evolution
tends to retain solutions that have a more evolvable genetic system (Dawkins, 1989;
Kirschner and Gerhart, 1998).

Researchers in both biology and evolutionary computation typically link evolv-
ability with the local structure of the search space. For example, Burch and Chao (2000)
show that RNA virus evolvability can be understood in terms of the mutational neigh-
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borhood, while many evolutionary computation researchers (see Ebner et al. (2001) and
Marrow (1999)) argue that changing the properties of the search space (through such
mechanisms as adding neutrality) can affect evolvability as evidenced by the speed of
evolution. The interest in evolvability for evolutionary computation practitioners is
thus tied closely to work on the ruggedness and modality of the search space, argued
to primarily in�uence the ease of �nding good solutions in the space (Weinberger, 1990;
Hordijk, 1996; Jones and Forrest, 1995; Naudts and Kallel, 2000).

Recent work has emphasized that in addition to landscape ruggedness and modal-
ity, search space neutrality may have impact on the population dynamics of evolution
(Section 2.2). This factor may not be identi�ed by many standard measures aimed at
the landscape ruggedness and local modality but may be measurable through change
in evolvability. For example, recent arti�cial evolution research has shown that evolv-
ability can change during neutral epochs; populations tend to move to “�atter” areas of
the �tness landscape where fewer mutations are deleterious (Wilke et al., 2001; Wilke,
2001). This can clearly have an impact on the speed of search but may not be picked up
by the standard landscape ruggedness and modality descriptions.

Other biological research in evolvability is also relevant to evolutionary computa-
tion, e.g., the work on adaptation to change in environment through such mechanisms
as alleles providing increased mutation rates (Taddei et al., 1997; Sniegowski et al.,
1997). However, in this paper we focus on evolvability in terms of the properties of
the solutions’ local search space. The next section outlines the offspring transmission
function and de�nes a simple set of evolvability metrics.

3.1 The Transmission Function

In this paper, we follow the de�nition of evolvability as the ability of individuals and
populations to produce �t variants, speci�cally the ability to both produce �tter vari-
ants and to not produce less �t variants. This de�nition is intimately tied in with re-
search on the transmission function (Altenberg, 1994; Cavalli-Sforza and Feldman,
1976) and the population offspring probability distribution function from all possible
applications of the genetic operators to the parent(s)

(1)

or the probability (with parental selection function ) of obtaining offspring genotype
and phenotype over all parents of genotypes and phenotypes . The trans-

mission function is the probability density function of obtaining given
(Cavalli-Sforza and Feldman, 1976).

In the absence of recombination, only a single parent is required to produce
offspring through mutation (in Section 9 we discuss the impact of recombination on
the techniques developed in this paper):

(2)

or the probability of obtaining offspring over all parents with selection . In
this paper, we focus on the offspring of a set of single genotypes (saved during the
course of evolutionary runs), so do not integrate over the set of all possible parents.
Similarly, the selection function can be omitted as we preselect the parent. Since we are
interested only in the offspring phenotypes and not the offspring genotypes , we can
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refer to the transmission function as shorthand for the probability density
function of offspring �tnesses from a single parent .

The transmission function thus encompasses both the operators and the represen-
tation; instead of referring to good and bad genetic operators or good and bad repre-
sentations, we can talk about the effectiveness of the transmission function. Thus the
evolvability of an individual or population, i.e., their ability to generate �t variants,
is simply a property of the individual or population transmission function. The next
section derives measures for the evolvability of an individual solution in terms of this
transmission function for continuous variables.

3.2 Evolvability Metrics: Continuous Variables

The evolvability of a solution genotype and �tness is directly tied to the probability
of that solution not producing offspring of lower �tness. Thus we derive our �rst metric
of evolvability :

(3)

or the probability that the offspring �tness is greater or equal to the current �tness
, i.e., the mutation is nondeleterious. Since the transmission function is a

probability density function, the in�nite integral sums to unity, so we have

(4)

Low �tness solutions may have a larger than high �tness solutions simply due
to the increased number of better mutations. The second evolvability metric uses
only the offspring �tnesses:

(5)

or the expected offspring �tness from genotype . Note, this value is �tness dependent
so should not be compared across genotypes without reference to their original �tness.
A further problem with both and is their dependence on the entire set of offspring
�tnesses; the fraction of offspring that are signi�cantly �tter than the parent may be
extremely small. The third measure re�ects this dimension of evolvability, looking only
at the top th percentile of the offspring �tnesses

(6)

(7)

or the expected �tness of only the top th percentile of �tnesses. A similar measure
(not shown) calculates the expected �tness of the bottom th percentile of offspring.

The next section extends the continuous analysis presented above to the discrete
set.

3.3 Evolvability Metrics: The Discrete Set

Consider the �tness landscape as a directed graph with vertices (genotypes)
connected by edges (de�ned by the genetic operators). The set of offspring from a
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(a) (b) (c)

Figure 3: Three continuous one-dimensional landscapes with the parent genotype
shown by the solid circle lying at (in all cases, ). The mutation

operator is a probability distribution function, producing offspring lying
in a uniform distribution around with range , shown by the thick bar below each
landscape, centered on . See text for the derived evolvability in each landscape.

parent genotype is thus de�ned by the vertices connected to the parent vertex:

(8)

The �tness function maps each vertex on to a single �tness, so similarly, we
de�ne the set of offspring with �tness equal to or greater than some �tness :

(9)

The probability of the offspring �tness being higher or equal to the parent �tness,
or , is simply the fraction of the set with :

(10)

As in the previous section, the mean �tness of the offspring solutions, or , is
simply the mean �tness of all members of the set:

(11)

The mean �tness of the set of offspring with �tness in the top th percentile is
similarly de�ned:

(12)

(13)

The mean �tness of the set of offspring with �tness in the bottom percentile can be
de�ned through the set of offspring with �tness below some �tness .

The next section applies the metrics to a set of simple cases, where the parent geno-
types lie at different points in a hypothetical landscape.

10 Evolutionary Computation Volume 10, Number 1
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Table 1: Derived values for the evolvability of the three sample landscapes shown in
Figure 3.

Metric Plateau Hill-side Optima

1 0.5 1
0 0
0
0

3.4 Simple Evolvability Examples

The metrics derived in the previous two sections are here applied to a set of simple
cases, showing their ability to discriminate between solutions lying at different points
in a hypothetical landscape, including �at plateaus, local optima, and hill-sides. Figure
3 shows three such sample cases.

Through applying the continuous evolvability metrics (Equations 4–7) to the con-
tinuous landscapes de�ned by the functions , with the mutation operator proba-
bility distribution around the parent solution , we obtain the following results
for the evolvability of parent solutions (and offspring solutions ):

(14)

(15)

(16)

(17)

(18)

(19)

Similarly, the mean �tness over the bottom percentile can be de�ned using the
Heaviside function .

Table 1 gives the results for the four evolvability metrics derived on the three
landscapes shown in Figure 3 for the uniformly distributed mutation operator

and a parent genotype . The evolvability data for the �rst land-
scape tells us that (1) no mutations are deleterious, (2) the expected offspring �tness is
equal to the current �tness, and (3) the expected �tnesses over both the top and bottom
quartiles of offspring are equal to the current �tness: we conclude the landscape neigh-
boring the current solution must be a �at plateau. We can similarly identify the hillside
and local optima landscapes from the relevant data. No single metric gives enough
information to correctly identify the nature of the �tness landscape surrounding the
genotype . For example, the expected offspring �tness ( ) equals zero for both the
plateau and hillside, but the fraction of nondeleterious mutations ( ) or the tails of
the offspring �tness distribution ( and ) allow the points to be differentiated. Thus
the combination of the four metrics allows us to identify each type accurately. The ap-
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(a) Unconnected peaks (b) Single neutral pathway (c) Broad neutral plateau

Figure 4: Three two-dimensional model �tness landscapes showing the possible ad-
vantage of neutrality in a simple landscape with one globally optimal and one (nearly)
locally-optimal deceptive peak. The two peaks have �tnesses of and , respec-
tively, and the neutral pathway and plateau have �tnesses of .

proach can also be used on problems with higher dimensional landscapes, although the
offspring distributions may need to be approximated through sampled applications of
the mutation operator(s).

In the next section, we show how these evolvability metrics can be averaged over
populations of solutions to produce the �tness evolvability portraits used in the re-
mainder of this paper, and relate these portraits to levels of ruggedness, modality, and
neutrality in the landscape.

3.5 Population Fitness Evolvability Portraits

The previous section described how the evolvability metrics could be calculated over
the �tness neighborhood for a single solution genotype. We can de�ne the same evolv-
ability metrics over a sampled population of solutions through simply de�ning the
metrics as calculated over the sum of population transmission functions, i.e., we take
the distribution of offspring �tnesses from all members of the sample and calculate
the evolvability metrics. For the discrete case, this translates to taking the population
set of offspring de�ned over the combined sets of offspring from all members of the
population.

Two important ideas emerge from this de�nition of population evolvability. First,
we can compare entire populations simply by comparing their metrics of evolvability.
This is not explored further in this paper but has been used by Smith et al. (2001c, 2001d)
to investigate the behavior of populations during neutral epochs, in particular whether
the populations are moving to more evolvable areas of space during such neutral
epochs. Second, we can take samples of equal �tness (in practice, we take samples
of nearly equal �tness lying in some range) to build up a �tness evolvability portrait of
the landscape. For each equal �tness sample of solutions, we can calculate the popula-
tion evolvability and plot the evolvability metrics against solution �tness2.

2It should be noted that the idea of plotting some measure over �tness was used by Rosé et al. (1996) in
their density of states approach. However, in this paper, we focus on the evolvability of solutions at some
�tness rather than simply the number of such solutions.
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Figure 5: Fitness evolvability portraits for the three model landscapes shown in Figure
4. The evolvability metrics were calculated from an exhaustive sample set of solutions.

3.5.1 Three Model Landscapes

In this section, we show how the �tness evolvability portraits can be derived for the
three model landscapes shown in Figure 4 and illustrate the advantages of the portraits
over other available landscape descriptions.

Figure 4 shows the same three model landscapes used in Section 2.2 to illustrate
the potential advantages of landscape neutrality. It should be emphasized that the
landscapes are used purely to illustrate the potential advantage for searching in land-
scapes with varying levels of neutrality and are not drawn from real problem spaces.
The three landscapes shown here are discrete-valued 100-by-100 grids, and for both the
adaptive walks and the evolvability analysis on these landscapes, the same mutation
operator was used whereby offspring solutions were created from any one of the eight
grid nearest neighbors.
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Figure 6: The probability of �nding a nondeleterious mutation over the three land-
scapes shown in Figure 4, shown in detail for �tness levels near . Over most of the
�tness range, the graphs are identical. However, the increase at a �tness of (the
height of the locally optimal peak) is clear for the neutral pathway (Figure 4(b)) and
plateau (Figure 4(c)) landscapes when compared with the unconnected peaks land-
scape (Figure 4(a)).

3.5.2 Landscape Fitness Evolvability Portraits

Figure 5 shows the four �tness evolvability portraits over the three model landscapes
from Figure 4; each is derived in the same fashion. A sample of solutions (in this case
we take an exhaustive sample, but in general a random or online sample would be
collected) is saved, and a set of offspring �tnesses from each sample solution calculated,
and the metrics of evolvability calculated for that solution. To build up the �tness
portraits, we average each metric of evolvability across the sample of solutions at equal
�tness (in practice, we take solutions lying in some small range of �tness) and plot the
average evolvability metric against �tness.

All four graphs in Figure 5 show that the three model landscapes have similar
properties over the �tness range, with the exception being seen near �tnesses of .
Figure 6 shows this area in detail for the probability of a neighboring solution being
of equal or higher �tness . When the two peaks are unconnected, the probability of
�nding a �tter neighbor at this �tness drops sharply to nearly , the lowest value
seen until we reach �tnesses of nearly . However, when the peaks are connected
by a single neutral pathway, this value rises sharply to a value of over , and when
the peaks are connected by a broad plateau, the corresponding value is over . This
in itself does not allow us to predict the dif�culty of �nding good solutions (near the
top of the �tness range) as we have no way of knowing the importance of the �t-
ness level. However, when combined with information on direct search processes get-
ting stuck at �tnesses of for the unconnected peaks, we can hypothesize that the
increased level of neutrality seen in the �tness evolvability portraits is enabling the
search processes to escape from some local optima.

Now we can compare the information gained from the �tness evolvability portraits
with other descriptions of the space. Figure 7 shows the �tness distributions over the
whole space for the three landscapes (shown with scaling) and the correlation
lengths, derived from random walks. As expected, the distribution does show more
solutions of �tnesses for the neutral pathway and plateau landscapes, but there is no
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Figure 7: (a) Fitness distributions and (b) correlation lengths over the three model land-
scapes shown in Figure 4. Note that the �tness distribution is shown with scaling
to show the detail at high �tnesses. Correlation lengths were calculated over ran-
dom walks of steps each.

way to tell how these �tnesses are distributed over the space, i.e, that the spaces contain
neutral pathways. The correlation lengths are equal, so give us no way to differentiate
the spaces. Thus we see the strength of the �tness evolvability portraits, allowing us to
both recognize landscape differences at different �tnesses and giving us a description
of the accessibility and distribution of solutions across the space.

3.5.3 Landscape Ruggedness, Modality, and Neutrality

We can also relate the �tness evolvability portraits to general features of the landscape
in a direct way.

First, landscape ruggedness is related to the �tness of offspring; the epistasis of
a landscape is often measured through the correlation between the �tnesses of solu-
tions a given distance away in the space. This is closely related to the expected �tness
of the offspring solutions ( shown in �gure 5(b)) and, in particular, the gradient of
the expected offspring �tness versus parent �tness graph. Barnett (2001) has shown
analytically that this gradient is proportional to the autocorrelation function for the
mutation operator used. From Figure 5(b), the expected offspring �tness portrait pre-
dicts the three landscapes are of equal ruggedness supported by the correlation lengths
shown in Figure 7(b). This link is illustrated in the next sections when analyzing
landscapes of varying ruggedness.

Second, landscape modality is related to the probability of offspring being of lower
�tness ( shown in Figure 5(a)). There is a direct link between the average number
of nondeleterious mutations for a sample of equal �tness solutions and the probability
that a given solution at that �tness is a local optima. Thus the �tness evolvability por-
trait of nondeleterious mutations can, in principle, give us an estimate of the numbers
and �tness of local optima in the space. For our three landscapes, the overall proba-
bility of nondeleterious mutations does not decrease dramatically as �tness increases
(ignoring the behavior near �tnesses of ), thus we might predict the spaces contain
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Figure 8: Correlation lengths calculated over random walks on Kauffman’s land-
scapes shown for , (mean and standard deviation over

walks shown). The correlation lengths decrease with increasing , showing the
increasing ruggedness in the system.

few, if any, local optima. Again, we see this relationship when analyzing the land-
scapes.

Finally, landscape neutrality can be linked to the probability of obtaining nondele-
terious offspring in the same way as landscape modality. Typically, neutrality is de�ned
through the number of neutral neighbors, so increasing levels of neutrality are seen as
higher probabilities of nondeleterious mutations, thus lower probabilities of solutions
at a given �tness being a local optima. However, we can also identify at what �tness
levels this increasing neutrality is expressed, e.g., do the neutral networks permeate
the space at all �tness levels? For our model landscapes, it is not simple to disassociate
the effects of modality and neutrality, however the lack of increase in nondeleterious
mutations at �tnesses just above for the neutral pathway and plateau landscapes
(Figure 6) leads us to predict that the increase in such mutations at �tness is due to
the existence of neutral networks at this �tness.

In the next section, we outline the and terraced landscapes.

4 The and Terraced Landscapes

4.1 Kauffman’s Tunably Rugged Landscapes

Consider a genotype consisting of loci, with each locus having some state drawn
from an alphabet of size . In addition, each locus epistatically interacts with

linked loci. The genotype �tness is de�ned as the mean �tness over the
loci, with each locus �tness uniquely determined by both its own state and the state
of the loci it is epistatically linked to. Thus each locus has a total number of
assigned �tnesses (one �tness for each of the possible states for the locus and linked
loci) typically drawn from a uniform distribution over , and the entire landscape
is de�ned by the table of �tnesses. In the remainder of this paper, we take a
binary alphabet .

This landscape is a generalized version of the spin-glass model found in sta-
tistical physics (see Binder and Young (1986)). As increases from the unimodal
landscape, the ruggedness of the landscape increases up to the maximally rugged ran-
dom landscape, corresponding to the random energy spin-glass model
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Figure 9: Correlation lengths calculated over random walks on the neutrally terraced
landscapes shown for , , (mean and stan-

dard deviation over walks shown). The correlation lengths are identical to the cor-
responding lengths shown in Figure 8 (calculated on the non-neutral landscape)
and decrease with increasing . Thus the correlation length measures still predict in-
creasing ruggedness, even in the presence of signi�cant levels of neutrality in the sys-
tem.

(Derrida, 1981). Early work by Weinberger (1990, 1991) showed that increasing rugged-
ness of the system is well predicted by the decrease in correlation length for the system,
and that the number of locally optimal peaks increases dramatically with ; this has
long been a benchmark result arguing that landscape ruggedness is the key feature for
problem dif�culty. Figure 8 shows the correlation lengths derived from random walks
in the , landscapes; increasing clearly produces
more rugged landscapes with shorter correlation lengths.

The next section describes tunably neutral extensions to Kauffman’s systems
developed by Barnett (1998) and Newman and Engelhardt (1998).

4.2 Tunably Neutral Landscapes

It has been argued by many researchers that other features of problem dif�culty are
not adequately represented by measures of landscape ruggedness. One such feature is
landscape neutrality (Section 2.2), and two different methods have been proposed to
incorporate a tunable level of neutrality into the landscapes.

Barnett (1998) has argued that in real systems, many loci will not contribute to
�tness, thus some fraction of the locus �tnesses are taken to equal
zero. The neutrality of the system is thus represented by , which can be tuned from
zero (the standard landscape) to (all genotypes have �tness zero). The resulting

landscapes are thus both tunably rugged and tunably neutral. Similarly, Reidys
and Stadler (2001) derive the more general additive �tness landscape class of which the

landscapes are a special case. Barnett goes on to show that changing the level of
neutrality on the system has large impact on the population dynamics of evolutionary
search but produces no change in the correlation length (Barnett, 1997; Barnett, 1998).

A second approach taken is to discretize the possible locus �tnesses through only
allowing each locus to take one of �tnesses, or terraces (Newman and Engelhardt,
1998). Varying this terrace parameter from an in�nite value (corresponding to the
standard landscape) down to the minimal value of (where each locus has a �t-
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Figure 10: Correlation lengths calculated over random walks on the neutrally terraced
landscapes shown for , , (mean and

standard deviation over walks shown). The correlation lengths are equal for a
given despite the varying amount of neutrality in the system (shown by the varying
number of neutral terraces ). Thus correlation lengths do not predict the difference in
time required to �nd high �tness solutions.

ness of or ) thus decreases the number of possible �tnesses, so increasing the fraction
of equal �tness neutral solutions (the actual number of distinct solution �tnesses will be
equal to ). Figure 9 shows that the correlation lengths still predict in-
creasing ruggedness in the presence of signi�cant neutrality. Newman and Engelhardt
(1998) go on to show that increasing the neutrality in the system reduces the evolu-
tionary time required to �nd higher �tness solutions. In Figure 10, we show that this
evolutionary speed difference is not predicted by the change in correlation length; the
correlation length for given is constant for all levels of neutrality.

In the following two sections, we investigate the evolvability of the terraced
landscapes with varying degrees of ruggedness and neutrality.

5 Evolvability of a Tunably Rugged Landscape

For a given genotype length , the overall distribution of genotype �tnesses will be ap-
proximately equal to the normal distribution for all , i.e., the distribution
obtained from the mean of loci �tnesses sampled from a uniform distribution
( and are the mean and variance, respectively). As increases, the mean of
this genotype �tness distribution will stay constant at , but the standard

deviation will decrease with the number of samples: . Thus as our geno-
types increase in length, the fraction of extremely �t and un�t genotypes will decrease
as the variance of the population decreases (note that some models address this

issue through scaling the genotype �tnesses by (see Sibani and Pederson (1999)).
Although the overall distribution of genotype �tnesses is equal for all over a

given genotype length , the distribution of these �tnesses over the search space is
decidedly not equal for all . For the unimodal landscape, all high �tness
genotypes are grouped in a small volume of the search space, while for the maximally
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multimodal landscape, the �tness distribution over the search space is
random. In general, the distribution of �tnesses neighboring a solution of given �t-
ness is approximately normal with mean and deviation dependent on and the
current solution �tness (see Weinberger (1990) and Stadler and Schnabl (1992)). From
this it is possible to derive the expected �tnesses (and the time taken on both adap-
tive and random walks) at which local optima are reached for various and (again,
see Weinberger (1990) and Stadler and Schnabl (1992)). In the next section, we derive
analytic and empirical results for the evolvability measures when applied to the
landscapes.

5.1 Analytically Derived Evolvability for Landscapes

In this section, we focus on the probability that an offspring derived from a single bit
mutation of the parent has a higher (or equal) �tness than the parent, i.e., the �rst
evolvability metric (Section 3.1), as a function of the parental �tness. The other
evolvability metrics derived in Section 3 can be similarly treated. Consider a parent
genotype of �tness , the mean of the locus �tnesses drawn from a uniform
distribution over :

(20)

Now, the probability that the offspring �tness is not lower than the parent �t-
ness is simply the probability that the loci affected by a single bit mutation do
not, on average, decrease in �tness:

(21)

is the probability that the mean of uniformly distributed samples is not smaller
than the current �tness. For the unimodal we can solve trivially

(22)

For , the mean of affected loci �tnesses tends to a normal distribution with
mean and deviation (where is the deviation of loci
�tnesses as , assumed to be non-zero and �nite). For a normal distribution

, the probability density function is given by

(23)

(24)

The probability that a random number drawn from this distribution is greater than
some value is given by the integral of the probability density function over the rele-
vant limits (with mean and deviation ):

(25)

(26)
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Figure 11: Analytically and empirically derived probabilities of a nondeleterious mu-
tation . The derived probability is plotted as . The empirical
probability is calculated on the landscape with , for a
random sample set of solutions.

which is simply the complementary error function :

(27)

(28)

Note that an equivalent result to Equation 28 is derived by Stadler and Schnabl
(1992) in order to calculate the probability of solutions of given �tness being local op-
tima; Section 3.5.3 describes the link between the �tness evolvability portraits and gen-
eral landscape features.

5.2 Empirically Derived Evolvability for Landscapes

Figure 11 shows data generated from Equation 28 compared to the �tness evolvabil-
ity portraits derived from empirical random sampling of simulated landscapes
( , ), showing good agreement between the analytically
and empirically derived data. All random sample sets used in this paper consist
of individuals sampled from each of generated landscapes – a total of
sampled solutions. Note that for each set of , there is an arbitrarily large number
of �tness lookup tables that can be generated, and thus an arbitrarily large number of
possible landscapes. For this reason, we sample both a set of individuals and a set of
landscapes for each value of .

Both sets of data predict that as increases, the probability of �nding a �tter
mutant increases for parent �tnesses below the population mean of . Only for parent
�tnesses above this mean value of does the probability of reaching a �tter mutant
favor the lower landscapes. This can be understood by considering that a single bit
�ip mutation can affect the �tness by a fraction of order . Low landscapes
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Figure 12: Fitness evolvability portraits for the landscapes with ,
. The evolvability metrics were calculated from a random sample set of

solutions.

are thus highly correlated3, and offspring �tnesses are close to parent �tnesses. For high
landscapes, the offspring-parent �tnesses are less correlated, thus offspring �tnesses

on average are close to the population mean of , and the distribution of genotype
�tnesses is essentially random in space.

The other evolvability measures can be derived in similar fashion and give good
agreement with the �tness evolvability portraits derived from empirical simulation
of the landscapes. Figure 12 shows empirical data for the evolvability metrics

. First, we correctly identify the increasing modality of the spaces at higher
�tnesses with increasing ; as �tness increases, the probability of nondeleterious mu-
tations tails off faster for high than for low , showing that the number of local
optima increase extremely rapidly above �tnesses of for . Second, the

3The offspring-parent correlation is simply (Weinberger, 1990) with the correlation length

.
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Figure 13: Fitness evolvability portraits for the terraced landscapes with ,
, . The evolvability metrics were calculated from a random

sample set of solutions.

portraits correctly predict the increasing ruggedness of the spaces with increasing ; the
expected offspring �tness graphs ( shown in Figure 12(c)) show decreasing gradient
with increased (remember from Section 3.5.3 that this gradient is proportional to the
autocorrelation function).

The next section applies the evolvability analysis to the tunably neutral terraced
landscapes.

6 Evolvability of a Tunably Neutral Landscape

In the previous section, we saw how we can discriminate between landscapes of vary-
ing ruggedness using the �tness evolvability portraits derived in Section 3.1. In this
section, we derive portraits for the tunably neutral terraced landscape (Section 4)
in order to discriminate between landscapes of varying ruggedness in the presence of
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Figure 14: Fitness evolvability portraits for the terraced landscapes with ,
, . The evolvability metrics were calculated from a random

sample set of solutions.

neutrality and landscapes of varying neutrality.
Figure 13 shows the four �tness evolvability portraits for the terraced land-

scape with the number of possible locus �tness terraces �xed at ( and
). We see that the presence of a large degree of neutrality in the sys-

tem does not affect the ability of the portraits to distinguish between differing levels of
ruggedness and modality in the system. In particular, the ruggedness of the landscapes
are not affected by the increased neutrality (compare Figure 13(b) to 12(b)), but as ex-
pected, the probability of reaching local optima at a given �tness is much lower for all
landscapes (compare Figure 13(a) to 12(a)).

Figure 14 shows portraits for the terraced landscapes with varying neutral-
ity and �xed ruggedness (the probability of obtaining a nondeleterious mutation and
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the expected �tness of all mutations for , , ). We
see that the expected mutation �tness (Figures 14(b) and 14(d)) does not change with
differing levels of neutrality in the system; tallying with the results that the autocorre-
lation and ruggedness do not change with neutrality in the landscapes. However,
the probability of obtaining a nondeleterious mutation (Figures 14(a) and 14(c)) does
show such change. As , neutrality increases and the probability of obtaining
a nondeleterious mutation increases. For , even at high �tnesses there are still
on average neutral mutations. For high , this probability tends to zero at high
�tnesses as all loci �tness affected by the mutation need to show a neutral mu-
tation. However, this decrease in the probability of �nding nondeleterious mutations
is slower for landscapes with more neutrality. The difference is signi�cant: at a �tness
of , roughly of mutations in the landscape are nondeleterious compared
with roughly of such mutations for the non-neutral landscape. At a �tness
of , the corresponding percentages are roughly and . Thus, in the highly neu-
tral landscape, the probability of the search process reaching a local optimum
is signi�cantly smaller than the probability of reaching a local optimum in the non-
neutral . Rather than sticking in local optima, the search process can explore
more of the space along neutral networks, eventually reaching higher �tness solutions.

Thus the �tness evolvability portraits do indeed differentiate between landscapes
of both varying ruggedness (with constant neutrality) and varying neutrality (with con-
stant ruggedness). In particular, two general features are seen for the terraced
landscapes with the portrait descriptions. First, as neutrality increases, the landscape
ruggedness does not change, as evidenced by the expected offspring �tness portrait
(this result is also shown with the correlation lengths shown in Figure 10). Second, as
neutrality increases, the number of nondeleterious mutations increases at all levels of
�tness and for all . Thus as expected, the number of local optima falls with increasing
neutrality, but also the number of local optima decrease at all �tness levels in the space.

In the next section, we show that �tness evolvability portraits based on samples
collected during simple hill-climbing optimization show the same features as when
based on the random samples used in the previous two sections. This is crucial for
problems with extremely skewed solution �tness distributions for which random sam-
pling is inappropriate and biased sampling techniques must be used. If we are to de-
scribe the landscape structure of such problems, the portraits must be robust when
based on such biased samples.

7 Online Sampling Evolvability

In the previous sections, we have investigated empirically derived evolvabilities for
the tunably rugged and tunably neutral terraced landscapes through random sam-
pling of the space of all solutions. This random sampling technique works well with
the landscapes where solution �tnesses are de�ned as the linear sum of all loci
�tnesses; due to the central limit theorem, the solution �tnesses will be approximately
normally distributed. However, in many problems, such normally distributed solu-
tion �tnesses will not be encountered, and measures based on random sampling of the
space may in general be less successful in describing the landscape.

With such skewed solution �tness distributions, it may be necessary to bias the col-
lected sample through keeping only a percentage of solutions found at each �tness and
de�ne the landscape description over this biased sample. With even more extremely
skewed distributions, it may be necessary to collect a biased sample through some di-
rect search optimization procedure such as a simple hill-climber. For example, Smith
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Figure 15: Fitness evolvability portraits for the landscapes with ,
. The evolvability metrics were calculated from a sample set of solutions

collected during hill-climbing.

et al. (2001a) �nd only of randomly generated solutions have �tness above
of the maximum in a neural network robot control problem despite this �tness being
relatively easy to reach using optimization techniques.

In this section, we show that the �tness evolvability portraits presented in the pre-
vious sections still describe the general features of the terraced landscapes when
based on a biased sample collected using a (1+1) evolutionary strategy hill-climber
(Rechenberg, 1973). runs of the hill-climber were performed for each parameter
setting (generating a new landscape for each run). From an initial randomly generated
solution, random mutations were applied (using both single bit mutation and mutation
probability per bit gives similar results) with nondeleterious mutations accepted and
deleterious mutations rejected. All new encountered genotypes were saved for analy-
sis, and the hill-climber stopped after mutations had been tried. The following
analysis uses the saved samples over each parameter setting.

Figure 15 shows the probability of a nondeleterious mutation and the expected
mutation �tness over the landscape with , for the biased
hill-climber sample. As seen with the �tness evolvability portraits based on random
sampling, the ruggedness of the landscape, as measured through the gradient of the
expected mutation �tness against �tnesses, increases with . Also, the number of local
optima increases with both and the level of �tness.

Figure 16 shows the probability of a nondeleterious mutation for the terraced
landscapes with , , for the biased hill-climber
sample. Again we see the same results as for the unbiased random sample (Section
6); as expected, the more neutral landscapes with lower numbers of terraces show
greater probability of nondeleterious mutations over the entire �tness range.

The results for the biased hill-climber sample over both the tunably rugged (Figure
15) and the tunably neutral landscapes (Figure 16) are equivalent to the results seen for
the unbiased random sample used in Sections 5 and 6. Thus the �tness evolvability
portraits are indeed robust over the use of biased and unbiased samples. In the next
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Figure 16: Fitness evolvability portraits for the terraced landscapes with ,
, . The evolvability metrics were calculated from a sample

set of solutions collected during hill-climbing.

section, we derive the �tness evolvability portraits for a real search space from the
evolutionary hardware domain, evolution of a digital inverter circuit, and compare
with results from optimization runs.

8 An Evolutionary Hardware Problem

In this section, we apply the same evolvability analysis to search spaces correspond-
ing to real engineering applications and compare with results from optimization runs.
It should be emphasized that the speci�c implementation details outlined below are
unimportant; what should be stressed is that the two different search spaces correspond
to two solution representations, “multiplex” and “direct”, for the same evolutionary
electronics problem.

In Layzell (1999, 2001), various electronic circuits were evolved directly in hard-
ware using an Evolvable Motherboard (EM); a purpose-built research platform con-
sisting of bipolar transistors connected to a triangular matrix of recon�gurable analog
switches. The triangular switch matrix allows all possible combinations of intercon-
nection between the transistors, power supply, and I/O, but by altering the genotype-
to-phenotype mapping, various more restrictive interconnection architectures can be
investigated. This research explored two different architectures: direct mapping, for
which each genotype bit corresponds to the on/off state of an EM switch, and multi-
plex mapping, for which the genotype speci�ed the matrix position of a limited number
of EM switches as well as their state. Figure 17 shows how the two mappings differ in
the way that the state of the EM switches are speci�ed.

Circuit evolution was carried out both in the noisy environment of physical hard-
ware and a noise-free environment attained by simulating the EM with proprietary
electronics design software. In general, this research required search-spaces of the or-
der in size, with the multiplex mapping consistently proving more conducive to
evolutionary search. Multiplex mapping was originally designed to improve the evo-
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Figure 17: The two 12-bit evolutionary electronics mappings. Direct mapping, for
which each genotype bit corresponds to the on/off state of an EM switch, and multiplex
mapping, for which the genotype speci�ed the matrix position of a limited number of
EM switches as well as their state.
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Figure 18: �tness distribution for the 12-bit direct and multiplex evolutionary
electronics spaces. Note that the �tness function for the digital inverter circuit assigns
negative �tness to solutions that produce output increasing with input, zero �tness to
solutions with constant output, and positive �tness to solutions with output decreasing
with increasing input. The majority of solutions have near zero �tness, while the multi-
plex mapping space has many more positive �tness solutions than the direct mapping
space.

lutionary search from an electronics perspective (by reducing the likelihood of short-
circuits on the transistor pins), but a study was later undertaken to investigate the rel-
ative merits of the two mappings from an evolutionary theoretic viewpoint (Layzell,
2001). This study used a minimal set of components to evolve a digital inverter with
search-space sizes between and – small enough to conduct exhaustive searches.
Although small, they are real electronic spaces and exhibit all the characteristics (such
as con�guration-dependent noise levels and power-supply related epistasis) of the

Evolutionary Computation Volume 10, Number 1 27



T. Smith et al.

5000 4000 3000 2000 1000 0 1000 2000 3000
0

10

20

30

40

50

60

70

80

90

100

Original Fitness

P
ro

b
(F

m
u

t ³
 F

c
u

rr
e
n

t)

12bit multiplex mapping
12bit direct mapping   

(a) Probability of a nondeleterious mutation

5000 4000 3000 2000 1000 0 1000 2000 3000
3500

3000

2500

2000

1500

1000

500

0

500

1000

Original Fitness

<
 F

0
,1

0
0
 >

12bit multiplex mapping
12bit direct mapping   

(b) Expected �tness over all mutations

5000 4000 3000 2000 1000 0 1000 2000 3000
500

0

500

1000

1500

2000

2500

Original Fitness

<
 F

7
5
,1

0
0
 >

12bit multiplex mapping
12bit direct mapping   

(c) Expected �tness over top quartile of muta-

tions

5000 4000 3000 2000 1000 0 1000 2000 3000
5000

4500

4000

3500

3000

2500

2000

1500

1000

500

0

Original Fitness

<
 F

0
,2

5
 >

12bit multiplex mapping
12bit direct mapping   

(d) Expected �tness over bottom quartile of mu-

tations

Figure 19: Fitness evolvability portraits for the evolutionary hardware multiplex and
direct mappings. The metrics were calculated from exhaustive sampling of solutions.

much larger spaces also explored by Layzell (1999, 2001).
The �tness function for the digital inverter circuits assigns negative �tness to solu-

tions that produce output increasing with input, zero �tness to solutions with constant
output, and positive �tness to solutions with output decreasing with increasing input.
It should be emphasized that the distribution of �tnesses will not necessarily be equal
for the multiplex and direct mapping spaces and is markedly non-normal. In particular,
the majority of the solutions have zero �tness due to constant output, and the number
of positive �tness solutions is small. Figure 18 shows the logged �tness distribution
for the multiplex and direct mapping spaces; note that the majority of solutions have
near zero �tness, while the multiplex mapping space has many more positive �tness
solutions.

Figure 19 shows the four �tness evolvability portraits for the spaces. Several points
can be made. First, the portraits are much noisier than the corresponding por-
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Figure 20: (a) Mean �tness reached through 1+1 evolutionary strategy hill-climbing,
and (b) percentage of hill-climbers that reach the global optimum. Data calculated over

runs of a non-greedy hill-climber (accepting the �rst nondeleterious mutation).

traits; the �tness distributions for these evolutionary electronics spaces are markedly
non-normal, and many �tness levels contain only a few solutions, producing large
variation in the calculated evolvability. Second, as evidenced by the gradients of the
expected offspring �tness portrait (Figure 19(b)), the spaces are of similar ruggedness
to each other, which is supported by autocorrelation analysis (not shown). Third, the
distribution and density of local optima varies markedly over the space (see the prob-
ability of nondeleterious mutations, Figure 19(a)). At �tnesses at and below zero, the
majority of mutations are nondeleterious, and there are few local optima. Once above
zero �tness however, the character of the space changes dramatically; there are now far
fewer neutral or �tter mutations and many local optima.

The general features of the two spaces are thus similar in terms of ruggedness and
modality, but we can identify differences at and above �tnesses of zero. In particu-
lar, the probabilities of nondeleterious mutations are higher for the multiplex spaces
than for the direct spaces (Figure 19(a)), thus we might expect the hill-climbers to reach
high �tnesses faster for the multiplex mapping. This is seen in Figure 20(a); the mean
hill-climb �tness for the multiplex space is signi�cantly larger than for the direct space.
However, this is heavily weighted by the higher global optimum in the multiplex space,
so Figure 20(a) shows the percentage of hill-climbers reaching the global optimum;
roughly equal numbers of hill-climbers in the two spaces reach the global optimum
( for the multiplex, for the direct mapping), but the hill-climbers in the multi-
plex space reach the optimum quicker than the direct space hill-climbers. This tallies
with the suggestion from the �tness evolvability portraits, that the multiplex spaces
contain fewer deleterious mutations at higher �tnesses.

In the �nal section, we discuss the results, relevance, and limitations of the �tness
evolvability portraits applied to real spaces.
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9 Discussion

In this paper, we have developed the notion of evolvability based on the �tness distri-
bution of the offspring of sampled solutions. Averaging evolvability over a population
of equal �tness solutions allows us to build up �tness evolvability portraits of a land-
scape, which we have shown can be used to describe general features of ruggedness,
modality, and neutrality in a set of tunably rugged and tunably neutral landscapes.
We have also shown that such portraits can be based on samples of solutions collected
both through random sampling and through online biased sampling. Finally, we have
derived the �tness evolvability portraits for two real evolutionary electronics search
spaces and suggested that some characteristics of the two search spaces can be linked
to the ease of �nding good solutions.

The primary aim of this work is to develop techniques that can be used to describe
features of �tness landscapes for real problems. In previous work, we have shown
that standard descriptions based on random sampling of the space, such as the auto-
correlation function, fail when applied to spaces with highly skewed �tness distribu-
tions (Smith et al., 2001a). Although such techniques can be used with biased sample
sets, it is unclear to what extent their underlying assumptions are violated by the het-
erogeneous anisotropic nature of certain problem spaces, e.g., evolutionary electronics
landscapes. This is also an issue with the techniques described here; we are using
methods based on local space features to predict global space properties. This implicit
assumption holds in homogeneous problem spaces such as the landscapes, but the
evolutionary electronics spaces investigated show no such homogeneity. In such cases
of extremely heterogeneous spaces, it may be unrealistic to expect to identify general
features; variation in the populations of equal �tness solutions may well be swamped
through the averaging procedures used. Instead, the techniques should be used as part
of a larger investigation for description, and hopefully characterization, of some �tness
landscape.

A second issue that arises when applying the techniques to heterogeneous �tness
landscapes is that of sparse sampling. In the evolutionary electronics case, many lev-
els of �tness were extremely poorly represented. Although in this case, exhaustive
sampling was used, the argument applies to much larger spaces where similar dis-
tributions of solution �tnesses may be obtained through random or biased sampling.
Sparsely sampled �tness levels will produce large variation in the evolvability portraits
(seen in the electronics spaces in Section 8), making it dif�cult to correctly interpret the
portraits. Further, �tness levels that are not represented at all in the collected sample,
e.g., extremely high �tness levels, will clearly have no impact on the evolvability por-
traits. One future area of work is to develop techniques for predicting the accessibility
of such high �tness levels; one such measure could potentially be based on the increase
in probability of deleterious mutations as �tness increases.

In the work reported in this paper, we have concentrated on deriving �tness evolv-
ability portraits based on the �tness of offspring in a small volume surrounding the
sampled solutions, with the volume typically de�ned through single bit mutation.
There is no reason in principle that the techniques could not be extended to incorpo-
rate crossover and other operators; only the �tness distribution of offspring is required
to derive the portraits (although there are clearly issues to be explored regarding the
other solution(s) involved in recombination). In the same vein, the portraits could in
principle be used to investigate the suitability of operators for a particular problem,
comparing features of the landscapes de�ned by two or more different sets of opera-
tors.
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Finally, it should be emphasized that the techniques of evolvability and �tness
portraits developed in this paper should be seen as complementary to other methods
for describing and characterizing �tness landscapes. No single measure or description
can possibly characterize any high-dimensional heterogeneous search space; the �tness
evolvability portraits are presented as a useful method to investigate the properties of
the �tness landscape over the entire �tness range.
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