
 Open access  Journal Article  DOI:10.1109/4235.735432

Fitness sharing and niching methods revisited — Source link 

Bruno Sareni, Laurent Krähenbühl

Institutions: Centre national de la recherche scientifique

Published on: 01 Sep 1998 - IEEE Transactions on Evolutionary Computation (IEEE)

Topics: Fitness approximation, Fitness function, Evolutionary algorithm, Evolutionary computation and Cultural algorithm

Related papers:

 Genetic algorithms with sharing for multimodal function optimization

 A clearing procedure as a niching method for genetic algorithms

 Niching methods for genetic algorithms

 Adaptation in natural and artificial systems

 An analysis of the behavior of a class of genetic adaptive systems.

Share this paper:    

View more about this paper here: https://typeset.io/papers/fitness-sharing-and-niching-methods-revisited-
36v92taj9g

https://typeset.io/
https://www.doi.org/10.1109/4235.735432
https://typeset.io/papers/fitness-sharing-and-niching-methods-revisited-36v92taj9g
https://typeset.io/authors/bruno-sareni-py04j4jev1
https://typeset.io/authors/laurent-krahenbuhl-10ev3gdjg5
https://typeset.io/institutions/centre-national-de-la-recherche-scientifique-2ew2zhz4
https://typeset.io/journals/ieee-transactions-on-evolutionary-computation-1irf0lyu
https://typeset.io/topics/fitness-approximation-34d4jyqb
https://typeset.io/topics/fitness-function-1r8qxzfq
https://typeset.io/topics/evolutionary-algorithm-3n96w666
https://typeset.io/topics/evolutionary-computation-id65m1zy
https://typeset.io/topics/cultural-algorithm-1y0p5l9r
https://typeset.io/papers/genetic-algorithms-with-sharing-for-multimodal-function-3gex4tywno
https://typeset.io/papers/a-clearing-procedure-as-a-niching-method-for-genetic-311850ytma
https://typeset.io/papers/niching-methods-for-genetic-algorithms-450ooc3c20
https://typeset.io/papers/adaptation-in-natural-and-artificial-systems-1melifqtv5
https://typeset.io/papers/an-analysis-of-the-behavior-of-a-class-of-genetic-adaptive-12zofr4nnx
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/fitness-sharing-and-niching-methods-revisited-36v92taj9g
https://twitter.com/intent/tweet?text=Fitness%20sharing%20and%20niching%20methods%20revisited&url=https://typeset.io/papers/fitness-sharing-and-niching-methods-revisited-36v92taj9g
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/fitness-sharing-and-niching-methods-revisited-36v92taj9g
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/fitness-sharing-and-niching-methods-revisited-36v92taj9g
https://typeset.io/papers/fitness-sharing-and-niching-methods-revisited-36v92taj9g


HAL Id: hal-00359799
https://hal.archives-ouvertes.fr/hal-00359799

Submitted on 9 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fitness sharing and niching methods revisited
Bruno Sareni, Laurent Krähenbühl

To cite this version:
Bruno Sareni, Laurent Krähenbühl. Fitness sharing and niching methods revisited. IEEE Transactions
on Evolutionary Computation, Institute of Electrical and Electronics Engineers, 1998, 2 (3), pp.97 -
106. 10.1109/4235.735432. hal-00359799

https://hal.archives-ouvertes.fr/hal-00359799
https://hal.archives-ouvertes.fr


IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 2, NO. 3, SEPTEMBER 1998 97

Fitness Sharing and Niching Methods Revisited

Bruno Sareni and Laurent Krähenbühl

Abstract—Interest in multimodal optimization function is ex-
panding rapidly since real-world optimization problems often
require the location of multiple optima in the search space. In
this context, fitness sharing has been used widely to maintain
population diversity and permit the investigation of many peaks
in the feasible domain. This paper reviews various strategies of
sharing and proposes new recombination schemes to improve its
efficiency. Some empirical results are presented for high and a
limited number of fitness function evaluations. Finally, the study
compares the sharing method with other niching techniques.

Index Terms— Evolutionary computation, fitness sharing, ge-
netic algorithms, multimodal optimization, niching methods.

I. INTRODUCTION

T
RADITIONAL genetic algorithms (GA’s) with elitist

selection are suitable for locating the optimum of uni-

modal functions as they converge to a single solution of

the search space. Real optimization problems, however, often

lead to multimodal domains and so require the identification

of multiple optima, either global or local. For this purpose,

niching methods extend simple GA’s by promoting the forma-

tion of stable subpopulations in the neighborhood of optimal

solutions.

Niching methods have been developed to reduce the effect

of genetic drift resulting from the selection operator in the

standard GA. They maintain population diversity and permit

the GA to investigate many peaks in parallel. On the other

hand, they prevent the GA from being trapped in local optima

of the search space. Niching GA’s are based on the mechanics

of natural ecosystems. In nature, animals compete to survive

by hunting, feeding, grazing, breeding, etc., and different

species evolve to fill each role. A niche can be viewed as a

subspace in the environment that can support different types of

life. A species is defined as a group of individuals with similar

biological features capable of interbreeding among themselves

but that are unable to breed with individuals outside their

group. For each niche, the physical resources are finite and

must be shared among the population of that niche. By

analogy, niching methods tend to achieve a natural emergence

of niches and species in the environment (search space). A

niche is commonly referred to as an optimum of the domain,

the fitness representing the resources of that niche. Species can

be defined as similar individuals in terms of similarity metrics.

The sharing method is probably the best known and also

used among niching techniques. It was originally introduced by

Holland [1, p. 164] and improved by Goldberg and Richardson
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[2]. Section II presents the main principles of fitness shar-

ing and reviews the recent development of this technique.

Section III is devoted to other niching schemes and especially

crowding methods. Section IV investigates various forms of

sharing on test problems defined in Section III and compares

their efficiency with the other niching GA’s. Empirical results

are presented for high and a limited number of fitness function

evaluations.

II. FITNESS SHARING

A. Principle

Fitness sharing modifies the search landscape by reducing

the payoff in densely populated regions. It lowers each popula-

tion element’s fitness by an amount nearly equal to the number

of similar individuals in the population. Typically, the shared

fitness of an individual with fitness is simply

(1)

where is the niche count which measures the approximate

number of individuals with whom the fitness is shared. The

niche count is calculated by summing a sharing function over

all members of the population

sh (2)

where denotes the population size and represents the

distance between the individual and the individual . Thence,

the sharing function (sh) measures the similarity level between

two population elements. It returns one if the elements are

identical, zero if their distance is higher than a threshold of

dissimilarity, and an intermediate value at intermediate level of

dissimilarity. The most widely used sharing function is given

as follows:

sh
if

otherwise
(3)

where denotes the threshold of dissimilarity (also the

distance cutoff or the niche radius) and is a constant

parameter which regulates the shape of the sharing function.

is commonly set to one with the resulting sharing function

referred to as the triangular sharing function [3].

The distance between two individuals and is char-

acterized by a similarity metric based on either genotypic or

phenotypic similarity. Genotypic similarity is related to bit-

string representation and is generally the Hamming distance.

Phenotypic similarity is directly linked to real parameters of

the search space. It can be the Euclidian distance for instance.

1089–778X/97$10.00  1998 IEEE
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Sharing based on phenotypic similarity may give slightly better

results than sharing with genotypic similarity [4].

Sharing must be implemented with the less biased selection

methods. Stochastic remainder selection (SRS) and stochastic

universal selection (SUS) have been widely used to reduce

bias in the selection algorithm [5]. Tournament selection (TS)

with continuously updated sharing is another possibility [6]. In

the same way, sharing must use low recombination operators

to promote stability of subpopulations. In effect, crossovers

between individuals of different niches often lead to poor

individuals (lethals). Mating restriction schemes have been

successfully applied to reduce the formation of lethals [4],

[7], [8].

B Limitations

Sharing tends to encourage search in unexplored regions of

the space and favors the formation of stable subpopulations.

Nonetheless, sharing is not without limitations.

• Setting the dissimilarity threshold requires a priori

knowledge of how far apart the optima are. For real

optimization problems, however, no information about

the search space and the distance between the optima is

generally available. On the other hand, is the same

for all individuals. This supposes that all peaks must

be nearly equidistant in the domain. For these reasons,

sharing can fail to maintain all desired peaks if they

are not equidistant or if the estimated distance between

two peaks is incorrect. Various empirical formulas have

been proposed to set the dissimilarity threshold but this

problem remains the major flaw of the method [4], [9].

• The sharing scheme is very expensive as a result of

the computation of niche counts of complexity

per generation. Clustering analysis and dynamic niching

have been developed to reduce computational complex-

ity and increase sharing effectiveness [7], [8]. In many

domains, however, the computational time to obtain the

fitness of individuals dominates the computational cost of

comparisons. In that case, standard sharing can be imple-

mented with only a small increase in the computational

requirements.

C. Fitness Scaling

One way to improve sharing efficiency is to use fitness

scaling [3]. A scaled shared function increases differentiation

between optima and reduces deception1 [16], [19]. It makes

the optima more attractive than the surrounding regions of the

space. A common technique to scale the fitness function is

to use a power scaling. In that case (1) can be modified as

follows:

(4)

The remaining problem is the choice of an appropriate

parameter for a given objective function. If the power of

1 We talk about deception when the combination of good building blocks
leads to reduced fitness rather than increased fitness. Deceptive problems are
generally multimodal functions with attractive local optima (see [16]).

the scaling function is too high, the predominance of fitness

scaling can prevent the reduction of genetic drift by the

sharing method. The domination of “super-individuals” in the

population can cause the niching GA to converge prematurely.

On the other hand, if the power of the scaling function is too

low, differentiation between optima can be insufficient. This

can hinder a perfect detection of the optima by the sharing

method. The compromise in the choice of the scaling power is

directly related to the accurate balancing between exploration

and exploitation necessary to all global stochastic optimization

methods. To prevent premature convergence and increase the

efficiency of the sharing method, annealing the scaling power

during the search is recommended [19].

III. FURTHER NICHING METHODS

An important variety of other niching methods have been

reported in the literature including sequential niching [10],

immune systems [11], speciation with implicit fitness sharing

and co-evolution [20], ecological GA’s [9], [12], and crowding

schemes. This paper focuses on crowding techniques and

explores a recent promising niching method called clearing.

A. Crowding Methods

Crowding methods insert new elements in the population

by replacing similar elements.

• Standard Crowding: In DeJong’s crowding [13], only a

fraction of the global population specified by a percentage

G (generation gap) reproduces and dies each generation.

In this crowding scheme, an offspring replaces the most

similar individual (in terms of genotypic comparison)

taken from a randomly drawn subpopulation of size CF

(crowding factor) from the global population. Because of

a great number of replacement errors, the initial crowding

of DeJong has been shown to be limited in multimodal

function optimization [4], [9].

• Deterministic Crowding: Mahfoud improved standard

crowding by introducing competition between children

and parents of identical niches [9]. After crossover and

eventually mutation, each child replaces the nearest parent

if it has a higher fitness. Thus deterministic crowding

(DC) results in two sets of tournaments: (parent 1 against

child 1, and parent 2 against child 2) or (parent 1

against child 2, and parent 2 against child 1). The set

of tournament that yields the closest competitions is

held. Similarity is computed using preferably phenotypic

distance. With two distance comparisons per set of

tournaments and sets of tournaments per generation,

the resulting order of complexity of deterministic

crowding is .

• Restricted Tournament Selection: Restricted tournament

selection (RTS) adapts standard tournament selection (TS)

for multimodal optimization [14]. RTS initially selects

two elements from the population to undergo crossover

and mutation. After recombination, a random sample

of CF individuals is taken from the population as in

standard crowding. Each offspring competes with the

closest sample element. The winners are inserted in the
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population. This procedure is repeated times. The

order of complexity of RTS is . It can vary

from to according to the crowding factor

value CF.

B. Clearing

The clearing method is very similar to fitness sharing but is

based on the concept of limited resources of the environment

[15]. Instead of sharing the resources between all individuals of

a single subpopulation as in fitness sharing, clearing attributes

them only to the best members of the subpopulation. In

practice, the capacity of a niche specifies the maximum

number of elements that this niche can accept. Thus, clearing

preserves the fitness of the best individuals (dominant

individuals) of the niche and resets the fitness of the others that

belong to the same subpopulation (dominated individuals). As

in the sharing method, individuals belong to the same niche (or

subpopulation) if their distance in the search space is less than

a dissimilarity threshold (clearing radius). Clearing can be

coupled with elitism strategies to preserve the best elements of

the niches during the generations. The order of complexity of

the basic clearing procedure is where is the number

of niches maintained during the search.

IV. TEST PROBLEMS

A. Test Functions

We consider three multimodal functions of different diffi-

culty with nomenclature maintained from [9]

(5)

This function defined on [0, 1] consists of five unequally

spaced peaks of uniform height. Maxima are located at ap-

proximate values of 0.080, 0.247, 0.451, 0.681, and 0.934.

All peaks are of height 1.0

(6)

is also defined on [0, 1] and consists of five unequally

spaced peaks of nonuniform height. Maxima are located at

approximate values of 0.080, 0.247, 0.451, 0.681, and 0.934.

Maxima are of approximate height 1.000, 0.948, 0.770, 0.503

and 0.250 respectively.

is the massively multimodal deceptive function [15],

[16]. is defined by the sum of the fitness of five subfunc-

tions

(7)

where . Each subfunction is a bimodal

deceptive function of unitation as displayed in Fig. 3. has

32 global optima of height 5 and several million local maxima

lying between 3.203 and 4.641.

Fig. 1. Function .

Fig. 2. Function .

Fig. 3. The bimodal deceptive subfunction used in .

B. Performance Criteria

Maximum Peak Ratio: The maximum peak ratio is the sum

of the fitness of the local optima identified by the niching

technique divided by the sum of the fitness of the actual

optima in the search space [8]. An optimum is considered to be

detected if it is within a niche radius of the real optimum and

if its fitness value is at least 80% of the real optimum. When

an optimum is not identified, the local optimum value is set

to zero. Thence, the maximum value for the maximum peak

ratio is one corresponding to a perfect detection of all optima.

Effective Number of Peaks Maintained: We also consider

the effective number of optima maintained at the end of the

search according to the previous assumptions.
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TABLE I
SELECTION IN THE SHARING METHOD. THIS TABLE PRESENTS THE VALUES OF THE PERFORMANCE CRITERIA (SEE SECTION IV) ON FUNCTION FOR EACH

SELECTION SCHEME. TEST1 IS PERFORMED USING 100 INDIVIDUALS AND 200 GENERATIONS. TEST2 IS PERFORMED USING 30 INDIVIDUALS AND 30 GENERATIONS

TABLE II
SELECTION IN THE SHARING METHOD. THIS TABLE PRESENTS THE VALUES OF THE PERFORMANCE CRITERIA (SEE SECTION IV) ON FUNCTION FOR EACH

SELECTION SCHEME. TEST1 IS PERFORMED USING 100 INDIVIDUALS AND 200 GENERATIONS. TEST2 IS PERFORMED USING 30 INDIVIDUALS AND 30 GENERATIONS

Fig. 4. Chi-square-like deviation of the selection schemes investigated on
function . The population size is .

Chi-Square-Like Performance Criteria: The “chi-square-

like” performance statistic measures the deviation between the

population distribution and an ideal proportionally populated

distribution [4], [7], [8]. This criterion is computed using the

actual distribution of individuals and an ideal distribution

mean in all the niches ( peak niches plus the nonpeak

niche)

chi-square-like deviation (8)

where

and (9)

for the peak niches and

and (10)

Fig. 5. Chi-square-like deviation of the selection schemes investigated on
function . The population size is .

for the nonpeak niche. denotes the population size, and

corresponds to the fitness value of the peak . The variable

represents the observed number of individuals in a niche

represents the expected ideal number, and represents the

standard deviation of the number of individuals in the ideal

distribution.

The chi-square-like performance statistic characterizes the

ability of the niching technique to proportionally populate the

niches of the search space. The smaller the measure, the better

the method.

Number of Fitness Function Evaluations: In many applica-

tions such as electromagnetic design, the computational cost

of fitness functions can be very expensive. Therefore, we are

interested in evaluating the efficiency of niching methods at

limited numbers of function evaluations. Experimental results

were established for 900 fitness function evaluations (30

individuals, 30 generations denoted by test2 in the following).

Simulations were also carried out with a higher number of

fitness function evaluations 200 000 (100 individuals, 200



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 2, NO. 3, SEPTEMBER 1998 101

Fig. 6. Chi-square-like deviation of the selection schemes investigated on
function . The population size is .

Fig. 7. Chi-square-like deviation of the selection schemes investigated on
function . The population size is .

generations denoted by test1 in the following) for comparison

with other experimental studies. These values were considered

reasonable, and no claim is made to their optimality.

V. EXPERIMENTAL STUDY

All experiments were performed with a genotype coded in a

30-bit number using Gray parameter encoding. Mutation rates

and crossover probabilities were chosen according to earlier

recommendations [8], [9].

The mutation was removed for functions and to pre-

vent the restoration of lost diversity. Recall that the main role

of mutation is to protect individuals from the loss of genetic

material by always maintaining diversity in the population.

If we want to assess the efficiency of the niching schemes,

it is necessary to isolate the different population diversity

mechanisms by resetting the mutation rate.

Since RTS and DC use implicitly a full crossover probabil-

ity, was set in all other niching methods. Moreover,

this allows to evaluate the niching GA’s performance in the

most disruptive case.

Fig. 8. Chi-square-like deviation of the crossover schemes investigated on
function . The population size is .

Fig. 9. Chi-square-like deviation of the crossover schemes investigated on
function . The population size is .

For illustration, ten runs were made with different popula-

tions generated at random for each scheme to take into account

the stochastic nature of GA’s. An average is calculated for the

performance criteria.

A. Sharing Experiments

Selection in the Sharing Method: We investigate the effect

of the selection scheme on the sharing efficiency. The different

schemes reviewed in the first section, namely SUS, SRS and

TS, with continuously updated sharing, are compared. The

crossover operator is the standard one point crossover with

probability , the mutation probability being set to zero.

The parameter is set to one and a value of 0.1 is taken

for the niche radius. Tables I and II summarize statistics on

performance criteria for the functions and respectively.

Typical chi-square-like deviations on functions and

are displayed in Figs. 4–7 for the selection schemes

investigated.

Results show the superiority of SUS regardless of the

population size and the number of fitness function evaluations.

TS and SRS fail to maintain all peaks at low number of
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TABLE III
RECOMBINATION IN THE SHARING METHOD. THIS TABLE PRESENTS THE VALUES OF THE PERFORMANCE CRITERIA (SEE SECTION IV) ON FUNCTION FOR EACH

RECOMBINATION SCHEME. TEST1 IS PERFORMED USING 100 INDIVIDUALS AND 200 GENERATIONS. TEST2 IS PERFORMED USING 30 INDIVIDUALS AND 30 GENERATIONS

TABLE IV
RECOMBINATION IN THE SHARING METHOD. THIS TABLE PRESENTS THE VALUES OF THE PERFORMANCE CRITERIA (SEE SECTION IV) ON FUNCTION FOR EACH

RECOMBINATION SCHEME. TEST1 IS PERFORMED USING 100 INDIVIDUALS AND 200 GENERATIONS. TEST2 IS PERFORMED USING 30 INDIVIDUALS AND 30 GENERATIONS

Fig. 10. Chi-square-like deviation of the crossover schemes investigated on
function . The population size is .

fitness function evaluations. In particular, TS was unable

to form stable subpopulations yielding to a chi-square-like

deviation with high fluctuations during the generations. These

results are in accordance with Baker’s predictions since the

SUS is described as the less biased proportional selection

technique with minimum spread [5]. As could be expected,

it yields a minimum genetic drift and allows the population to

proportionally populate the niches with more accuracy.

Recombination in the Sharing Method: As already men-

tioned in Section II, recombination in the sharing method

should prevent the formation of lethals. The first solution to

achieve this is to use restrictive mating techniques. In this

paper, we propose to sort the population before applying

the crossover and mutation operators. A pseudocode of our

matching sort algorithm is described as follows.

Fig. 11. Chi-square-like deviation of the crossover schemes investigated on
function . The population size is .

1) Sort the population in decreasing fitness order. Set .

2) Loop until

find the th element (among individuals)

that is closest to the th element of the population.

exchange the th element with the th element.

increase .

After the selection of parents, the matching sort is applied

and individuals are crossed pairwise following the order of

the sort. Note that this scheme is rather costly since it realizes

distance comparisons per generation.

The second way to reduce the formation of lethals is to limit

the disruption rate of schemata. This can be achieved by using
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TABLE V
NICHING METHODS COMPARED. THIS TABLE PRESENTS THE VALUES OF THE PERFORMANCE CRITERIA (SEE SECTION IV) ON FUNCTION FOR EACH NICHING GA.

TEST1 IS PERFORMED USING 100 INDIVIDUALS AND 200 GENERATIONS. TEST2 IS PERFORMED USING 30 INDIVIDUALS AND 30 GENERATIONS

TABLE VI
NICHING METHODS COMPARED. THIS TABLE PRESENTS THE VALUES OF THE PERFORMANCE CRITERIA (SEE SECTION IV) ON FUNCTION FOR EACH NICHING GA.

TEST1 IS PERFORMED USING 100 INDIVIDUALS AND 200 GENERATIONS. TEST2 IS PERFORMED USING 30 INDIVIDUALS AND 30 GENERATIONS

low recombination operators such as uniform parameterized

crossover [17], [18]. Standard uniform crossover swaps two

parents’ alleles with a probability of 0.5. Under uniform

parameterized crossover, an additional parameter defines

the probability of swapping. This operator combines a high

recombination potential and a good exploration power with a

low level of disruption [18].

We compare the efficiency of these recombination schemes

with standard uniform crossover and one-point crossover.

Experiments are made on functions and with SUS and

no mutation. The crossover probabilities are set to one in each

recombination schemes. The parameter is set to one, and a

value of 0.1 is taken for the niche radius. Tables III and IV

summarize statistics on performance criteria for the functions

and respectively.

Typical chi-square-like deviations on functions and

are displayed in Figs. 8–11 for the recombination schemes

investigated.

Results show a slight superiority of our matching sort algo-

rithm regardless of the number of fitness function evaluations.

Uniform parameterized crossover with a very low switching

probability works well for the test1 but is less efficient

when the number of fitness function evaluations is reduced

(test2). This reveals its difficulty in exploring the entire search

space by producing individuals in different niches when the

number of fitness functions is limited. In that case, standard

one-point crossover is better. Nonetheless, this recombination

operator is obviously more disruptive than uniform parame-

trized crossover with low probability of swapping (see test1).

Moreover, note that it gives poor results when the size of the

chromosome is reduced; recall that the disruption rate of the

schemata under one-point crossover is where is the size

of the chromosome. Standard uniform crossover was unable

to form stable subpopulations because of a massive disruption

rate of solutions detected.

Niching Methods Compared: We compare the efficiency of

fitness sharing coupled with the matching sort algorithm with

the other niching GA’s reported in Section III. RTS and DC

are implemented with standard uniform crossover. An optimal

crowding factor for RTS has been determined empirically for

the functions and . We use % , where is

the population size. This leads to for the test1 and

for the test2. Clearing is combined with SUS and an

elitist strategy as recommended by Petrowski [15]. In each

generation, the dominant individual of each subpopulation

competes with the corresponding one of the previous genera-

tion. The winners of the resulting tournaments are conserved

in the current population. Following this procedure, the best

individual of each niche is always preserved during the search.

The capacity of the niches is set to ten for test1 and two for

test2, respectively. All niching GA’s are performed with full

crossover probability and no mutation. The parameter

is set to one, and a value of 0.1 is taken for the niche radius.

Tables V and VI summarize statistics on performance criteria

for the functions and respectively.

Typical chi-square-like deviations on functions and

are displayed in Figs. 12–15 for the niching GA’s investigated.

The efficiency of the niching GA is related to its capacity

to find new niches by producing new individuals without

discarding the niches already identified. Clearing was the

best niching GA that realizes this compromise. It produces

a great quantity of new individuals by randomly recombining

elements of different niches and controls this production (and

obviously the genetic drift caused by selection) by resetting the

fitness of poor individuals in each different niche. Furthermore,

the elitist strategy prevents the rejection of the best individual

of each niche from the population. For these reasons, clearing

surpasses all other niching GA’s and combines a very low

chi-square-like deviation with a good detection of the peaks.
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Fig. 12. Chi-square-like deviation of the niching GA’s investigated on
function . The population size is .

Fig. 13. Chi-square-like deviation of the niching GA’s investigated on
function . The population size is .

Crowding schemes were unable to maintain low chi-square-

like deviations during generations. The first reason for this

is mentioned in [8]. Crowding schemes use a replacement

strategy which minimizes the changes in the population.

The distribution of the population in the different niches

strongly depends on the initial distribution. This explains

the higher chi-square-like deviations noted for RTS and DC

in comparison with those corresponding to the sharing and

clearing methods which directly use a proportional selection.

Second, replacement errors can occur for individuals located

at the edge of the niches. This explains poor results noted for

DC when it is applied to . DC detects the five peaks of this

function in the first generations. Nevertheless, in the following

generations, it appears that individuals located on the third

peak (of coordinate ) progressively migrate to the

next peak (the fourth peak of coordinate ) because

of replacement errors. At the two-hundredth generation, all

individuals are discarded from the third peak yielding a

poor chi-square distribution. RTS is less sensitive to these

errors with the size of the crowding factor CF used in the

experiments. Therefore, it surpasses DC in all cases. Sharing

works well on these easy problems.

Fig. 14. Chi-square-like deviation of the niching GA’s investigated on
function . The population size is .

Fig. 15. Chi-square-like deviation of the niching GA’s investigated on
function . The population size is .

Let us examine now the efficiency of these niching GA’s on

the massively multimodal function . Goldberg [6] solved

this problem with the sharing method by raising the shared

fitness to a power of 15 and using a huge population of

5000. Mahfoud [9] reported that more than 20 individuals

per niche are necessary for DC to find the global optima.

Such parameters are inconceivable for applications with high

computational time of the objective function such as finite

element applications. Recall that we are interested in assessing

the efficiency of the niching GA’s at a limited number of

function evaluations. Therefore, we prefer solving this problem

with the test1 (100 individuals, 200 generations). For each

GA, we use the Hamming distance as a similarity metric and

a crossover probability of 1.0. Considering the difficulty of

this function, the mutation rate is not removed but set to the

low value of 0.001 to increase exploration rate. The distance

between two individuals is normalized by the biggest distance

value in the search space according to [15] and [16]. The

niche radius is set to 0.2 in the clearing and the sharing

methods. Both of these methods are implemented with SUS.

We compare their efficiency with and without scaling. Two
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TABLE VII
NICHING METHODS COMPARED. THIS TABLE PRESENTS THE NUMBER OF PEAKS MAINTAINED DURING THE

SEARCH FOR THE FUNCTION . ALL TESTS ARE PERFORMED WITH 100 INDIVIDUALS AND 200 GENERATIONS

forms of scaling are investigated. The first one uses a fixed

power of value similarly to [6]. The second increases

the scaling during the generations (dynamic scaling). A value

of is taken for the first fiftieth generations and is linearly

increased to 15 in the following generations.

Table VII shows the effective number of peaks maintained

after 200 generations for each niching GA. One hundred runs

are made with different initial population generated at random

and an average over these runs is taken for the number of

peaks maintained at the two-hundredth generation.

For this problem, no niching GA was able to maintain

the 32 global maxima. Nonetheless, clearing was obviously

better than any other technique by finding and preserving

between 14 and 15 optima. In agreement with [16], we find

that sharing without a scaled function fails to detect any global

solution. Raising the fitness to a power of 15 magnifies the

differences between the global and local optima. This makes

it easier for the sharing method to find the global optima.

Nonetheless, using such a power for scaling the shared fitness

discards many individuals from the population and reduces

genotypic diversity. This explains the better results obtained

for sharing with a dynamic scaled function, which allows more

diversity in the population at the beginning of the search.

Unlike the sharing method combined with a scaled function,

the basic clearing procedure does not reject a great number

of promising solutions. It only discards individuals located

in the neighborhood of one dominant of a subpopulation and

preserves good configurations. Moreover, clearing does not

require a scaled function to find one global solution. On the

contrary, a dynamic scaled function seems to be somewhat

misleading for the clearing algorithm and in particular for

dominant individuals of different generation who compete

through our elitism scheme.

RTS surpasses DC for all studied cases. The efficiency of

RTS, however, strongly depends on the value of the crowding

factor. This can be a significant flaw because the optimal

value for this parameter is generally unknown for a given

objective function.

VI. CONCLUSIONS AND OUTLOOKS

This paper gives an overview of multiple niching GA’s

and points out some important issues of multimodal learning

such as selection, recombination, restrictive mating, and fitness

scaling. A simple analysis led us to class niching GA’s in

two different groups. The first one involves GA’s which are

characterized by an explicit neighborhood since they need an

explicit niche radius (clearing and sharing). This can be an

important drawback for problems for which distance between

optima cannot be estimated. The second consists of techniques

for which neighborhood is implicit (crowding schemes). In that

case, the algorithm requires no information about the search

space and can be easily applied to various problems without

restrictions.

Among all niching GA’s reviewed in this paper, clearing

can be considered as the best method provided that the

niche radius and the niche capacity are correctly estimated.

Sharing works well on easy problems with some precautions.

One should use stochastic universal selection and mating

restriction schemes or low recombination operators to maintain

stable subpopulations and avoid disruption of peaks detected.

Nonetheless, sharing fails on hard problems reflecting its

difficulty to differentiate the global from the local optima in

multimodal deceptive landscapes through the constant modi-

fication of the fitness during generations. Therefore, sharing

often requires a scaled fitness to increase peaks differentia-

tion with a risk of premature convergence. This scaling is

not necessary for crowding schemes since they are based

on tournament rules. Restricted tournament selection gives

slightly better results than deterministic crowding which has

difficulties to preserve the niches in some cases as a result

of replacement errors.

The application of new recombination operators in mul-

timodal landscapes such as the matching sort algorithm or

uniform parameterized crossover seems to be a promising

way to ensure the stability of the niches. Finally, we also

mention the necessity of investigating clustering techniques

and adaptive niche radius methods to cleverly set the similarity

threshold of niching GA’s with explicit neighborhood.
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