
Fitness Threshold Accepting over Extremal Optimization ranks

Karl Heinz Hoffmann∗ and Frank Heilmann
Institut für Physik, Technische Universität Chemnitz, D-09107 Chemnitz, Germany

Peter Salamon
Department of Mathematics and Statistics, San Diego State University, San Diego, California 92182, U.S.A

(Dated: July 23, 2004)

We treat the problem of selecting the next degree of freedom for update in an Extremal Opti-
mization algorithm designed to find the ground state of a system with a complex energy landscape.
We show that there exists a best distribution for selecting the next degree of freedom in order to
optimize any linear function of the state probabilities, e. g. the expected number of visits to the
ground state. We dub the class of algorithms using this best distribution in conjunction with Ex-
tremal Optimization Fitness Threshold Accepting. In addition, we construct an extended random
walk and use it to show that Fitness Threshold Accepting is optimal also for several other measures
of algorithm performance such as maximizing the expected probability of seeing the ground state
and minimizing the expected value of the lowest energy seen.
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I. INTRODUCTION

The need for finding ground states of complex sys-
tems exists in many areas of modern science and engi-
neering [1]. In the realm of physics, such problems in-
clude spin glasses [2], neural networks [3], and protein
folding [4]. Traditional stochastic optimization methods
to tackle those are e. g. Simulated Annealing (SA) and
Threshold Accepting (TA). The former uses Metropolis
sampling combined with decreasing temperature [5, 6].
The latter avoids the expenses of evaluating a large num-
ber of exponential functions by introducing a time depen-
dent “threshold” [7, 8]: if the energy difference between
current and proposed state is smaller than the threshold,
the proposed move is accepted, otherwise not.

Many of these problems have an additional structure
that is not used by traditional methods such as SA or
TA. The additional structure implies that each state is
defined by the value of many degrees of freedom such as
the value of many spins [9] and that a certain fitness can
be associated with each degree of freedom. When this
additional structure is available, we can take advantage of
it by using an algorithm known as Extremal Optimization
(EO) [10].

We prove a theorem concerning the optimal selection
of the next degree of freedom to change in EO. To prove
our theorem, we first show how to view EO as an algo-
rithm of the random walk type. This enables us to ap-
ply the techniques developed in Franz et al. [11] to show
that any measure of the algorithm performance which de-
pends linearly on the state probabilities will use a Fitness
Threshold Accepting (FTA) rule [12]. We here show that
a construction analogous to Hoffmann et al. [13] can be
used to show that FTA is optimal for many other mea-
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sures of algorithm performance including the expected
value of the best energy seen during the walk.

II. EXTREMAL OPTIMIZATION

EO is a recently introduced heuristics to find ground
states of complex physical systems. Moreover it provides
a general scheme to find the global minimum or other
low lying states in multi-minima optimization problems.
EO is a stochastic optimization algorithm similar to SA
and TA in that EO simulates a random walker in the
state space. However, EO needs a special structure of
the problem under consideration: every state is specified
by several degrees of freedom (DoF) each of which can be
assigned a fitness. While such a structure is not needed
for SA or TA, it is present in a significant fraction of the
problems treated by these methods. A typical example
is spin glass problems, where the state is described by a
spin configuration, and each of the spin variables repre-
sent one DoF. The local field at one spin multiplied by
the value of the spin can be taken as the fitness of that
spin. In that case the objective function for the problem
– namely the energy – is additive over the fitnesses of the
different DoF’s.

EO takes advantage of this additional structure to
achieve better typical performance on such problems by
randomly selecting one DoF to change at each step. In
EO the next DoF to change is selected by first ranking
the DoF’s according to their fitness values and then se-
lecting a rank. The DoF with the selected rank is to be
changed during the next step. This procedure is iterated,
yielding repeated improvements of the DoF’s fitness.

Problems which cannot be addressed by EO include
those which offer only a number of abstract states with-
out internal structure. An exploration of examples of
such state spaces using SA is given in [14].
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III. DEFINITIONS

Technically the EO algorithm can be viewed as a ran-
dom walk in the space Ω = {α} of states of the prob-
lem [10, 15]. In addition there is an objective function
E = E(α) (in physical systems often the energy), assign-
ing every state a real number.

Each of the states α is characterized by n degrees
of freedom (DoF), which are each assigned real num-
bers called their fitness. For any of the L = |Ω| states
α ∈ Ω, there is a neighborhood relationship that specifies
N(α) ⊆ Ω, the set of states which can be reached from α
by a change in one of the DoF’s. More precisely a state
α = (α1, α2, . . . , αn) is specified by the values of n DoF’s
indexed by i, 1 ≤ i ≤ n. The i-th degree of freedom has
value αi ∈ α(i) = {α(i)

1 , . . . , α
(i)
mi}, where α(i) is the set of

possible values for the i-th DoF. The number of values
mi may differ for different DoF’s, so mi = m(αi). We
assume that ∞ > n > 1, ∞ > m > 1.

Each DoF is assigned a fitness λi(αi), determining the
ranking ki ∈ N∗n = {1, 2, . . . , n}, such that

ki ≤ kj iff λi ≤ λj ∀ pairs (i, j). (1)

To complete the specification of the structure needed to
perform an EO algorithm, we also need a time dependent
probability distribution dt(k) over the ranks.

The EO algorithm proceeds as follows: Let us assume
that the current state is β = (β1, β2, . . . , βn). First the
DoF’s of the current state β are ranked according to their
fitness: the DoF with the smallest fitness has rank 1, the
one with the highest fitness has rank n. Then a rank
k, 1 ≤ k ≤ n is selected with probability dt(k). This
rank corresponds to a DoF, i, which is then changed by
choosing with equal probability one of the possible values
in α(i) \ {βi} so that the value of the k-th ranked DoF
changes. The new state α is accepted unconditionally
and β is set to α. This procedure is iterated until a
stopping criterion is met.

Obviously the probability distribution used to select
the rank of the DoF for the next state change plays a crit-
ical role for the performance of EO. Originally [15, 16], a
distribution ∼ k−τ was used, introducing the single pa-
rameter τ > 0. For a more in-depth discussion of EO in
general, including motivation and issues related to defin-
ing fitnesses, we refer to the literature [15–17].

Here we focus on the dependence of the algorithm on
a probability distribution over the ranks of the DoF and
ask the question whether there exists a (provably) opti-
mal choice for such a distribution. The class of distri-
butions we will consider is characterized by the following
rather weak conditions:

(A1) Each step is independent of the former steps.
(A2) At any epoch t, 1 ≥ dt(1) ≥ dt(2) ≥ . . . ≥

dt(n) ≥ 0, i. e. it is more probable to select a low
rank (meaning a DoF with low fitness) than a high rank
(meaning a DoF with high fitness).

(A3)
∑

i dt(ki) = 1: dt(ki) is normalized.

IV. THE DYNAMICS

EO executes a random walk on the state space Ω. The
probability of finding the random walker in state α at
time step t is denoted by pt

α. The conditions (A1) to (A3)
guarantee that we are dealing with a Markov process [18].
Therefore the time development of pt

α is described by the
master equation

pt
α =

∑
β∈Ω

Γt
αβpt−1

β (2)

with transition probabilities Γt
αβ . The random walk con-

sists of a finite number of steps, 1 ≤ t ≤ S. The transition
probabilities of (2) are specified by the rules of EO to be

Γt
αβ =


1

m−1dt(ki) if α differs from β only in
the i-th DoF,

0 otherwise.

(3)

Note that these transition probabilities are linear func-
tions of dt(ki).

V. OPTIMAL ALGORITHMS

The goal of the random walk is to bring the walker
as far down in the energy landscape as possible, control-
ling the random walk by choosing the probabilities dt(k)
at each time step t ∈ {1, 2, . . . , S} in the algorithm with
duration S steps. In order to achieve such control, a crite-
rion is needed which quantifies this desire to come close to
the global minimum of the energy function. Accordingly,
we search for selection probabilities dt(k) which optimize
some measure of how far down the random walker has
gone.

The most common objective functions used to measure
the quality of stochastic optimization procedures are:

(O1) the final mean energy 〈E(α(S))〉 should be as small
as possible,

(O2) the final probability pS
GS of ending up in the ground

state should be as large as possible,

(O3) the expected number of visits to the ground state
should be as large as possible,

(O4) the probability of visiting the ground state during
the execution of an algorithm should be as large as
possible,

(O5) the mean final BSF energy [19, 20] should be as
small as possible. This so–called Best So Far energy
of a given sequence or path α(t) up to step S is
given as

EBSF(S) = Min0≤t≤S{E(α(t))} (4)

and describes the lowest energy found along that
path.
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For the objectives (O1) and (O2) which are linear func-
tions of the final state probabilities pS

α, we showed [12]
that Fitness Threshold Accepting is the best strategy
to use. In the following we will prove that this applies
for any objective which is a linear function of the state
probabilities pt

α during the whole process and not only
at t = S. This extends the theorem to cover objective
(O3).

Furthermore, we show that this is true not only for the
given random walk but also for a class of Markov chains
which can be constructed from the random walk. This
construction will enable us to include objectives (O4) and
(O5) in the cases to which the theorem applies. These
last two goals are the crucial quantities of interest if EO
is employed as we are interested in finding the ground
state, or at least very low lying states, not at the end of
the run but at any step during the run.

VI. THE PROBABILITY DISTRIBUTION FOR
THE BSF ENERGY

In order to determine the mean final BSF energy we
need the probability BS(E) to have seen an energy E or
better up to time S. This probability can be obtained by
considering a modified random walk which turns states
at or below energy E into absorbing states [21]. This is
achieved by introducing a modified transition probability
matrix Γt

αβ;E

Γt
αβ;E =

{
δ(α, β) if E(β) ≤ E,

Γt
αβ if E(β) > E,

(5)

where δ(α, β) is Kronecker’s delta. Note that these mod-
ifications still keep the dependence on the selection prob-
abilities dt(ki) linear in all of the Γt

αβ;E .
In the modified stochastic process a random walker

reaching a state with energy less than or equal to E is
trapped at that state. Evolving the associated probabil-
ity distribution pt

α;E

pt
α;E =

∑
β∈Ω

Γt
αβ;Ept−1

β;E , (6)

gives the probability of being in state α of the modified
chain after t steps. For E(α) > E this is the same as the
probability of being in state α in the unmodified random
walk and not having visited any states with an energy
less than or equal to E before time t. The probability to
have visited a state with energy less than or equal to E
up to time S in the unmodified random walk is thus

BS(E) =
∑

α:E(α)≤E

pS
α;E . (7)

For the full distribution of the BSF energy we need
to repeat this modified random walk for all possible en-
ergy values in the system. Due to the finiteness of the

state space we can sort the (finite) number of differ-
ent energy values in ascending order and label them Er,
r ∈ {1, 2, . . . , R} to get E1 < E2 < . . . < ER. Then for
every r the corresponding BS(Er) is determined and the
probability that the lowest energy visited is Er is given
by

bS(Er) = BS(Er)−BS(Er−1), (8)

where we introduce for convenience an additional energy
E0, which is an arbitrary energy value lower than the
ground state energy E1. Since E0 is less than any en-
ergy reachable by the chain, we must have pt

α;E0
= pt

α,
Γt

αβ;E0
= Γt

αβ , and BS(E0) = 0.
Then from eq. (8) the mean BSF energy 〈EBSF(S)〉 is

obtained as

〈EBSF(S)〉 =
R∑

r=1

bS(Er)Er. (9)

Summarizing the above, for each r the master equa-
tion with corresponding modified transition probabilities
Γt

αβ;Er
needs to be iterated. This can be presented in

a compact way by introducing a vector/matrix notation
for the original master equation (2):

pt = Γt · pt−1 (10)

where pt is the vector of probabilities pt
α representing the

state of the random walk at time t and Γt is the transition
matrix with entries Γt

αβ . Similarly, (6) is expressed as

pt
Er

= Γt
Er
· pt−1

Er
. (11)

Combining all the probability vectors pt
Er

(r ∈
{0, 1, . . . , R}) into one vector qt, we can write

qt+1 =


pt+1

E0

pt+1
E1
...

pt+1
ER

 =


Γt

E0
0 · · · 0

0 Γt
E1

· · · 0
...

...
. . .

...
0 0 · · · Γt

ER

·


pt
E0

pt
E1
...

pt
ER


= Γ̃t · qt. (12)

Thus for α ∈ {1, . . . , L} and r ∈ {0, . . . , R} we have
qt
Lr+α = pt

α;Er
. Hence the time development of the un-

modified chain is contained in qt
γ , γ = 1, . . . , L. The mean

BSF energy can be expressed as

〈EBSF(S)〉 =
R∑

r=1

Er

(
BS(Er)−BS(Er−1)

)
=

R∑
r=1

Er

 ∑
α:E(α)≤Er

pS
α;Er

−
∑

α:E(α)≤Er−1

pS
α;Er−1


=

R∑
r=1

Er

 ∑
α:E(α)≤Er

qS
Lr+α −

∑
α:E(α)≤Er−1

qS
L(r−1)+α

 .
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Note that all our objective functions (O1) - (O5) are lin-
ear functions of the probabilities qt

γ , γ ∈ {1, . . . , L(R +
1)}, t ∈ {1, . . . , S}, a fact which is central to the argu-
ments below.

VII. THE THEOREM

In an earlier publication [12] we proved that for selec-
tion probabilities with properties (A1)-(A3), the optimal
strategy is to use Fitness Threshold Accepting. Here we
extend that work by investigating also objectives (O3) -
(O5), and more generally, any objective function which
is a linear function of qt

γ .

THEOREM: For any optimization algorithm in an EO
framework satisfying properties (A1) to (A3), and any
objective function which is linear in the probabilities qt

γ ,
γ ∈ {1, . . . , L(R + 1)}, t ∈ {1, . . . , S} of the extended
random walk constructed above, the optimal selection
probability is Fitness Threshold Accepting.

VIII. THE PROOF

Fundamental to our proof is the fact that all of the
entries in the transition matrix Γ̃t are linear functions
of the selection probabilities dt(ki). In the following it
is convenient to introduce a vector notation. Just as we
changed from denoting the vector of probabilities pt

α as
an L-dimensional vector pt, and the L(R+1) dimensional
state vectors by qt, we associate a sequence of vectors
F t of L(R + 1) elements to any linear function of the
state vectors qt, t = 1, . . . , S. Our theorem concerns any
objective function linear in the qt, i. e. minimizing any
function of the form

F (q1, q2, . . . , qS) =
S∑

t=1

(F t)tr · qt =
S∑

t=1

L(R+1)∑
i=1

F t
i qt

i

→ min, (13)

where (·)tr denotes transpose and the minimum is taken
over all possible sequences of selection probabilities
dt(ki), t = 1, . . . , S.

The vectors F t may be any arbitrary L(R + 1)-tuples
of numbers. For instance for the criteria (O1) to (O5)
these are

(O1) for minimizing the mean final energy,

• F t
γ = 0 for t < S,

• FS
γ =

E(γ)
for γ ≤ L,

• FS
γ = 0 for γ > L;

(O2) for maximizing the final ground state probability,∑
γ≤L,E(γ)=E1

pS
γ ,

F t
γ = 0 unless t = S, γ ≤ L and E(γ) = E1 in

which case FS
γ = −1;

(O3) for maximizing the expected number of visits to
the ground state, F t

γ = 0 unless γ ≤ L and E(γ) =
E1, in which case F t

γ = −1;

(O4) for maximizing the probability of visiting the
ground state during the execution of the algorithm,
we need to maximize bS(E1) = BS(E1). Thus
F t

γ = 0 unless t = S, L < γ ≤ 2L, and E(γ) = E1,
in which case FS

γ = −1.

(O5) for minimizing the mean BSF energy,

• F t
γ = 0 for t < S,

• FS
Lr+α = 0 for r ∈ {0, . . . , R−1}, α ∈
{1, . . . , L} and E(α) > Er,

• FS
Lr+α = Er−Er+1 for k ∈ {0, . . . , R−1}, α ∈
{1, . . . , L} and E(α) ≤ Er,

• FS
LR+α = ER for α ∈ {1, . . . , L}.

Let us consider the distributions dt(ki) as an n-
dimensional vector dt with entries dt

i in [0, 1]. We note
some consequences of our condition (A2): The possible
range for the vector dt is a simplex X in an n-dimensional
space. The vertices of the simplex are those vectors dt

which have an initial sequence of ones, followed by ze-
ros. Condition (A3) defines a hyperplane H in the same
n-dimensional space. The intersection I = X ∩H, hav-
ing dimension n − 1, is the final set of allowed selection
distributions dt(k). Figure 1 shows the construction for
n = 3. Note that I is itself a simplex; we denote the set
of the vertices of I with V = {vi}.

�
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FIG. 1: Construction of the simplex X in three dimensions.
The axes on the left side denote the entries of dt. Condition
(A2) (see text) defines X. On the right side the effect of
condition (A3) is shown: X is cut by H. The vertices of
X ∩H can be computed.

Based on this construction we are able to compute the
elements of V explicitly. According to (A2), the point
(1, 0, . . . , 0)tr is an element of V . Let us start a search for
the rest of the vertices of I. We can do this by decreasing
dt(1) and increasing dt(2) while leaving all other dt(ki)
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untouched until we cannot go any further. This results in
the point (1/2, 1/2, 0, . . . , 0)tr. From there we decrease
the first two coordinates while increasing the third, again
leaving the rest untouched, until we cannot go further
again. The result is the point (1/3, 1/3, 1/3, 0, . . . , 0)tr.
We repeat this procedure until the last vertex is found:
the point (1/n, 1/n, . . . , 1/n)tr. Note that the elements
of V are pairwise distinct and linearly independent.

We show that the convex hull of the vi

C(V ) =
n∑

i=1

aivi = a1


1
0
...
0

+a2


1/2
1/2
...
0

+. . .+an


1/n
1/n
...

1/n


(14)

with the coefficients ai obeying ai ∈ [0, 1] ,
∑

i ai = 1 is
the largest possible simplex in (n− 1)-dimensional space
fulfilling (A2, A3).

The lth row dt
l of (14) is

dt
l =

n∑
i=l

ai
1
i

=
n∑

i=l+1

ai
1
i

+ al
1
l

= dt
l+1 + al

1
l
≥ dt

l+1,

(15)
so (A2) is fulfilled. Summing up the rows of C(V ) gives

n∑
l=1

dt
l =

n∑
l=1

n∑
i=l

ai
1
i

=
n∑

l=1

lal
1
l

=
n∑

l=1

al = 1, (16)

showing that (A3) is also fulfilled: C(V ) ⊂ I.
Now we look at an arbitrary point p ∈ I. Using the

basis {vi} ⊂ I for describing p’s coordinates pl we get

pl =
n∑

i=l

bi
1
i

= pl+1 + bl
1
l

(17)

and due to (A2)

pl ≥ pl+1 ⇒ pl − pl+1 = bl
1
l
≥ 0 ⇒ bl ≥ 0. (18)

Summing up all pl and using (A3) gives

n∑
l=1

pl =
n∑

l=1

lbl
1
l

=
n∑

l=1

bl = 1 ⇒ bl ≤ 1. (19)

So we have bl ≥ 0 and bl ≤ 1, therefore p ∈ C(V )∀p ∈ I,
i. e. I ⊂ C(V ).

IX. THE SOLUTION

The optimization task (13) for the dynamic process de-
scribed by (12) is a discrete control problem, where the
controls are the selection probability vectors dt. We ap-
ply the Bellman principle of dynamic programming [22],
and work our way backwards starting with the last step.
The scheme of our dynamic programming problem is il-
lustrated in figure 2.

�� �
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FIG. 2: The dynamic optimization process. An input qt−1

is transformed into an output qt under the influence of some
control dt (see text).

In every step t, an input qt−1 is transformed into the
output qt under the influence of the control dt. Finally,
the output for all the steps is used to determine the op-
timality criterion F (q1, q2, . . . , qS). Let us first consider
the last step S. For given inputs qt, 1 ≤ t ≤ S − 1, we
have to solve the optimization problem

S∑
t=1

(F t)tr · qt =
S−1∑
t=1

(F t)tr · qt + (F S)tr · qS

= const. + (F S)trΓ̃SqS−1

→ min, (20)

where, as noted above, the matrix elements Γ̃S
ij given in

(12) depend linearly on the control vector dS . The possi-
ble range for dS is the simplex described in the previous
section. Hence we have to find the minimum of a linear
function on a simplex. By the fundamental theorem of
linear programming [23], this minimum is found at one of
the vertices in V , i. e. at a Fitness Threshold Acceptance
function [12]. Call this vertex vS . Of course this vertex
vS depends on the input qS−1, i. e. vS = vS(qS−1).

Now let us continue with the second to last step S−1.
For given inputs qt, 1 ≤ t ≤ S − 2, we have to solve the
optimization problem

const. + (F S−1)tr · Γ̃S−1qS−2

+ (F S)trΓ̃S(vS)Γ̃S−1qS−2

→ min, (21)

where we now already know that ΓS(vS) is a transition
matrix corresponding to Fitness Threshold Acceptance.
For fixed vS the optimization problem (21) is again a
linear problem with the same structure as (20) over the
same range. Thus the optimal control is found at one of
the vertices in V , which we call vS−1. This vertex vS−1

depends on the input qS−2 and on the vertex vS , i. e.
vS−1 = vS−1(qS−2,vS). Since the vertex set V is finite,
there is a vertex vS which gives the minimum over all |V |
possible minimum values in problem (21). In a similar
way, we process the remaining steps of the dynamical
optimization problem from the end to the beginning. At
each step we find a linear optimization problem over the
same simplex range which attains its minimum at one of
the vertices thereby completing the proof.

The proof shows that a uniform distribution over some
of the “least fit” DoF’s gives the best implementation of
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EO. The resulting class of algorithms – EO in combina-
tion with this special distribution dt(k) – was dubbed
Fitness Threshold Accepting (FTA), because in analogy
to TA all moves selecting ranks which lie under a certain
fitness threshold are selected with equal probability.

We remark that our proof does not state that all op-
timal strategies are of the given form. In principle other
strategies may do equally well (but certainly not bet-
ter). Other equally good strategies can only occur if an
edge or a face of the simplex does equally well as one
of the vertices belonging to it. The optimality of such
an edge corresponds to selecting the least r ranks with
equal probability doing as well as selecting the least r−1
ranks. Finally we remark that the optimality of a strictly
monotonic distribution such as dt(k) ∝ τ−k would imply
that all the vertices in V do equally well, a case which
can only happen for rather trivial problems.

X. CONCLUSIONS

We considered certain measures of algorithm perfor-
mance associated with the problem of finding the ground
state of a complex system by using the heuristic known
as Extremal Optimization. We used a master equation to
describe the corresponding dynamics of random walkers
on state space and formulated some straightforward con-
ditions on the probability distribution for selecting the
degree of freedom (DoF) to change at the next step.

Our goal was to find selection probabilities which op-
timally control the movements of the random walkers.
We found that a special distribution of selection prob-
abilities is provably optimal provided the performance
of the random walk is measured by a linear function in
the state probabilities. This includes minimizing the ex-
pected final energy or maximizing the probability of be-
ing in the ground state at the final time. By constructing
an extended dynamics, we were able to show that linear
measures include the expected probability of visiting the
ground state and the expected value of the best energy

seen. We named the resulting optimal control Fitness
Threshold Accepting since it always selects with equal
probability from those degrees of freedom with fitness
values below a certain threshold.

We assumed that the set of possible values of each de-
gree of freedom and the number of degrees of freedom are
the same for each state. This assumption can be dropped
without affecting the arguments or the conclusions – the
only effect would be the necessity of a much more cum-
bersome notation.

We did not show that Fitness Threshold Accepting is
the only optimal way to implement Extremal Optimiza-
tion. Our proof shows that using any linear performance
measure, including the measures (O1) to (O5), would
make a strictly monotonic distribution over ranks k, such
as dt(k) ∝ τ−k advocated by Boettcher et al. [10], op-
timal only if all selection distributions perform equally
well.

Without knowing what the optimal thresholds are, the
knowledge that best performance can be achieved us-
ing Fitness Threshold Accepting is of limited use. In
particular, Fitness Threshold Accepting with the wrong
thresholds might be outperformed by other well adapted
selection distributions.

We considered only algorithms based on Extremal Op-
timization. The possibility of better algorithms not based
on Extremal Optimization remains. Within the given
field, however, the arguments presented here establish
the structure of a provably optimal strategy, which can
benefit the further study of heuristic approaches to global
minimization.

Our proof had to assume a finite state space. We post-
pone the exploration of continuous state spaces to future
efforts but note that discrete arithmetic on digital com-
puters make state spaces effectively finite. Finally, our
proof was based on the assumption that the objective
measuring the performance of the Extremal Optimiza-
tion is a linear function of the state probabilities. While
this includes most desirable measures, it does not include
them all.
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