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Abstract

In evolutionary algorithms, the fitness of a population in-
creases with time by mutating and recombining individu-
als and by a biased selection of more fit individuals. The
right selection pressure is critical in ensuring sufficient op-
timization progress on the one hand and in preserving ge-
netic diversity to be able to escape from local optima on
the other hand. Motivated by a universal similarity rela-
tion on the individuals, we propose a new selection scheme,
which is uniform in the fitness values. It generates selec-
tion pressure toward sparsely populated fitness regions,
not necessarily toward higher fitness, as is the case for all
other selection schemes. We show analytically on a simple
example that the new selection scheme can be much more
effective than standard selection schemes. We also propose
a new deletion scheme which achieves a similar result via
deletion and show how such a scheme preserves genetic
diversity more effectively than standard approaches. We
compare the performance of the new schemes to tourna-
ment selection and random deletion on an artificial decep-
tive problem and a range of NP-hard problems: traveling
salesman, set covering and satisfiability.
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1 Introduction

Evolutionary algorithms (EA). Evolutionary algo-
rithms are capable of solving complicated optimization
tasks in which an objective function f:I — IR shall be
maximized. i€/ is an individual from the set I of feasible
solutions. Infeasible solutions due to constraints may also
be considered by reducing f for each violated constraint.
A population P is a multi-set of individuals from I which

is maintained and updated as follows: one or more individ-
uals are selected according to some selection strategy. In
generation based EAs, the selected individuals are recom-
bined (e.g. crossover) and mutated, and constitute the new
population. We prefer the more incremental, steady-state
population update, which selects (and possibly deletes)
only one or two individuals from the current population
and adds the newly recombined and mutated individuals
to it. We are interested in finding a single individual of
maximal objective value f for difficult multi-modal and
deceptive problems.

Standard selection schemes (STD). The standard se-
lection schemes (abbreviated by STD in the following),
proportionate, truncation, ranking and tournament selec-
tion all favor individuals of higher fitness [Gol89, GD91,
BT95, BT97]. This is also true for less common schemes,
like Boltzmann selection [MT93]. The fitness function
is identified with the objective function (possibly after a
monotone transformation). In linear proportionate selec-
tion the probability of selecting an individual depends lin-
early on its fitness [Hol75]. In truncation selection the
a% fittest individuals are selected, usually with multiplic-
ity & to keep the population size fixed [MSV94].(Linear)
ranking selection orders the individuals according to their
fitness. The selection probability is, then, a (linear) func-
tion of the rank [Whi89]. Tournament selection [Bak85],
which selects the best [ out of k individuals has primar-
ily developed for steady-state EAs, but can be adapted to
generation based EAs. All these selection schemes have
the property (and goal!) to increase the average fitness of
a population, i.e. to evolve the population toward higher
fitness.

The problem of the right selection pressure. The
standard selection schemes STD, together with mutation
and recombination, evolve the population toward higher
fitness. If the selection pressure is too high, the EA
gets stuck in a local optimum, since the genetic diver-
sity rapidly decreases. The suboptimal genetic material
which might help in finding the global optimum is deleted
too rapidly (premature convergence). On the other hand,
the selection pressure cannot be chosen arbitrarily low if



we want the EA to be effective. In difficult optimization
problems, suitable population sizes, mutation and recom-
bination rates, and selection parameters, which influence
the selection intensity, are usually not known beforehand.
Often, constant values are not sufficient at all [EHM99].
There are various suggestions to dynamically determine
and adapt the parameters [Esh91, BHS91, Her92, SVM94].
Other approaches to preserve genetic diversity are fitness
sharing [GR87] and crowding [Jon75]. They depend on
the proper design of a neighborhood function based on the
specific problem structure and/or coding. One approach
which does not require a neighborhood function based on
the genome is local mating [CJ91], however it has been
shown that rapid takeover can still occur for basic spatial
topologies [Rud00]. Another approach which has not been
widely studied is preselection [Cav70].

We are interested in evolutionary algorithms which
do not require special problem insight (problem specific
neighborhood function and/or coding) and is able to ef-
fectively prevent population takeover. In this paper we
introduce and analyze two potential approaches to this
problem: the Fitness Uniform Selection Scheme (FUSS)
and the Fitness Uniform Deletion Scheme (FUDS).

The fitness uniform selection scheme. FUSS is based
on the insight that we are not primarily interested in a
population converging to maximal fitness, but only in a
single individual of maximal fitness. The scheme auto-
matically creates a suitable selection pressure and pre-
serves genetic diversity better than STD. The proposed
fitness uniform selection scheme FUSS (see also Figure 1)
is defined as follows: if the lowest/highest fitness values in
the current population P are frin/mae we select a fitness
value [ uniformly in the interval [fmin,fmaz]. Then, the
individual i € P with fitness nearest to f is selected and a
copy is added to P, possibly after mutation and recombi-
nation. We will see that FUSS maintains genetic diversity
better than STD, since a distribution over the fitness val-
ues is used, unlike STD, which all use a distribution over
individuals. Premature convergence is avoided in FUSS
by abandoning convergence at all. Nevertheless there is
a selection pressure in FUSS toward higher fitness. The
probability of selecting a specific individual is proportional
to the distance to its nearest fitness neighbor. In a pop-
ulation with a high density of unfit and low density of fit
individuals, the fitter ones are effectively favored.

The fitness uniform deletion scheme. We may also
preserve diversity through deletion rather than through se-
lection. By always deleting from those individuals which
have very commonly occurring fitness values we achieve
a population which is uniformly distributed across fitness
values, like with FUSS. Because these deleted individuals
are “‘commonly occurring” in some sense this should help
preserve population diversity. Under FUDS the role of the
selection scheme is to govern how actively different parts
of the solution space are searched rather than to move the
population as a whole toward higher fitness. Thus, like
with FUSS, premature convergence is avoided by aban-
doning convergence as our goal. However as FUDS is only
a deletion scheme, the EA still requires a selection scheme
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which may require a selection intensity parameter to be
set. Thus we do not necessarily have a parameterless EA,
as we do with FUSS. Nevertheless due to the impossibil-
ity of population collapse the performance is more robust
than usual with respect to variation in selection intensity.
Thus FUDS is at least a partial solution to the problem
of having to correctly set a selection intensity parameter.

Contents. This paper extends and supersedes the earlier
results reported in the conference papers [Hut02], [LHKO04]
and [LHO5]. Among other things, this paper: extends
the previous theoretical analysis of FUSS and gives the
first theoretical analysis of FUDS and of their performance
when combined; presents a new method of analysis called
fitness tree analysis; is the first set of experimental results
which directly compares the two proposed schemes on the
same problems with the same parameters, including when
they are used together; gives the first full analysis of popu-
lation diversity measurements for FUSS and in particular
extends and corrects some of the earlier speculation about
performance problems in some situations.

The paper is structured as follows:

In Section 2 we discuss the problems of local optima and
population takeover [GD91] in STD, which could be low-
ered by restricting the number of similar individuals in a
population. As we often do not have an appropriate func-
tional similarity relation, we define a universal distance
(semi-metric) d(i,7):=|f(i)— f(j)| based on the available
fitness only, which will serve our needs.

Motivated by the universal similarity relation d and by
the need to preserve genetic diversity, we define in Section
3 the fitness uniform selection scheme. We discuss un-
der which circumstances FUSS leads to an (approximate)
fitness uniform population.

Further properties of FUSS are discussed in Section 4,
especially, how FUSS creates selection pressure toward
higher fitness and how it preserves diversity better than
STD. Further topics are the equilibrium distribution, the
transformation properties of FUSS under linear and non-
linear transformations of f.

Another way to utilize the ability of the universal sim-
ilarity relation d to preserve diversity, is to use it to help
target deletion. This gives us the fitness uniform deletion
scheme which we define in Section 5. As this produces a
population which is approximately uniformly distributed
across fitness levels, like with FUSS, many of the proper-
ties of FUSS carry over to an EA using FUDS. Some of
these properties are highlighted in Section 6.

In Section 7 we theoretically demonstrate, by way of a
simple optimization example, that an EA with FUSS or
FUDS can optimize much faster than with STD. We show
that crossover can be effective in FUSS, even when inef-
fective in STD. Furthermore, FUSS, FUDS and STD are
compared to random search with and without crossover.

In Section 8 we develop a fitness tree model, which we
believe to cover the essential features of fitness landscapes
for difficult problems with many local optima. Within this
model we derive heuristic expressions for the optimization
time of random walk, FUSS, FUDS and STD. They are
compared, and a worst case slowdown of FUSS relative to
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STD is obtained.

There is a possible additional slowdown when including
recombination, as discussed in Section 9, which can be
avoided by using a scale independent pair selection. It is
a “best” compromise between unrestricted recombination
and recombination of d-similar individuals only. It also has
other interesting properties when used without crossover.

To simplify the discussion we have concentrated on the
case of discrete, equi-spaced fitness values. In many prac-
tical problems, the fitness function is continuously valued.
FUSS and some of the discussion of the previous sections
is generalized to the continuous case in Section 10.

Section 11 begins our experimental analysis of FUSS
and FUDS. In this section we give a detailed account of the
EA software we have used for our experiments, including
links to where the source code can be downloaded.

Section 12 examines the empirical performance of FUSS
and FUDS on the artificially constructed deceptive opti-
mization problem described in Section 7. These results
confirm the correctness of our theoretical analysis.

In Section 13 we test randomly generated traveling
salesman problems.

In Section 14 we examine the set covering problem, an
NP hard optimization problem which has many real world
applications.

For our final test in Section 15 we look at random CNF3
SAT problems. These are also NP hard optimization prob-
lems.

Section 16 contains a summary of our results and pos-
sible avenues for future research.

2 Universal Similarity Relation

The problem of local optima. Proportionate, trun-
cation, ranking and tournament are the standard (STD)
selection algorithms used in evolutionary optimization.
They have the following property: if a local optimum 3'°P*
has been found, the number of individuals with fitness
flort = f£(i'°Pt) tends to increase rapidly. Assume a low
mutation and recombination rate, or, for instance, trun-
cation selection after mutation and recombination. Fur-
ther, assume that it is very difficult to find an individual
fitter than i*°P*. The population will then degenerate and
will consist mostly of i!°P* after a few rounds. This de-
creased diversity makes it even less likely that f!°P! gets
improved. The suboptimal genetic material which might
help in finding the global optimum has been deleted too
rapidly. On the other hand, too high mutation and recom-
bination rates convert the EA into an inefficient random
search.

Possible solution. Sometimes it is possible to appro-
priately choose the mutation and recombination rate and
population size by some insight into the nature of the prob-
lem. More often this is a trial and error process, or no
single fixed rate works at all.

A naive fix of the problem is to artificially limit the
number of identical individuals to a significant but small
fraction €. If the space of individuals I is large, there

could be many very similar (but not identical) individuals
of, for instance, fitness f'°P*. The EA can still converge
to a population containing only this class of similar indi-
viduals, with all others becoming extinct. In order for the
limitation approach to work, one has to restrict the num-
ber of similar individuals. Significant contributions in this
direction are fitness sharing [GR87] and crowding [Jon75].

The problem of finding a similarity relation. If the
individuals are coded binary one might use the Hamming
distance as a similarity relation. This distance is con-
sistent with a mutation operator which flips a few bits.
It produces Hamming-similar individuals, but recombina-
tion (like crossover) can produce very dissimilar individu-
als w.r.t. this measure. In any case, genotypic similarity
relations, like the Hamming distance, depend on the rep-
resentation of the individuals as binary strings. Individu-
als with very dissimilar genomes might actually be func-
tionally (phenotypically) very similar. For instance, when
most bits are unused (like introns in genetic program-
ming), they can be randomly disturbed without affecting
the properties of the individual. For specific problems at
hand, it might be possible to find suitable representation-
independent functional similarity relations. On the other
hand, in genetic programming, for instance, it is in gen-
eral undecidable whether two individuals are functionally
similar.

A universal similarity relation. Here we want to take
a different approach. We define the difference or distance
between two individuals as

d(i, j) == [f(i) = FG)I-

The distance is based solely on the fitness function, which
is provided as part of the problem specification. It is inde-
pendent of the coding/representation and other problem
details, and of the optimization algorithm (e.g. the genetic
mutation and recombination operators), and can trivially
be computed from the fitness values. If we make the nat-
ural assumption that functionally similar individuals have
similar fitness, they are also similar w.r.t. the distance d.
On the other hand, individuals with very different cod-
ing, and even functionally dissimilar individuals may be
d-similar, but we will see that this is acceptable. For in-
stance, individuals from different local optima of equal
height are d-similar.

Relation to niching and crowding. Unlike fitness uni-
form optimization, diversity control methods like niching
or crowding require a metric g to be defined over the
genome space. By looking at the relationship between
g and f we can relate these two types of diversity control:
We say that a fitness function f is smooth with respect
to g, if ¢(i,j) being small implies that | f(i)— f(j)| is also
small, that is, d(4,j) is small. This implies that if d(i,j) is
not small, ¢(7,j) also cannot be small. Thus, if we limit
the number of d similar individuals, as we do in fitness
uniform optimization, this will also limit the number of
g similar individuals, as is done in crowding and niching
methods. The advantage of fitness uniform optimization
is that we do not need to know what ¢ is, or to compute its



value. Indeed, the above argument is true for any metric
g on the genome space that f is smooth with respect to.

On the other hand, if the fitness function f is not gen-
erally smooth with respect to g, then such a comparison
between the methods cannot be made. However, in this
case an EA is less likely to be effective as small mutations
in genome space with respect to g will produce unpre-
dictable changes in fitness.

Topologies on individual space I. The distance d: I x
I—IR§ induced by the fitness function f is a semi-metric
on the individual space I (semi only because d(i,j) =0 for
1#j is possible). The semi-metric induces a topology on
I. Equal fitness suffices to declare two individuals as d-
equivalent, i.e. d is a rather small semi-metric in the sense
that the induced topology is rather coarse. We will see
that a non-zero distance between individuals of different
fitness is sufficient to avoiding the population takeover. d
induces the coarsest topology (is the “smallest” distance)
avoiding population takeover.

The problem of genetic drift. Besides elitist selection,
the other major cause of diversity loss in a population is
genetic drift. This occurs due to the stochastic nature of
the selection operator breeding some individuals more of-
ten than others. In a finite population this will cause some
individuals to be replaced which have no close relatives,
thus reducing diversity. Indeed, without a sufficient rate
of mutation, eventually a population will converge on a
single genome; even if no selection pressure is applied.

Although fitness uniform optimization does not attempt
to address this problem, some implications can be drawn.
Clearly, with fitness uniform optimization a complete col-
lapse in diversity is impossible as individuals with a wide
range of fitness values are always preserved in the popu-
lation. However, within a given fitness level genetic drift
can occur, although the sustained presence of many indi-
viduals in other fitness levels to breed with will reduce this
effect.

Theoretical analysis of genetic drift is often performed
by calculating the Markov chain transition matrices to
compute the time for the system to reach an absorption
state where all of the population members have the same
genome. As these results can be difficult to generalize, an
alternative approach has been to measure genetic drift by
measuring the loss in fitness diversity in a population over
time [RPB99a]. This is interesting as fitness uniform opti-
mization attempts to maximize the entropy of the fitness
values in the population, producing a very high variance
in population fitness. Thus, at least according to the sec-
ond method of analysis, very little genetic drift would be
evident in the population.

3 Fitness Uniform Selection

Scheme (FUSS)

Discrete fitness function. In this section we propose
a new selection scheme, which limits the fraction of d-
similar individuals. For simplicity we start with a fitness
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function f:I — F with discrete equi-spaced values F' =
{fminafmin +Eafmin + 257"~7fmaz - 57fmaz}' We call two
individuals ¢ and j d-similar if d(i,5) = |f(i)— f(j)] < 9.
The continuous valued case F'=fmin,fmaz] i considered
later. In the following we assume § <e. In this case, two
individuals are d-similar if and only if they have the same
fitness.

The goal. We have argued that in order to escape local
optima, genetic variety should be preserved somehow. One
way is to limit the number of §-similar individuals in the
population. In an exact fitness uniform distribution there
would be |P|/|F| individuals for each of the |F| fitness
values, i.e. each fitness level would be occupied by a frac-
tion of 1/|F| individuals. The following selection scheme
asymptotically transforms any finite population into a fit-
ness uniform one.

The fitness uniform selection scheme (FUSS). FUSS
is defined as follows: randomly select a fitness value f
uniformly from the fitness values F'. Then, uniformly at
random select an individual i € P with fitness f. Add
another copy of 7 to P.

Note the two stage uniform selection process which is
very different from a one step uniform selection of an indi-
vidual of P (see Figure 1). In STD, inertia increases with
population size. A large mass of unfit individuals reduces
the probability of selecting fit individuals. This is not the
case for FUSS. Hence, without loss of performance, we can
define a pure model, in which no individual is ever deleted;
the population size increases with time. No genetic ma-
terial is ever discarded and no fine-tuning in population
size is necessary. What may prevent the pure model from
being applied to practical problems are not computation
time issues, but memory problems. If space becomes a
problem we delete random individuals, as is usually done
with a steady state EA.

Asymptotically fitness uniform distribution. The
expected number of individuals per fitness level f after ¢
selections is n:(f)=no(f)+t/|F|, where no(f) is the initial
distribution. Hence, asymptotically each fitness level gets
occupied uniformly by a fraction

m(f) _ nolf)+/|F

fo
|P,] P + ¢ '

— t — 00,

|F|

where P; is the population at time t. The same limit holds
if each selection is accompanied by uniformly deleting one
individual from the (now constant sized) population.

Fitness gaps and continuous fitness. We made two
unrealistic assumptions. First, we assumed that each fit-
ness level is initially occupied. If the smallest/largest fit-
ness values in Py are f! . Jmaz Ve extend the definition of
FUSS by selecting a fitness value f uniformly in the inter-
val [fh i, — 36,4 0e+2e] and an individual i€ P, with fit-
ness nearest to f (see Figure 2). This also covers the case
when there are missing intermediate fitness values, and
also works for continuous valued fitness functions (¢ —0).

Mutation and recombination. The second assumption
was that there is no mutation and recombination. In the
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Figure 1: Effects of proportionate, truncation, ranking
& tournament, uniform, and fitness uniform (FUSS) se-
lection on the fitness distribution in a generation based
EA. The left/right diagrams depict fitness distributions
before/after applying the selection schemes depicted in
the middle diagrams. Note that for populations with a
non-Gaussian distribution of fitness values (left column),
the graph of selection probability vs. fitness for FUSS
(center bottom) can be totally different to that illustrated
above, however the population distribution that results
(right bottom) will be the same.

Population

Individuals Selectﬂ__r_l__earest

e

Fitness f
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Figure 2: If the lowest /highest fitness values in the current
population P are fp,in/maz, FUSS selects a fitness value f
uniformly in the interval [fpin,fmaz], then, the individual
1 € P with fitness nearest to f is selected and a copy is
added to P, possibly after mutation and recombination.

presence of a small mutation and/or recombination rate
eventually each fitness level will become occupied and the
occupation fraction is still asymptotically approximately
uniform. For larger rate the distribution will be no longer
uniform, but the important point is that the occupation
fraction of no fitness level decreases to zero for t— oo, un-
like for STD. Furthermore, FUSS selects by construction
uniformly in the fitness levels, even if the levels are not
uniformly occupied.

4 Properties of FUSS

FUSS effectively favors fit individuals. FUSS pre-
serves diversity better than STD, but the latter have a
(higher) selection pressure toward higher fitness, which is
necessary for optimization. At first glance it seems that
there is no such pressure at all in FUSS, but this is de-
ceiving. As FUSS selects uniformly in the fitness levels,
individuals of low populated fitness levels are effectively
favored. The probability of selecting a specific individual
with fitness f is inversely proportional to n.(f) (see Figure
1). In an initial typical (FUSS) population there are many
unfit and only a few fit individuals. Hence, fit individuals
are effectively favored until the population becomes fitness
uniform. Occasionally, a new higher fitness level is discov-
ered and occupied by a single new individual, which then,
again, is favored.

No takeover in FUSS. With FUSS, takeover of the high-
est fitness level never happens. The concept of takeover
time [GD91] is meaningless for FUSS. The fraction of
fittest individuals in a population is always small. This
implies that the average population fitness is always much
lower than the best fitness. Actually, a large number of
fit individuals is usually not the true optimization goal. A
single fittest individual usually suffices to solve the opti-
mization task.

FUSS may also favor unfit individuals. Note, if it is
also difficult to find individuals of low fitness, i.e. if there
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Figure 3: Evolution of the population under FUSS versus
standard selection schemes (STD): STD may get stuck in
a local optimum if all unfit individuals were eliminated
too quickly. In FUSS, all fitness levels remain occupied
with “free” drift within and in-between fitness levels, from
which new mutants are steadily created, occasionally lead-
ing to further evolution in a more promising direction.
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are only a few individuals of low fitness, FUSS will also
favor these individuals. Half of the time is “wasted” in
searching on the wrong end of the fitness scale. This pos-
sible slowdown by a factor of 2 is usually acceptable. In
Section 7 we will see that in certain circumstances this be-
havior can actually speedup the search. In general, fitness
levels which are difficult to reach, are favored.

Distribution within a fitness level. Within a fitness
level there is no selection pressure which could further ex-
ponentially decrease the population in certain regions of
the individual space. This (exponential) reduction is the
major enemy of diversity, which is suppressed by FUSS.
Within a fitness level, the individuals freely drift around
(by mutation). Furthermore, there is a steady stream of
individuals into and out of a level by (d)evolution from
(higher)lower levels. Consequently, FUSS develops an
equilibrium distribution which is nowhere zero. This does
not mean that the distribution within a level is uniform.
For instance, if there are two (local) maxima of same
height, a very broad one and a very narrow one, the broad
one may be populated much more than the narrow one,
since it is much easier to “find”.

Steady creation of individuals from every fitness
level. In STD, a wrong step (mutation) at some point
in evolution might cause further evolution in the wrong
direction. Once a local optimum has been found and all
unfit individuals were eliminated it is very difficult to undo
the wrong step. In FUSS, all fitness levels remain occupied
from which new mutants are steadily created, occasionally
leading to further evolution in a more promising direction
(see Figure 3).

Transformation properties of FUSS. FUSS (with con-
tinuous fitness) is independent of a scaling and a shift of
the fitness function, i.e. FUSS(f) with f(i):=a-f(i)+b is
identical to FUSS(f). This is true even for a <0, since
FUSS searches for maxima and minima, as we have seen.
It is not independent of a non-linear (monotone) transfor-
mation unlike tournament, ranking and truncation selec-
tion. The non-linear transformation properties are more
like the ones of proportionate selection.

5 Fitness Uniform Deletion

Scheme (FUDS)

For a steady state evolutionary algorithm each cycle of
the system consists of both selecting which individual or
individuals to crossover and mutate, and then selecting
which individual is to be deleted in order to make space for
the new child. The usual deletion scheme used is random
deletion as this is neutral in the sense that it does not bias
the distribution of the population in any way and does not
require additional work to be done, such as evaluating the
similarity of individuals based on their genes. Another
common strategy is to use an elitist deletion scheme.
Here we propose to use the similarity semi-metric d de-
fined in Section 2 to achieve a uniform distribution across
fitness levels, like with FUSS, except that we achieve this
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by selectively deleting those members of the population
which have very commonly occurring fitness values. Of
course this leaves the selection scheme unspecified, indeed
we may use any standard selection scheme such as tourna-
ment selection in combination with FUDS. It also means
that we lose one of the nice features of FUSS as we now
need to manually tune the selection intensity for our appli-
cation — FUSS of course is parameterless. Nevertheless it
allows us to give many FUSS like properties to an existing
EA using a standard selection scheme with only a minor
modification to the deletion scheme.

The intuition behind why FUDS preserves population
diversity is very simple: If an individual has a fitness value
which is very rare in the population then this individual
almost certainly contains unique information which, if it
were to be deleted, would decrease the total population
diversity. Conversely, if we delete an individual with very
commonly occurring fitness then we are unlikely to be los-
ing significant diversity. Presumably most of these indi-
viduals are common in some sense and likely exist in parts
of the solution space which are easy to reach. Thus the
fitness uniform deletion strategy is now clear: Only delete
individuals with very commonly occurring fitness values
as these individuals are less likely to contain important
genetic diversity.

Practically FUDS is implemented as follows. Let fin
and fq, be the minimum and maximum fitness values
possible for a problem, or at least reasonable upper and
lower bounds. We divide the interval [fmin,fmaz] into
a collection of subintervals of equal length {[fmin,fmin+
a),[ frminta, frmin+2a),....[ frmaz — @, fmaz] } which we call fit-
ness levels. As individuals are added to the population
their fitness is computed and they are placed in the set of
individuals corresponding to the fitness level they belong
to. Thus the number of individuals in each fitness level de-
scribes how common fitness values within this interval are
in the current population. When a deletion is required the
algorithm locates the fitness level with the greatest num-
ber of individuals and then deletes a random individual
from this level. In the case where multiple fitness levels
have maximal size the lowest of these levels is used.

If the number of fitness levels is chosen too low, say
5 levels, then the resulting model of the distribution of
individuals across the fitness range will be too coarse. Al-
ternatively if a large number of fitness levels is used with
a very small population the individuals may become too
thinly spread across the fitness levels. While in these ex-
treme cases this could affect the performance of FUDS, in
practice we have found that the system is not very sensi-
tive to the setting of this parameter. If n is the population
size then setting the number of fitness levels to be /n is
a good rule of thumb.

For discrete valued fitness functions there is a natural
lower bound on the interval length a because below a cer-
tain value there will be more intervals than unique fitness
values. Of course this cannot happen when the fitness
function is continuous. Other than this small technical
detail, the two cases are treated identically.

As FUDS spreads the individuals out across a wide

range of fitness values, for small populations the EA may
become inefficient as only a few individuals will have rela-
tively high fitness. For problems which are not deceptive
this is especially true as there will be little value in having
individuals in the population with low to medium fitness.
Of course these are not the kinds of problems for which
FUDS was designed. In practice we have always used pop-
ulations of between 250 and 5,000 individuals and have
not observed a decline in performance relative to random
deletion at the lower end of this range.

An alternative implementation that avoids discretiza-
tion is to choose the two individuals that have the most
similar fitness and delete one of them. An efficient imple-
mentation keeps a list of the individuals ordered by their
fitness along with an ordered list of the distances between
the individuals. Then in each cycle one of the two indi-
viduals with closest fitness to each other is selected for
deletion. Although the performance of this algorithm was
better than random deletion, it was not as good as the
implementation of FUDS using bins. We conjecture that
the reason for this is as follows: When there are just a
few very fit individuals in the population it is quite likely
that they will be highly related to each other and have
very similar fitness. This means that if we delete the indi-
viduals with most similar fitness it is likely that many of
the very fit individuals will be deleted. However with the
bins approach this will not happen as there are typically
few individuals in the high fitness bins. Thus, although
deleting one of the closest individuals in terms of fitness
might preserve diversity well, it also changes the pressure
on the population distribution over fitness levels. This
small change in distribution dynamics appears to reduce
performance in practice.

6 Properties of FUDS

As FUDS uniformly distributes the population across fit-
ness levels, like FUSS does, many of the key properties of
FUSS also carry over to an EA that is using a standard
selection scheme (STD) combined with FUDS deletion.

No takeover in FUDS. Under FUDS the takeover of the
highest fitness level, or indeed any fitness level, is impossi-
ble. This is easy to see because as soon as any fitness level
starts to dominate, all of the deletions become focused on
this level until it is no longer the most populated fitness
level. As a by-product, this also means that individuals
on relatively unpopulated fitness levels are preserved.

Steady creation of individuals from every fitness
level. Another similarity with FUSS is the steady cre-
ation of individuals on many different fitness levels. This
occurs because under FUDS some individuals on each fit-
ness level are always kept. This makes it relatively easy
for the EA to find its way out of local optima as it keeps on
exploring evolutionary paths which do not at first appear
to be promising.

Robust performance with respect to selection in-
tensity. Because FUDS is only a deletion scheme, we still
need to choose a selection scheme for the EA. Of course



this selection scheme may then require us to set a selec-
tion intensity parameter. While this is not as desirable as
FUSS, which has no such parameter, at least with FUDS
we expect the performance of the system to be less sensi-
tive to the correct setting of this parameter. For example,
if the selection intensity is set too high the normal prob-
lem is that the population rushes into a local optimum
too soon and becomes stuck before it has had a chance to
properly explore the genotype space for other promising
regions. However, as we noted above, with FUDS a total
collapse in population diversity is impossible. Thus much
higher levels of selection intensity may be used without
the risk of premature convergence.

In some situations if very low section intensity is used
along with random deletion, the population tends not to
explore the higher areas of the fitness landscape at all.
This can be illustrated by a simple example. Consider a
population which contains 1,000 individuals. Under ran-
dom deletion all of these individuals, including the highly
fit ones, will have a 1 in 1,000 chance of being deleted in
each cycle and so the expected life time of an individual
is 1,000 deletion cycles. Thus if a highly fit individual is
to contribute a child of the same fitness or higher, it must
do so reasonably quickly. However for some optimization
problems the probability of a fit individual having such a
child when it is selected is very low, so low in fact that it is
more likely to be deleted before this happens. As a result
the population becomes stuck, unable to find individuals
of greater fitness before the fittest individuals are killed
off.

The usual solution to this problem is to increase the
selection intensity because then the fit individuals are se-
lected more often and thus are more likely to contribute a
child of similar or greater fitness before they are deleted.
Another is to change the deletion scheme so that these
individuals live longer. This is what happens with FUDS
as rare fit individuals are not deleted. Effectively it means
that with FUDS we can often use much lower selection
intensity without the population becoming stuck.

Transformation properties of FUDS. While with
FUDS we have the added complication of having to choose
the number of subintervals with which to break up the fit-
ness values, this number is only a function of the popula-
tion size and distributional characteristics of the problem.
Thus any linear transformation of the fitness function has
no effect on FUDS. However, non-linear transformations
will affect performance.

Problem and representation independence. Be-
cause FUDS only requires the fitness of individuals, the
method is completely independent of the problem and
genotype representation, i.e. how the individuals are
coded.

Simple implementation and low computational
cost. As the algorithm is simple and the fitness func-
tion is given as part of the problem specification, FUDS
is very easy to implement and requires few computational
resources.
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7 A Simple Example

In the following, we use a simple example problem to com-
pare the performance of fitness uniform selection (FUSS),
random search (RAND) and standard selection (STD),
each used both with and without recombination. We
also examine the performance of standard selection when
used with the fitness uniform deletion scheme (FUDS). We
regard this problem as a prototype for deceptive multi-
modal functions. The example demonstrates how FUSS
and FUDS can be superior to RAND and STD in some
situations. More generic situations will be considered in
Section 8. An experimental analysis of this problem ap-
pears in Section 12.

Simple 2D example. Consider individuals (z,y) € I :=
[0,1] x[0,1], which are tuples of real numbers, each coor-
dinate in the interval [0,1]. The example models indi-
viduals possessing up to 2 “features”. Individual ¢ pos-
sesses feature Ih if i€ I; :=[a,a+A] x[0,1], and feature Iy if
i€I5:=[0,1] x [b,b+A]. The fitness function f:7—{1,2,3}
is defined as

yll f(z,y)
1 if (z,y) € H\Ia, s |1l 3
Hny) = 2 if (z,y) € L\,
) 3 if (x,y) €L ULy, A5 Ta 3
4 if (z,y) € I NIy 3 [1] 3
A %

We assume A < 1. Individuals with neither of the two
features (i€ I\(I;UI3)) have fitness f=3. These “local f=
3 optima” occupy most of the individual space I, namely a
fraction (1—A)2. Tt is disadvantageous for an individual to
possess only one of the two features (i€ (I1\I2)U(I2\I1)),
since f=1 or 2 in this case. In combination (i € I;NI3)),
the two features lead to the highest fitness, but the global
maximum f =4 occupies the smallest fraction A? of the
individual space I. With a fraction A(1—A), the f =
1/f=2 minima are in between. The example has sort of
an XOR structure, which is hard for many optimizers.

Random search. Individuals are created uniformly in
the unit square. The “local optimum” f =3 is easy to
“find”, since it occupies nearly the whole space. The
global optimum f =4 is difficult to find, since it occu-
pies only A2 <1 of the space. The expected time, i.e. the
expected number of individuals created and tested until
one with f=4 is found, is Tranp = ﬁ. Here and in the
following, the “time” T is defined as the expected num-
ber of created individuals until the first optimal individual
(with f=4) is found. T is neither a takeover time nor the
number of generations (we consider steady-state EAs).

Random search with crossover. Let us occasionally
perform a recombination of individuals in the current pop-
ulation. We combine the z-coordinate of one uniformly
selected individual i; with the y coordinate of another in-
dividual i5. This crossover operation maintains a uniform
distribution of individuals in [0,1]2. Tt leads to the global
optimum if ¢; € I; and i3 € I;. The probability of select-
ing an individual in I; is A(1—A)~ A (we assumed that
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the global optimum has not yet been found). Hence, the
probability that I; crosses with I5 is AZ. The time to find
the global optimum by random search including crossover
is still ~ ﬁ (~ denotes asymptotic proportionality).

Mutation. The result remains valid (to leading order
in %) if, instead of a random search, we uniformly select
an individual and mutate it according to some probabilis-
tic, sufficiently mixing rule, which preserves uniformity in
[0,1]. One popular such mutation operator is to use a suffi-
ciently long binary representation of each coordinate, like
in genetic algorithms, and flip a single bit. For simplicity
we assume in the following a mutation operator which re-
places with probability % / % the first /second coordinate by
a new uniform random number. Other mutation operators
which mutate with probability %/3 the first/second coor-
dinate, preserve uniformity, are sufficiently mixing, and
leave the other coordinate unchanged (like the single-bit-
flip operator) lead to the same scaling of T" with A (but
with different proportionality constants).

Standard selection with crossover. The f=1 and
f = 2 individuals contain useful building blocks, which
could speedup the search by a suitable selection and
crossover scheme. Unfortunately, the standard selection
schemes favor individuals of higher fitness and will dimin-
ish the f=1/f=2 population fraction. The probability
of selecting f =1/f =2 individuals is even smaller than
in random search. Hence Tspp ~ ﬁ. Standard selection
does not improve performance, even not in combination
with crossover, although crossover is well suited to pro-
duce the needed recombination.

FUSS. At the beginning, only the f=3 level is occupied
and individuals are uniformly selected and mutated. The
expected time until an f=1 or f=2 individual in I; Ul
is created is T1 ~ % (not ﬁ, since only one coordinate is
mutated). From this time on FUSS will select one half(!)
of the time the f=1/f =2 individual(s) and only the
remaining half the abundant f=3 individuals. When level
f=1 andlevel f=2 are occupied, the selection probability
is %—i—% for these levels. With probability % the mutation
operator will mutate the y coordinate of an individual in
I, or the = coordinate of an individual in /5 and produces
a new f=1/2/4 individual. The relative probability of
creating an f =4 individual is A. The expected time to
find this global optimum from the f=1/f=2 individuals,
hence, is To=[(3...2) x 5 x A]!. The total expected time
is Tpuss ~Ti+To=4%..5 < 2z ~Tsrp. FUSS is much
faster by exploiting unfit f =1/f =2 individuals. This
is an example where (local) minima can help the search.
Examples where a low local maxima can help in finding
the global maximum, but where standard selection sweeps
over too quickly to higher but useless local maxima, can
also be constructed.

FUSS with crossover. The expected time until an f=1
individual in I; and an f =2 individual in I is found is
Ty~ %, even with crossover. The probability of selecting
an f=1/f=2 individual is /3. Thus, the probability
that a crossing operation crosses I; with I is (3)?. The
expected time to find the global optimum from the f=

1/f=2 individuals, hence, is T, =9-O(1), where the O(1)
factor depends on the frequency of crossover operations.
This is far faster than by STD, even if the f=1/f=2 levels
were local maxima, since to get a high standard selection
probability, the level has first to be taken over, which itself
needs some time depending on the population size. In
FUSS a single f=1 and a single f=2 individual suffice
to guarantee a high selection probability and an effective
crossover. Crossover does not significantly decrease the
total time Trygsx ~T1 +Th ~ %—FO(Q), but for a suitable
3D generalization we get a large speedup by a factor of %.

FUDS with crossover. Assume that initially all of the
individuals have f=3 and that we are using random selec-
tion. For any mutation the probability of the child being
in [;UI5 is A. Until I; Ul becomes quite full FUDS will
never delete individuals from these areas. Furthermore if
an individual in I; Uls is mutated then the mutant will
also be in I; Ul with probability %(1+A) > A. Therefore
while most of the population has f=3 we can lower bound
the probability of a new child being in I; Ul by A. It then
follows that if P is the size of the population we can upper
bound the expected time for ;U to contain half the total
population by g% x %. Once this occurs (and most likely
well before this point) crossover will produce an individual
with f=4 almost immediately by crossing a member of
I with a member of Ir. Thus Tryps % < ﬁ ~Tsrp.
This gives FUDS when used with random selection scaling
characteristics which are similar to FUSS. If we use a se-
lection scheme with higher intensity our bound on the ex-
pected time for half the population to have f=3 remains
unchanged as the bound holds in the worst case situa-
tion where only individuals with f=3 are selected. How-
ever higher selection intensity makes the final crossover
required to find an individual with f =4 less likely. For
moderate levels of selection intensity this is clearly not
a significant factor and more importantly it is O(1) and
independent of A. Thus the order of scaling for Tryps
is just % for this difficult problem, which is the same as
Tryssx-

Simple 3D example. We generalize the 2D example to
D-dimensional individuals #€[0,1]” and a fitness function

- 1gba§de~Xd(x) +D+1,

D
£@) = (D+ 1) [ xa@
d=1

where x4(Z) is the characteristic function of feature I

S 1 if a; <o <a+ A,
Xa(T) = 0 else.

For D=2, f coincides with the 2D example. For D=3, the
fractions of [0,1]3 where f=1/2/3/4/5 are approximately
A?/A%/A?/1/A3. With the same line of reasoning we get
the following expected search times for the global opti-
mum:

1
Tranp ~ Tstp ~ AB

1 1
Truss ~ A Trussx ~ Trups ~ A
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Species B

Species A

Figure 4: Generic 2D fitness landscape with evolution tree.
Each connected slice represents a species. A species is also
symbolized by a node in the slice. The number in a slice
and near a node is the fitness value of the species. If
individuals from one species can evolve to individuals of
another species, the nodes are connected by a solid line.
Altogether, they form the fitness tree. The branching fac-
tor b is 2 and the number of species per fitness level s is 4
for intermediate fitness values (3,4,5).

This demonstrates the existence of problems where FUSS
is much faster than RAND and STD, and where crossover
can give a further boost to FUSS, even when it is ineffec-
tive in combination with STD.

8 Fitness-Tree Analysis

subsectionThe fitness tree model A general, problem in-
dependent comparison of the various optimization algo-
rithms is difficult. We are interested in the performance
for difficult fitness landscapes with many local optima.

We only consider mutation; recombination is discussed
in the next section. The evolutionary neighborhood (not
to be confused with d-similarity) of an individual ¢ is de-
fined as the set of individuals that can be created from i
by a single mutation'. Two individuals ¢ and j with the
same fitness are defined to belong to the same species if
there is a finite sequence of mutations which transforms
into j and all individuals of the sequence also have fitness
f@@)=f(j). Each fitness level is partitioned in this way
into disjoint species. We say a species of fitness f+¢& can
evolve from a species of fitness f, if there is a mutation
which transforms an individual from the latter species to
one of the former. Those species are connected by an edge
in Figures 4 and 5. A species is said to be promising if it
can evolve to the global optimum fi,qz-

Additional definitions and simplifying assump-
tions.

i) Evolution which skips fitness levels is ignored, and

1We have “small” mutations in mind, e.g. single bit flips, not
macro mutations, which connect all individuals.
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Species 3

Species 1

|- : NN

Figure 5: Generic fitness function with evolution tree. In-
dividuals which are evolutionary neighbors are connected
by a dashed line. They belong to the species indicated
by a node on the dashed line. A species which can evolve
from another is connected to it by a solid line. The smooth
curve visualizes (somewhat misleading, since the fitness is
discrete) the fitness function with many local maxima.

also devolution to species of lower fitness other than

the primordial species.
ii) Random individuals have lowest fitness fy,;, with
high probability, and there is only one species of fit-
ness fmin-
There is a fixed branching factor b, i.e. each species
can evolve into b improved species, or represents a lo-
cal optimum from which no further evolution is pos-
sible.
There is a single global optimum f,,,4, (or b optima
to be consistent with the previous item).
v) There are s different species per fitness level (except
near fin and fpqe where there must be fewer to be
consistent with the previous items).
The probability p that an individual evolves to a
higher fitness is very small. In most cases a muta-
tion keeps an individual within its species or devolves
it.
The probability to evolve to one of the offspring
species is uniform, i.e. 1/b for all offspring species.

iii)

iv)

vi)

vii)

We have the feeling that this picture covers the essential
features of fitness landscapes for difficult problems. The
qualitative conclusions we will draw should still hold when
some or all of the additional simplifying assumptions are
violated.

Example. Consider the case of individuals, which are
real-valued D dimensional vectors, i.e. I =IR”. Let the
fitness function f be continuous and positive with many lo-
cal maxima, which tends to zero for large arguments. This
covers a large range of physical optimization problems.
Mutation shall be local in R?, i.e. [lioriginal —imutated|| <
D. As FUSS and the fitness tree model is only defined
for discrete fitness functions, we discretize f to f:= L% fj,
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which is acceptable for sufficiently small £. A typical fit-
ness landscape for D=2 and D =1 together with their
fitness tree are depicted in Figures 4 and 5. Since muta-
tion is a local operation, each species is a (possibly multi-
ply punched) connected slice (D-dimensional sub-volume)
and evolution can only occur from f to f+1 (e=1). As-
sumption (i) is generally satisfied. The special fitness land-
scapes depicted in Figures 4 and 5 also satisfy (ii,iii,iv,v)
with b=2 and s=4.

Random walk. Consider a mutation induced random
walk of a single individual. Due to the low evolution prob-
ability p<1, most of the time will be spent on individuals
of the lowest fitness finin. As evolution is a tree, there
is only one evolution sequence which leads to the global
optimum. At each evolution step, the correct offspring
species (out of b) has to be evolved. The probability of
an evolution step in the right direction, hence, is p/b. |F|
evolution steps are necessary to reach fi,q.. Therefore,
the expected time to find the global maximum by random
walk is Try ~ (b/p)/Fl. Random walk is very slow; it is
exponential in the number of fitness levels |F| to a very
large basis b/p.

FUSS. Assume that L fitness levels from fi,;, to f are
occupied. The probability that FUSS selects an individ-
ual of fitness f is 1/L. Under this additional assumption
that the occupation of species within one fitness level is
approximately uniform most of the time, the probability
of selecting an individual of the promising species, which
can evolve to the global optimum, is 1/s. The probability
of an evolution step in the right direction is p/b as in the
random walk case. Hence, the total expected time for an
evolution in the right direction is L-s-b/p. The total time
Truss ~ $|F|*+b/p for an evolution from L=1 to the
global optimum L = |F| is obtained by summation over
L=1..|F].

FUDS. A similar analysis can be applied to FUDS. As-
sume again that the L fitness levels from f,,;, to f are
occupied and that the occupation of species within each
fitness level is approximately uniform most of the time.
Because FUDS tends to spread the population out, like
FUSS, this assumption is not unreasonable. As FUDS is
only a deletion scheme we must also specify a selection
scheme. For our analysis we will take a very simple elitist
selection scheme that half of the time selects an individ-
ual from the highest fitness level, and the other half of
the time selects an individual from a lower level. It fol-
lows then that the probability of selecting a promising
species is 1/2s and the probability that this then results
in an evolutionary step in the right direction is p/b. Thus
the total expected time for an evolutionary step in the
right direction is 2-s-b/p. Therefore by summation the
total expected time to evolve to the global optimum is
Trups ~2|F|-s-b/p. Of course this analysis rests on our
choice of selection scheme and the assumptions about the
uniformity of the population that we have made. When
FUDS is used with selection schemes which are very greedy
these uniformity assumptions will likely be violated and
less favorable bounds could result.
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Standard selection. We assumed a fixed number of s
species per fitness level and 0 or b offspring species. This
implies that only a fraction of 1/b species can evolve to
higher fitness. We assume that fitness level f has been
taken over, i.e. most individuals have fitness f. The prob-
ability of evolution is p. A significant fraction (for simplic-
ity we assume most) of the |P| individuals must evolve to
the next fitness level before evolution with a relevant rate
can occur to the next to next level. Hence, the time to
take over the next fitness level is roughly |P|-b/p. As there
are |F| fitness levels, the total time is Tsrp 2| F|-|P|-b/p.

We wrote 2 as we have made two significant favorable
assumptions. In order to ensure convergence, the promis-
ing species in the current fitness level has to be occupied.
If we assume a uniform occupation of species within one
fitness level, as for FUSS, this means that all species of
the current fitness level have to be populated. As there
are s species, |P| has to be at least s, which can be quite
large. On the other hand, STD linearly slows down with
| P|, unlike FUSS. Hence, there is a trade-off in the choice
of | P.

More serious is the following problem. Assume that the
first individual evolved with fitness f+e¢ is one in a non-
promising species a. Due to selection pressure it might
happen that species a takes over the whole population
before all (or at least the promising) species with fitness
f-+e can evolve from the ones of fitness f. The probability
to find the global optimum in the worst case scenario,
where at each level only one species is occupied, is (1/b)171.
This is the original problem of the loss of genetic diversity
discussed at the outset, which lead to the invention of
FUSS.

Every other fix the authors are aware of only seems to
diminish the problem, but does not solve it. One fix is
to repeatedly restart the EA, but the huge number of bl
restarts might be necessary. The time is exponential in
|F'| like for random walk but with a smaller basis b. The
true time is expected to be somewhere in between | F|-|P|-
b/p and this worst case analysis, although an unfavorable
setting may never reach the global optimum (Ts7p = 0o
in this case).

Performance comparison. The times Tryss, Trups
and Ts7p should be regarded, at best, as rules of thumb,
since the derivation was rather heuristic due to the list of
assumptions. The quotient is more reliable:

TFUSS < |F|S < l|F| < |F|
Tstp 2P|~ 2 - ’
and
Lrups 5
Tstp |P|

We will give a more direct argument in Section 9 that
the slowdown of FUSS relative to STD is at most |F|.

Finally, a truism has been recovered, namely that an
EA can, under certain circumstances, be much faster than
random walk, that is, Trw >Truss,Trups,LsTD-
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9 Scale-Independent Selection and
Recombination

Worst case analysis. We now want to estimate the max-
imal possible slowdown of FUSS compared to STD. Let us
assume that all individuals in STD have fitness f, and once
one individual with fitness f+¢ has been found, takeover of
level f+e is quick. Let us assume that this quick takeover
is actually good (e.g. if there are no local maxima). The
selection probability of individuals of same fitness is equal.
For FUSS we assume individuals in the range of f,,;, and
f- Uniformity is not necessary. In the worst case, a se-
lection of an individual of fitness < f never leads to an
individual of fitness > f, i.e. is always useless. The prob—
ability of selecting an individual with fitness f is > T F‘
At least every |F|th FUSS selection corresponds to a STD
selection. Hence, we expect a maximal slowdown by a fac-
tor of | F|, since FUSS “simulates” STD statistically every
|F'|th selection. It is possible to construct problems where
this slowdown occurs (unimodal function, local mutation
x — x=£e, no crossover). Gradient ascent would be the
algorithm of choice in this case. On the other hand, we
have not observed this slowdown in our simple 2D exam-
ple and the TSP experiments, where FUSS outperformed
STD in solution quality /time (see the experimental results
in Section 12). Since real world problems often lie in be-
tween these extreme cases it is desirable to modify FUSS
to cope with simple problems as well, without destroying
its advantages for complex objective functions.

Quadratic slowdown due to recombination. We
have seen that Tryss <|F|-Tsrp. In the presence of re-
combination, a pair of individuals has to be selected. The
probability that FUSS selects two individuals with fitness
fis> # Hence, in the worst case, there could be a slow-
down by a factor of |F|?> — for independent selection we
expect Tryss <|F|?Tsrp. This potential quadratic slow-
down can be avoided by selecting one fitness value at ran-
dom, and then two individuals of this single fitness value.
For this dependent selection, we expect Tryss <|F|-TsTp.
On the other hand, crossing two individuals of different fit-
ness can also be advantageous, like the crossing of f=1
with f=2 individuals in the 2D example of Section 7.

Scale independent selection. A near optimal compro-
mise is possible: a high selection probability p(f)~1 if
f2 finae and p(f)~ val FI otherwise. A ‘scale independent”
probability distribution p(f)~

| is appropriate for
this. We define

Ifm,ar_f

c 1
1D|F| é'fmam_

The +1 in the denominator has been added to regularize
the expression for f = fj4.. The factor ¢/In|F| ensures
correct normalization (3 ;p(f) =1). By using In2tt <

In|F|
T In[F] <c<lie. c—1

for |[F|—oco. In the following we assume |F|>3, i.e. ¢>1.
Apart from a minor additional logarithmic suppression of
order In|F| we have the desired behavior p(f)~1 for f=

p(f) = (1)

fl+1

Zi’:a% gln%, one can show that

p(f.f")~
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fmax and p(f)N |T1;1‘ otherwise:
(f €) > o 1
Plmas —ME) = 2In|F| m+1’
1 1
> .
P2 sim 7

During optimization, the minimal/maximal fitness of an
individual in population P is f, . Jmaz In the definition
of p one has to use Fy: {fmm,fﬁlera JEon ) instead of
F,ie. |F| replaced with |Fy|=21(f! .. — mm)—ﬁ-1<|F| So
(1) can not be achieved by a statlc re-parametrization of
fitness f replaced with g(f). Furthermore the important
idea of sampling from a fitness level instead of individuals
directly is still maintained. The only difference now is
that the population will no longer converge to a fitness
uniform one but to one with distribution p(f) which is
biased toward higher fitness but still never converges to
a fittest individual. In the worst case, we expect a small
slowdown of the order of In|F| as compared to FUSS, as
well as compared to STD.

Scale independent pair selection. It is possible to
(nearly) have the best of independent and dependent selec-
tion: ahigh selection probability p(f,f’)~ IFI if fref’ and
\Flz otherwise, with uniform marginal p(f)= W'
The idea is to use a strongly correlated joint distribution
for selecting a fitness pair. A “scale independent” proba-
bility distribution p(f,f’)~ ﬁ is appropriate. We de-
fine the joint probability p(f,f’) of selecting two individ-
uals of fitness f and f’ and the marginal p(f) as

e 1 1
= > BL)= DB
frer frer

We assume |F| > 3 in the following. The +1 in the
denominator has been added to regularize the expres-
sion for f = f’. The factor (2|F|ln|F|)~! ensures cor-
rect normahzation for |F| — co. More precisely, using

In2tl < S <In—t-, one can show that

doahr) <1,

el

1= (LZ—

< |Fl-p(f) <1,

i.e. p is not strictly normalized to 1 and the marginal p(f)
is only approximately (within a factor of 2) uniform. The
first defect can be corrected by appropriately increasing
the diagonal probabilities p(f,f). This also solves the sec-
ond problem.

f#r
f=r

for
for

p(f, f')

P = R ¥

—p(f)]

Properties of p(f,f’). p is normalized to 1 with uniform

marginal
= p(f.f)=

f'er
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> op(f )= p(f)=1,

[ f'eF feFr
p(f.f) =p(f.f).

Apart from a minor additional logarithmic suppression of
order In|F| we have the desired behavior p(f,f’)~ & for

[F]
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Scale-Independent Deletion. Just as the selection
scheme FUSS has its dual in the deletion scheme FUDS,
we can likewise create the dual of Scale-Independent Se-
lection in the form of Scale-Independent Deletion. Thus
rather than targeting deletion from the population so that
the distribution becomes flat, as we do with FUDS, we now
define a convex curve g which is peaked at the fittest indi-
vidual in the population and delete the population down
so that it follows the shape of this curve. This retains
some of the advantages of FUDS, for example the popula-
tion cannot collapse to just a few fitness levels, and yet it
recognizes that for many problems it is useful to bias the
population distribution toward fit individuals. Of course
such problems are less deceptive than the kind that FUSS
and FUDS are intended for.

10 Continuous Fitness Functions

Effective discretization scale. Up to now we have con-
sidered a discrete valued fitness function with values in F'=
{fmin>Jmin+€ssfmaz }- In many practical problems, the
fitness function is continuous valued with F'={fmin,fmaz]-
We generalize FUSS, and some of the discussion of the
previous sections to the continuous case by replacing the
discretization scale € by an effective (time-dependent) dis-
cretization scale €. By construction, FUSS shifts the pop-
ulation toward a more uniform one. Although the fitness
values are no longer equi-spaced, they still form a discrete
set for finite population P. For a fitness uniform distribu-
tion, the average distance between (fitness) neighboring
individuals is ﬁ( tow—fh Y =:é. We define F, :=
{ffmru thin—i_ér'w zw,x}' ‘Ft| = é( zzam_ fnm)—"_l = |Pt|

FUSS. Fitness uniform selection for a continuous val-
ued function has already been mentioned in Section 3.
We just take a uniform random fitness f in the interval
[fhin— 26, fh ezt 2€]. Independent and dependent fitness
pair selection as described in the last section works anal-
ogously. An =0 version of correlated selection does not
exist; a non-zero € is important. A discrete pair (f,f’) is
drawn with probability p(f,f’) as defined in (2) and (3)

min
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with € and F' replaced by € and F,. The additional sup-
pression In|F|=1In|P,| is small for all practically realizable
population sizes. In all cases an individual with fitness
nearest to f (f’) is selected from the population P (ran-
domly if there is more than one nearest individual).

If we assume a fitness uniform distribution then our
worst case bound of TpUssﬁthzst | P;| is plausible, since
the probability of selecting the best individual is approxi-
mately |P;|. For constant population size we get a bound
TrussS|P|-Tsrp. For the preferred non-deletion case
with population size |P;|=t the bound gets much worse
TFUSSS%TgT - This possible (but not necessary!) slow-
down has similarities to the slowdown problems of propor-
tionate selection in later optimization stages. The species
definition in Section 8 has to be relaxed by allowing muta-
tion sequences of individuals with é-similar fitness. Larger
choices of € may be favorable if the standard choice causes
problems.

FUDS. Fitness uniform deletion already requires the
range of the fitness function to be broken up into a finite
number of intervals. While for discrete valued fitness func-
tions the intervals may correspond to the unique values of
the fitness function, this is not a requirement. Indeed if
the population is small and the fitness function has a large
number of possible values then a more coarse discretiza-
tion is necessary. Continuous valued fitness functions can
therefore be treated in exactly the same way and do not
cause any special problems. In fact they are slightly sim-
pler in that we are now free to choose the discretization
as fine as we like without being limited by the number of
possible fitness values. Of course, like in the discrete case,
we still must choose a discretization which is appropriate
given the size of the population.

11 The EA Test System

To test FUSS and FUDS we have implemented an EA
test system in Java. The complete source code along with
the test problems presented in this paper and basic usage
instructions can be downloaded from [Leg04]. The EA
model we have chosen for our tests is the so called “steady
state” model as opposed to the more usual “generational”
model. In a generational EA in each generation we select
an entirely new population based on the old population.
The old population is then simply discarded. Under the
steady state model that we use, each step of the opti-
mization adds and removes just one individual at a time.
Specifically the process occurs as follows: Firstly an indi-
vidual is selected by the selection scheme and then with a
certain probability another individual is also selected and
the crossover operator is applied to produce a new individ-
ual. Then with another probability a mutation operator
is applied to produce the child individual which is then
added to the population. We refer to the probability of
crossing as the crossover probability and the probability of
mutating following a crossover as the mutation probability.
In the case where no crossover takes place the individual
is always mutated to ensure that we are not simply adding
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a clone of an existing individual into the population. Fi-
nally, an individual must be deleted in order to keep the
population size constant. This individual is selected by
the deletion scheme. The deletion scheme is important as
it has the power to bias the population in a similar way
to the selection scheme.

Our task in this paper is to experimentally analyze how
FUSS performs relative to other selection schemes and
how FUDS performs relative to other deletion schemes.
Because any particular run of a steady state EA requires
both a selection and a deletion scheme to be used, there
are many possible combinations that we could test. We
have narrowed this range of possibilities down to just a
few that are commonly used.

Among the selection schemes, tournament selection is
one of the simplest and most commonly used and we con-
sider it to be roughly representative of other standard se-
lection schemes which favor the fitter individuals in the
population; indeed in the case of tournament size 2 it can
be shown that tournament selection is equivalent to the
linear ranking selection scheme [Hut91, Sec.2.2.4]. With
tournament selection we randomly pick a group of individ-
uals and then select the fittest individual from this group.
The size of the group is called the tournament size and it
is clear that the larger this group is the more likely we are
to select a highly fit individual from the population. At
some point in the future we may implement other stan-
dard selection schemes to broaden our comparison, how-
ever we expect the performance of these schemes to be at
best comparable to tournament selection when used with
a correctly tuned selection intensity.

Among the deletion schemes one of the most commonly
used in steady state EAs is random deletion. The rational
for this is that it is neutral in the sense that it does not
skew the distribution of the population in any way. Thus
whether the population tends toward high or low fitness
etc. is solely a function of the selection scheme and its
settings. Of course random deletion, unlike FUDS, makes
no effort to preserve diversity in the population as all in-
dividuals have an equal chance of being removed. In this
paper we will compare FUDS against random deletion as
this is the standard deletion schemes in situations where it
is difficult or impossible to directly measure the similarity
of individuals based on their genomes.

When reporting test results we will adopt the follow-
ing notation: TOUR2 means tournament selection with
a tournament size of 2. Similarly for TOUR3, TOURA4
and so on. Under random selection, denoted RAND, all
members of the population have an equal probability of
being selected. This is sometimes called uniform selection.
When a graph shows the performance of tournament se-
lection over a range of tournament sizes we will simply
write TOURx. Naturally FUSS indicates the fitness uni-
form selection scheme. To indicate the deletion scheme
used we will add either the suffix -R or -F to indicate ran-
dom deletion or FUDS respectively. Thus, TOUR10-R is
tournament selection with a tournament size of 10 used
with random deletion, while FUSS-F is FUSS selection
used with FUDS deletion.
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The important free parameters to set for each test are
the population size, and the crossover and mutation proba-
bilities. Good values for the crossover and mutation prob-
abilities depend on the problem and must be manually
tuned based on experience as there are few theoretical
guidelines on how to do this. For some problems per-
formance can be quite sensitive to these values while for
others they are less important. Our default values are
0.5 for both as this has often provided us with reasonable
performance in the past.

For each test we ran the system multiple times with the
same mutation and crossover probabilities and the same
population size. The only difference was which selection
and deletion schemes were used by the code. Thus even
if our various parameters, mutation operators etc. were
not optimal for a given problem, the comparison is still
fair. Indeed we often deliberately set the optimization
parameters to non-optimal values in order to compare the
robustness of the systems.

As a steady state optimizer operates on just one individ-
ual at a time, the number of cycles within a given run can
be high, perhaps 100,000 or more. In order to make our
results more comparable to a generational optimizer we
divide this number by the size of the population to give
the approximate number of generations. Unfortunately
the theoretical understanding of the relationship between
steady state and generational optimizers is not strong. It
has been shown that under the assumption of no crossover
the effective selection intensity using tournament selection
with size 2 is approximately twice as strong under a steady
state EA as it is with a generational EA [RPB99b]. As far
as we are aware a similar comparison for systems with
crossover has not been performed.

Depending on the purpose of a test run, different stop-
ping criteria were applied. For example, in situations
where we wanted to graph how rapidly different strate-
gies converged with respect to generations, it made sense
to fix the number of generations. In other situations we
wanted to stop a run once the optimizer appeared to have
become stuck, that is, when the maximum fitness had not
improved after some specified number of generations. In
any case we explain for each test the stopping criterion
that has been used.

In order to generate reliable statistics we ran each test
multiple times; typically 30 times but sometimes up to
100 times if the results were noisy. From these runs we
then calculated the mean performance as well as the sam-
ple standard deviation and from this the standard error
in our estimate of the mean. This value was then used
to generate the 95% confidence intervals which appear as
error bars on the graphs.

12 A Deceptive 2D Problem

The first problem we examine is the simple but highly de-
ceptive 2D optimization problem which was theoretically
analyzed in Section 7. As in the theoretical analysis, we
set up the mutation operator to randomly replace either
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Figure 6: With random deletion (left graph) FUSS significantly outperforms TOURx and RAND. By switching to
FUDS (right graph) the performance of TOURx and RAND now scale the same as FUSS.

the z or y position of an individual and the crossover to
take the = position from one individual and the y posi-
tion from another to produce an offspring. The size of
the domain for which the function is maximized is just 62
which is very small for small values of ¢, while the local
maxima at fitness level 3 covers most of the space. Clearly
the only way to reach the global maximum is by leaving
this local maximum and exploring the space of individu-
als with lower fitness values of 1 or 2. Thus, with respect
to the mutation and crossover operators we have defined,
this is a deceptive optimization problem as these partitions
mislead the EA [FM93].

For this test we set the maximum population size to
1,000 and made 20 runs for each § value. With a steady
state EA it is usual to start with a full population of ran-
dom individuals. However for this particular problem we
reduced the initial population size down to just 10 in order
to avoid the effect of doing a large random search when we
created the initial population and thereby distorting the
scaling. Usually this might create difficulties due to the
poor genetic diversity in the initial population. However
due to the fact that any individual can mutate to any other
in just two steps this is not a problem in this situation.
Initial tests indicated that reducing the crossover proba-
bility from 0.5 to 0.25 improved the performance slightly
and so we have used the latter value.

The first set of results for the selection schemes used
with random deletion appear in the left graph of Figure 6.
As expected, higher selection intensity is a significant dis-
advantage for this problem. Indeed even with just a tour-
nament size of 3 the number of generations required to find
the maximum became infeasible to compute for smaller
values of §. Our results confirm the theoretical scaling or-
ders of 5% for TOUR2-R, and % for FUSS-R, as predicted
in Section 7. Be aware that this is a log-log scaled graph
and so the different slopes indicate significantly different
orders of scaling.

In the second set of tests we switch from random dele-
tion to FUDS. These results appear in the right graph of
Figure 6. We see that with FUDS as the deletion scheme
the scaling improves dramatically for RAND, TOUR2 and
TOURS3. Indeed they are now of the same order % as
FUSS, as predicted in Section 7. This shows that for very
deceptive problems much higher levels of selection inten-
sity can be applied when using FUDS rather than ran-
dom deletion. The performance of FUSS-R is very similar
to that of FUSS-F. This is not surprising as the popula-
tion distribution under FUSS already tends to be approx-
imately uniform across fitness levels and thus we expect
the effect of FUDS to be quite weak.

Although this problem was artificially constructed, the
results clearly demonstrate how FUSS and FUDS can dra-
matically improve performance in some situations.

13 Traveling Salesman Problem

A well known optimization problem is the so called
Traveling Salesman Problem (TSP). The task is to find
the shortest Hamiltonian cycle (path) in a graph of N
vertexes (cities) connected by edges of certain lengths.
There exist highly specialized population based optimiz-
ers which use advanced mutation and crossover opera-
tors and are capable of finding paths less than one per-
cent longer than the optimal path for up to 107 cities
[LK73, MO96, JM97, ACR0O0]. As our goal is only to
study the relative performance of selection and deletion
schemes, having a highly refined implementation is not
important. Thus the mutation and crossover operators we
used were quite simple: Mutation was achieved by just
switching the position of two of the cities in the solution,
while for crossover we used the partial mapped crossover
technique [GAS85]. Fitness was computed by taking the
reciprocal of the tour length.

For our first set of tests we used randomly generated
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Figure 7: TOURS3-R converged too slowly while TOUR12-R converged prematurely and became stuck. TOURG6-R
appears to be about the correct tournament size for this problem, however it is still inferior to FUSS-R. With FUDS
all of the selection schemes performed well though FUSS was still the best.

TSP problems, that is, the distance between any two cities
was chosen uniformly from the unit interval [0,1]. We
chose this as it is known to be a particularly deceptive
form of the TSP problem as the usual triangle inequality
relation does not hold in general. For example, the dis-
tance between cities A and B might be 0.1, between cities
B and C 0.2, and yet the distance between A and C' might
be 0.8. The problem still has some structure though as ef-
ficient partial solutions tend to be useful building blocks
for efficient complete tours.

For this test we used random distance TSP problems
with 20 cities and a population size of 1000. We found that
changing the crossover and mutation probabilities did not
improve performance and so these have been left at their
default values of 0.5. Our stopping criterion was simply to
let the EA run for 300 generations as this appeared to be
adequate for all of the methods to converge and allowed
us to easily graph performance versus generations.

The first graph in Figure 7 shows each of the selection
schemes used with random deletion. We see that TOURS3-
R has insufficient selection intensity for adequate conver-
gence while TOURI12-R quickly converges to a local opti-
mum and then becomes stuck. TOURG6-R has about the
correct level of selection intensity for this problem and
population size. FUSS-R however initially converges as
rapidly as TOURI12-R but avoids becoming stuck in lo-
cal optima. This suggests improved population diversity.
The performance curve for FUSS-R is impressive, espe-
cially considering that it is parameterless.

At first it might seem surprising that the maximum fit-
ness with FUSS climbs very quickly for the first 20 genera-
tions, especially considering that FUSS makes no attempt
to increase the average fitness in the population. However
we can explain this very rapid rise in solution fitness by
considering a simple example. Consider a situation where
there is a large number of individuals in a small band of

fitness levels, say 1,000 with fitness values ranging from
50 to 70. Add to this population one individual with a
fitness value of 73. Thus the total fitness range contains
24 values. Whenever FUSS picks a random point from 72
to 73 inclusive this single individual with maximal fitness
will be selected. That is, the probability that the sin-
gle fittest individual will be selected is 2/24 = 0.083. In
comparison under TOUR12 the probability that the fittest
individual is selected is the same as the probability that it
is picked for the sample of 12 elements used for the tour-
nament, which is approximately, 12/1000 = 0.012. Thus
the probability of the fittest individual in the population
being selected is higher under FUSS than under TOUR12
and so the maximum fitness would rise quickly to start
with.

Previously in [LHK04] we speculated that this may have
been responsible for performance problems that we had
observed with FUSS in some situations. However further
experimentation has shown that very rapid rises in max-
imal fitness are quite rare and are also very shortly lived
when they do occur — too short to cause any significant
diversity problems in the population. We now believe that
the population distribution is to blame in these situations;
something that we will explore in detail in Section 15.

The second graph in Figure 7 shows the same set of
selection schemes but now using FUDS as the deletion
scheme. With FUDS the performance of all of the se-
lection schemes either stayed the same or improved. In
the case of TOUR3 the improvement was dramatic and
for TOURI12 the improvement was also quite significant.
This is interesting because it shows that with fitness uni-
form deletion, performance can improve when the selection
intensity is either too high or too low. That is, when using
FUDS the performance of the EA now appears to be more
robust with respect to variation in selection intensity.

In the case of TOURI12-F this is evidence of improved
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Figure 8: The performance of TOURx-F is much more stable than TOURx-R under variation in the selection intensity.
Also both FUSS-R and FUSS-F produce very good results, especially with the larger populations.

population diversity as the EA is no longer becoming
stuck. However for TOURS3-R the selection intensity is
quite low and thus we would expect the population diver-
sity to be relatively good. Thus the fact that TOUR3-F
was so much better than TOUR3-R suggests that FUDS
can have significant performance benefits that are not re-
lated to improved population diversity.

Investigating further it seems that this effect is due to
the way that FUDS focuses the deletion on the large mass
of individuals which have an average level of fitness while
completely leaving the less common fit individuals alone.
This helps a system with very weak selection intensity
move the mass of the population up through the fitness
space. With higher selection intensity this problem tends
not to occur as individuals in this central mass are less
likely to be selected thus reducing the rate at which new
individuals of average fitness are added to the population.

In order to better understand how stable FUDS perfor-
mance is when used with different selection intensities we
ran another set of tests on random TSP problems with 20
cities and graphed how performance varied by tournament
size. For these tests we set the EA to stop each run when
no improvement had occurred in 40 generations. We also
tested on a range of population sizes: 250, 500, 1000 and
5000. The results appear in Figure 8.

In these graphs we can now clearly see how the perfor-
mance of TOURx-R varies significantly with tournament
size. Below the optimal tournament size performance
worsened quickly while above this value it also worsened,
though more slowly. Interestingly, with a population size
of 5000 the optimal tournament size was about 6, while
with small populations the optimal value fell to just 4.
Presumably this was partly because smaller populations
have lower diversity and thus cannot withstand as much
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selection intensity.

In contrast FUSS-R and FUSS-F appear as horizontal
lines as they do not have a tournament size parameter. We
see that they have performed as well as the optimal perfor-
mance of TOURx-R without requiring any tuning. Indeed
for larger populations FUSS-R appears to be even better
than the optimally tuned performance of TOURx-R. This
is a very positive result for the parameterless FUSS.

Comparing FUDS with random deletion we also see
impressive results. For every combination of selection
scheme, tournament size and population size the result
with FUDS was better than the corresponding result with
random deletion, and in some cases much better. Further-
more these graphs clearly display the improved robustness
of tournament selection with FUDS as TOURx-F pro-
duced near optimal results for all tournament sizes. Even
with an optimally tuned tournament size FUDS increased
performance, particularly with the smaller populations.
Indeed for each population size tested the worst perfor-
mance of TOURx-F was equal to the best performance of
TOURx-R.

With FUSS there was also a performance advantage
when using FUDS, again more so with the smaller popu-
lations. The combination of both FUSS and FUDS was
especially effective as can be seen by the consistently su-
perior performance of FUSS-F across all of the graphs.

More tests were run exploring performance with up to
100 cities. Although the performance of FUDS remained
stronger than random deletion for very low selection in-
tensity, for high selection intensity the two were equal. We
believe that the reason for this is the following: When the
space of potential solutions is very large finding anything
close to a global optimum is practically impossible, indeed
it is difficult to even find the top of a reasonable local op-
timum as the space has so many dimensions. In these
situations it is more important to put effort into simply
climbing in the space rather than spreading out and try-
ing to thoroughly explore. Thus higher selection intensity
can be an advantage for large problem spaces. At any rate,
for large problems and with high selection intensity FUDS
did not appear to hinder the performance, while with low
selection intensity it continued to significantly improve it.

Experiments were also performed using the more effi-
cient “2-Opt” mutation operator. As expected, this in-
creased performance and allowed much higher selection
pressure to be used. Of course the problem then no longer
had the kind of deceptive structure that heavily punishes
high selection pressure that we are looking for. Never-
theless, FUDS continued to significantly boost the per-
formance of tournament selection, in particular when the
tournament size was too small.

14 Set Covering Problem

The set covering problem (SCP) is a reasonably well
known NP-complete optimization problem with many real
world applications. Let M €{0,1}"™*"™ be a binary valued
matrix and let ¢; >0 for j€{1,...n} be the cost of column
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j. The goal is to find a subset of the columns such that
the cost is minimized. Define z;=1 if column j is in our
solution and 0 otherwise. We can then express the cost
of this solution as Z?Zlcjxj subject to the condition that
dimijr; >1 for i€ {1,.m}.

Our system of representation, mutation operators and
crossover follow that used by Beasley [BC96] and we com-
pute the fitness by taking the reciprocal of the cost. The
results presented here are based on the “scp42” problem
from a standard collection of SCP problems [Bea03]. The
results obtained on other problems in this test set were
similar. We found that increasing the crossover probabil-
ity and reducing the mutation probability improved per-
formance, especially when the selection intensity was low.
Thus we have tested the system with a crossover probabil-
ity of 0.8 and a mutation probability of 0.2. We performed
each test at least 50 times in order to minimize the error
bars. Our stopping criterion was to terminate each run
after no improvement in minimal cost had occurred for 40
generations. The results for this test appear in Figure 9.

Similar to the TSP graphs we again see the importance
of correctly tuning the tournament size with TOURx-R.
We also see the optimal range of performance for TOURx-
R moving to the right as the population sizes increases.
This is what we would expect due to the greater diversity
in larger populations. This kind of variability is one of the
reasons why the selection intensity parameter usually has
to be determined by experimentation.

Unlike with TSP however, the performance of FUSS
was less convincing in these results. With the smaller
populations of 250 and 500 FUSS-R was only better than
TOURx-R when the tournament size was very low or very
high. With the larger populations of 1,000 and 5,000 the
results were much better with FUSS-R performing as well
as the optimal performance of TOURx-R. FUSS-F per-
formed better than FUSS-R, in particular with the smaller
populations though this improvement was still insufficient
for it to match the optimal performance of TOURx-R in
these cases. The fact that the performance of FUSS varied
by population size suggests that FUSS might be experi-
encing some kind of population diversity problem. We will
look more carefully at diversity issues in the next section.

With FUDS the results were again very impressive.
As with the TSP tests; for all combinations of selec-
tion scheme, tournament size and population size that we
tested, the performance with FUDS was superior to the
corresponding performance with random deletion. This
was true even when the tournament size was optimal.
While the performance of TOURx-F did vary significantly
with different tournament sizes, the results were more ro-
bust than TOURx-R, especially with the larger popula-
tions. Indeed for the larger two populations we again have
a situation where the worst performance of TOURx-F is
equal to the optimal performance of TOURx-R.
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Figure 9: The performance of FUSS for the two smaller populations was relatively poor, while for the larger populations
it matched the optimal performance of TOURx-R. FUDS again produced superior results to random deletion in all

situations tested.

15 Maximum CNF3 SAT

Maximum CNF3 SAT is a well known NP hard optimiza-
tion problem [CKO03] that has been extensively studied. A
three literal conjunctive normal form (CNF) logical equa-
tion is a boolean equation that consists of a conjunction of
clauses where each clause contains a disjunction of three
literals. So for example, (aVbV-c)A(aV—-eV f) is a CNF3
expression. The goal in the maximum CNF3 SAT problem
is to find an instantiation of the variables such that the
maximum number of clauses evaluate to true. Thus for
the above equation if a=F, b=T, c=T, e=T, and f=F
then just one clause evaluates to true and thus this instan-
tiation gets a score of one. Achieving significant results in
this area would be difficult and this is not our aim; we are
simply using this problem as a test to compare selection
and deletion schemes.

Our test problems have been taken from the SATLIB
collection of SAT benchmark tests [HS00]. The first test

was performed on the full set of 100 instances of ran-
domly generated CNF3 formula with 150 variables and 645
clauses, all of which are known to be satisfiable. Based on
test results the crossover and mutation probabilities were
left at the default values. Our mutation operator simply
flips one boolean variable and the crossover operator forms
a new individual by randomly selecting for each variable
which parent’s state to take. Fitness was simply taken to
be the number of classes satisfied. Again we tested across
a range of tournament sizes and population sizes. The
results of these tests appear in Figure 10.

We have shown only the population sizes of 500 and
5,000 as the other population sizes tested followed the
same pattern. Interestingly for this problem there was
no evidence of better performance with FUDS at higher
selection intensities. Nor for that matter was there the
decline in performance with TOURx-R that we have seen
elsewhere. Indeed with random deletion the selection in-
tensity appeared to have no impact on performance at all.
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Figure 10: With low selection intensity TOURx-F performed slightly below TOURx-R, but was otherwise comparable.

FUSS had serious difficulties.

While SAT3 CNF is an NP hard optimization problem,
this lack of dependence of our selection intensity parame-
ter suggests that it may not have the deceptive structure
that FUSS and FUDS are designed for.

With low selection intensity FUDS caused performance
to fall below that of random deletion; something that we
have not seen before. Because the advantages of FUDS
have been more apparent with low populations in other
test problems, we also tested the system with a population
size of only 150. Unfortunately no interesting changes in
behavior were observed.

While FUDS had minor difficulties, FUSS had serious
problems for all the population sizes that we tested. We
suspected that the uniform nature of the population dis-
tribution that should occur with both FUSS and FUDS
might be to blame as we only expect this to be a benefit
for very deceptive problems which are sensitive to the tun-
ing of the selection intensity parameter. Thus we ran the
EA with a population of 1000 and graphed the population
distribution across the number of clauses satisfied at the
end of the run. We stopped each run when the EA made
no progress in 40 generations. The results of this appear
in Figure 11.

The first thing to note is that with TOUR4-R the pop-
ulation collapses to a narrow band of fitness levels, as
expected. With TOUR4-F the distribution is now uni-
form, though practically none of the population satisfies
fewer than 550 clauses. The reason for this is quite sim-
ple: While FUDS levels the population distribution out,
TOURA tends to select the most fit individuals and thus
pushes the population to the right from its starting point.
In contrast, FUSS pushes the population toward currently
unoccupied fitness levels. This results in the population
spreading out in both directions and so the number of in-
dividuals with extremely poor fitness is much higher.

Given that our goal is to find an instantiation that sat-
isfies all 645 clauses, it is questionable whether having a
large percentage of the population unable to satisfy even

600 clauses is of much benefit. While the total popula-
tion diversity under FUSS-F might be very high, perhaps
the kind of diversity that matters the most is the diver-
sity among the relatively fit individuals in the population.
This should be true for all but the most excessively decep-
tive problems. By thinly spreading the population across
a very wide range of fitness levels we actually end up with
very few individuals with the kind of diversity that mat-
ters. Of course this depends on the nature of the problem
we are trying to solve and the fitness function that we use.

Fortunately with CNF3 SAT we can directly measure
population diversity by taking the average hamming dis-
tance between individuals’ genomes. While this means
that the value of the fitness based similarity metric is
questionable for this problem, as more direct methods like
crowding can be applied, it is a useful situation for our
analysis as it allows us to directly measure how effective
FUSS and FUDS are at preserving population diversity.
The hope of course is that any positive benefits that we
have seen here will also carry over to problems where di-
rectly measuring the diversity is problematic.

For the diversity tests we used a population size of
1000 again. For comparison we used FUSS, TOURS3 and
TOURI12 both with random deletion and with FUDS. In
each run we calculated two different statistics: The aver-
age hamming distance between individuals in the whole
population, and the average hamming distance between
individuals whose fitness was no more than 20 below the
fittest individual in the population at the time. These two
measurements give us the “total population diversity” and
“high fitness diversity” graphs in Figure 12.

We graphed these measurements against the solution
cost of the fittest individual rather than the number of
generations. This is only fair because if good solutions are
found very quickly then an equally rapid decline in diver-
sity is acceptable and to be expected. Indeed it is trivial
to come up with a system which always maintains high
population diversity how ever long it runs, but is unlikely
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Figure 11: With TOURA4-R the population collapses to a narrow band of fitness levels while with TOUR4-F the
distribution is flat. Under FUSS the population spreads out in both directions with FUSS-F in particular giving an

extremely uniform distribution.

to find any good solutions. The results were averaged over
all 100 problems in the test set. Because the best solution
found in each run varied we have only graphed each curve
until such a point where fewer than 50% of the runs were
able to achieve this level of fitness. Thus the terminal
point at the right of each curve is representative of fairly
typical runs rather than just a few exceptional ones that
perhaps found unusually good solutions by chance.

The top two graphs in Figure 12 show the total popula-
tion diversity. As expected the diversity with TOUR3-R
and TOURI12-R decline steadily as finding better solutions
becomes increasingly difficult and the population tends to
collapse into a narrow band of fitness. As we would expect,
the total population diversity with TOUR3-R is higher
than with TOUR12-R. While FUSS-R declines initially it
then stabilizes at around 50 before becoming stuck. As the
TOUR3-R and TOURI12-R curves both extend further to
the right, even though the total population diversity be-
comes quite low, this show that diversity problems in the
population as a whole are not a significant factor behind

the performance problems with FUSS-R.

The top right graph shows the same selection schemes,
but this time with FUDS. As expected FUDS has signifi-
cantly improved the total population diversity with both
TOUR3 and TOUR12, while having little impact on FUSS
which already has a relatively flat population distribu-
tion. As the maximal solution found by TOUR3-F and
TOURI12-F were not better than TOUR3-R and TOUR12-
R, this indicates that improved total population diversity
is not a significant factor in the performance of the EA for
this type of optimization problem. That FUDS has lifted
the total diversity for TOUR3 and TOURI12 so that they
are now above FUSS-F, is particularly interesting. This
suggests that while FUSS has high total population di-
versity, there appears to be some more subtle effects that
are causing the diversity to be lower than it could be. It
may be related to the fact the FUSS sometimes heavily se-
lects from small groups within the population during the
early stages of the optimization process, as we noted in
Section 13. However we are not certain whether this is
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Figure 12: While the total population diversity is very strong under FUSS, the diversity among fit individuals is weak.
FUDS improves the total population diversity compared to random deletion, but has little effect on the diversity

among the fit individuals.

occurring in this case.

On the lower set of graphs we see the diversity among
the fitter individuals in the population; specifically those
whose fitness is no more than 20 below the fittest indi-
vidual in the population at the time. On the first graph
on the left we see that TOURS3 has significantly greater
diversity than TOUR12 with both deletion schemes. This
is expected as TOURS3 tends to search more evolutionary
paths while TOUR12 just rushes down a few. Disappoint-
ingly FUDS does not appear to have made much difference
to the diversity among these highly fit individuals, though
the curves do flatten out a little as the diversity drops
below 30, so perhaps FUDS is having a slight impact.

For both FUSS-R and FUSS-F the diversity among the
fit individuals was poor, indeed it was even worse than
TOURI12 for both deletion schemes. Thus, while the to-
tal population diversity with FUSS tends to be high, the
diversity among the fittest individuals in the population
can be quite poor. Furthermore, the curves for high fit-

ness diversity all end once the diversity drops into the 12
to 17 range. As this pattern was absent from the graphs of
total population diversity, this indicates that it is indeed
the diversity among the relatively fit individuals in the
population that most determines when the EA is going to
become stuck.

In summary, these results show that while FUSS has
been successful in maximizing total population diversity,
for problems such as CNF3 SAT this is not sufficient. It
appears to be more important that the EA maximizes the
diversity among those individuals which have higher fit-
ness and in this regard FUSS is poor, which leads to poor
performance. This is most likely a characteristic of opti-
mization problems which, while still difficult, are not as
deceptive as SCP or random TSP.
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16 Conclusions and Future Re-
search Directions

We have addressed the problem of balancing the selection
intensity in EAs, which determines speed versus quality
of a solution. We invented a new fitness uniform selec-
tion scheme FUSS. It generates a selection pressure to-
ward sparsely populated fitness levels. This property is
unique to FUSS as compared to other selection schemes
(STD). It results in the desired high selection pressure to-
ward higher fitness if there are only a few fit individuals.
The selection pressure is automatically reduced when the
number of fit individuals increases. We motivated FUSS as
a scheme which bounds the number of similar individuals
in a population. We defined a universal similarity relation
solely depending on the fitness, independent of the prob-
lem structure, representation and EA details. We showed
analytically by way of a simple example that FUSS can
be much more effective than STD. A joint pair selection
scheme for recombination has been defined. A heuristic
worst case analysis of FUSS compared to STD has been
given. For this, the fitness tree model has been defined,
which is an interesting analytic tool in itself. FUSS solves
the problem of population takeover and the resulting loss
of genetic diversity of STD, while still generating enough
selection pressure. It does not help in getting a more uni-
form distribution within a fitness level.

We have also invented a related system called FUDS
which achieves a similar effect to FUSS except that it
works through deletion rather than through selection.
This means that FUDS shares many of the important char-
acteristics of FUSS including strong total population di-
versity and the impossibility of population collapse. We
showed analytically that for a simple deceptive optimiza-
tion problem the performance of STD when used with
FUDS scales similarly to FUSS.

A test system has been constructed and used to evaluate
the empirical performance of both FUSS and FUDS on a
range of optimization problems with different population
sizes, mutation probabilities and crossover probabilities.
Their performance has been compared to the more stan-
dard methods of tournament selection and random dele-
tion. For the artificial deceptive 2D optimization problem
and random distance matrix TSP problems both FUSS
and FUDS performed extremely well. For the deceptive
2D problem they dramatically improved the scaling expo-
nent in the number of generations needed to find the global
optimum. For the TSP problems FUSS-R performed as
well as optimally tuned TOURx-R for all population sizes,
and FUDS caused TOURx to perform near optimally for
all tournament sizes and population sizes.

With SCP problems with small populations the perfor-
mance of FUSS-R was only better than TOURx-R when
the tournament size was poorly set. For populations larger
than 1,000 however, FUSS-R continued to perform as well
as the optimal results for TOURx-R. FUDS was again
consistently superior returning better results than random
deletion for every combination of selection scheme, tour-
nament size and population size tested.
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For CNF3 SAT problems we ran into difficulties how-
ever. While FUDS significantly improved the performance
of FUSS, it was inferior to random deletion for low selec-
tion intensities. In other cases the performance was com-
parable. FUSS however had serious performance prob-
lems. Further investigations revealed that this appears to
be due to the small number of individuals in the popula-
tion that have relatively high fitness when using FUSS. We
measured the diversity in the population and found that
while the total population diversity with FUSS was high,
the diversity among the fit individuals was relatively poor.
This produced a serious diversity problem in the popula-
tion when combined with the fact that there are relatively
few individuals of high fitness when using FUSS.

As the performance of TOURx-R was not impacted by
high selection intensity on the CNF3 SAT problem this
indicates that this problem does not have the kind of de-
ceptive nature that harshly punishes greedy exploration
that we were looking for. Perhaps for such problems a
less extreme approach is called for. For example, rather
than trying to spread the population across all fitness lev-
els uniformly we should instead control the distribution so
that it is biased toward high fitness but never collapses
totally as it does with TOURx-R.

We have experimented with a deletion scheme which
deletes the population distribution down to a convex curve
peaked at the fittest individual in the population. This is
the deletion equivalent of the scale independent selection
scheme described in Section 9. Our results thus far in-
dicate that the performance is equal or slightly superior
to random deletion in all situations. However the dra-
matic improvements that FUDS has over random deletion
in some cases are now less significant.

Another possibility is to manipulate the fitness function
to effectively achieve the same thing. For example, we
have found that by taking the fitness to be the reciprocal
of the number of unsatisfied clauses in the CNF3 SAT
problem the performance of FUSS improves significantly,
indeed it is then comparable to TOURx. Perhaps however
it would be better to avoid these performance tricks and
instead focus on extremely deceptive problems where high
selection intensity is heavily punished, that is, the kinds of
problems that FUSS and FUDS were specifically designed
for.
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