
Fitted Q-iteration by Advantage Weighted Regression

Gerhard Neumann
Institute for Theoretical Computer Science

Graz University of Technology
A-8010 Graz, Austria

gerhard@igi.tu-graz.ac.at

Jan Peters
Max Planck Institute for Biological Cybernetics

D-72076 Tübingen, Germany
mail@jan-peters.net

Abstract

Recently, fitted Q-iteration (FQI) based methods have become more popular due
to their increased sample efficiency, a more stable learning process and the higher
quality of the resulting policy. However, these methods remain hard to use for con-
tinuous action spaces which frequently occur in real-world tasks, e.g., in robotics
and other technical applications. The greedy action selection commonly used for
the policy improvement step is particularly problematic as it is expensive for con-
tinuous actions, can cause an unstable learning process, introduces an optimization
bias and results in highly non-smooth policies unsuitable for real-world systems.
In this paper, we show that by using a soft-greedy action selection the policy
improvement step used in FQI can be simplified to an inexpensive advantage-
weighted regression. With this result, we are able to derive a new, computationally
efficient FQI algorithm which can even deal with high dimensional action spaces.

1 Introduction

Reinforcement Learning [1] addresses the problem of how autonomous agents can improve their
behavior using their experience. At each time stept the agent can observe its current statest ∈ X
and chooses an appropriate actionat ∈ A. Subsequently, the agent gets feedback on the quality
of the action, i.e., the rewardrt = r(st, at), and observes the next statest+1. The goal of the
agent is to maximize the accumulated reward expected in the future. In this paper, we focus on
learning policies for continuous, multi-dimensional control problems. Thus the state spaceX and
action spaceA are continuous and multi-dimensional, meaning that discretizations start to become
prohibitively expensive.

While discrete-state/action reinforcement learning is a widely studied problem with rigorous con-
vergence proofs, the same does not hold true for continuous states and actions. For continuous state
spaces, few convergence guarantees exist and pathological cases of bad performance can be gen-
erated easily [2]. Moreover, many methods cannot be transferred straightforwardly to continuous
actions.

Current approaches often circumvent continuous action spaces by focusing on problems where the
actor can rely on a discrete set of actions, e.g., when learning a policy for driving to a goal in
minimum time, an actor only needs three actions: the maximum acceleration when starting, zero
acceleration at maximum velocity and maximum throttle down when the goal is sufficiently close
for a point landing. While this approach (called bang-bang in traditional control) works for the
large class of minimum time control problems, it is also a limited approach as cost functions rele-
vant to the real-world incorporate much more complex constraints, e.g., cost-functions in biological
systems often punish the jerkiness of the movement [3], the amount of used metabolic energy [4]
or the variance at the end-point [5]. For physical technical systems, the incorporation of further
optimization criteria is of essential importance; just as a minimum time policy is prone to damage
the car on the long-run, a similar policy would be highly dangerous for a robot and its environment



and the resulting energy-consumption would reduce its autonomy. More complex, action-dependent
immediate reward functions require that much larger sets of actions are being employed.

We consider the use of continuous actions for fitted Q-iteration (FQI) based algorithms. FQI is a
batch mode reinforcement learning (BMRL) algorithm. The algorithm mantains an estimate of the
state-action value functionQ(s,a) and uses the greedy operatormaxa Q(s,a) on the action space
for improving the policy. While this works well for discrete action spaces, the greedy operation
is hard to perform for high-dimensional continuous actions. For this reason, the application of
fitted Q-iteration based methods is often restricted to low-dimensional action spaces which can be
efficiently discretized. In this paper, we show that the use of a stochastic soft-max policy instead of
a greedy policy allows us to reduce the policy improvement step used in FQI to a simple advantage-
weighted regression. The greedy operationmaxa Q(s,a) over the actions is replaced by a less
harmful greedy operation over the parameter space of the value function. This result allows us to
derive a new, computationally efficient algorithm which is based on Locally-Advantage-WEighted
Regression (LAWER).

We test our algorithm on three different benchmark tasks, i.e., the pendulum swing-up [6], the
acrobot swing-up [1] and a dynamic version of the puddle-world [7] with 2 and 3 dimensions. We
show that in spite of the soft-greedy action selection, our algorithm is able to produce high quality
policies.

2 Fitted Q-Iteration

In fitted Q-iteration [8, 6, 9] (FQI), we assume that all the experience of the agent up to the current
time is given in the formH = {< si,ai, ri, s

′
i >}1≤i≤N . The task of the learning algorithm is to

estimate an optimal control policy from this historical data. FQI approximates the state-action value
function Q(s,a) by iteratively using supervised regression techniques. New target values for the
regression are generated by

Q̃k+1(i) = ri + γVk(s′i) = ri + γ max
a′

Qk(s′i,a
′). (1)

The regression problem for finding the functionQk+1 is defined by the list of data-point pairsDk

and the regression procedure Regress

Dk(Qk) =

{

[

(si,ai), Q̃k+1(i)
]

1≤i≤N

}

, Qk+1 = Regress(Dk(Qk)) (2)

FQI can be viewed as approximate value iteration with state-action value functions [9]. Previous
experiments show that function approximators such as neural networks [6], radial basis function
networks [8], CMAC [10] and regression trees [8] can be employed in this context. In [9], perfor-
mance bounds for the value function approximation are given for a wide range of function approx-
imators. The performance bounds also hold true for continuous action spaces, but only in the case
of an actor-critic variant of FQI. Unfortunately, to our knowledge, no experiments with this variant
exist in the literature. Additionally, it is not clear how to apply this actor-critic variant efficiently for
nonparametric function approximators.

FQI has proven to outperform classical online RL methods in many applications [8]. Nevertheless,
FQI relies on the greedy action selection in Equation (1). Thus, the algorithm frequently requires
a discrete set of actions and generalization to continuous actions is not straightforward. Using the
greedy operator for continuous action spaces is a hard problem by itself as the use of expensive
optimization methods is needed for high dimensional actions. Moreover the returned values of the
greedy operator often result in an optimization bias causing an unstable learning process, including
oscillations and divergence [11]. For a comparison with our algorithm, we use the Cross-Entropy
(CE) optimization method [12] to find the maximum Q-values. In our implementation, we maintain
a Gaussian distribution for the belief of the optimal action. We samplenCE actions from this
distribution. Then, the besteCE < nCE actions (with the highest Q-values) are used to update the
parameters of this distribution. The whole process is repeated forkCE iterations, starting with a
uniformly distributed set of sample actions.

FQI is inherently an offline method - given historical data, the algorithm estimates the optimal policy.
However, FQI can also be used for online learning. After the FQI algorithm is finished, new episodes
can be collected with the currently best inferred policy and the FQI algorithm is restarted.



3 Fitted Q-Iteration by Advantage Weighted Regression

A different method for policy updates in continuous action spaces is reinforcement learning by
reward-weighted regression [13]. As shown by the authors, the action selection problem in the im-
mediate reward RL setting with continuous actions can be formulated as expectation-maximization
(EM) based algorithm and, subsequently, reduced to a reward-weighted regression. The weighted
regression can be applied with ease to high-dimensional action spaces; no greedy operation in the
action space is needed. While we do not directly follow the work in [13], we follow the general idea.

3.1 Weighted regression for value estimation

In this section we consider the task of estimating the value functionV of a stochastic policyπ(·|s)
when the state-action value functionQ is already given. The value function can be calculated by
V (s) =

∫

a
π(a|s)Q(s,a)da. Yet, the integral over the action space is hard to perform for continuous

actions. However, we will show how we can approximate the value function without the evaluation
of this integral. Consider the quadratic error function

Error(V̂ ) =

∫

s

µ(s)

(
∫

a

π(a|s)Q(s,a)da − V̂ (s)

)2

ds (3)

=

∫

s

µ(s)

(
∫

a

π(a|s)
(

Q(s,a) − V̂ (s)
)

da

)2

ds, (4)

which is used to find an approximation̂V of the value function.µ(s) denotes the state distribution
when following policyπ(·|a). Since the squared function is convex we can use Jensens inequality
for probability density functions to derive an upper bound of Equation (4)

Error(V̂ ) ≤

∫

s

µ(s)

∫

a

π(a|s)
(

Q(s,a) − V̂ (s)
)2

dads = ErrorB(V̂ ). (5)

The solutionV̂ ∗ for minimizing the upper bound ErrorB(V̂ ) is the same as for the original error
function Error(V̂ ).

Proof. To see this, we compute the square and replace the term
∫

a
π(a|s)Q(s,a)da by the value

functionV (s). This is done for the error function Error(V̂ ) and for the upper bound ErrorB(V̂ ).

Error(V̂ ) =

∫

s

µ(s)
(

V (s) − V̂ (s)
)2

ds =

∫

s

µ(s)
(

V (s)2 − 2V (s)V̂ (s) + V̂ (s)2
)

ds (6)

ErrorB(V̂ ) =

∫

s

µ(s)

∫

a

π(a|s)
(

Q(s,a)2 − 2Q(s,a)V̂ (s) + V̂ (s)2
)

dads (7)

=

∫

s

µ(s)

(
∫

a

π(a|s)Q(s,a)2da − 2V (s)V̂ (s) + V̂ (s)2
)

ds (8)

Both error functions are the same except for an additive constant which does not depend onV̂ .

In difference to the original error function, the upper bound ErrorB can be approximated straightfor-
wardly by samples{(si,ai), Q(si,ai)}1≤i≤N gained by following some behavior policyπb(·|s).

ErrorB(V̂ ) ≈
N

∑

i=1

µ(s)π(ai|si)

µb(si)πb(ai|si)

(

Q(si,ai) − V̂ (si)
)2

, (9)

µb(s) defines the state distribution when following the behavior policyπb. The term
1/(µb(si)πb(si,ai)) ensures that we do not give more weight on states and actions preferred by
πb. This is a well known method in importance sampling. In order to keep our algorithm tractable,
the factorsπb(ai|si), µb(si) andµ(si) will all be set to1/N . The minimization of Equation (9)
defines a weighted regression problem which is given by the datasetDV , the weightingU and the
weighted regression procedure WeightedRegress

DV =
{

[(si,ai), Q(si,ai)]1≤i≤N

}

, U = {[π(ai|si)]1≤i≤N} , V̂ = WeightedRegress(DV , U) (10)



Algorithm 1 FQI with Advantage Weighted Regression

Input: H = {< si,ai, ri, s
′
i >}1≤i≤N , τ andL (Number of Iterations)

Initialize V̂0(s) = 0.
for k = 0 to L − 1 do

Dk(V̂k) =

{

[

(si,ai), ri + γV̂k(s′i)
]

1≤i≤N

}

Qk+1 = Regress(Dk(V̂k))

A(i) = Qk+1(si,ai) − V̂k(si)
EstimatemA(si) andσA(si) for 1 ≤ i ≤ N
U = {[exp(τ(A(i) − mA(si))/σA(si)]i≤i≤N}

V̂k+1 = WeightedRegress(Dk(V̂k), U)
end for

The result shows that in order to approximate the value function V (s), we do not need to carry out
the expensive integration over the action space for each statesi. It is sufficient to know the Q-values
at a finite set of state-action pairs.

3.2 Soft-greedy policy improvement

We use a soft-max policy [1] in the policy improvement step of the FQI algorithm. Our soft-max
policyπ1(a|s) is based on the advantage functionA(s,a) = Q(s,a)−V (s). We additionally assume
the knowledge of the meanmA(s) and the standard deviation ofσA(s) of the advantage function at
states. These quantities can be estimated locally or approximated by additional regressions. The
policy π1(a|s) is defined as

π1(a|s) =
exp(τĀ(s,a))

∫

a
exp(τĀ(s,a))da

, Ā(s,a) = A(s,a)−mA(s)
σA(s) . (11)

τ controls the greediness of the policy. If we assume that the advantagesA(s,a) are distributed
with N (A(s,a)|mA(s), σ2

A(s)), all normalized advantage values̄A(s,a) have the same distribu-
tion. Thus, the denominator ofπ1 is constant for all states and we can use the termexp(τĀ(s,a)) ∝
π1(a|s) directly as weighting for the regression defined in Equation (10). The resulting approxi-
mated value function̂V (s) is used to replace the greedy operatorV (s′i) = maxa′ Q(s′i,a

′) in the
FQI algorithm. The FQI by Advantage Weighted Regression (AWR) algorithm is given in Algo-
rithm 1. As we can see, the Q-functionQk is only queried once for each step in the historyH.
Furthermore only already seen state action pairs(si,ai) are used for this query.

After the FQI algorithm is finished we still need to determine a policy for subsequent data collec-
tion. The policy can be obtained in the same way as for reward-weighted regression [13], only the
advantage is used instead of the reward for the weighting - thus, we are optimizing the long term
costs instead of the immediate one.

4 Locally-Advantage-WEighted Regression (LAWER)

Based on the FQI by AWR algorithm, we propose a new, computationally efficient fitted Q-iteration
algorithm which uses Locally Weighted Regression (LWR, [14]) as function approximator. Similar
to kernel based methods, our algorithm needs to be able to calculate the similaritywi(s) between
a statesi in the datasetH and states. To simplify the notation, we will denotewi(sj) aswij for
all sj ∈ H. wi(s) is calculated by a Gaussian kernelwi(s) = exp(−(si − s)T D(si − s)). The
diagonal matrixD determines the bandwidth of the kernel. Additionally, our algorithm also needs
a similarity measurewa

ij between two actionsai andaj . Againwa
ij can be calculated by a Gaussian

kernelwa
ij = exp(−(ai − aj)

T Da(ai − aj)).

Using the state similaritywij , we can estimate the mean and the standard deviation of the advantage
function for each statesi

mA(si) =

∑

j wijA(j)
∑

j wij

, σ2
A(si) =

P

j wij(A(j)−mA(sj))
2

P

j wij
. (12)



4.1 Approximating the value functions

For the approximation of the Q-function, we use Locally Weighted Regression [14]. The Q-function
is therefore given by:

Qk+1(s,a) = s̃A(SA
T WSA)−1SA

T WQk+1 (13)

where s̃A = [1, sT ,aT ]T , SA = [s̃A(1), s̃A(2), ..., s̃A(N)]T is the state-action matrix,W =
diag(wi(s)w

a
i (a)) is the local weighting matrix consisting of state and action similarities, and

Qk+1 = [Q̃k+1(1), Q̃k+1(2), . . . , Q̃k+1(N)]T is the vector of the Q-values (see Equation (1).

For approximating the V-function we can multiplicatively combine the advantage-based weighting
ui = exp(τĀ(si,ai)) and the state similarity weightswi(s). The valueV k+1(s) is given by1:

Vk+1(s) = s̃(ST US)−1ST UQk+1, (14)

wheres̃ = [1, sT ]T , S = [s̃1, s̃2, ..., s̃N ]T is the state matrix andU = diag(wi(s)ui) is the weight
matrix. We bound the estimate ofV̂k+1(s) by maxi|wi(s)>0.001 Qk+1(i) in order to prevent the local
regression from adding a positive bias which might cause divergence of the value iteration.

A problem with nonparametric value function approximators is their strongly increasing computa-
tional complexity with an increasing number of data points. A simple solution to avoid this problem
is to introduce a local forgetting mechanism. Whenever parts of the state space are oversampled, old
examples in this area are removed from the dataset.

4.2 Approximating the policy

Similar to reward-weighted regression [13], we use a stochastic policyπ(a|s) =
N (a|µ(s),diag(σ2(s))) with Gaussian exploration as approximation of the optimal policy. The
meanµ(s) and the varianceσ2(s) are given by

µ(s) = s̃(ST US)−1ST UA, σ2(s) =
σ2

initα0+
P

i wi(s)ui(ai−µ(si))
2

α0+
P

i wi(s)ui
, (15)

whereA = [a1,a2, . . . ,aN ]T denotes the action matrix. The varianceσ2 automatically adapts the
exploration of the policy to the uncertainty of the optimal action. Withσ2

init andα0 we can set the
initial exploration of the policy.σinit is always set to the bandwidth of the action space.α0 sets the
weight of the initial variance in comparision to the variance comming from the data,α0 is set to3
for all experiments.

5 Evaluations

We evaluated the LAWER algorithm on three benchmark tasks, the pendulum swing up task, the
acrobot swing up task and a dynamic version of the puddle-world (i.e., augmenting the puddle-
world by velocities, inertia, etc.) with2 and3 dimensions. We compare our algorithm to tree-based
FQI [8] (CE-Tree), neural FQI [6] (CE-Net) and LWR-based FQI (CE-LWR) which all use the
Cross-Entropy (CE) optimization to find the maximum Q-values. For the CE optimization we used
nCE = 10 samples for one dimensional,nCE = 25 samples for 2-dimensional andnCE = 64 for
3-dimensional control variables.eCE was always set to0.3nCE and we usedkCE = 3 iterations.
To enforce exploration when collecting new data, a Gaussian noise ofǫ = N (0, 1.0) was added
to the CE-based policy. For the tree-based algorithm, an ensemble ofM = 20 trees was used,K
was set to the number of state and action variables andnmin was set to2 (see [8]). For the CE-Net
algorithm we used a neural network with 2 hidden layers and10 neurons per layer and trained the
network with the algorithm proposed in [6] for 600 epochs. For all experiments, a discount factor
of γ = 0.99 was used. The immediate reward function was quadratic in the distance to the goal
positionxG and in the applied torque/forcer = −c1(x− xG)2 − c2a

2. For evaluating the learning
process, the exploration-free (i.e.,σ(s) = 0, ǫ = 0) performance of the policy was evaluated after
each data-collection/FQI cycle. This was done by determining the accumulated reward during an
episode starting from the specified initial position. All errorbars represent a95% confidence interval.

1In practice, ridge regressionV k+1(s) = s̃(ST WS + σI)−1ST WQk+1 is used to avoid numerical insta-
bilities in the regression.



5 10 15 20

−40

−30

−20

−10

Number of Data Collections

A
ve

ra
ge

 R
ew

ar
d

 

 

LAWER
CE Tree
CE LWR
CE Net

(a)

5 10 15 20
−80

−60

−40

−20

Number of Data Collections

A
ve

ra
ge

 R
ew

ar
d

 

 

LAWER
CE Tree
CE LWR
CE Net

(b)

−5
0
5

 

 

LAWER

−5
0
5

u 
[N

]

 

 

CE Tree

0 1 2 3 4 5
−5

0
5

Time [s]

 

 

CE LWR

(c)

−5
0
5

 

 

LAWER

−5
0
5

u 
[N

]

 

 

CE Tree

0 1 2 3 4 5
−5

0
5

Time [s]

 

 

CE LWR

(d)

Figure 1: (a) Evaluation of LAWER and CE-based FQI algorithms on the pendulum swing-up task
for c2 = 0.005 . The plots are averaged over 10 trials. (b) The same evaluation forc2 = 0.025. (c)
Learned torque trajectories forc2 = 0.005. (d) Learned torque trajectories forc2 = 0.025.

5.1 Pendulum swing-up task

In this task, a pendulum needs to be swung up from the position at the bottom to the top position [6].
The state space consists of the angular deviationθ from the top position and the angular velocityθ̇
of the pendulum. The system dynamics are given by0.5ml2θ̈ = mg sin(θ) + u , the torque of the
motor u was limited to[−5N, 5N ]. The mass was set tom = 1kg and length of the link to1m.
The time step was set to0.05s. Two experiments with different torque punishmentsc2 = 0.005 and
c2 = 0.025 were performed.

We usedL = 150 iterations. The matricesD andDA were set toD = diag(30, 3) andDA =
diag(2). In the data collection phase,5 episodes with150 steps were collected starting from the
bottom position and5 episodes starting from a random position.

A comparison of the LAWER algorithm to CE-based algorithms forc2 = 0.005 is shown in Figure
1(a) and forc2 = 0.025 in Figure 1(b). Our algorithm shows a comparable performance to the
tree-based FQI algorithm while being computationally much more efficient. All other CE-based
FQI algorithms show a slightly decreased performance. In Figure 1(c) and (d) we can see typical
examples of learned torque trajectories when starting from the bottom position for the LAWER,
the CE-Tree and the CE-LWR algorithm. In Figure 1(c) the trajectories are shown forc2 = 0.005
and in Figure 1(d) forc2 = 0.025. All algorithms were able to discover a fast solution with 1
swing-up for the first setting and a more energy-efficient solution with 2 swing-ups for the second
setting. Still, there are qualitative differences in the trajectories. Due to the advantage-weighted
regression, LAWER was able to produce very smooth trajectories while the trajectories found by the
CE-based methods look more jerky. In Figure 2(a) we can see the influence of the parameterτ on
the performance of the LAWER algorithm. The algorithm works for a large range ofτ values.

5.2 Acrobot swing-up task

In order to asses the performance of LAWER on a complex highly non-linear control task, we used
the acrobot (for a description of the system, see [1]). The torque was limited to[−5N, 5N ]. Both
masses were set to1kg and both lengths of the links to0.5m. A time step of0.1s was used.L = 100
iterations were used for the FQI algorithms. In the data-collection phase the agent could observe 25
episodes starting from the bottom position and 25 starting from a random position. Each episode had
100 steps. The matricesD andDA were set toD = diag(20, 23.6, 10, 10.5) andDA = diag(2).
The comparison of the LAWER and the CE-Tree algorithm is shown in Figure 2(a). Due to the
adaptive state discretization, the tree-based algorithm is able to learn faster, but in the end, the
LAWER algorithm is able to produce policies of higher quality than the tree-based algorithm.

5.3 Dynamic puddle-world

In the puddle-world task [7], the agent has to find a way to a predefined goal area in a continuous-
valued maze world (see Figure 3(a)). The agent gets negative reward when going through puddles.
In difference to the standard puddle-world setting where the agent has a 2-dimensional state space
(thex andy position), we use a more demanding setting. We have created a dynamic version of the
puddle-world where the agent can set a force accelerating ak-dimensional point mass (m= 1kg).



2 3 4 5 6 7
−60

−50

−40

−30

−20

−10

τ

A
ve

ra
ge

 R
ew

ar
d

 

 

c
2
 = 0.005

c
2
 = 0.025

(a)

5 10 15 20
−50

−40

−30

−20

Number of Data Collections

A
ve

ra
ge

 R
ew

ar
d

 

 

LAWER
CE Tree

(b)

0 1

1

Start

Goal

(c)

Figure 2: (a) Evaluation of the average reward gained over a whole learning trial on the pendulum
swing-up task for different settings ofτ (b) Comparison of the LAWER and the CE-Tree algorithm
on the acrobot swing-up task (c) Setting of the 2-dimensional dynamic puddle-world.

5 10 15 20 25 30
−100

−80

−60

−40

−20

Number of Data Collections

A
ve

ra
ge

 R
ew

ar
d

 

 

LAWER
CE Tree

(a)

5 10 15 20 25 30
−150

−100

−50

Number of Data Collections

A
ve

ra
ge

 R
ew

ar
d

 

 

LAWER
CE Tree

(b)

−2
0
2

 

 

u
1

−2
0
2

 

 

u
2

0 1 2 3 4 5
−2

0
2

Time [s]

 

 

u
3

(c)

−2
0
2

 

 

u
1

−2
0
2

 

 

u
2

0 1 2 3 4 5
−2

0
2

Time [s]

 

 

u
3

(d)

Figure 3: (a) Comparison of the CE-Tree and the LAWER algorithm for the 2-dimensional dynamic
puddle-world. (b) Comparison of the CE-Tree and the LAWER algorithm for the 3-dimensional
dynamic puddle-world. (c) Torque trajectories for the 3-dimensional puddle world learned with the
LAWER algorithm. (d) Torque trajectories learned with the CE-Tree algorithm.

This was done fork = 2 andk = 3 dimensions. The puddle-world illustrates the scalability of
the algorithms to multidimensional continuous action spaces (2respectively3 dimensional). The
positions were limited to[0, 1] and the velocities to[−1, 1]. The maximum force that could be
applied in one direction was restricted to2N and the time step was set to0.1s. The setting of the
2-dimensional puddle-world can be seen in Figure 2(c). Whenever the agent was about to leave
the predefined area, the velocities were set to zero and an additional reward of−5 was given. We
compared the LAWER with the CE-Tree algorithm.L = 50 iterations were used. The matricesD
andDA were set toD = diag(10, 10, 2.5, 2.5) andDA = diag(2.5, 2.5) for the 2-dimensional and
to D = diag(8, 8, 8, 2, 2, 2) andDA = diag(1, 1, 1) for the 3-dimensional puddle-world. In the
data collection phase the agent could observe20 episodes with50 steps starting from the predefined
initial position and20 episodes starting from a random position.

In Figure 3(a), we can see the comparison of the CE-Tree and the LAWER algorithm for the 2-
dimensional puddle-world and in Figure 3(b) for the 3-dimensional puddle-world. The results show
that the tree-based algorithm has an advantage in the beginning of the learning process. However,
the CE-Tree algorithm has problems finding a good policy in the 3-dimensional action-space, while
the LAWER algorithm still performs well in this setting. This can be seen clearly in the comparison
of the learned force trajectories which are shown in Figure 3(c) for the LAWER algorithm and in
Figure 3(d) for the CE-Tree algorithm. The trajectories for the CE-Tree algorithm are very jerky
and almost random for the first and third dimension of the control variable, whereas the trajectories
found by the LAWER algorithm look very smooth and goal directed.

6 Conclusion and future work

In this paper, we focused on solving RL problems with continuous action spaces with fitted Q-
iteration based algorithms. The computational complexity of the max operatormaxa Q(s,a) often
makes FQI algorithms intractable for high dimensional continuous action spaces. We proposed a



new method which circumvents themax operator by the use of a stochastic soft-max policy that
allows us to reduce the policy improvement stepV (s) = maxa Q(s,a) to a weighted regression
problem. Based on this result, we can derive the LAWER algorithm, a new, computationally efficient
FQI algorithm based on LWR.

Experiments have shown that the LAWER algorithm is able to produce high quality smooth policies,
even for high dimensional action spaces where the use of expensive optimization methods for calcu-
latingmaxa Q(s,a) becomes problematic and only quite suboptimal policies are found. Moreover,
the computational costs of using continuous actions for standard FQI are daunting. The LAWER
algorithm needed on average2780s for the pendulum,17600s for the acrobot,13700s for the 2D-
puddle-world and24200s for the 3D-puddle world benchmark task. The CE-Tree algorithm needed
on average59900s,201900s,134400s and212000s, which is an order of magnitude slower than the
LAWER algorithm. The CE-Net and CE-LWR algorithm showed comparable running times as the
CE-Tree algorithm. A lot of work has been spent to optimize the implementations of the algorithms.
The simulations were run on a P4 Xeon with 3.2 gigahertz.

Still, in comparison to the tree-based FQI approach, our algorithm has handicaps when dealing with
high dimensional state spaces. The distance kernel matrices have to be chosen appropriately by
the user. Additionally, the uniform distance measure throughout the state space is not adequate for
many complex control tasks and might degrade the performance. Future research will concentrate
on combining the AWR approach with the regression trees presented in [8].

7 Acknowledgement

This paper was partially funded by the Austrian Science Fund FWF project # P17229. The first
author also wants to thank Bernhard Schölkopf and the MPI for Biological Cybernetics in Tübingen
for the academic internship which made this work possible.

References

[1] R. Sutton and A. Barto,Reinforcement Learning. Boston, MA: MIT Press, 1998.

[2] J. A. Boyan and A. W. Moore, “Generalization in reinforcement learning: Safely approximating the value
function,” in Advances in Neural Information Processing Systems 7, pp. 369–376, MIT Press, 1995.

[3] P. Viviani and T. Flash, “Minimum-jerk, two-thirds power law, and isochrony: Converging approaches to
movement planning,”Journal of Experimental Psychology: Human Perception and Performance, vol. 21,
no. 1, pp. 32–53, 1995.

[4] R. M. Alexander, “A minimum energy cost hypothesis for human arm trajectories,”Biological Cybernet-
ics, vol. 76, pp. 97–105, 1997.

[5] C. M. Harris and D. M. Wolpert, “Signal-dependent noise determines motor planning.,”Nature, vol. 394,
pp. 780–784, August 1998.

[6] M. Riedmiller, “Neural fitted Q-iteration - first experiences with a data efficient neural reinforcement
learning method,” inProceedings of the European Conference on Machine Learning (ECML), 2005.

[7] R. Sutton, “Generalization in reinforcement learning: Successful examples using sparse coarse coding,”
in Advances in Neural Information Processing Systems 8, pp. 1038–1044, MIT Press, 1996.

[8] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch mode reinforcement learning,”J. Mach. Learn.
Res., vol. 6, pp. 503–556, 2005.

[9] A. Antos, R. Munos, and C. Szepesvari, “Fitted Q-iteration in continuous action-space MDPs,” inAd-
vances in Neural Information Processing Systems 20, pp. 9–16, Cambridge, MA: MIT Press, 2008.

[10] S. Timmer and M. Riedmiller, “Fitted Q-iteration with CMACs,” pp. 1–8, 2007.

[11] J. Peters and S. Schaal, “Policy learning for motor skills,” inProceedings of 14th International Conference
on Neural Information Processing (ICONIP), 2007.

[12] P.-T. de Boer, D. Kroese, S. Mannor, and R. Rubinstein, “A tutorial on the cross-entropy method,”Annals
of Operations Research, vol. 134, pp. 19–67, January 2005.

[13] J. Peters and S. Schaal, “Reinforcement learning by reward-weighted regression for operational space
control,” in Proceedings of the International Conference on Machine Learning (ICML), 2007.

[14] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted learning,”Artificial Intelligence Review,
vol. 11, no. 1-5, pp. 11–73, 1997.


