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Fitting a Gompertz Curve

PHILIP HANS FRANSES

Erasmus University Rotterdam, The Netherlands

In this paper, a simple Gompertz curve-fitting procedure is proposed. Its advantages include the facts that
the stability of the saturation level over the sample period can be checked, and that no knowledge of its
value is necessary for forecasting. An application to forecasting the stock of cars in the Netherlands
illustrates its merits.
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INTRODUCTION

Forecasting the stock of vehicles or the prospective sales of a new product are examples of practical
occasions in which a univariate time series can be usefully, although roughly, described by a
Gompertz trend curve. Loosely speaking, this curve has an S-shape which, in contrast to the often-
applied logistic curve, is non-symmetrical. More precisely, the Gompertz curve assumes that the
period of increasing growth of sales or stock is shorter than the period in which this growth is
decreasing and in which the process is adjusting to its saturation level. See Harrison and Pearce!,
Mar Molinero? and Meade® for surveys of the distinct types of trend curves.

The saturation level is one of the three unknown parameters in the model, and its value is usually
assumed a priori or estimated iteratively. Clearly, this value plays a central role in the forecasting
of future values of a time series process. Further, given that the variability of time series like stocks
and sales are typically related to the level of the series, it is common practice to weight the observa-
tions in the Gompertz curve estimation procedures. Unfortunately, these weights have to be
estimated from the same data, see Harrison and Pearce', and can therefore also be influential for
forecasting. In the present paper I propose a simple Gompertz curve fitting procedure which deals
with these issues. It is applied to forecasting the stock of cars in the Netherlands.

FITTING A GOMPERTZ CURVE

A Gompertz curve is depicted in Figure 1. Two characteristics of this curve are clearly observable.
The first is the point of inflexion, i.e. the point in time at which the rate of growth changes from
increasing to decreasing. This occurs before half the saturation level is reached. Second, the rate
of growth is always larger than (although it decreases to) zero. These characteristics establish the
usefulness of fitting a Gompertz growth curve for time series processes like the stock of cars or the
sales of a new product. The mathematical representation of the process x, depicted in Figure 1 is
given by

x, = aexp(—Bexp(—v?)), )

where «, 8 and v are unknown positive-valued parameters, the first of which is the value of the
saturation level. The ¢ is a linear deterministic time trend defined by 1 =0, 1, 2, ...

To fit model (1) to an empirical series, current estimation procedures often consider three obser-
vations of the process x,, see Meade* and Oliver® for alternative approaches. Substituting these
and their corresponding values for ¢ in (1) gives three equations with three unknown parameters.
The three observations are usually linear combinations of the first, middle and last observations
on x,. One may also want to minimize the sum of squared errors in a grid-search in which the
value of « is fixed and the remaining parameters are estimated. Since empirical observations on
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FiG. 1. A Gompertz curve.

a sales or stock process are typically non-stationary, i.e. their mean and variance are not constant
over time, it is common practice to weight the observations according to their level. There are
. also examples in which, instead of weighting, the model in (1) is enlarged with a first-order
autoregressive error process, see for example Mar Molinero?. In that study? it was found that
either the corresponding parameter is close to 1, or that the autoregressive process contains a unit
root. In the latter case, standard statistical inference is not valid, and it is difficult to establish the
significance of the parameter. See Granger and Newbold® for a survey of the definitions and tests
for non-stationarity. In summary, there are several choices to be made for the empirical fitting of
a Gompertz curve, and it seems that these can have a large impact on forecasting performance.

There is, however, a simple strategy to circumvent the above problems. This is based on transfor-
ming the process in (1) via taking first differences and logarithms, see Harvey’ for a related
approach in the case of a logistic trend curve. Denoting log for the natural logarithm, consider a
transformed version of (1),

logx, = loga — Bexp( —vy1?). ¥))
Taking first differences of logx,, or Alogx, = logx, — logx, _,, gives
Alogx, = — Bexp(—v?) + Bexp(—vt + v) ©))
exp(—vt) (Bexpy — B),

where now the value of « is removed from the equation. A linearization of (3), and adding an
error term, yields the equation

log (Alogx,) = —vt + log(Bexpy — B) + ¢ (Y]

of which the parameters and their standard errors can easily be estimated using standard non-linear
least squares (NLS) techniques, given an appropriate choice of starting values. A sequence of
saturation levels can be estimated via

&, = exp(logx, + Bexp(—41)) Q)

which is also a simple calculation.

There are several interesting aspects to equations (4) and (5). First, the problem of the non-
stationarity of empirical X, series, and its effect on parameter estimates has been overcome since
log(Alogy,) is a trend stationary variable, see also Figure 12 in Harrison and Pearce'. Hence,
inference on the parameters 8 and v, such as hypothesis tests on their values, can be carried out
using standard procedures. Also, distributional assumptions on ¢, in (4), for example normality,
are easily made, cf. Bewley and Fiebig®. Second, all parameters can easily be estimated. Other
forms of (1), such as

logx, — loga = exp(—v) (logx,_, — loga) (6)
or
Alogx, = exp ( —vy)Alogx, _, )
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suffer from empirical regressors which are likely to be non-stationary as in (6), or from the fact
that only one of the three parameters is estimated as in (7). Thirdly, although the level « is assumed
to be constant over the sample, there is an opportunity to check its stability by considering the range
of estimated «, values obtained from (5). Structural breaks in the saturation level because of, for
example, technology shocks can now also be detected. To obtain one estimate for the value «,
a, one could take, an average of the, possibly smoothed, &, series. Similarly, one can calculate
the standard error of &. An alternative procedure for estimating « is to calculate a forecast for x,
via (4) when allowing ¢ to be very large. That value should then come close to the saturation
level. Finally, although of interest for the understanding of the process under consideration, the
values of o and 8 are not required for forecasting future values of x,. The forecasts can simply be
obtained from a recursion formula implied by (4). Of course, this also applies to (7).

There are several possibilities to calculate forecast intervals for x,, or to calculate the forecast
errors. Given that the model is usually estimated for only a small number of observations, and also
considering the complicated non-linear function of x, in (4), the most simple method may be to
use a bootstrap-technique. Suppose that (4) is estimated with T, observations, that the estimated
variance & is 67, and that forecasts are required for 7, periods ahead. The bootstrap method
boils down to, first, generating T = T, + T, observations for & from a normal distribution with
mean 0 and variance 62, then generating observations on yfvia

y¥= =4t + log(Bexpy — B) + €, )

re-estimating (4) for the first T, observations only, and finally forecasting x} for T, data points.
When this is repeated B times, one can calculate the mean and variance of the B forecasts for
each horizon.

AN APPLICATION

To illustrate the proposed Gompertz curve fitting method, I have chosen to consider the stock
of cars in the Netherlands, 1965-1989. The raw and smoothed observations are given in Table 1,
and the graph of the smoothed series is depicted in Figure 2. It can be seen that a Gompertz curve
may be a useful description of these data. Furthermore, given that long range forecasts of the stock
of cars are quite important for a country as small as the Netherlands, one can imagine that an
estimate of the saturation level may also have policy implications.

TABLE 1. The (smoothed) stock of cars in the Netherlands, 1965-1989 ( x 1000)

Year Stock Stock Year Stock Stock
(raw series) (smoothed) (raw series) (smoothed)

1965 1273 1284 1978 4056 4066
1966 1502 1492 1979 4312 4281
1967 1696 1700 1980 4515 4455
1968 1952 1921 1981 4594 4600
1969 2212 2184 1982 4630 4659
1970 2465 2444 1983 4728 4729
1971 2702 2716 1984 4818 4828
1972 2903 2916 1985 4901 4921
1973 3080 3123 1986 4950 5035
1974 3214 3252 1987 5118 5095
1975 3399 3406 1988 5251 5213
1976 3629 3618 1989 5371 5322
1977 3851 3865

The stock data are smoothed by regressing the stock in year ¢ on a constant, on the stock in year
t — 1 and on the new car sales in year ¢, and by taking the fitted stock series as the smoothed series.

Denoting s, as the smoothed stock of cars, the estimation results of the model in (4) are (with
standard errors in parentheses): 3 = 1.500 (0.099) and 4 = 0.104 (0.009). This model is
estimated with 24 observations, and tests for residual autocorrelation and normality indicate no
misspecification. The value of the R? for (4) equals 0.857. The 25 estimates of the saturation level

111



Journal of the Operational Research Society Vol. 45, No. 1

Years

66 68 70 72 74 76 78 80 82 84 86 88

F1G. 2. The smoothed stock of cars in The Netherlands, 1965-1989 (x 1000).

TABLE 2. Smoothed estimated saturation level

Year Stock (x 1000) Year Stock (x 1000)
1968 5850 1979 6039
1969 5855 1980 6069
1970 5965 1981 6079
1971 6039 1982 6054
1972 6089 1983 5959
1973 6011 1984 5901
1974 5956 1985 5925
1975 5848 1986 5941
1976 5794 1987 5969
1977 5889 1988 5946
1978 6014 1989 5978
mean = 5962 standard deviation = 83

8 ax = 6089 Bin = 5794

The estimated saturation level is smoothed by regressing it on a constant and on the
levels when they are lagged by one and three periods. The fitted series is taken to be
the smoothed saturation level series.

« are smoothed using a third-order subset autoregression, and they are displayed in Table 2 and
Figure 3. It appears that these estimates are quite constant over the sample, and that the mean of
the smoothed &, is 5962. This implies a saturation level of about 6 million cars in the Netherlands.
The parameter estimates for «, 8 and v can be used to calculate the fitted values for x,, X,. Com-
paring these with the smoothed x, observations shows that there are 12 negative and 13 positive
forecasting errors, and that the corresponding R? is equal to 0.9998.

To calculate the forecasts of the level and also the corresponding error variances for the stock
of cars for the period 1990-2010, I have chosen to use the bootstrap-technique. The results are
displayed in Table 3 and Figure 3. It can be observed that the saturation level is almost reached
in 2010.
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F1G. 3. The estimated saturation level, 1965-1989 ( x 1000), and forecasts of the stock of cars 1990-2010 ( x 1000) with a
two standard error forecasting interval.
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TABLE 3. Forecasting the stock of cars, 1990-2010 (x 1000), with standard deviation of the
forecast errors, both obtained using a bootstrap technique (200 replications)

Year Forecast of stock Standard deviation of
forecast error
1990 5383 61
1991 5443 63
1992 5499 67
1993 5549 71
1994 5595 75
1995 5637 80
1996 5675 . 85
1997 5709 91
1998 5741 96
1999 5769 101
2000 5795 106
2001 5818 110
2002 5840 115
2003 5859 119
2004 5877 123
2005 5892 127
2006 5907 131
2007 5920 135
2008 5932 138
2009 5942 141
2010 5952 144

CONCLUDING REMARKS

In this paper I propose a simple Gompertz curve fitting procedure which does not face the
problems of current fitting methods such as the effects of the non-stationary behaviour of an
empirical time series and the assumptions on the value of the saturation level. The advantages are
that estimates of this level can yield insights in the stability of the saturation level over the sample
period, and that knowledge of its value is not necessary for forecasting. Furthermore, the other
two parameters can be estimated via standard methods as non-linear least squares. A simple
bootstrap-technique can be used to calculate forecast intervals. An application to forecasting the
stock of cars in the Netherlands illustrates its merits.

A possible drawback of the procedure is that it assumes that the growth of the process is always
positive. For practical series this may, however, not be the case for a small number of data points,
even when a Gompertz curve may be useful. One way to circumvent this problem is to delete the
observations that invalidate this assumption, and to estimate the model for the remaining observa-
tions. Unreported experiences with the data sets given in Harrison and Pearce' indicate the
usefulness.of this approach.
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