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Abstract

Active Appearance Models (AAMs) are a well studied 2D deformable model.

One recently proposed extension of AAMs to multiple images is the Coupled-

View AAM. Coupled-View AAMs model the 2D shape and appearance of a

face in two or more views simultaneously. The major limitation of Coupled-

View AAMs, however, is that they are specific to a particular set of cameras,

both in geometry and the photometric responses. In this paper, we describe

how a single AAM can be fit to multiple images, captured simultaneously

by cameras with arbitrary geometry and response functions. Our algorithm

retains the major benefits of Coupled-View AAMs: the integration of infor-

mation from multiple images into a single model, and improved fitting ro-

bustness.

1 Introduction

Active Appearance Models (AAMs) are a well studied model [3] which have a wide va-

riety of applications, including face recognition, pose estimation, expression recognition,

and lip-reading [7, 9].

One recently proposed extension of AAMs is the Coupled-View AAM (CVAAM) [4].

CVAAMs model the 2D shape and appearance of a face in two or more views simultane-

ously. The main motivation for CVAAMs is to take advantage of multiple cameras. For

example, a CVAAM that is fit to a frontal and a profile view of a face integrates the data

from the two images into a single set of model parameters. As shown in [5] (albeit using

a slightly different technique), combining information from multiple images can improve

face recognition performance.

The major limitation of CVAAMs is that they are specific to a particular set of cam-

eras. A CVAAM can only be used with the same camera setup used to collect the training

data. If a different number of cameras are used, the cameras are moved, or cameras with

different photometric responses are used, the CVAAM cannot be re-used.

In this paper, we describe how a single AAM can be fit to multiple images, captured si-

multaneously by cameras with arbitrary geometry and response functions. Our algorithm

removes the restriction on the cameras, but retains the major benefits of Coupled-View

AAMs: the integration of information from multiple images into a single set of model

parameters, and improved fitting robustness.

BMVC 2004 doi:10.5244/C.18.46



The main technical challenge is relating the 2D AAM shape parameters in one view

with the corresponding parameters in the other views. This relationship is particularly

complex because shape is modelled in 2D. It would be far easier if we had a 3D shape

model. Fortunately, AAMs have recently been extended to 2D+3D AAMs [11]. A 2D+3D

AAM contains both a 2D shape model and a 3D shape model. The 2D+3D AAM is fit

using an extension of the inverse compositional algorithm [8]. As the algorithm runs, the

2D shape model is fit in the usual manner, but subject to the constraint that the 2D shape

is a valid projection of the 3D shape model. The 2D+3D algorithm recovers the 2D shape

parameters, the appearance parameters, the 3D shape parameters, and the camera param-

eters (which include 3D pose). Because it uses a fundamentally 2D fitting algorithm, the

2D+3D AAM can be fit very efficiently in real-time.

To generalise the 2D+3D fitting algorithm to multiple images, we use a separate set of

2D shape parameters for each image, but just a single, global set of 3D shape parameters.

We impose the constraints that for each view separately, the 2D shape model for that view

must approximately equal the projection of the single 3D shape model. Imposing these

constraints indirectly couples the 2D shape parameters for each view in a physically con-

sistent manner. Our algorithm can use any number of cameras, positioned arbitrarily. The

cameras can be moved and replaced with different cameras without any retraining. The

computational cost of the multi-view 2D+3D algorithm is only approximately N times

more than the single-view algorithm where N is the number of cameras.

2 2D+3D Active Appearance Models

2.1 2D Active Appearance Models

The 2D shape s of an AAM is a 2D triangulated mesh, and in particular the vertex loca-

tions of the mesh. AAMs allow linear shape variation. This means that the shape s can be

expressed as a base shape s0 plus a linear combination of m shape matrices si:

s = s0 +
m

∑
i=1

pi si (1)

where the coefficients pi are the shape parameters. AAMs are normally computed from

training data consisting of a set of images with the shape mesh (hand) marked on them [3].

The Procrustes alignment algorithm and Principal Component Analysis (PCA) are then

applied to compute the the base shape s0 and the shape variation si.

The appearance of an AAM is defined within the base mesh s0. Let s0 also denote the

set of pixels u = (u,v)T that lie inside the base mesh s0, a convenient abuse of terminology.

The appearance of the AAM is then an image A(u) defined over the pixels u ∈ s0. AAMs

allow linear appearance variation. This means that the appearance A(u) can be expressed

as a base appearance A0(u) plus a linear combination of l appearance images Ai(u):

A(u) = A0(u)+
l

∑
i=1

λi Ai(u) (2)

where the coefficients λi are the appearance parameters. The base (mean) appearance

A0 and appearance images Ai are usually computed by applying Principal Components

Analysis to the (shape normalised) training images [3].



Although Equations (1) and (2) describe the AAM shape and appearance variation,

they do not describe how to generate a model instance. The AAM model instance with

shape parameters p and appearance parameters λi is created by warping the appearance A

from the base mesh s0 to the model shape mesh s. In particular, the pair of meshes s0 and

s define a piecewise affine warp from s0 to s denoted W(u;p).
Note that for ease of presentation we have omitted any mention of the 2D similarity

transformation that is used with an AAM to normalise the shape [3]. In this paper we

include the normalising warp in W(u;p) and the similarity normalisation parameters in

p. See [8] for a description of how to include the normalising warp in W(u;p) and also

how to fit an AAM with such a normalising warp.

2.2 3D Active Appearance Models

The 3D shape s of a 3D AAM is a 3D triangulated mesh and in particular the vertex

locations of the mesh. 3D AAMs also allow linear shape variation. The shape matrix s

can be expressed as a base shape s0 plus a linear combination of m shape matrices si:

s = s0 +
m

∑
i=1

pi si (3)

where the coefficients pi are the shape parameters. 3D AAMs are normally computed

from training data consisting of a number of 3D range images with the mesh vertices

(hand) marked in them [2]. Note that there is no difference between the definition of a 3D

AAM in this section and a 3D Morphable Model (3DMM) as described in [2].

The appearance of a 3D AAM is an image A(u) just like the appearance of a 2D AAM.

The appearance variation of a 3D AAM is also governed by Equation (2) and is computed

in a similar manner by applying Principal Components Analysis to the input texture maps.

To generate a 3D AAM model instance, an image formation model is needed to con-

vert the 3D shape s into a 2D mesh, onto which the appearance is warped. In [10] the

following weak perspective imaging model was used:

u = Px =

(

ix iy iz
jx jy jz

)

x+

(

ox

oy

)

. (4)

where (ox,oy) is an offset to the origin and the projection axes i = (ix, iy, iz) and j =
( jx, jy, jz) are equal length and orthogonal: i · i = j · j; i · j = 0, and x = (x,y,z) is a 3D

vertex location. The model instance is then computed by projecting every 3D shape vertex

onto a 2D vertex using Equation (4). The appearance A(u) is finally warped onto the 2D

mesh (taking into account visibility.)

2.3 2D+3D Active Appearance Models

A 2D+3D AAM [11] consists of the 2D shape variation si of a 2D AAM governed by

Equation (1), the appearance variation Ai(u) of a 2D AAM governed by Equation (2), and

the 3D shape variation si of a 3D AAM governed by Equation (3). The 2D shape variation

si and the appearance variation Ai(u) of the 2D+3D AAM are constructed exactly as for

a 2D AAM. The 3D shape variation si we use is automatically constructed from the 2D

shape variation si using a non-rigid structure-from-motion algorithm [11].



3 Fitting Algorithms

Our algorithm to fit a 2D+3D AAM to multiple images is an extension of the algorithm

to fit a 2D+3D AAM to a single image [11] which itself is an extension to the algorithm

to fit a 2D AAM to a single image [8]. To describe our algorithm, we first need to review

the algorithms on which it is based.

3.1 Fitting a 2D AAM to a Single Image

The goal of fitting a 2D AAM to an image I [8] is to minimise:

∑
u∈s0

[

A0(u)+
l

∑
i=1

λiAi(u)− I(W(u;p))

]2

=

∥

∥

∥

∥

∥

A0(u)+
l

∑
i=1

λiAi(u)− I(W(u;p))

∥

∥

∥

∥

∥

2

(5)

with respect to the 2D shape p and appearance λi parameters. In [8] it was shown that

the inverse compositional algorithm [1] can be used to optimise the expression in Equa-

tion (5). The algorithm uses the “project out” algorithm [6, 8] to break the optimisation

into two steps. The first step consists of optimising:

‖A0(u)− I(W(u;p))‖2
span(Ai)⊥

(6)

with respect to the shape parameters p where the subscript span(Ai)
⊥ means project the

vector into the subspace orthogonal to the subspace spanned by Ai, i = 1, . . . , l. The second

step consists of solving for the appearance parameters:

λi = − ∑
u∈s0

Ai(u) [A0(u)− I(W(u;p)] (7)

where the appearance vectors Ai have been orthonormalised. Optimising Equation (6)

itself can be performed by iterating the following two steps. Step 1 consists of computing:

∆p = −H−1
2D ∆pSD where ∆pSD = ∑

u∈s0

[SD2D(u)]T [A0(u)− I(W(u;p)] (8)

and the following two terms can be pre-computed to achieve high efficiency:

SD2D(u) =

[

∇ A0
∂W

∂p

]

span(Ai)⊥
, H2D = ∑

u∈s0

[SD2D(u)]T SD2D(u). (9)

Step 2 consists of updating the warp:

W(u;p) ← W(u;p)◦W(u;∆p)−1
. (10)

3.2 Fitting a 2D+3D AAM to a Single Image

The goal of fitting a 2D+3D AAM to an image I [11] is to minimise:

∥

∥

∥

∥

∥

A0(u)+
l

∑
i=1

λiAi(u)− I(W(u;p))

∥

∥

∥

∥

∥

2

+ K ·

∥

∥

∥

∥

∥

s0 +
m

∑
i=1

pi si−P

(

s0 +
m

∑
i=1

pi si

)∥

∥

∥

∥

∥

2

(11)



with respect to p, λi, P, and p where K is a large constant weight. Equation (11) should

be interpreted as follows. The first term in Equation (11) is the 2D AAM fitting criterion.

The second term enforces the (heavily weighted, soft) constraints that the 2D shape s

equals the projection of the 3D shape s with projection matrix P. See Equation (4).

In [11] it was shown that the 2D AAM fitting algorithm [8] can be extended to a

2D+3D AAM. The resulting algorithm only requires approximately 20% more computa-

tion per iteration to process the second term in Equation (11). Empirically, however, the

3D constraints in the second term result in the algorithm requiring approximately 40%

fewer iterations.

As with the 2D AAM algorithm, the “project out” algorithm [8] is used to break the

optimisation into two steps, the first optimising:

‖A0(u)− I(W(u;p))‖2
span(Ai)⊥

+ K ·∑
i

F2
i (p;P;p) (12)

with respect to p, P, and p, where Fi(p;P;p) is the error inside the L2 norm in the second

term in Equation (11) for each of the mesh x and y vertices. The second step solves for

the appearance parameters using Equation (7). The 2D+3D has more unknowns to solve

for than the 2D algorithm. As a notational convenience, concatenate all the unknowns

into one vector q = (p;P;p). Optimising Equation (12) is then performed by iterating the

following two steps. Step 1 consists of computing1:

∆q = −H−1
3D ∆qSD = −H−1

3D

[

(

∆pSD

0

)

+K ·∑
i

(

∂Fi

∂q

)T

Fi(q)

]

(13)

where:

H3D =

(

H2D 0

0 0

)

+K ·∑
i

(

∂Fi

∂q

)T
∂Fi

∂q
. (14)

Step 2 consists of first extracting the parameters p, P, and p from q, and then updating the

warp using Equation (10), and the other two sets of parameters P and p additively.

3.3 Fitting a Single 2D+3D AAM to Multiple Images

Suppose that we have N images In : n = 1, . . . ,N of a face that we wish to fit the 2D+3D

AAM to. We assume that the images are captured simultaneously by synchronised, but

uncalibrated cameras. The naive algorithm is to fit the 2D+3D AAM independently to

each of the images. This algorithm can be improved upon, however, by noticing that,

since the images In are captured simultaneously, the 3D shape of the face should be the

same whichever image it is computed in. We therefore pose fitting a single 2D+3D AAM

to multiple images as minimising:

N

∑
n=1





∥

∥

∥

∥

∥

A0(u)+
l

∑
i=1

λ
n
i Ai(u)− In(W(u;pn))

∥

∥

∥

∥

∥

2

+

K ·

∥

∥

∥

∥

∥

s0 +
m

∑
i=1

pn
i si−Pn

(

s0 +
m

∑
i=1

pi si

)∥

∥

∥

∥

∥

2


 (15)

1For ease of presentation, in this paper we omit any mention of the additional correction that needs to be

made to Fi(p;P;p) to use the inverse compositional algorithm. See [11] for more details.



simultaneously with respect to the N sets of 2D shape parameters pn, the N sets of appear-

ance parameters λ n
i (the appearance may be different in different images due to different

camera response functions), the N sets of camera matrices Pn
, and the one, global set of

3D shape parameters p. Note that the 2D shape parameters in each image are not inde-

pendent, but are coupled in a physically consistent2 manner through the single set of 3D

shape parameters p. Optimising Equation (15) therefore cannot be decomposed into N

independent optimisations. The appearance parameters λ n
i can, however, be dealt with

using the “project out” algorithm in the usual way; i.e. we first optimise:

N

∑
n=1



 ‖A0(u)− In(W(u;pn))‖2
span(Ai)⊥

+ K ·

∥

∥

∥

∥

∥

s0 +
m

∑
i=1

pn
i si−Pn

(

s0 +
m

∑
i=1

pi si

)∥

∥

∥

∥

∥

2




(16)

with respect to pn, Pn
, and p, and then solve for the appearance parameters:

λ
n
i = − ∑

u∈s0

Ai(u) · [A0(u)− In(W(u;pn))] . (17)

Organise the unknowns in Equation (16) into a single vector r = (p1;P1; . . . ;pN ;PN ;p).
Also, split the single-view 2D+3D AAM terms into parts that correspond to the 2D image

parameters (pn and Pn) and the 3D shape parameters (p):

∆qn
SD =

(

∆qn
SD,2D

∆qn
SD,p

)

and Hn
3D =

(

Hn
3D,2D,2D Hn

3D,2D,p

Hn
3D,p,2D Hn

3D,p,p

)

. (18)

Optimising Equation (16) can then be performed by iterating the following two steps.

Step 1 consists of computing:

∆r = −H−1
MV∆rSD = −H−1

MV











∆q1
SD,2D

...

∆qN
SD,2D

∑N
n=1 ∆qn

SD,p











(19)

where:

HMV =

















H1
3D,2D,2D 0 . . . 0 H1

3D,2D,p

0 H2
3D,2D,2D . . . 0 H2

3D,2D,p

...
...

...
...

...

0 . . . 0 HN
3D,2D,2D HN

3D,2D,p

H1
3D,p,2D H2

3D,p,2D . . . HN
3D,p,2D ∑N

n=1 Hn
3D,p,p

















. (20)

Step 2 consists of extracting the parameters pn, Pn, and p from r, and updating the warp

parameters pn using Equation (10), and the other parameters Pn and p additively.

The N image algorithm is very similar to N copies of the single image algorithm.

Almost all of the computation is just replicated N times, one copy for each image. The

2Note that directly coupling the 2D shape models would be difficult due to the complex relationship between

the 2D shape in one image and another. Multi-view face model fitting is best achieved with a 3D model. A

similar algorithm could be derived for 3D AAMs such as 3D Morphable Models [2]. The main advantage of

using a 2D+3D AAM [11] is the far greater fitting speed.
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Figure 1: An example of using our algorithm to fit a single 2D+3D AAM to three images of a face.

Each image is overlaid with the corresponding 2D shape for that image in blue dots. The head pose

(extracted from the camera matrix PN ) is displayed in the top left of each image as roll, pitch and

yaw. The single 3D shape p for the current ‘frame’ is displayed in the top right of the centre image.

This 3D shape is also overlaid in each image, using the corresponding PN , as a white mesh.

only extra computation is adding the N terms in the components of ∆rSD and HMV that

correspond to the single set of global 3D shape parameters p, inverting the matrix HMV,

and the matrix multiply in Equation (19). Overall, the N image algorithm is therefore

approximately N times slower than the single image 2D+3D fitting algorithm; i.e. the

computational cost is almost identical to performing N independent 2D+3D AAM fits.

4 Experimental Results

An example of using our algorithm to fit a single 2D+3D AAM to three concurrent images

of a face is shown in Figure 1. The initialisation is displayed in the top row of the figure,

the result after 5 iterations in the middle row, and the final converged result in the bottom

row. In each case, all three input images are overlaid with the 2D shape pn plotted in

blue dots. We also display the recovered pose angles (roll, pitch and yaw) extracted from

the weak perspective camera matrix Pn for each view in the top left of the image. Each

camera computes a different relative head pose, illustrating that the estimate of Pn is view

dependent. The single 3D shape p for all views at the current iteration is displayed in the

top-right of the centre image. The view-dependent camera projection of this 3D shape is

also plotted as a white mesh overlaid on the face.

Applying the multi-view fitting algorithm sequentially to a set of concurrent frames

allows us to track the face simultaneously in N video sequences. Some example frames
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Figure 2: An example of our multi-view fitting algorithm being using to track a face in a trinocular

stereo sequence.

of the algorithm being using to track a face in a trinocular stereo sequence is shown in

Figure 2. The tracking remains accurate and stable both over time and between views.

In Figure 3 we show quantitative results to demonstrate the increased robustness and

convergence rate of our multi-view fitting algorithm. In experiments similar to those

described in [8], we generated a large number of test cases by randomly perturbing from

a ground-truth obtained by tracking the sequence. For this experiment the 2D parameters

of each view were randomly perturbed independently from the other views (but all views

were perturbed each time). The 3D initial parameters were computed from the perturbed

2D mesh coordinates. We then run each algorithm from the same perturbed starting point

and determine whether they converge by comparing the RMS error between the 2D mesh

location of the fit result and the ground-truth 2D mesh coordinates. The algorithm is

considered to have converged if this error is less than 1 pixel. We repeat the experiment 20

times for each set of 3 images and average over all 300 image triples in the test sequence.

This is repeated for different values of perturbation energy to determine the robustness and

convergence properties of each algorithm. The magnitude of the perturbation is chosen

to vary on average from 0 to 4 times the 2D shape standard deviation. The 2D similarity

parameters are perturbed to introduce a spatial offset of 4 times this value. The multiplier

is not a critical value, it simply introduces significant similarity perturbation [8].

In Figure 3(a) we plot a graph of the likelihood (frequency) of convergence against

the magnitude of the random perturbation for the 2D algorithm, the 2D+3D algorithm,

and the new multi-view 2D+3D algorithm for the trinocular 300 × 3 frame sequence

shown in Figure 2. The results clearly show that the multi-view algorithm is more robust

than the single-view 2D+3D algorithm [11], which itself is more robust than the original
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Figure 3: (a) The likelihood (frequency) of convergence plot against the magnitude of a ran-

dom perturbation to the ground-truth fitting results computed by tracking through the trinocular

sequence in Figure 2. The results show that the multi-view 2D+3D algorithm is more robust than

the single-view 2D+3D algorithm, which itself is more robust than the 2D algorithm. (b) The rate

of convergence is estimated by plotting the average error after each iteration against the iteration

number. The results show that the multi-view 2D+3D algorithm converges slightly faster than the

single-view 2D+3D algorithm, which converges slightly faster than the 2D algorithm.

2D algorithm [8]. We also compute how fast the algorithms converge by computing the

average RMS mesh location error after each iteration. Only trials that actually converge

are used in this computation. The results are included in Figure 3(b) and show that the

multi-view algorithm converges slightly faster than the single-view 2D+3D algorithm,

which converges slightly faster than the 2D algorithm.

5 Discussion

We have described an algorithm to fit a single 2D+3D AAM to N concurrent images

captured simultaneously by N uncalibrated cameras. In the process, our algorithm com-

putes: 2D shape parameters for each image, a single set of global 3D shape parameters,

the weak-perspective camera matrix for each view (3D pose), and appearance parameters

for each image (which may be different due to different camera response functions.) Our

algorithm enforces the constraints that all of these quantities are physically consistent in

the 3D scene. The algorithm operates approximately N times slower than the real-time

(over 60fps) single image 2D+3D AAM fitting algorithm [11]. We have shown our multi-

view 2D+3D AAM algorithm to be both more robust and converge more quickly than the

single-view 2D+3D AAM algorithm, which is itself more robust than the single-view 2D

AAM algorithm [8].

Because our fitting algorithm computes the camera matrices, it can also be used to

calibrate the cameras (as weak perspective). Once they are calibrated, it may be possible

to reformulate the fitting problem with less unknowns, and hopefully achieve even greater

robustness. We plan to investigate this in a future paper. Other areas for future work

include fitting 2D+3D AAMs simultaneously over time. The difficulty with a temporal

sequence is that the face can deform non-rigidly. Note that fitting a single AAM to an

entire sequence is one large global optimisation into which we can add global temporal



smoothness constraints which may improve fitting performance, whereas tracking a head

through a video is a sequence of independent optimisations that may yield inconsistent

results at each frame. The best way to do this is an interesting research question.
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