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ABSTRACT: Construction operations are subject to a wide variety of fluctuations 
and interruptions. Varying weather conditions, learning development on repetitive 
operations, equipment breakdowns, management interference, and other external 
factors may impact the production process in construction. As a result of such 
interferences, the behavior of construction processes becomes subject to random 
variations. This necessitates modeling construction operations as random processes 
during simulation. Random processes in simulation include activity and processing 
times, arrival processes (e.g. weather patterns) and disruptions. In the context of 
construction simulation studies, modeling a random input process is usually per- 
formed by selecting and fitting a sufficiently flexible probability distribution to that 
process based on sample data. To fit a generalized beta distribution in this context, 
a computer program founded upon several fast, robust numerical procedures based 
on a number of statistical-estimation methods is presented. In particular, the fol- 
lowing methods were derived and implemented: moment matching, maximum like- 
lihood, and least-square minimization. It was found that the least-square minimi- 
zation method provided better quality fits in general, compared to the other two 
approaches. The adopted fitting procedures have been implemented in BetaFit, an 
interactive, microcomputer-based software package, which is in the public domain. 
The operation of BetaFit is discussed, and some applications of this package to the 
simulation of construction projects are presented. 

INTRODUCTION 

In a wide diversity of construct ion s imulat ion studies, it is of ten necessary 
to represent a particular sequence of s imulat ion inputs as independen t  r andom 
variables taken from a common  under lying probabil i ty distr ibution; and then 

the main objective of s imulat ion input  model ing  is to approximate  this distri- 
bution accurately and with a m i n i m u m  of computa t ional  effort. A key e lement  
in making computer  s imulat ion accessible to construct ion practi t ioners is the 
automation of the complex statistical and  numerical  techniques required to 
achieve the desired accuracy within a s imulat ion experiment .  

Fit t ing statistical d is t r ibut ion  to sample  data  can be found  in m a n y  con-  
struction appl icat ions inc luding  risk analysis ,  qual i ty  control ,  and  most ly,  
costing and scheduling.  A1-Masri (1985) fi t ted lognormal  and  o ther  distri- 
but ions in s tudying ea r thmov ing  opera t ions .  T o u r a n  and  Wiser  (1992) dis- 
cuss a Monte  Carlo t echn ique  used for " r ange  es t imat ing"  requi r ing  the  

cost engineer  to mode l  the unde r ly ing  dis t r ibut ions  of uni t  cost data ,  for 
example.  In  their  appl ica t ion,  corre la ted  data  was to be  mode led  and  their  
choice of d is t r ibut ion was lognormal .  Add i t i ona l  examples  inc lude  a recen t  
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work by Farid and Aziz (1993), which involved fitting beta distributions to 
sample earthmoving data in the process of validating queuing models and 
simulating nonstationary travel times through the use of CYCLONE. 

The main emphasis of the present application is input modeling for con- 
struction simulation. This includes modeling the variability of activity times 
for probabilistic project scheduling and work package cost variability in the 
context of range estimating. Construction simulation modeling (e.g. CY- 
CLONE applications) also requires accurate statistical input modeling. 

AbouRizk and Halpin (1992a) presented an empirical study showing that 
a flexible distribution is often required and is recommended to model activity 
times. AbouRizk et al. (1992) presented a method for modeling activity 
times in the absence of data for construction simulation. When a sample of 
data can be collected (e.g. from an on-going earthmoving operation), a 
proper distribution can be used to provide accurate representation of the 
underlying random process of the activity time or cost. To make this avail- 
able for construction practitioners and researchers an automated technique 
that will read a collected sample of data and perform many numerical ap- 
proximations to arrive at an appropriate beta distribution was developed. 

DISTRIBUTION FITTING IN SIMULATION STUDIES 

The conventional approach to simulation input modeling is to fit a prob- 
ability distribution from a standard family of continuous distributions based 
on sample data. Compared to the discontinuities and irregularities of the 
cumulative density function (CDF) of the sample data set, this approach 
yields a smooth, regular approximation to the unknown CDF from which 
the sample was taken. This approach also eliminates the need for storing 
and manipulating large amounts of sample data when generating random 
samples from a particular input process. 

The main difficulty in simulation input modeling is the broad range of 
distributional shapes that must be accommodated in practice. This motivates 
the use of a flexible family of distributions which is capable of attaining a 
wide variety of shapes. Among such families are the Pearson system (John- 
son and Kotz 1970), the Johnson translation system (Johnson 1948), the 
Lambda distribution family and its modifications (Tukey 1960; Schmeiser 
and Deutch 1976; Ramberg et al. 1979), and the generalized beta family of 
distributions (Hahn and Shapiro 1967). In the present paper, the focus is 
on the generalized beta family of distributions, which has been widely used 
in a variety of construction engineering and management applications, is 
well known, and is available in virtually all simulation software packages. 

The accuracy of distribution fitting in construction simulation greatly 
depends on the application involved and the statistical measure of perfor- 
mance required. A study by AbouRizk (1990) showed that if the parameter 
sought from the simulation is a mean measure of performance (e.g. mean 
project completion time or cost) the use of a triangular, lognormal, or beta 
distribution as input models in the simulation experiment could yield close 
values of the estimated mean as long as the means of the input models used 
are the same. As the order of the statistical estimate increases the simulation 
results begin reflecting more sensitivity to the distribution type used. For 
example, when the 90th percentile value of the waiting time in a truck queue 
is required, the use of a lognormal, triangular, or beta distributions within 
the model may yield considerably different results. Therefore, it is essential 
in such applications that the selected distribution to model the collected 
data truly reflects the properties of the data. This may be validated through 
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common goodness of fit tests or by visual assessment of the fitted versus 
collected sample CDFs. A summary of the effect of input modeling on 
construction simulation can be found in AbouRizk and Halpin (1992b). 

GENERALIZED BETA FAMILY OF DISTRIBUTIONS 

The probability density function (PDF) for the generalized beta distri- 
bution defined on the interval [L, U] with shape parameters a and b is given 
by 

F(a + b) (x - L )a - l (U  - -  X) b-1 
f (x)  = F(a)F(b) (U - L) a+b-1 if L -< X -< U (1) 

f (x)  = 0 otherwise 

where the lower limit L and the upper limit U satisfy L < U < ~; shape 
parameters a and b are positive; and gamma function F( .)  is defined by 

F(z) = fo tZ - le - t  dt for all z > 0 (2) 

The corresponding CDF over the range [L, U] with the shape parameters 
a and b is given by 

F(x) = 0 i f x < L  

r (a  + b ) f , ,  ( t -  L ) a - I ( U -  t) b-1 
F(x) - F(a)F(b) __ ~ - - _  ~-~+%-_y dt if L -< x <- U (3) 

F(x) = 1 if x >  U 

If X is a random variable having the generalized beta distribution (3), 
then the mean ,  variance, skewness, and kurtosis of the X are respectively 
given by the following expressions: 

a 

tx = E ( X )  = L + ( U -  L ) - -  (4) 
a + b  

ab 
if2 = E[ (X  - Ix)2] = ( U -  L) z (a + b)2(a + b q- 1) (5) 

% = E = (a-+  -b + 2 ) ~  (6) 

and 

~ 4  ~ E ~- 

+ b + 1)[2(a + b) 2 + ab(a + b - 6)] 

ab(a + b + 2)(a + b + 3) 

(7) 

see Hahn and Shapiro (pages 91-98, 126-128, 1967). Eqs. (6) and (7) show 
how the shape of the generalized beta density f (x)  is determined by the 
values of the two shape parameters a and b. Similarly, (4) and (5) show 
how the mean and variance of the generalized beta distribution depend on 
the location parameter L and the scale parameter (U - L). Let O = (L, 
U, a, b) denote the vector of parameters defining the generalized beta 
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density (1). To emphasize the dependence of the PDF, (1), and the CDF, 
(3), on this parameter vector, f(x; O) and F(x; O) will be subsequently used 
to represent these functions. 

STATISTICAL METHODS FOR FITTING BETA DISTRIBUTIONS 

As mentioned previously, the generalized beta probability distribution is 
frequently used in simulation studies to model the behavior of an input 
quantity that is subject to random variation or that is simply not known 
with certainty. Suppose that {Xi: 1 -< i - n} is a random sample of size n 
from the underlying probability distribution of interest. It is postulated that 
this unknown CDF has the form F(x; O) given by (3), and an accurate and 
computationally efficient statistical method to estimate O to completely 
specify the required input model is being sought. 

Moment Matching 
To fit a postulated distribution with k unknown parameters based on 

sample data, the method of moment matching requires the following steps: 
(a) Compute the first k sample moments; (b) equate these statistics to the 
corresponding theoretical moments to obtain a system of k equations in the 
k unknown parameters; and (c) solve this equation system for the corre- 
sponding parameter estimates. Several variants of this basic idea have been 
specialized to the case of fitting beta distributions. 

To fit a beta distribution by a simplified version of moment matching, 
Riggs (1989) suggested that the lower limit L and the upper limit U should 
be respectively estimated by the minimum and maximum observations in 
the random sample {X~); therefore only the shape parameters a and b must 
be estimated by matching the mean and variance of the fitted beta distri- 
bution [see (4) and (5)] to the computed mean and variance of the sample. 
This approach results in a linear system of two equations in the two un- 
knowns a and b that can be solved easily; (c.f. Hahn and Shapiro, page 95, 
1967). There are two fundamental problems with this approach. First, the 
fitted density vanishes at the largest and smallest observed values in the 
sample, which implies that these values would have negligible probability 
of occurring with the fitted input model. And second, substantial flexibility 
in the fitted distribution is lost since there is no capability to match the 
skewness and kurtosis observed in the sample. Thus more general moment- 
matching procedures for estimating beta distributions were considered. 

Since the generalized beta distribution has k = 4 parameters, the first 
four theoretical moments specified by (4)-(7) must be matched to the cor- 
responding sample moments computed from the data set {Xi} as given as 
follows: 

, = 1 x ,  (8) 
1~i=1 

S 2 = ! ~ (X/ - .?l~r) 2 (91 
n i = l  

- 3 

&4 = -1 ~ (11) 
n i = l  
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The following system of nonlinear equations must then be solved to deter- 
mine O: 

ix(a, b, L, U) = IX(O) = 2 (12a) 

0.2(a, b, L, U) = 0.2(0) = S 2 (12b) 

%(a, b) = a3(O) = fi3 (13a) 

ot4(a , b) = a4(O) = &4 (13b) 

To solve the nonlinear system of equationsdefined by (12) and (13) for 
the moment-matching estimates L, g), ~, and b, a two-stage approach is con- 
ventionally used. In the first stage, system (13) is solved for a and/~ by 
iteratively minimizing the sum of squared differences between the left- and 
right-hand sides of (13); then resulting values of a and/~ are substituted 
into the linear subsystem (12) to solve for L and/) .  In practice it was found 
that this procedure can yield infeasible estimates of the lower or upper limits 
such that 

min {Xi} < L or max {Xi} > 0 (14) 
i i 

This infeasibility condition implies that the observed sample ^{X;} has zero 
probability of occurring under the fitted input model f(x; O ) - - a n d  it is 
the writers' belief that such a logical inconsistency is completely unaccept- 
able from both a theoretical and practical standpoint. 

Although a modification of this conventional two-stage moment-matching 
procedure has been investigated and developed that was specially designed 
to guarantee feasibility of the final estimates L and (J by eliminating the 
requirement to match the sample variance in (12), this modified procedure 
has also proved to be unreliable in practice. Specifically, both the conven- 
tional two-stage moment-matching procedure as well as the modified pro- 
cedure to a suite of 80 sample data sets representing a broad spectrum of 
input processes that arise in the simulation of construction projects has been 
applied (AbouRizk 1990). In a substantial number of these data sets, the 
fitted beta distributions were clearly unacceptable even though excellent fits 
could be obtained by other methods. These results led to the development 
of an alternative implementation of moment matching that is designed for 
fitting a beta distribution to sample data by matching all four sample mo- 
ments as closely as possible while avoiding the infeasibility condition (14). 

Feasibility-Constrained Moment Matching 
The following moment-matching (MM) technique for fitting a generalized 

beta distribution to sample data subject to a feasibility constraint on the 
estimated lower and upper limits of the fitted distribution is being proposed. 
A general nonlinear optimization algorithm must be used to solve the con- 
strained minimization problem 

Minimize [IX(O) - j~]2 + [0.2(0) - -  5212 Jr- [a3(a, b) - &3] 2 

"~- [ o t 4 ( a  , b )  - [~t4] 2 ( 1 5 )  

Subject to a > 0 (16a) 

O > 0 (16b) 

L < min{X/: i = 1 . . . . .  n} (16c) 
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U > m a x { X / : i  = 1 , . . . , n }  (16d) 

The final solution (or approximate solution) to (15) and ~(16) yields the 
feasibility-constrained moment-matching estimates ~, b, L, U. Although 
this approach is not guaranteed to yield an exact match to any of the sample 
moments, it has been found to yield generally superior fits compared to the 
other variants of moment matching described above. AbouRizk (1990) gives 
a comprehensive analysis of the performance of this feasibility-constrained 
moment-matching procedure in a suite of 80 data sets arising in the simu- 
lation of construction projects. 

Maximum Likelihood 
If the end points L and U of a given beta distribution are known and if 

{Xi: i = 1, 2, . . . , n} is a random sample of size n from that distribution, 
then the corresponding likelihood equations for the the shape parameters 
a and b are 

, ( a )  - t~(a + b) = In(G,) (17a) 

, ( a )  - , ( a  + b) = ln(G2) (17b) 

where 

Xi L - ' 1 ' '  

G2 = [i=~ 1 ~--U~--L/j(U- Xi~ ]l/n (19) 

and r = d/dz for ln[F(z)] is the digamma function [see (2)]. A number 
of methods could be used to solve (17). Johnson and Kotz (1970) suggested 
using a trial and error method. The Newton-Raphson method can also be 
used. BetaFit uses a technique developed by Beckman and Tietjen (1978) 
that does not require starting values for a and b. 

The main drawback of the method of maximum likelihood (MLE) is that 
it requires prior knowledge of the end points of the beta distribution. In 
most construction engineering simulation applications, such knowledge is 
not usually available. In practice, the end points are fixed at some arbitrary 
values L and U such that the range [L, U] contains all of the sample 
observations {X/}. As noted previously, such an arbitrary approach fre- 
quently results in substantial loss of flexibility in the fitted beta distribution. 
Furthermore, the method of maximum likelihood is extremely sensitive to 
the values of L and U. Unless the simulation analyst has extensive knowledge 
of the properties of the underlying distribution so that the exact values of 
the end points can be verified, this method is not recommended. 

Least-Squares Estimation of Beta CDF 
Wilson (1983) proposed a regression-based method for fitting CDFs from 

the Johnson distribution system based on sample data. Swain et al. (1988) 
extended this estimation method and implemented it as part of an interactive 
software package for fitting Johnson distributions. In this subsection an 
analogous method for fitting beta distributions based on sample data is 
considered. 

If the beta CDF in (3) accurately represents the underlying distribution 
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Select Loading 
Position 

Excavator Idle 
At Position i 

Back Cycle 

Excavator Idle 
At Position 2 

Sample 
T r u c k  Breakdown [ ~  

89% ~ ~  

Truck Repair 11% ~ ] 

~ ~ TruckLoad 

Truck Queue 

Repair Crew 

Idle 

FIG. 1. CYCLONE Model of Earthmoving Operation 

of the random sample {Xi: i = 1, . . . , n} and if the corresponding order 
statistics are denoted )((1) -< X(2) - �9 �9 �9 -< X(,~, the following nonlinear 
statistical model for the ] th order statistic in the sample is obtained: 

J 
f[X(i); O] (n + 1) + ~j f o r j  = 1 . . . . .  n (20) 

where each "error"  ej has mean E(ej) = 0. The basic idea is to view (20) 
as a nonlinear regression m o d e l - - e v e n  though the unknown parameter  
vector O appears on the left-hand side as part of the dependent variable 
F[X<0; O] rather than on the right-hand side with the independent variable 
j/(n + 1). Although this setup appears to be unconventional, it allows for 
a legitimate application of the principle of least-squares estimation. 

The covariance between ]th and kth "errors"  in (20) is 

j(n - k + 1) for 1 -< j <- k -< n (21) 
cov(ej-, ek) = Aj~ = (n + 1)2(n + 2) 

and this suggests using weighted nonlinear regression to estimate the un- 
known parameter vector O by minimizing the sum of squares 

~WI{F[X(]) ;O]  j }2 (22) 
j=l n + l  
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TABLE 1. Sample Observations and Statistics for Dozer and Truck Cycle Times 

Truck cycle 

Observation 
(1) 

Dozer cycle 
(rain) 

(2) 

1.55 

1.53 

1.20 

1.16 

0.90 

1.15 

0.96 
1.11 

1.10 

0.88 

1.10 

0.87 

1.09 

1.25 

1.06 

1.05 

1.20 

1.03 

1.01 

1.00 

1.62 

1.50 

1.00 

1.30 

0.27 

0.52 

0.48 

0.30 

1.33 

1.00 

1.40 

1.00 

1.38 

0.95 

1.20 

0.89 

1.45 

0.86 

1.60 
a 

0.30 

0.25 

0.85 

0.85 

0.19 

1.36 

1.40 

1.00 

0.83 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

2O 

21 

22 

23 

24 

25 

26 

27 

28 

29 

3O 

31 

32 

33 

34 

35 

36 

37 

38 

39 
4O 

41 

42 

43 

44 

45 

46 

47 
48 

49 

(rain) 
(3) 

10.2 
9 
8 
7.9 

10.5 

11 

13 

14 

15 

11 

10.6 

8.9 

7.9 

10.2 

11.5 

12.9 

13.5 

11.4 

9.8 

7.8 

8 

9.4 

11.9 

8.2 

12.9 

11.9 

10.3 

11.6 

8.2 

9.8 

9.5 

7.6 

11.5 

10.4 

10.9 

10 

10 

11.9 

10.4 

10.5 

10.9 

11 

12 

14 

13 

8.9 

7.6 
8.2 

7.6 
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TABLE 1. (Continued) 

(1) (2) (3) 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

0.83 

1.90 

1.80 

0.82 

0.67 

0.58 

0.82 

0,66 

0.49 

0.67 

0.80 

0.59 

0.26 

1.37 

0.55 

0.59 

0.75 

0.70 

0.70 

0.65 

0.64 

0.62 

0.60 

0.55 

7.8 

8 

9.9 

10.4 

10.7 

10.8 

11.3 

9.6 

7.9 

9.5 

7.8 

7.8 

7.9 

10.2 

9.5 

7.9 

8.9 

8.9 

6.9 

10.4 

10.8 

12 

9.6 

8.7 

8.9 

10.5 

14.5 

8.7 

aData missing. 

TABLE 2. Beta Parameter Estimates from Various Methods for Dozer Cycle Time 

Maximum Ordinary Diagonally weighted 
Parameter likelihood Moment matching least squares least squares 

(1) (2) (3) (4) (5) 

Low 

High 
a 

b 

K-S ~ 

At X 

0.1843 

1.9570 

1.5385 

2.0970 

0.0856 

0,55 

0.0612 

2.0621 

4.4993 

6.4053 

0.1230 

1.0 

0.1781 

1.9372 

1.7631 

2.2502 

0.0633 

1.11 

0.1793 

1.9389 

1.7680 

2.2466 

0.0663 

1.11 

aK-S = Kolmogrov-Smirnov statistic. 

for some choice  of  the  weights  {Wj: j = 1 . . . . .  n}. In this work ,  two  

variants o f  the  m e t h o d  of  l eas t - squares  e s t ima t ion  w e r e  appl ied .  (a) T h e  

ordinary  least  squares  ( O L S )  p r o c e d u r e  uses  cons t an t  weights  so tha t  Wj = 

1 for j = 1, . . . , n. (b) T h e  d iagonal ly  w e i g h t e d  least  squares  ( D W L S )  

p rocedu re  uses  weigh ts  tha t  a re  inverse ly  p r o p o r t i o n a l  to  t he  c o r r e s p o n d i n g  

" e r r o r "  var iances  so tha t  Wj = 1/var(ej) = 1/Ajj for  j = 1, . . . , n. 
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FIG. 2. Fitted Beta Distributions by MLE, MM, and DWLS to Dozer Cycle Times 

The OLS estimation procedure uses a general nonlinear optimization 
algorithm to solve the constrained minimization problem 

Minimize ~,_ F[Xu); 0] (23) 
i=1 n + l  

Subject to a > 0 (24a) 

b > 0 (24b) 

L < XC1 ) = min{Xi} (24c) 

U > X(n ) = max{Xi} (24d) 

Similarly, the DWLS estimation procedure uses a general nonlinear opti- 
mization algorithm to solve the constrained minimization problem 

subject to (24). 

{e[x~,; o] j }2 
~, n + 1 

Minimize 2., (25) 
j = l  Ajj 

Note that both of these techniques require a starting point for O, and in 
general this starting point must be computed by some other method. 
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FIG. 3. PDF of Beta Distributions Fitted by MLE, MM, and DWLS to Dozer Cycle 

Times 

For fitting beta distributions based on sample data, the OLS and DWLS 
estimation procedures possess several distinct advantages. First, prior 
knowledge of the end points L and U is not required, but such information 
can be easily incorporated into the estimation procedure if it is available. 
Second, when the end points are unknown, the feasibility of the final es- 
timates L and 0 is guaranteed by the last two constraints in (24). Third,  
the behavior of the final estimated parameter vector O = (L, /J, 4, b) does 
not depend critically on the starting point used in the minimization algorithm 
for (24) or (25). The principal disadvantage of the OLS and DWLS esti- 
mation procedures is that they can require substantially more computation 
time than moment matching or maximum likelihood, especially in large data 
sets. 

EXAMPLE APPLICATION 

To illustrate how the discussed beta distribution fitting methods can be 
used, an example from the field of construction engineering is considered. 
BetaFit (described in Appendixes I and II) contains the programming im- 
plementations of the techniques described in the present paper and therefore 
will be used in this example. A construction engineer conducts a simulation 
experiment for equipment allocation (e.g. trucks and dozers) on a heavy- 
construction operation. A typical CYCLONE simulation model for such an 
operation is shown in Fig. 1. The MicroCYCLONE simulation system (Hal- 
pin 1990) can be used to carry the simulation. Due to various random factors 
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FIG. 4. Fitted Beta Distributions by MLE and DWLS to Truck Cycle Times 

involved in the process, the engineer decides to model the cycle time of the 
dozer operation and the truck back cycle time as a random process. Data 
is collected for the ongoing operation using a stop-watch study or by re- 
viewing recorded film for short cycle operations (e.g. dozing). The tabulated 
cycle times given in Table 1 for the dozer and truck cycles were obtained 
from AI-Masri (1985). The origin and specific data collection mechanisms 
of the tabulated cycle times can be found in A1-Masri (1985). The material 
that was hauled was pre-blasted and consisted of common earth or rock. It 
should be noted that this example illustration does not elaborate on filtering 
the data after its collection to ensure a close representation of the system 
being modeled in the simulation experiment is attained. In general, the 
collected data will be sorted and carefully examined. Unrealistic values 
(outliers) are properly dealt with (e.g. eliminated). In addition, the scope 
of the activity being modeled should be carefully defined (i.e. start and end 
of the cycle times) to ensure that the quality of the data obtained is within 
acceptable limits. If the collected sample is of inferior quality containing 
many nonrepresentative cycle times the input modeling method used would 
have very little significance as the model will normally be inaccurate re- 
gardless of the fitting procedure employed. As such the accuracy of the 
fitting method used cannot by itself secure appropriate simulation results 
of the system being modeled. 

In this sample application it is assumed that the data is of the required 
value and that the cycle time is representative of the actual activity being 
modeled. The engineer decides to use a beta distribution to model the cycle- 
time for suitability of beta distribution to model such random processes in 
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FIG. 5. PDF of Beta Distributions Fitted by MLE and DWLS for Truck Cycle Times 

Results for file: file3 
======================== 

Parameters a and b were found using Diagonally Weighted Least Sq. 

Calculated shape parameters: 

a = 0.1439927D+01 

b 0.2198999D+01 

KS= 0.8061361E-01 AT X = 0.II0000E+02 

Sample Statistics: 

Minimum = 0.6900000D+01 

Maximum = 0.1500000D+02 

Mean = 0.I010390D+02 

STD = 0.1849355D+01 

Skewness = 0.5179500D+00 

Kurtosis = 0.2726468D+01 

Parameters of the Fitted Beta Distribution: 

Mimimum = 0.6863265D+01 

Maximum = 0.1514579D+02 

Mean = 0.I014067D+02 

STD = 0.1880458D+01 

Skewness = 0.3258684D+00 

Kurtosis = 0.2231532D+01 

FIG. 6. Analysis Results of Truck Cycle Times as Outpu~ed from BetaFit 

construction. BetaFit was used to fit a beta distribution to the collected 
sample of observations. 

Analysis of the dozer cycle time using the four different procedures avail- 
able in BetaFit yielded different parameter estimates as expected. To fa- 
cilitate comparison between the quality of the fits attained by the various 
methods the DWLS plot was used as a base since it resulted in the least 
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Kolmogrov-Smirnov (KS) statistic as shown in Table 2. The empirical CDF 
and fitted CDFs by DWLS, MLE, and MM are shown in Fig. 2. The 
corresponding PDFs are given in Fig. 3. The OLS plot was very close to 
the DWLS plot and, therefore, was not shown in the figure to avoid clut- 
tering. A close visual assessment shows that the DWLS method provides 
the closest tracking of the empirical CDF. The results of the KS test given 
in Table 2 show that the maximum "gap" was about 0.06 and occurred at 
X = 1.11 minutes with both least squares procedures, whereas it was 0.08 
at X = 0.55 min and 0.12 at X = 1.0 min for the MLE and moment matching 
procedures, respectively. The fit provided by the least squares methods was 
found to be the best of the four fitted distributions both visually and because 
it resulted in the least KS values and, therefore, the engineer decides to 
use the parameters of the beta distribution corresponding to DWLS [i.e. 
Beta (0.18, 1.94, 1.77, 2.25)] in the MicroCYCLONE simulation experi- 
ment. 

The analysis of the truck cycle was carried in a similar way with the 
resulting CDF and PDF plots for the MLE and DWLS approaches given 
in Figs. 4 and 5, respectively. The results of the OLS procedure were very 
close to the DWLS and therefore not included in the graph whereas the 
MM approach yielded an unacceptable plot and was eliminated. The dis- 
tribution parameters from either the MLE or DWLS can be used in the 
simulation study as both yielded acceptable fits. The results of the DWLS 
analysis as outputted from BetaFit is given in Fig. 6 for illustration. The 
parameters of the resulting beta distribution are [Beta (6.86, 15.15, 1.44, 
2.20)]. This may now be used in the simulation experiment to specify the 
truck cycle time. 

GENERAL CONCLUSIONS 

This paper presented numerical techniques that can be used to fit beta 
distributions to sample data for construction engineering and statistical ap- 
plications. Ttie methods were implemented in BetaFit which provides an 
easy, accurate and efficient way to fit beta distribution for various appli- 
cations. In general terms, the least-square procedures presented herein con- 
sist6ntly yielded equally good or better fits compared to MLE and MM. 
Although a formal Monte Carlo study was not performed to numerically 
evaluate the various procedures, the methods were applied to 80 different 
construction data sets. Visual assessment of the fits showed that in most o f  
the cases, the least-squares procedures (with function evaluation at every 
5th point) were very competitive with the fits obtained from MLE (with 
end points assumed shifted 5%). In very few cases was the fit better with 
MLE. Moment matching in both versions did not show any advantage except 
in terms of convergence speed compared to the least squares procedures. 
Unlike MLE, the least-squares procedures do not require preknowledge of 
the end points of the distribution. This proves to be very advantageous in 
applications where such knowledge is not immediately available (e.g. con- 
struction-duration data). 

The importance of input modeling cannot be overemphasized. Simulation 
results with inappropriate input models are suspect and should be dealt with 
carefully. The techniques presented in this paper provide the simulation 
analyst with an easy-to-use tool that provides robust and accurate input 
models to a simulation experiment. The implementation in BetaFit provides 
an easy-to-use tool that requires minimal effort to produce sound models 
of random processes. 
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APPENDIX I. GENERAL OVERVIEW OF BETAFIT 

BetaFit is the programming implementation of the fitting techniques dis- 
cussed in this paper. The operations of BetaFit can be summarized as fol- 
lows: 

�9 BetaFit reads a set of data from a sequential ASCII file. 
�9 The statistics of the sample are computed. 
�9 A beta distribution is then fitted to the sample based on the user's 

choice of the fitting procedure. 
�9 A report of the session is produced and various plot files are gen- 

erated for the fitted and empirical distributions. 

BetaFit Operations 
An input file containing the data to be analyzed should be created by the 

user. After entering the input file name, the program reads the data points 
from the specified input file sequentially. The observations are then inter- 
nally sorted, and the sample statistics calculated. One of the available tech- 
niques should be chosen based on the user's preference. The program will 
perform the required computations and fits the best possible beta distri- 
bution using the selected technique. Plot-files are then generated. Files 
currently supported are: frequency histogram constructed from the sample, 
empirical CDF, fitted beta PDF, and fitted beta CDF. 

At the end of the session, BetaFit generates a report that is printed to 
the screen and to an ASCII file. The report includes: the name of the file, 
the method employed in estimating the parameters of the fitted distribution, 
the sample statistics, the parameters of the fitted beta distribution, and the 
Kolmogrov-Smirnov statistic as shown in Fig, 6. 

APPENDIX II. PROGRAMMING IMPLEMENTATIONS 

A brief description of the important programming implementations are 
discussed in this appendix. A more detailed discussion is available in AbouRizk 
(1990). 

Preparation 
Data should be stored in a plain ASCII file. The delimiters can be a " , "  

or a carriage return mark. 

Input 
Name of the file containing data. Fitting method to be used. 

Preliminary Computations 
Statistics of the sample are computed using (8)-(11). Data is sorted in 

ascending order. Starting values of a and b are evaluated. This is required 
for function minimization used insolving systems (12), (15), (24), and (25). 
The following is used: fix the end points of the distribution to the lower 
and upper sample points and match the mean and variance of the beta 
distribution to those of the sample. Solve system (12) yielding 

tx- L [(Ix- L)(U- p,) 1] (26) 
al  m U ~  g 0 -2 - -  
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~1 = a l  U - ~L (27) 
~ - L  

Solve for L, U, a, and b, depending on the method chosen. If the case 
is MM, minimize (15) subject to (16) using the Nelder-Mead method de- 
scribed later herein. If the case is MLE, use the method described by 
Beckmen and Tietjen (1978) with modifications suggested in (Griffiths and 
Hill 1985). If the case is OLS, minimize (24) subject to (25) using the Nelder- 
Mead method. The nonintegratable cumulative density of the beta distri- 
bution F(Xo); ~i) is evaluated as described by Majumder and Bhattacharjee 
(see Griffiths and Hill 1985). If the case is DWLS, a similar approach to 
OLS is used except for the function to be minimized. 

Nelder-Mead Method 
The procedure is a direct search method which evaluates a function of n 

variables at n + 1 vertices of a general simplex. The simplex is then moved 
away from large values, extended or contracted depending on the contours 
of the response surface (Olsson' 1974). The implementation is based on the 
Nelder-Mead procedure described by' Olsson (1974). This iterative min- 
imization procedure is repeated until one of the following conditions are 
met: (1) The function reaches the minimum value 10-6; (2) the added 
enhancement values of the parameters ~ is less than 10-35; and (3) the total 
number of iterations exceed 400. 

Evaluating Beta PDF 
The PDF of the beta distribution as given in (1) requires estimation of 

the gamma function given by (2). The method of Pike and Hill (1984) is 
used to evaluate the gamma function. Furthermore, the natural logarithm 
of the complete beta function is evaluated rather than the function itself as 
recommended by Cran et al. (Griffiths and Hill 1985) as follows: 

In(j3) = In F(a) + In F(b) - in F(a + b) (28) 

where/3 = complete beta function; and F = gamma function. 
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APPENDIX IV. NOTATION 

The following symbols are used in this paper: 

a 

b 

E(t) 
F(x, O) 

f(x, o) 

G1, Gz 

L 

m 

n 

S 2 

U 

Wj 

Ol. 3 

Or. 4 

r(z) 
Ajk 

E 

O 

= first shape pa ramete r  of beta  distr ibution; 

= second shape pa ramete r  of  beta  distr ibution; 

= expected value of variable t ;  

= cumulative be ta  distr ibution function evaluated at cutoff value 

x; 
= beta  probabi l i ty  densi ty function evaluated at the cutoff value 

x as defined in Eq. (1); 

= constants evaluated from sample  of observat ions as defined in 

Eqs. (18) and (19); 

= lower end point  of  be ta  distr ibution;  
= mode of beta  distr ibution; 

= total  number  of  observat ion in sample;  
= variance of sample of observations as defined in Eq. (9); 

= upper  end point  of  be ta  distr ibution; 
= weight factor appl ied to nonl inear  model  as defined in Eq.  (22); 

= mean of  sample of observat ions as defined in Eq. (8); 

= coefficient of skewness of given populat ion;  
= kurtosis of given populat ion;  
= gamma function of  variable z as defined in Eq. (2); 
= the covariance between j th  and k th  "e r rors"  as defined in Eq. 

(2l) ;  
= error  term in regression model  as defined in Eq. (20); 
= vector of parameters  defining general ized beta  density; 
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~Jt 

O" : 

0 '-2 : 

r  : 

Subscripts 
i : 

j =  

Overscores 

mean of given population; 
standard deviation of given population; 
variance of given population; and 
digamma function of the variable t, i.e. derivative of logarithm 
of gamma function. 

index counting number of observations in sample; and 
index counting ordered sample of observations. 

indicator for subjective estimate (like/~,) of property (like L) 
of given random variable. 
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