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Abstract

In the psychometric literature, item response theory models have been proposed that
explicitly take the decision process underlying the responses of subjects to psychometric
test items into account. Application of these models is however hampered by the absence
of general and flexible software to fit these models. In this paper, we present diffIRT, an R

package that can be used to fit item response theory models that are based on a diffusion
process. We discuss parameter estimation and model fit assessment, show the viability of
the package in a simulation study, and illustrate the use of the package with two datasets
pertaining to extraversion and mental rotation. In addition, we illustrate how the package
can be used to fit the traditional diffusion model (as it has been originally developed in
experimental psychology) to data.

Keywords: item response theory, diffusion model, psychometrics, mathematical psychology,
R.

1. Introduction

In the behavioral sciences, inferences about traits such as motivation, extraversion, arithmetic
ability, and attitudes require measurable indicators for these traits. Commonly, such indica-
tors are responses to tests (e.g., intelligence tests like the Wechsler Adult Intelligence Scales;
Wechsler 1997) and questionnaires (e.g., personality questionnaires like the Big-5 Personality
Inventory; Digman 1990). To enable inferences about the traits underlying these observed
data, the indicators are linked to the trait by specifying a measurement model. The exact
mathematical form of the measurement model depends on the distribution of the observed
data and the assumed distribution of the trait.

The family of item response theory (IRT) models includes popular measurement models like

http://www.jstatsoft.org/
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the Rasch model (Rasch 1960), the 2-parameter logistic model (2PL; Birnbaum 1968), the
graded response model (GRM; Samejima 1969), and the common factor model (Spearman
1904; Thurstone 1931). Traditionally, these measurement models have been formulated purely
on basis of desirable statistical properties like sufficiency of the total score for the trait (in
the case of the Rasch model, see Fischer 1995), model flexibility (in case of the 2PL and
the GRM; see Glas 1999), and linearity between the indicators and the trait (in case of the
common factor model, see Bollen 1989). These properties make these measurement models
extremely useful for a wide range of applications, e.g., for investigating differential item func-
tioning (Mellenbergh 1989; Meredith 1993), for testing group differences (Jöreskog 1971), for
the construction of tests and questionnaires (Kline 1986), for investigating the structure of
theoretical constructs (i.e., structural equation modeling; Bollen 1998), and for testing the
effects of experimental manipulations (Wicherts, Dolan, and Hessen 2005). Despite these ad-
vantages, these measurement models are purely statistical. That is, the traits in these models
have no direct connection to the psychological process that allows the respondent to make a
certain response to the test or questionnaire items (Borsboom, Mellenbergh, and van Heerden
2004). As argued by van der Maas, Molenaar, Maris, Kievit, and Borsboom (2011) this is
problematic for a number of reasons. Specifically, (1) it hampers the investigation of test va-
lidity; (2) it obscures the connection between intra-individual differences and inter-individual
differences; and (3) it makes the interpretation of the data in terms of substantive processes
more ambiguous.

Effort has been devoted to formulate more substantively informed measurement models that
explicitly incorporate the underlying psychological process that elicited the response to a given
test item. These process IRT models mainly draw from process models that already exist in the
field of mathematical psychology. For instance, Ranger and Kuhn (2014) proposed a model
based on the proportional hazard model (see, e.g., Luce 1986), Tuerlinckx and De Boeck
(2005) and Rouder, Province, Morey, Gomez, and Heathcote (2015) proposed extensions
of the Race model (Audley and Pike 1965), and Tuerlinckx, Molenaar, and van der Maas
(2016),Tuerlinckx and De Boeck (2005), and van der Maas et al. (2011) proposed extensions
of the so called diffusion model (Ratcliff 1978).

The diffusion model is arguably the most popular model for decision making used in exper-
imental psychology. It is a model appropriate for trials in which subjects need to decide
between two answer options (e.g., “yes/no”, “left/right”, etc.). A typical example of a psycho-
logical experiment that is suitable for diffusion modeling is the lexical decision task. In this
task, subjects have to decide as quickly as possible whether a sequence of letters, shown on
a computer screen, form a word (e.g., in the case of “table”) or a non-word (e.g., in the case
of “telab”). In the diffusion model, it is assumed that once a subject has encoded the letters
presented on the screen, information starts accumulating over time in favor of either a “word”
response or a “non-word” response. Each response option is characterized by a boundary
which quantifies the amount of information that is needed for that option to elicit a response
by the subject in favor of that option. If the amount of information for a given option reaches
the boundary of that option, the subject starts making a response. The response time is
then a function of the average rate with which the information accumulated (drift rate, µ),
the distance between the two boundaries (boundary separation, α), and the time needed for
encoding of the letters on the screen and the physical responding (non-decision time, Ter), see
Figure 1. Diffusion model applications to lexical decision experiments have shown for instance
that older subjects have larger values for the non-decision time Ter (Ratcliff, Thapar, Gomez,
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Figure 1: Graphical representation of the traditional diffusion model including the parameter
non-decision time, Ter , boundary separation, α, and drift rate, µ.

and McKoon 2004) and that instructions that emphasize speed lead to closer boundaries α
(Wagenmakers, Ratcliff, Gomez, and McKoon 2008). More extended versions of the diffusion
model also include a bias parameter which models the tendency to favor one option over the
other irrespective of the stimulus content. However, here we focus on the more basic model
as described above.

On its own, the diffusion model is not a measurement model as it does not disentangle person
and item characteristics which is the key property of a measurement model (Borsboom and
Molenaar 2015). Van der Maas et al. (2011) however proposed such a decomposition for
personality questionnaires and ability tests separately (see also Tuerlinckx et al. 2016). The
resulting models are referred to as diffusion IRT models. At present, no general model fit
routines are available to fit diffusion IRT models to real data. Van der Maas et al. (2011)
used a Bayesian model implementation within the WinBUGS program (Lunn, Thomas, Best,
and Spiegelhalter 2000). However this implementation is specific to the data in the van der
Maas et al. (2011) study and could thus not straightforwardly be used for different datasets.
In addition, it requires advanced programming knowledge to adapt the scripts as they make
use of the WinBUGS add-on package wbDEV (Lunn 2003). Tuerlinckx and De Boeck (2005)
and Tuerlinckx et al. (2016) used SAS (SAS Institute Inc. 2013) code to fit a specific instance
of the diffusion IRT model (for personality data only, see below), which is inflexible as it
needs adaptation when there are a different number of items or when there are parameter
constraints. In addition, the procedure is slow and the assessment of absolute goodness of fit
of the model is not readily possible. Finally, none of the above studies focused on parameter
recovery of the different models to establish the feasibility of the estimation procedures.

In the present paper we present a general approach to fitting diffusion IRT models to real
data using the package diffIRT (Molenaar 2014) within the statistical software environment
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R (R Core Team 2015). Package diffIRT is available from the Comprehensive R Archive
Network (CRAN) at http://CRAN.R-project.org/package=diffIRT. As compared to the
approaches above, the package is easy to use (no programming knowledge is needed besides
some basic R understanding like reading in data), the package is reasonably fast, it contains
tools to assess absolute goodness of fit, and it is flexible in specifying parameter constraints.
In addition, we show in a simulation study that true model parameters are well recovered and
that the proposed statistics to assess model fit follow their theoretical distribution. Finally,
the package can also be used to fit the traditional diffusion model to data.

The outline of this paper is as follows. First, we introduce the general family of diffusion
IRT models together with instances for personality questionnaires and ability tests. Next, we
discuss how parameters are estimated and how model fit is assessed in the diffIRT package.
Next, we present a simulation study to show the viability of the estimation procedure. We then
illustrate the use of the package with a single simulated dataset, followed by two applications to
real data pertaining to extraversion and mental rotation. In a third application, we illustrate
how the diffIRT package can be used to fit the traditional diffusion model to data. We end
with a discussion on limitations and future possibilities.

2. Diffusion IRT models

In the traditional diffusion model, a given response of subject p, xpi, with response time tpi,
is assumed to be originating from the following joint distribution function:

h(xpi, tpi) =
π

α2
exp[αµ(xpi −

1

2
)− µ2

2
(tpi − Ter)]

×
∞
∑

k=1

k sin(
1

2
πk) exp(−π2k2

2α2
(tpi − Ter)) (1)

As can be seen, no separation between person and item parameters is involved. That is, in
the majority of applications of the diffusion model, subjects are given a large number of items
and boundary separation, α, drift rate, µ, and non-decision time, Ter , are estimated for each
subject separately assuming that all items are interchangeable.

To make the diffusion model more appropriate as a measurement model, Tuerlinckx and De
Boeck (2005) and van der Maas et al. (2011) introduced person and item characteristics by
separating µ, and α, into a person specific part and an item specific part, i.e.,

µpi = u(θp, vi),

αpi = w(γp, ai),

where vi and ai are the item drift and item boundary parameter of item i, and θp and γp are
the person drift and person boundary parameter of subject p. Choices for the functions u(.)
and w(.) could be made on statistical grounds. For instance, Vandekerckhove, Tuerlinckx,
and Lee (2011) proposed a multilevel version of the model above, implying additive functions
for u(.) and w(.). However, as pointed out by van der Maas et al., substantive considerations
lead to different forms of u(.) and w(.) which are not necessarily linear. We will discuss these
next.

http://CRAN.R-project.org/package=diffIRT
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2.1. D-diffusion

Tuerlinckx and De Boeck (2005) proposed the following functions to decompose drift rate and
boundary separation into a person and item contribution:

µpi = θp − vi with θp, vi ∈ R, (2)

αpi =
γp
ai

with γp, ai ∈ R
+. (3)

Substituting this in Equation 1 and integrating out tpi, the probability of a correct response
is given by

P(xpi = 1|θp, γp) =
exp[

γp
ai
(θp − vi)]

1 + exp[
γp
ai
(θp − vi)]

with γp, ai ∈ R
+and θp, vi ∈ R, (4)

which is referred to as the D-diffusion IRT model (see also Tuerlinckx et al. 2016). In this
model, the item boundary, ai, is interpreted as time pressure, the item drift, vi, as item
difficulty, person boundary, γp, as response caution, and person drift, θp, is interpreted as the
actual construct being measured. Application of the model requires both the response time
data, tpi, and the response data, xpi. In the case of personality data (e.g., extraversion items
“Do you like to meet new people?” with answer options 0: no and 1: yes), xpi = 0 corresponds
commonly to a response indicative for the lower end of the underlying personality construct,
and xpi = 1 is indicative for the upper end of the underlying personality dimension. That is
a “yes” response, xpi = 1, indicates that the subject is more extraverted and a “no” response,
xpi = 0, indicates that the subject is less extraverted. In the case of ability items however
(e.g., an arithmetic problem) xpi = 0 indicates an incorrect answer and xpi = 1 indicates a
correct answer.

Assuming the coding of the observed responses for xpi as discussed above, van der Maas
et al. (2011) discuss why the D-diffusion model is appropriate for personality data but not for
ability data. Specifically the D-diffusion model in Equation 4 predicts:

1. Response times are slowest for µ = θp − vi = 0 (i.e., no evidence accumulation) and get
faster when θp − vi deviates more from 0. That is, subjects with a low position on θp
are as fast in responding as subjects high on θp.

2. When the item time pressure, ai, decreases, α increases, which causes subjects on the
lower end of the θ-range to have a smaller probability obtaining xpi = 1. The subjects
on the higher end of the θ-range have a larger probability of obtaining xpi = 1.

Note that prediction 1 holds only for personality data: When θp ≈ vi the subject is near
the middle of the extraversion continuum of that item. That is, on the question “Do you
like to meet new people?”, the subject tends a bit toward answering “no” or the subject
tends a bit towards answering “yes”. A response will take considerably longer as compared to
extreme subjects as the subject in the middle needs to carefully consider the item and decide
whether it is a “yes” or a “no”. Extreme subjects, that is θp ≫ vi and θp ≪ vi, are extremely
extraverted and introverted respectively, so they will immediately know to respond “yes” or
“no” respectively. Note that this is in line with prediction 1. For ability items, subjects with
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θp ≫ vi (the high ability subjects), will also respond fast as these subjects have no difficulty
solving the arithmetic problem. However, subjects with θp ≪ vi (the low ability subjects)
will take considerably longer to answer the item as for them the item is challenging. Note
that this is not in line with prediction 1.

In addition, prediction 2 also only holds for personality data: When the time limit of a test
decreases, subjects have more time to think about their answer. This will result in more
extraverted subjects choosing “yes” (i.e., xpi = 1) and more introverted subjects choosing “no”
(i.e., xpi = 0). Note that this is in line with prediction 2. For ability items, decreasing the
time limit will commonly result in a larger probability of correct (i.e., xpi = 1) for all subjects.
Note that this is not in line with prediction 2.

2.2. Q-diffusion

As the D-diffusion model is only suitable for personality data, a different parameterization of
the diffusion IRT model is needed for ability tests. Taking into account the above, for ability
data, the resulting model should predict: (1) increasing response times for decreasing θp (i.e.,
low ability subjects have more difficulty solving the items), and (2) increasing probability
corrects for the whole θp-range for decreasing time pressure, ai. As discussed by van der
Maas et al. (2011) the following parameterization conforms these predictions:

µpi =
θp
vi

with θp, vi ∈ R
+, (5)

αpi =
γp
ai

with γp, ai ∈ R
+. (6)

Substituting in Equation 1 and integrating out tpi, the so-called Q-diffusion model is obtained,
i.e.,

P(xpi = 1|θp, γp) =
exp(

γp
ai

θp
vi
)

1 + exp(
γp
ai

θp
vi
)
with γp, ai, θp, vi ∈ R

+, (7)

in which the interpretation of the parameters is the same as in the D-diffusion model, that
is, ai, is the time pressure, vi is the item difficulty, γp is the response caution, and θp is the
actual ability being measured by the test. As ai, vi, θp, and γp are strictly positive, µ has a
lower bound of 0 which ensures that response times are slowest for µp = 0 and get faster for
increasing µ, because of more difficult items (larger vi) or higher ability (larger θp).

2.3. Relation to other models

The diffusion IRT model family has some interesting relations to existing models. Most
notably, van der Maas et al. (2011) discuss how the parameters from the Q-diffusion model
have a relation with the parameters from van der Linden’s hierarchical model for responses and
response times (van der Linden 2007). Specifically, the time intensity and speed parameter
from the hierarchical model are related linearly to log θp/γp and log vi/ai respectively for
large µ × α. In addition, the D-diffusion model can be applied to investigate person fit
(Meijer and Sijtsma 2001). That is, the D-diffusion model in Equation 4 is equivalent to
a two-parameter IRT model with a random discrimination parameter, ap. Such models are
commonly used in assessing person fit (e.g., Strandmark and Linn 1987). Next, a similar
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model as the Q-diffusion model in Equation 7 was proposed by Ramsay (1989). Specifically,
Ramsay proposed the so-called quotient IRT model which – for two-choice data – is given
by: logit[P(xpi = 1|θ)] = θp/λi, where λi is an item parameter (see also van der Maas et al.
2011). Finally, Tuerlinckx et al. (2016) discuss how the D-diffusion model can be seen as a
generalized linear latent variable model with two interacting latent variables. Specifically, if
γp from Equation 4 is rewritten as a normally distributed zero-centered latent variable plus a
mean, γ

′

p + κ, then it follows that

logitP(xpi = 1|θp, γ
′

p) =
γ

′

p + κ

ai
×(θp − vi) = − κ

ai
vi +

κ

ai
θp −

vi
ai
γ

′

p +
1

ai
γ

′

pθp, (8)

which is a latent variable model with two latent variables, γ
′

p and θp, and their interaction.

3. The diffusion IRT model package

Using the package diffIRT in the R statistical programming environment, the general model
given by Equation 1 subject to Equations 2 and 3 for the D-diffusion model and subject to
Equations 5 and 6 for the Q-diffusion model can be fitted to responses and response time data.
In this section, we discuss the main modeling tools, i.e., the parameter estimation procedure
and the assessment of model fit.

3.1. Parameter estimation

The likelihood function

Parameters of the diffusion IRT model are estimated using marginal maximum likelihood
(MML; Bock and Aitkin 1981). In this likelihood-based procedure, the person parameters
from a given statistical model (in this case θp and γp) are treated as nuisance parameters.
That is, by assuming a distribution for these parameters, they can be integrated out of the
likelihood equation. The resulting marginal likelihood is only a function of the item param-
eters and the population parameters that describe the distribution of the person parameters
in the population. In present case, we choose a normal distribution for the person parameters
that are in R (i.e., θp in the D-diffusion model, see Equation 2) and a log-normal distribution
for the person parameters that are in R

+ (i.e., γp and θp in case of the Q-diffusion model, see
Equations 5 and 6; and γp in case of the D-diffusion model, see Equation 3). The log-normal
distribution is chosen mainly for reasons of convenience, that is, the log-normal distribution
is appropriate for the parameters at hand as this distribution is bounded by zero. In addition,
a logarithmic transformation of a log-normal variate has a normal distribution which numer-
ically facilitates the use of Gauss-Hermite quadrature approximation of the integrals in the
likelihood function (see below). Note that van der Maas et al. (2011) and Tuerlinckx et al.
(2016) also used a log-normal distribution for the strictly positive person parameters in the
D- and Q-diffusion model.

Given the above, the marginal log likelihood of the N × k matrix with responses X and
response times T with elements xpi and tpi respectively, is given for the Q-diffusion model by
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ℓ (τ ;X,T ) =

N
∑

p=1

log

∫∫

R

k
∏

i=1

h
[

xpi, tpi|exp(γ∗p), exp(θ∗p)
]

× f(γ∗p;ωγ)× g
(

θ∗p;ωθ

)

dγ∗pdθ
∗

p (9)

In this equation, h(.) is given by Equation 1 with µ and α given by Equation 5 and Equation 6
respectively. Functions f(γ∗p ;ωγ) and g(θ∗p;ωθ) are normal density functions with mean 0 and
standard deviation ωγ and ωθ respectively. Note that in the above we used θp = exp(θ∗p) and
γp = exp(γ∗p) such that θ∗p and γ∗p are normal variates and θp and γp are log-normal variates. τ
is a vector of free parameters in the model, i.e., τ = [a∗1, . . . , a

∗

k, v
∗
1, . . . v

∗

k,Ter
∗
1, . . . ,Ter

∗

k, ω
∗
γ , ω

∗

θ ]
in which the star denotes that the corresponding parameter is log-transformed to parameter
space (−∞,∞) for numerical convenience.

The likelihood function in Equation 9 is given for the Q-diffusion model. However, the likeli-
hood function for the D-diffusion model is straightforwardly obtained by first using Equation 2
for α and Equation 3 for µ in function h(.), and then by dropping the transformation of θp,
i.e., θp = θ∗p, and by dropping the transformation of vi, i.e., vi = v∗i . That is the likelihood
function for the D-diffusion model is given by

ℓ (τ ;X,T ) =

N
∑

p=1

log

∫∫

R

k
∏

i=1

h
[

xpi, tpi|exp(γ∗p), θp
]

× f(γ∗p;ωγ)× g (θp;ωθ) dγ
∗

pdθp (10)

with h(.) given by Equation 1 with µ and α given by Equation 2 and Equation 3 respectively.

Evaluation of function h(.) in Equation 9 and Equation 10 can be numerically demanding due
to the presence of the infinite sum (see Equation 1). Therefore, in the diffIRT package, we
evaluate this function using the procedure outlined in Navarro and Fuss (2009). In short, this
procedure uses two different infinite series expansions of h(.), one which converges quickly for
small response times, and one which converges quickly for larger response times. We refer to
Navarro and Fuss (2009) for more details.

Approximation of the integrals

The marginal likelihood function above contains two integrals that do not have a closed form
expressions. To enable optimization of this function, we approximate the integrals using
Gauss-Hermite quadratures. Within IRT modeling, this is a commonly used approach, e.g., it
is used in R package ltm (Rizopoulos 2006) and in the software packages Mplus (Muthén and
Muthén 2007), BILOG (Mislevy and Bock 1990), and MULTILOG (Thissen 1991). Using
Gauss-Hermite quadratures, the log likelihood function above can be written as

ℓ (τ ;X,T ) ≈
N
∑

p=1

log
R
∑

r=1

S
∑

s=1

W
′

1rW
′

2s

k
∏

i=1

h
(

xpi, tpi|N
′

1r, N
′

2s

)

(11)

where

W
′

1r =
1√
π
W1r and W

′

2r =
1√
π
W2r

and

N
′

1r =
√
2N1r and N

′

2s =
√
2N2s.
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That is, the integrals are replaced by weighted sums. Within these summations, N1r and N2s

are the so-called “nodes” which are positions on the dimensions of integration and W1r and
W2s are the corresponding weights. In addition, R and S denote the number of nodes that
are being used for the θ∗p and γ∗p dimension, respectively. The nodes and weights can be found
in standard tables (Stroud and Secrest 1966). In diffIRT, we used the function gauss.quad

from the R package statmod (Smyth, Hu, Dunn, Phipson, and Chen 2015) to obtain the
weights and nodes. Generally, the more nodes are used, the better the approximation of the
likelihood will be. However, computational demands increase rapidly as, for instance, with 10
nodes for each dimension, 10 × 10 = 100 evaluations of h(.) are necessary for each response
of a single subject. In the package diffIRT, the number of nodes can be set by the user, with
default K = S = 7. This number of quadrature points showed satisfactory results during the
package development. This is also demonstrated below in the simulation study. However, in
practice it is advisable to try different numbers of nodes to check the stability of the results.
In Equation 11, missing values (NA) are allowed in X and T . If a given element in X is
missing, the corresponding element in T is also assumed treated as missing and vice versa.
For missing elements, calculation of the likelihood is skipped.

Optimization and starting values

As the likelihood function is now numerically tractable and efficiently formulated, we move
on to discuss optimization of the function. Within the diffIRT package, we implemented
−2× ℓ(τ ;X,T ) for the D- and Q-diffusion model in C code to increase speed of computation.
The C code is subsequently linked to R in which we minimize this function using the built-
in R function optim. We use the Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS; see,
e.g., Nocedal and Wright 2006, p. 194) which is a quasi-Newton algorithm that uses function
evaluations and first-order derivatives. We approximated the first-order derivatives of −2 ×
ℓ(τ ;X,T ) with respect to τ by a finite difference approximation. The spacing of the finite
difference between two function evaluations equals 1e-7 by default as this value turned out
to be sufficiently small during the package development.

As the procedure might be sensitive to the starting values for the parameter vector τ , these
values should be carefully chosen. In the diffIRT package, starting values can be chosen by the
user. However, by default, starting values are calculated on basis of the EZ-diffusion moment
estimators of the diffusion model (Wagenmakers, van der Maas, and Grasman 2007). In the
EZ-diffusion approach, α, µ, and Ter from the traditional diffusion model in Equation 1 are
calculated using closed form expressions for these parameters. The expressions are derived by
equating the expected mean response time, the expected variance of the response times, and
the expected proportion correct of the responses to the corresponding observed mean, variance
and proportion correct. Here, these expressions are used in diffIRT to obtain starting values
for a∗i , v

∗

i ,Ter
∗

i , ω
∗

θ , and ω∗
γ by adapting the R code provided by Wagenmakers et al. (2007).

That is, item parameters are calculated by applying the EZ-diffusion model on the responses
and response times of each item separately. Starting values for ω∗

θ and ω∗
γ are obtained by

applying the EZ-diffusion model on the item responses and response times for each subject
separately and calculating ω∗

θ and ω∗
γ using the formula for the log-normal distribution (in

case of the D-diffusion model, this is not necessary for ω∗

θ as in this model θp follows a normal
distribution). The resulting values are biased by definition as for boundary separation, α,
for instance, it holds that α = γp/ai (Equations 3 and 6), i.e., the starting values for ai are
conflated by γp. We reduce this bias by multiplying the initial value for ai by E(γp) and the
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initial value for vi by E(θp) for the Q-diffusion model. In case of the Q-diffusion model, both
E(θp) and E(γp) can be calculated using the initial value for ωγ . In case of the D-diffusion
model, only E(γp) needs to be calculated from the initial value of ωγ as E(θp) = 0. This
method of correcting the starting values reduces bias but does not eliminate it totally. This
is plausible as item and person effects cannot be fully disentangled using the EZ-diffusion
model as it assumes interchangeable items and subjects. However, most importantly, the
starting values obtained in this way showed good performance. This will be illustrated in the
simulation study.

3.2. Assessment of model fit

Assessment of model fit is challenging in models such as the present as a general statistical
method to assess the absolute goodness of fit on the responses and response times simultane-
ously does not exist. We therefore follow Tuerlinckx et al. (2016) and assess absolute goodness
of fit on the responses and response times separately. In addition, we propose some model fit
indices to assess comparative goodness of fit.

Absolute goodness of fit

Responses. For the responses we use the limited-information test for multivariate contingency
tables proposed by Maydeu-Olivares and Joe (2005, 2006). This test consists of comparing the
observed and expected joint moments of the binary data up to order r. As advocated in the
papers by Maydeu-Olivares and Joe, the traditional full-information Pearson χ2 test statistic
(which arises when r equals the total number of joint moments, i.e., when r is equal to k,
the number of items), does not follow its hypothetical χ2-distribution in the case of small cell
values. In addition, as the χ2-statistic needs all k joint moments, this involves calculations of
2k − 1 predicted score patterns, which quickly becomes numerically demanding. As Maydeu-
Olivares and Joe show, in case of both limited sample sizes (100 subjects) and large sample
sizes (2500 subjects), their test – using r = 2 or r = 3 – outperforms the traditional χ2-
statistic in terms of type I error rate for a two parameter IRT model. We therefore adopt this
statistic in the diffIRT package. The statistic, Mr, is given by

Mr = N(pr − πr)
⊤Cr(pr − πr) (12)

where pr is the vector of observed joint moments up to order r, e.g., for 2 items and r = 2,
this vector contains [px1=1, px2=1, px1=1,x2=1], πr is a vector containing the corresponding
joint moments predicted by the statistical model given the parameter estimates (obtained
with maximum likelihood estimation or another minimum variance estimator), and Cr is
given by

Cr = Ω
−1
r −Ω

−1
r ∆r(∆

⊤

r Ω
−1
r ∆r)

−1
∆

⊤

r Ω
−1
r (13)

where Ωr is the covariance matrix of the residuals (i.e., pr−πr from Equation 12), and ∆r is a
matrix containing the first-order derivatives of πr with respect to the model parameters. The
test statistic Mr in Equation 12 has an asymptotic χ2-distribution with degrees of freedom
equal to

df =

r
∑

q=1

(

n

q

)

− s,
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where the summation gives the number of observed proportions (i.e., the observed joint mo-
ments up to order r) on which the statistic is based, and s will generally be equal to the
number of free parameters in the statistical model. See for more details Maydeu-Olivares and
Joe (2005). In the diffIRT package, the procedure as outlined above is implemented using
for πr the proportions of correct responses as predicted by the D- or Q-diffusion model given
the MML parameter estimates. It is important to note that the statistic Mr is based on the
response data only which implies that s above will not be equal to 3×k+2 (which is the total
number of parameters in the full diffusion IRT model). At the level of the response data, for
the Q-diffusion model only, s = k + r + 2 parameters are identified, and for the D-diffusion
s = 2 × k + r + 2 parameters are identified. Note that this implies that the Mr test is not
possible for r = 1 as the degrees of freedom will be smaller than 0 (i.e., in that case, we have
more parameters than observed statistics). In the simulation study below we show that using
the correction above, the Mr statistic follows its theoretical distribution. In calculating Mr

within the diffIRT package, the order r can be inputted by the user with default r = 2 as this
number showed satisfactory results in Maydeu-Olivares and Joe (2005).

Response times. For the response times, we use QQ-plots to investigate goodness of fit.
That is, the quantiles of the observed response time distribution for a given item, q1i, . . . , qzi,
are plotted against the predicted quantiles given the parameter estimates, q̃1i, . . . , q̃zi. If
the model fits the data, the observed and predicted quantiles are on a straight line. The
probability between successive quantiles is given by

1

z
=

∫ q̃li

q̃(l−1)i

{

E(xpi)× h̃(xpi = 1, tpi) + [1− E(xpi)]× h̃(xpi = 0, tpi)
}

dtpi, (14)

where h̃(.) is the joint density of the diffusion model (Equation 1) evaluated at the estimated
parameters. By approximating the integral in Equation 14 using the R function integrate,
q̃li can be solved for all l and all i by using the R function uniroot. This procedure requires an
approximate interval which covers the predicted quantiles (0, ci), where ci is the upper bound
of this interval for item i. As the range of the predicted quantiles it commonly not exactly
known, ci could be loosely chosen. However, choosing a very large value for ci will generally
result in a successful solution by uniroot, but will be computationally demanding. Choosing
a very small value for ci will be less computationally demanding, but if ci is too small, (0, ci)
will not contain the solution and uniroot will fail. In diffIRT, the upper bound of the interval
ci equals 2×MAX(tpi) by default. This default was chosen more or less intuitively (i.e., the
upper bound should be large enough to cover the solution, but not too large to avoid heavy
computational burden) and worked well in the testing stage of the package. If the value is not
large enough, an error message will be produced. In this case ci could be manually raised.

Comparative goodness of fit

As we use MML estimation, the value of the likelihood function at its maximum can be used
to calculate various comparative goodness of fit indices. In the diffIRT package we include
the Akaike’s information criterion (AIC; Akaike 1974), the Bayesian information criterion
(BIC; Schwarz 1978), the sample size adjusted BIC (sBIC; Sclove 1987), and the deviance
information criterion (DIC; Spiegelhalter, Best, Carlin, and Linde 2002), see Neale, Boker,
Xie, and Maes (2006, p. 93) for the mathematical expressions for these indices. The indices
can be used to compare different models in terms of goodness of fit, where it holds for all
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indices that a lower value indicates a better model fit. Indices above can be used to compare
the diffusion IRT model to different non-nested models. In addition, standard output of
diffIRT contains −2 × ℓ(τ̂ ;X,T ) evaluated at the estimated parameters, τ̂ . This value can
be used to conduct likelihood ratio tests between two nested diffusion IRT models. For
instance, a full model with estimated parameter vector, τ̂A, could be compared to a model
in which the ai parameters are constrained to be equal with estimated parameter vector τ̂ 0.
To do so, −2 × (ℓ(τ̂A;X,T ) − ℓ(τ̂ 0;X,T )) needs to be calculated which is asymptotically
χ2-distributed with degrees of freedom that are equal to the difference in the number of
free parameters between both models. A significant likelihood ratio test indicates that the
parameter constraints in the restricted model are not tenable. As the likelihood ratio test is
known to be sensitive to large sample size (see Schermelleh-Engel, Moosbrugger, and Müller
2003, p. 34), it is advisable to consider other fit indices as well.

4. Simulation study

To show that the models discussed in this paper are feasible, we conducted a simulation
study to demonstrate (1) that true parameter values are adequately recovered; and (2) that
the test statistics proposed above follow their theoretical distributions. To do so, we simulated
data according to the D-diffusion and the Q-diffusion IRT model with the function simdiff

from the diffIRT package. This function uses the rejection algorithm described in Tuerlinckx,
Maris, Ratcliff, and De Boeck (2001) with the appropriate Q- and D-diffusion decompositions
for boundary, α, and drift, µ.

4.1. Design

We used the item parameter setup in Table 1. In addition, the population parameters were
chosen to equal ωγ = 0.3 and ωθ = 0.3 for the Q-diffusion model, and ωγ = 0.3 and ωθ = 1
for the D-diffusion model. As can be seen in the table, we systematically varied the item
parameters across items resulting in different expected values for the responses, xpi, and the
response times, tpi. These expected values are calculated using the expression for the mean,
variance, and probability correct in Wagenmakers et al. (2007), together with the appropriate
decomposition of α and µ (Equations 2, 3, 5, and 6) and integrating out the person variables
γp and θp.

For both the Q- and D-diffusion model we simulated 100 datasets for N = 100 and N = 200.
Note that we chose not to study the asymptotic behavior of the model (i.e., by taking a sample
size of for instance 10000) as we are mainly interested in establishing whether the parameter
recovery is acceptable in more realistic sample sizes. However, given the results as presented
below, we have no reason to doubt the asymptotic properties of the model. To the data we
fitted four models: (1) the full model; (2) a model with a1 to a4 equal, a5 to a8 equal, and a9
to a12 equal; 3) a model with v1, v5, v9 equal, v2, v6, v10 equal, v3, v7, v11 equal, and v4, v8,
v12 equal; 4) a model with Ter1 to Ter6 equal and Ter7 to Ter12 equal. Note that all these
equality constraints hold (see Table 1). In each replication we conducted a likelihood ratio
test between a model with and without the above constraints. In addition, we conducted the
Mr test on the responses using r = 2. All settings not discussed (e.g., number of quadrature
points, etc.) equaled the default values of the diffIRT package.
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Par Item1 Item2 Item3 Item4 Item5 Item6 Item7 Item8 Item9 Item10 Item11 Item12
Q-diffusion model

a∗i 0.37 0.37 0.37 0.37 0.47 0.47 0.47 0.47 0.61 0.61 0.61 0.61
v∗i 1 1.22 1.49 1.82 1 1.22 1.49 1.82 1 1.22 1.49 1.82
Ter i 2 2 2 2 2 2 3 3 3 3 3 3
E(xpi) 0.92 0.89 0.85 0.82 0.88 0.85 0.81 0.77 0.84 0.8 0.76 0.72
E(tpi) 3.26 3.42 3.57 3.71 2.88 2.98 4.06 4.13 3.61 3.65 3.69 3.72
VAR(tpi) 0.96 1.33 1.75 2.2 0.53 0.69 0.85 1.02 0.27 0.33 0.39 0.44

D-diffusion model

a∗i 0.37 0.37 0.37 0.37 0.47 0.47 0.47 0.47 0.61 0.61 0.61 0.61
v∗i −1 −0.5 0.5 1 −1 −0.5 0.5 1 −1 −0.5 0.5 1
Ter i 2 2 2 2 2 2 3 3 3 3 3 3
E(xpi) 0.8 0.66 0.34 0.2 0.78 0.65 0.35 0.22 0.75 0.63 0.37 0.25
E(tpi) 3.3 3.47 3.47 3.3 2.88 2.98 3.98 3.88 3.59 3.64 3.64 3.59
VAR(tpi) 1.47 1.79 1.79 1.47 0.66 0.81 0.81 0.66 0.29 0.35 0.35 0.29

Table 1: True parameter values used in the simulation study, with model implied expected
marginal response time, E(tpi), response time variance, VAR(tpi), and proportion correct E(xpi)
for each item. The expected values for xpi and tpi are calculated given ωγ = 0.3 and ωθ = 0.3
for the Q-diffusion model, and ωγ = 0.3 and ωθ = 1 for the D-diffusion model.
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Figure 2: Average starting values of ai and vi calculated by the diffIRT function plotted
against the true parameter values in the simulation study for N = 200. The straight line
denotes a one-to-one correspondence.
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Par Item1 Item2 Item3 Item4 Item5 Item6 Item7 Item8 Item9 Item10 Item11 Item12
ai true 0.37 0.37 0.37 0.37 0.47 0.47 0.47 0.47 0.61 0.61 0.61 0.61

N = 100 0.37 0.37 0.37 0.37 0.47 0.49 0.48 0.47 0.61 0.62 0.61 0.61
(0.03) (0.03) (0.03) (0.02) (0.05) (0.03) (0.03) (0.03) (0.05) (0.04) (0.04) (0.04)

N = 200 0.37 0.37 0.37 0.37 0.48 0.48 0.47 0.47 0.61 0.61 0.61 0.61
(0.02) (0.02) (0.02) (0.02) (0.03) (0.02) (0.02) (0.02) (0.03) (0.03) (0.03) (0.03)

vi true 1.00 1.22 1.49 1.82 1.00 1.22 1.49 1.82 1.00 1.22 1.49 1.82
N = 100 1.01 1.21 1.49 1.83 1.00 1.27 1.56 1.87 1.01 1.25 1.55 1.90

(0.11) (0.17) (0.22) (0.37) (0.14) (0.20) (0.28) (0.40) (0.16) (0.18) (0.32) (0.50)
N = 200 1.00 1.23 1.52 1.85 0.99 1.22 1.52 1.84 1.01 1.24 1.47 1.81

(0.08) (0.11) (0.16) (0.22) (0.10) (0.13) (0.17) (0.22) (0.12) (0.15) (0.18) (0.23)
Ter i true 2.00 2.00 2.00 2.00 2.00 2.00 3.00 3.00 3.00 3.00 3.00 3.00

N = 100 2.00 2.01 2.02 2.01 1.98 2.01 3.01 3.00 3.00 3.01 3.00 3.00
(0.03) (0.04) (0.03) (0.03) (0.20) (0.02) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01)

N = 200 2.00 2.01 2.01 2.00 2.01 2.00 3.00 3.00 3.00 3.00 3.00 3.00
(0.02) (0.03) (0.03) (0.03) (0.02) (0.01) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01)

Table 2: Mean (and standard deviation) of the item parameter estimates over the replications
in the simulation study for the Q-diffusion model. True value for ωγ equaled 0.3 which was
estimated to be 0.29 (0.02) for N = 100 and 0.29 (0.02) for N = 200. True value for ωθ

equaled 0.3 which was estimated to be 0.29 (0.07) for N = 100 and 0.30 (0.05) for N = 200.

Par Item1 Item2 Item3 Item4 Item5 Item6 Item7 Item8 Item9 Item10 Item11 Item12
ai true 0.37 0.37 0.37 0.37 0.47 0.47 0.47 0.47 0.61 0.61 0.61 0.61

N = 100 0.37 0.37 0.37 0.37 0.48 0.47 0.48 0.48 0.60 0.61 0.61 0.62
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.04) (0.04) (0.04) (0.04) (0.04)

N = 200 0.37 0.37 0.37 0.38 0.48 0.48 0.48 0.48 0.62 0.62 0.62 0.62
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.03) (0.03) (0.03)

vi true −1.00 −0.50 0.50 1.00 −1.00 −0.50 0.50 1.00 −1.00 −0.50 0.50 1.00
N = 100 −0.96 −0.48 0.52 1.02 −0.94 −0.48 0.52 1.03 −0.98 −0.47 0.49 1.02

(0.21) (0.22) (0.23) (0.19) (0.23) (0.22) (0.22) (0.20) (0.24) (0.24) (0.22) (0.23)
N = 200 −0.97 −0.47 0.52 1.00 −0.97 −0.48 0.51 1.01 −0.96 −0.46 0.51 1.01

(0.17) (0.17) (0.18) (0.17) (0.17) (0.16) (0.18) (0.16) (0.18) (0.19) (0.19) (0.19)
Ter i true 2.00 2.00 2.00 2.00 2.00 2.00 3.00 3.00 3.00 3.00 3.00 3.00

N = 100 2.01 2.01 2.01 2.01 2.01 2.00 3.01 3.01 3.00 3.01 3.00 3.01
(0.03) (0.04) (0.04) (0.03) (0.02) (0.02) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01)

N = 200 2.00 2.00 2.00 2.00 2.00 2.00 3.00 3.00 3.00 3.00 3.00 3.00
(0.02) (0.02) (0.02) (0.02) (0.01) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01)

Table 3: Mean (and standard deviation) of the item parameter estimates over the replications
in the simulation study for the D-diffusion model. True value for ωγ equaled 0.3 which was
estimated to be 0.30 (0.02) for N = 100 and 0.29 (0.02) for N = 200. True value for ωθ

equaled 1.0 which was estimated to be 0.87 (0.08) for N = 100 and 0.85 (0.05) for N = 200.

4.2. Results

In Figure 2, the true parameter values are plotted against the starting values for ai and vi
for N = 200 for both the D-diffusion and Q-diffusion model. As can be seen, the starting
values are well correlated to the true values, but biased. As discussed above, this bias is due
to the fact that γp cannot be disentangled from ai, and θp cannot be disentangled from vi
using the EZ-diffusion model. However, as starting values, these values have utility as will
appear below.

Results concerning the item parameter recovery are displayed in Table 2 for the Q-diffusion
model and in Table 3 for the D-diffusion model. For both models, all parameters are recovered
well with the vi estimates having somewhat more variability as compared to the ai and Ter i
estimates. As can be seen in the footnotes of the tables, the population parameters, ωγ and
ωθ, are also recovered well, with ωθ slightly underestimated in case of the D-diffusion model
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Figure 3: Histogram (left column) and corresponding QQ-plot (right column) of the distribu-
tion of the M2 statistic calculated on the responses in the simulation study for N = 200. The
theoretical distributions are χ2(62) for the Q-diffusion model and χ2(50) for the D-diffusion
model.

(0.87 for N = 100 and 0.85 for N = 200, where the true value equals 1).

In Figure 3, the theoretical and observed distributions of the Mr statistic are depicted for
the M2 test on the responses in the case of N = 200. As argued above, the theoretical

distribution is expected to be χ2 with degrees of freedom equal to df =
r
∑

q=1

(

n
q

)

− s, which

gives 62 for the Q-diffusion model and 50 for the D-diffusion model. Note that s needs to
be adjusted as described above. As can be seen in the figure, there is no reason to suspect
systematic departures of M2 from these theoretical distributions. Figures 4 and 5 contain
similar graphs for the likelihood ratio test statistics under H0 in the case that respectively
ai and vi are constrained to the equality pattern of their true values (graphs for Ter i are
not given to save space, but results for this parameter are the same). In case of ai, the full
model containing 12 ai parameters, is compared to a model with only 3 ai parameters (i.e.,
a
′

1 = a1 = a2 = a3 = a4; a
′

2 = a5 = a6 = a7 = a8; and a
′

3 = a9 = a10 = a11 = a12). Thus,
a likelihood ratio test between these models will result in a χ2(9) distribution under H0. In
case of vi, the constrained model contains only 4 vi parameters (i.e., v

′

1 = v1 = v5 = v9; v
′

2 =
v2 = v6 = v10; v

′

3 = v3 = v7 = v11; v
′

4 = v4 = v8 = v12). Thus, a likelihood ratio test between
these models will result in a χ2(8) test. As can be seen in the figure, there are no systematic
departures from these theoretical distributions.
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Figure 4: Histogram (left column) and corresponding QQ-plot (right column) of the dis-
tribution of the likelihood ratio statistic under H0 comparing the full model with a con-
strained model subject to a

′

1 = a1 = a2 = a3 = a4; a
′

2 = a5 = a6 = a7 = a8; and
a
′

3 = a9 = a10 = a11 = a12 in the simulation study for N = 200. The theoretical distri-
butions are χ2(9) for both the Q-diffusion model and for the D-diffusion model.

5. Package description

In this section we describe and illustrate the basic functions of the diffIRT package. For an
overview of all the functions, see Table 4.

To start, the function simdiff can be used to simulate data according to either the D-diffusion
model or the Q-diffusion model. Here we simulate data for 100 subjects and 10 items that
follow a Q-diffusion model:

R> set.seed(1310)

R> data <- simdiff(100, 10, model = "Q")

True values are randomly chosen by the function. It is also possible to provide user-specified
true values to the function. We fit the Q-diffusion model to these simulated data using:

R> out <- diffIRT(data$rt, data$x, model = "Q", se = TRUE)

As can be seen, we explicitly requested standard errors of the parameter estimates. By default
these are not calculated as it will increase estimation time. We can now check the results:
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Figure 5: Histogram (left column) and corresponding QQ-plot (right column) of the distri-
bution of the likelihood ratio statistic under H0 comparing the full model with a constrained
model subject to v

′

1 = v1 = v5 = v9; v
′

2 = v2 = v6 = v10; v
′

3 = v3 = v7 = v11; v
′

4 = v4 = v8 =
v12 in the simulation study for N = 200. The theoretical distributions are χ2(8) for both the
Q-diffusion model and for the D-diffusion model.

R> summary(out)

RESULTS

-------

a[i] se.a[i] v[i] se.v[i] Ter[i] se.Ter[i]

item 1 0.728 0.040 1.794 0.469 0.843 0.011

item 2 1.071 0.055 4.448 3.932 0.622 0.004

item 3 0.433 0.029 1.348 0.203 1.383 0.028

item 4 0.348 0.027 1.106 0.143 0.708 0.041

item 5 0.762 0.043 1.426 0.317 0.885 0.010

item 6 0.603 0.037 1.163 0.193 0.914 0.013

item 7 0.365 0.026 1.178 0.158 0.690 0.039

item 8 0.772 0.044 1.656 0.415 1.450 0.010

item 9 0.523 0.031 1.541 0.280 0.544 0.020

item 10 0.419 0.024 2.706 0.637 0.915 0.035

omega[gamma]: 0.248
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Name Example call Description
diffIRT out <- diffIRT(T, X, model =

"Q")

Fits the Q-diffusion model (model = "Q") or the
D-diffusion model (model = "D", default) to the
response time data in matrix T and response ma-
trix X.

RespFit RespFit(out, 2) Calculates the M2 statistic from the modeling
results in object out.

QQdiff QQdiff(out, item = 1:4) Plots a histogram and corresponding QQ-plot of
the predicted and observed response time distri-
bution for items 1 to 4.

simdiff data <- simdiff(100, 10, model

= "D")

Simulates data according to the Q-diffusion
model (model = "Q") or the D-diffusion model
(model = "D", default) for 100 subjects and 10
items.

factest factest(out) Estimates the factor scores of γp and θp for all
subjects.

anova anova(out1, out2) Conducts a likelihood ratio test between two
nested models.

coef coef(out) Returns the estimated parameters in object out.
summary summary(out) Returns a summary of the model fitting results

in object out including parameter estimates and
fit statistics.

simdiffT data <- simdiff(1000, 2, 1,

.3, 3)

Simulates data according to the traditional dif-
fusion model for a single subject and 1000 trials.

Table 4: Overview of the functions in the diffIRT package with example call and description.

std. err: 0.065

omega[theta]: 0.402

std. err: 0.169

---------------------------

--POPULATION DESCRIPTIVES--

Person Boundary (lognormal): Var(gamma): 0.067

Person Drift (lognormal): Var(theta): 0.206

---------------------------

---MODEL FIT STATISTICS---

-2 x logLikelihood: 2053.414

no. of parameters: 32

AIC: 2117.414

BIC: 2200.779

sBIC: 2099.715

DIC: 2142.601

---------------------------

Note that omega[gamma] and omega[theta] refer to the estimates of ωγ and ωθ respectively
in Equation 9. To see whether the parameters are adequately recovered, we plot the true
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Figure 6: Plot from the illustration: Estimated ai parameters against the true ai parameters.
The straight line denotes a one-to-one correspondence.

values (which are stored in object data) against the estimated parameters (that are in object
out):

R> plot(data$ai, coef(out)$item[, "ai"])

R> abline(0, 1)

The resulting plot is in Figure 6. As can be seen, the ai parameters are adequately recovered.
Next, we study the model fit. First, we use the Mr-test of order 2 on the responses using:

R> resp_out <- RespFit(out, 2)

R> resp_out

Q-diffusion Model Fit of Responses

---------------------------------

Maydeu-Olivares & Joe Test of Order 2

Overall Test Statistic

Mr = 27.874 df= 41 p = 0.941

The Mr statistic is non-significant indicating that the model fits. In case of a significant
Mr statistics, residuals could be examined using resp_out$Z, which gives the standardized
residual proportions for each score pattern of the first r moments. Next we examine the model
fit on the response times using the function QQdiff:

R> QQdiff(out, item = 1:3)

which produces the plot in Figure 7. It turns out that for the first three items, the predicted
and observed distributions appear to coincide, with some minor misfit in the tails as is common
in QQ-plots due to the relatively few observations in this region of the distribution.

Next, we conduct a likelihood ratio test to see whether the vi parameters are equal across
items. To do so we fit a Q-diffusion model subject to the constraint that v1 = v2 = . . . = v10:
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Figure 7: Plot from the illustration: Histogram with corresponding QQ-plot of the predicted
and observed response time distribution for the Q-diffusion model.

R> out_vi <- diffIRT(data$rt, data$x, model = "Q",

+ constrain = c(1:10, rep(11,10), 12:21, 22, 23))

As can be seen, the constraint is introduced by providing a vector of parameter numbers.
Each parameter should have a unique number. The order in which the parameters should be
labeled is a1, . . . , a10, v1, . . . , v10, Ter1, . . . , Ter10, ωγ , and ωθ, i.e., in the same order as the
parameter vector τ in Equations 9 and 11. Since we only have one vi parameter in the present
case (as we want to constrain all vi to be equal across items), we label all vi parameters using
the same number, that is 11 in this case. The following code will do exactly the same:

R> out_vi_alt <- diffIRT(data$rt, data$x, model = "Q",

+ constrain = "vi.equal")

This code makes use of the pre-programmed constraint option, which is more easy to use but
less flexible. Other pre-programmed constraint arguments are "ai.equal", "ter.equal",
and "scale.equal". In which the latter means that ωγ and ωθ are fixed to be equal in the
model. For the model with equal vi in object out_vi, the output (not printed here) displays
fit indices AIC, BIC, sBIC, and DIC which are all larger for this constraint model as compared
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to the full model in out except for BIC. To conduct a likelihood ratio test between the two
models we use:

R> anova(out_vi, out)

Likelihood Ratio Table

AIC BIC sBIC DIC log.Lik LRT df p.value

out_vi 2127 2187 2114 2145 2081.171

out 2117 2201 2100 2143 2053.414 27.76 9 0.001

i.e., at a 0.05 level of significance, we reach the same conclusion as compared to the AIC,
sBIC, and DIC, that is, the restrictions in the model in object out_vi are not tenable.

We now illustrate the use of fixed parameter constraints. As an example, we fix all ai param-
eters in the simulated dataset to be equal to 0.5 as follows:

R> out_fix <= diffIRT(data$rt, data$x, model = "Q", constrain = c(rep(0,

+ nit), 1:10, 11:20, 21, 22), start = c(rep(.5, nit), rep(NA, 22)))

As can be seen, in the constrain argument we assigned all ai parameters a number of 0
denoting that these parameters are fixed. In addition, we assigned the value 0.5 to the
corresponding elements in the start argument, leaving the other elements NA. Requesting
output using the print comment gives:

R> out_fix

RESULTS Q-DIFFUSION IRT ANALYSES

Item parameter estimates

-------

a[i] v[i] Ter[i]

item 1 0.5 1.324 0.770

item 2 0.5 2.674 0.450

item 3 0.5 1.805 1.423

item 4 0.5 1.737 0.805

item 5 0.5 1.042 0.801

item 6 0.5 1.126 0.888

item 7 0.5 1.788 0.770

item 8 0.5 1.307 1.359

item 9 0.5 1.640 0.538

item 10 0.5 3.623 0.979

Population parameter estimates

-------

omega[gamma]: 0.242

omega[theta]: 0.489

---------------------------
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Figure 8: Plot from the illustration: Estimated γp and θp parameters against the true param-
eter values. The straight line denotes a one-to-one correspondence.

All ai are fixed to 0.5. We could again conduct a likelihood ratio test, which has 10 degrees
of freedom this time:

R> anova(out_fix, out)

Likelihood Ratio Table

AIC BIC sBIC DIC log.Lik LRT df p.value

out_fix 2508 2566 2496 2526 2464.194

out 2117 2201 2100 2143 2053.414 410.78 10 <0.001

Not surprisingly, the test is significant. Finally, we estimate the factor scores, i.e., we obtain
estimates for γp and θp for each subject in the sample. To do so we use:

R> fs <- factest(out)

Note that we use the full model object, as this was the best fitting model. Matrix fs now
contains estimates of γp and θp in the first and second columns, respectively. We plot these
estimates against the true values in Figure 8. As can be seen, parameters are adequately
recovered, where the estimates of γp are subject to more variability as compared to estimates
of θp.

6. Applications

In this section we present three applications of the models presented in this paper to real data.
In the first applications we fit the D-diffusion IRT model to an extraversion dataset. In the
second application we fit the Q-diffusion IRT model to data pertaining to mental rotation. In
the third application we illustrate how the package can be used to fit the traditional diffusion
model to experimental data.
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6.1. Application I: D-diffusion modeling of extraversion

The first application concerns an analysis of unpublished data comprising scores of 146 sub-
jects on 10 items purported to measure extraversion. Each item consists of a particular
description related to extraverted behavior, e.g., active or noisy. Subjects were asked to indi-
cate whether (yes/no) these descriptions are applicable to their personalities. Both responses
and response times were recorded. The data is available within the diffIRT package. The first
10 columns contain the responses, the next 10 columns contain the response times in seconds.
Below we analyze the extraversion data using a D-diffusion model. First, we open the data
and fit a D-diffusion model:

R> data("extraversion", package = "diffIRT")

R> x <- extraversion[, 1:10]

R> rt <- extraversion[, 11:20]

R> res1 <- diffIRT(rt, x, "D", se = TRUE)

In Table 5, the results from object res1 are depicted (i.e., parameter estimates and standard
errors) together with item content and results from a traditional two parameter model (ob-
tained using R package ltm; Rizopoulos 2006). As can be seen some differences are present in
the ordering of the items on basis of the difficulty parameters from the two models, that is, vi
in the D-diffusion model and βi in the two parameter model. For instance, in the D-diffusion
model eupeptic is the least difficult item while in the two parameter model the least difficult
item is jovial. In addition, in the D-diffusion model noisy is the most difficult item, while in
the two parameter model impulsive is the most difficult item. Standard errors of the diffi-
culty parameter in the D-diffusion model, vi are smaller as compared to those from the two
parameter model, βi. This is due to the additional information in the response times that is
used in fitting the D-diffusion model. Note that the standard errors of the other parameters
cannot be straightforwardly compared as these are on a different scale. Next an M2 test is
conducted:

Item ai vi Ter i λi βi

1. ‘active’ 0.490 (0.023) −0.711 (0.108) 0.570 (0.015) 0.541 (0.282) −2.067 (1.026)
2. ‘noisy’ 0.510 (0.023) −0.171 (0.108) 0.471 (0.013) 0.618 (0.276) −0.269 (0.313)
3. ‘energetic’ 0.560 (0.029) −1.309 (0.131) 0.499 (0.011) 2.675 (1.014) −1.211 (0.217)
4. ‘enthusiastic’ 0.549 (0.035) −1.768 (0.150) 0.456 (0.015) 2.709 (1.025) −1.648 (0.280)
5. ‘impulsive’ 0.523 (0.024) −0.228 (0.111) 0.459 (0.012) 0.724 (0.300) −0.235 (0.271)
6. ‘jovial’ 0.475 (0.027) −1.361 (0.128) 0.495 (0.015) 0.918 (0.406) −2.761 (1.004)
7. ‘viable’ 0.467 (0.031) −1.736 (0.146) 0.507 (0.016) 1.759 (0.659) −2.179 (0.494)
8. ‘eupeptic’ 0.428 (0.031) −1.986 (0.152) 0.427 (0.019) 2.879 (1.295) −2.050 (0.372)
9. ‘chatty’ 0.393 (0.020) −0.883 (0.107) 0.606 (0.019) 0.901 (0.368) −1.950 (0.676)
10. ‘spontaneous’ 0.598 (0.032) −1.492 (0.141) 0.458 (0.011) 2.024 (0.633) −1.422 (0.265)

Table 5: Parameter estimates (standard errors) and item content of the extraversion data in
application I for the D-diffusion model and the traditional two parameter model. λi and βi
are respectively estimates of the discrimination parameter and difficulty parameter from a
traditional two parameter model.
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Figure 9: QQ-plots for the first 6 items of the extraversion data in application I.

R> out_resp <- RespFit(res1, 2)

D-diffusion Model Fit of Responses

---------------------------------

Maydeu-Olivares & Joe Test of Order 2

Overall Test Statistic

Mr = 37.794 df= 31 p = 0.187

As can be seen, the M2 test indicates that the model fits to the responses. QQ-plots for the
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first 6 items are obtained by using:

R> QQdiff(res1, item = 1:6, plot = 1)

which produces the plots in Figure 9. As can be seen, the plots also indicate that the model
fits the observed response times.

6.2. Application II: Q-diffusion modeling of mental rotation data

The data comprises scores of 121 subjects on 10 items purported to measure mental rotation.
These data are taken from a larger database published in Kievit (2010); see also Borst, Kievit,
Thompson, and Kosslyn (2011). The 10 selected items are part of the article by van der Maas
et al. (2011). van der Maas et al. analyzed these data using a Bayesian version of the Q-
diffusion model including random Ter parameters. Here, we re-analyze the data (with fixed
Ter) and conduct various goodness of fit tests that are not straightforward in the Bayesian
framework employed by van der Maas et al. (2011). Each item consists of a graphical display
of two 3-dimensional objects. The second object was either a rotated version of the first
object, or a rotated version of a different object. Subjects were asked whether the second
object was the same as the first object (yes/no). The degree of rotation of the second object
was either 50, 100, or 150 degrees. Answers are coded to be correct (1) or false (0). Response
times were recorded in seconds. The data are available in the package diffIRT. The first
10 columns contain the responses, the next columns contain the response times in seconds.
From the original data we omitted four response times (i.e., we replaced these by NA) that
were smaller than 0.3s, as these suspiciously fast response times are likely to be invalid and
could cause problems in estimating Ter i. Below we report a Q-diffusion model analysis of the
resulting dataset. To start, we open the data and fit a Q-diffusion IRT model to it using:

R> data("rotation", package = "diffIRT")

R> x <- rotation[, 1:10]

R> rt <- rotation[, 11:20]

R> res <- diffIRT(rt, x, "Q", se = TRUE)

Table 6 contains the results in object res (i.e., parameter estimates and standard errors)
together with the degree of rotation of the object in each item. As appears from the estimates,
the effect rotation degree is most notable in the Ter i parameters. That is, the items with
a more rotated object are associated with a higher Ter i estimate. This indicates that items
with a higher degree of rotation need more stimulus encoding time than items with a smaller
degree of rotation. To investigate model fit, we conduct an M2 test using

R> RespFit(res, 2)

Q-diffusion Model Fit of Responses

---------------------------------

Maydeu-Olivares & Joe Test of Order 2

Overall Test Statistic

Mr = 144.865 df= 41 p = 0
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Item ai vi Ter i
1: 150◦ 0.249 (0.016) 1.484 (0.174) 0.880 (0.036)
2: 50◦ 0.230 (0.018) 1.231 (0.135) 0.538 (0.060)
3: 100◦ 0.219 (0.014) 1.424 (0.160) 0.778 (0.038)
4: 150◦ 0.248 (0.015) 2.345 (0.323) 0.999 (0.046)
5: 50◦ 0.238 (0.020) 0.884 (0.100) 0.824 (0.043)
6: 100◦ 0.267 (0.018) 1.210 (0.130) 0.878 (0.036)
7: 150◦ 0.190 (0.015) 1.155 (0.128) 0.580 (0.036)
8: 50◦ 0.214 (0.021) 0.764 (0.086) 0.617 (0.050)
9: 150◦ 0.231 (0.016) 1.191 (0.126) 0.794 (0.040)
10: 100◦ 0.202 (0.013) 1.814 (0.209) 0.801 (0.041)

Table 6: Parameter estimates (standard errors) and degree of rotation of the mental rotation
items in application II. λi and βi are respectively estimates of the discrimination parameter
and difficulty parameter from a traditional two parameter model.

Model −2LL LRT df AIC BIC sBIC DIC

Full 4355.78 4420 4509 4408 4451
ai equal 4378.58 22.80 9 4425 4489 4416 4447
vi equal 4437.01 81.23 9 4483 4547 4475 4505
teri equal 4439.43 83.65 9 4485 4550 4477 4508
ai rotate 4378.12 22.34 7 4428 4498 4419 4452
vi rotate 4406.95 51.17 7 4457 4527 4448 4481
teri rotate 4417.80 62.02 7 4468 4538 4459 4492

Table 7: Model fit indices of various Q-diffusion models on the mental rotation data in appli-
cation II. ‘rotate’ denotes a model in which the corresponding item parameters are constrained
equal for the items that have the same amount of rotation, see Table 6. All LRTs are against
the full model.

Thus, according to the M2 test, the model did not fit well. QQ-plots (not displayed), however,
looked reasonable. Next we fitted four constraint models: (1) a model with equal ai; (2) a
model with equal vi; (3) a model with equal vi for items that have the same amount of
rotation; and (4) a model with equal Ter i. This required the following R code:

R> res_ai_equal <- diffIRT(rt, x, model = "Q", constrain = "ai.equal")

R> res_vi_equal <- diffIRT(rt, x, model = "Q", constrain = "vi.equal")

R> res_vi_rotation <- diffIRT(rt, x, model = "Q", constrain =

+ c(1:10, c(11, 12, 13, 11, 12, 13, 11, 12, 11, 13), 14:23, 24, 25))

R> res_ter_equal <- diffIRT(rt, x, model = "Q", constrain = "ter.equal")

In Table 7, output is summarized for the full model (i.e., the model we fit above, see Table 6)
and the four constraint models. As we are interested in making an inference about the
tenability of the equality constraints introduced in the constraint models, the full model –
with all parameter unconstrained –, serves as a baseline model here. As can be seen from the
table, the model with equal ai parameters fits best according to the fit indices, i.e., AIC, BIC,
sBIC, and DIC are smallest for this model. In addition, the likelihood ratio test between the
full model and this model is insignificant as appears from
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R> anova(res_ai_equal,res)

Likelihood Ratio Table

AIC BIC sBIC DIC log.Lik LRT df p.value

res_ai_equal 4307 4370 4298 4329 4261.354

res 4316 4404 4303 4346 4252.032 9.32 9 0.408

which indicates that the equality restrictions on ai are tenable.

6.3. Application III: Fitting the traditional diffusion model

As the diffusion IRT model is in essence a traditional diffusion model with random effects on
the drift rate and boundary separation parameters, the diffIRT package can also be used to
fit the traditional diffusion model to data. Specifically, the traditional diffusion model can
be seen as a restricted D-diffusion IRT model without random γp and with random θp over
trial (instead of random over subjects). To specify this, we will refer to traditional diffusion
model parameters with a superscript trad for sake of clarity. In addition, to denote that the
parameters can be different across experimental conditions, we use subscript c. As a result, in
the traditional diffusion model we have, αtrad

c , Ter tradc , µtrad
c , and σtrad

c where c runs from 1 to
the number of conditions, µtrad

c refers to the mean drift rate over trials, and ωtrad
c refers to the

inter-trial standard deviation of the drift rate (commonly used in experimental applications of
the traditional diffusion model). To specify the traditional diffusion model, in the D-diffusion
model we set ωγ = 0 such that γp is constant across subjects and equal to exp(0) = 1. Then,
from Equation 3 it follows that

αtrad
c = exp(0)/ai = 1/ai (15)

and from Equation 2 it follows that

µtrad
c = E(θp − vi) = −vi, (16)

as θp is normally distributed with mean 0 in the D-diffusion model. By equating c = i
it can be seen that the items in the D-diffusion model correspond to the conditions in the
traditional diffusion model. In addition, subjects in the D-diffusion model are the trials in
the traditional model. Thus, the response and the response time data matrices of a given
subject need to be arranged in such a way that trials are the rows, and the conditions are the
columns. Then, a D-diffusion model can be fitted to these matrices and the parameters can be
converted to the traditional diffusion model parameters using Equations 15 and 16 together
with Ter tradc = Ter i and σtrad

c = ωθ. This can be illustrated by applying the restricted
D-diffusion model to a simulated data set. To simulate data according to the traditional
diffusion model, we use the function simdiffT from the diffIRT package, that is:

R> set.seed(1310)

R> alpha <- 2

R> mu <- 1

R> ter <- 2

R> sdv <- .3

R> N <- 10000

R> data <- simdiffT(N, alpha, mu, sdv, ter)
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We fit the traditional diffusion model by using

R> res <- diffIRT(data$rt, data$x, model = "D",

+ constrain = c(1, 2, 3, 0, 4), start = c(rep(NA, 3), 0, NA))

RESULTS D-DIFFUSION IRT ANALYSES

Item parameter estimates

-------

a[i] v[i] Ter[i]

item 1 0.498 -0.997 2.001

Population parameter estimates

-------

omega[gamma]: 0

omega[theta]: 0.319

---------------------------

From the output one can determine 1/ai which gives 2.008 and −1 × vi which gives 0.997.
Both are close to the true values of respectively αtrad and µtrad. In addition, estimates for
ωθ and Ter i are close to the true values of σtrad and Ter trad. Note that the diffusion model
fitted in this way does not include a random Ter or a (random) starting point as is the case
in the software package fast-dm for instance (Voss and Voss 2007).

Multiple experimental conditions

Here we illustrate the application of the traditional diffusion model on a simulated dataset
with multiple experimental conditions. The data are simulated according to a design similar
to that of the real brightness discrimination experiment by Ratcliff and Rouder (1998). In
this experiment, a subject had to decide for a number of trials whether the brightness of a
stimulus (a randomly generated array of pixels displayed on a computer screen) was either
“high” or “low”. The true brightness of the stimuli were manipulated into a number of levels
and administered with a speed instruction (”respond as fast as possible”) and with an accuracy
instruction (”respond as accurate as possible”). Here we simulated data for a single subject
using function simdiff for a design with 6 different brightness levels and 2 speed instructions
resulting in 6 × 2 = 12 conditions. The data can be obtained using data("brightness",

package = "diffIRT") where the first 12 columns are the responses and the next 12 columns
are the response times.

The brightness data are prepared such that the 12 conditions are in the columns and the 800
trials are in the rows. The data is arranged in such a way that the first 6 conditions are the
speed instructed stimuli and the next 6 conditions are the corresponding accuracy instructed
versions of these stimuli. As the trials are random, each trial is assigned to a separate row
with the response time of that trial in the corresponding column and NA’s on the remaining
columns. Similarly for the responses. Note that the response and the response time matrices
thus have 800× 12 = 9600 rows and 12 columns.

We now fit the hypothesized traditional diffusion model to these data using:
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R> data("brightness", package = "diffIRT")

R> x <- brightness[, 1:12]

R> rt <- brightness[, 13:24]

R> res <- diffIRT(rt, x, model = "D", constrain = c(rep(1, 6), rep(2, 6),

+ 3:8, 3:8, rep(9, 12), 0, 10), start = c(rep(NA, 36), 0, NA))

R> res

RESULTS D-DIFFUSION IRT ANALYSES

Item parameter estimates

-------

a[i] v[i] Ter[i]

item 1 0.392 3.584 0.298

item 2 0.392 3.012 0.298

item 3 0.392 2.521 0.298

item 4 0.392 2.030 0.298

item 5 0.392 1.526 0.298

item 6 0.392 1.014 0.298

item 7 0.652 3.584 0.298

item 8 0.652 3.012 0.298

item 9 0.652 2.521 0.298

item 10 0.652 2.030 0.298

item 11 0.652 1.526 0.298

item 12 0.652 1.014 0.298

Population parameter estimates

-------

omega[gamma]: 0

omega[theta]: 0.806

---------------------------

In the constrain argument we fixed the ai parameters for the first 6 stimuli to be equal,
and the ai parameters for the next 6 stimuli to be equal. In addition, we fixed the vi for the
same stimuli (i.e., vi of the tasks in column 1 of the data is fixed to equal vi of column 7,
etc.), and we fixed all Ter i parameters to be equal. In addition, ωγ is fixed to equal 0 to omit
this dimension from the model. As discussed above, from the output, traditional diffusion
model estimates can be obtained by 1/ai and −1× vi. Ter i and ωθ are already equal to the
traditional parameters.

7. Discussion

Process IRT models incorporating separate person and item parameters have the potential
to bridge the gap between the statistically oriented psychometric measurement models and
the theoretically oriented mathematical process models. Model estimation of such process
IRT models is however challenging due to the presence of the random person effects and
due to the relatively complex forms of the process models like the diffusion model. With
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the diffIRT package we provide a useful tool to fit a diffusion IRT model to data obtained
from multiple subjects answering multiple items. Challenges for future developments within
this line of research remain. For instance, at present, as the diffusion model is a model for
two-choice data, the package can only handle binary item data. It would be interesting to
consider possibilities for multiple choice data, including extensions of the diffusion models
discussed in this paper and other process models, e.g., the linear ballistic accumulator model
(Brown and Heathcote 2005) and the race model (Audley and Pike 1965; see also Tuerlinckx
and De Boeck 2005). Other challenges are: development of models for multiple processes
(e.g., an arithmetic process and a reading process for worded arithmetic items), multi-group
approaches (e.g., to test gender differences in person boundary) and latent regression of the
person drift and boundary parameters (e.g., to test for the effects of age on these parameters).
These options might be considered in future developments of the diffIRT package.
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