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Since the seminal work of Townsend and Ashby (1983),
it has been known that fitting or testing a model with mean
response times (RT) alone has very poor diagnostic power.
Often, models can mimic each other at the level of pre-
dicted means, even when their fundamental assumptions
are diametrically opposed (e.g., a parallel race model can
mimic the predictions of a serial model; see Van Zandt &
Ratcliff, 1995). In this respect, median RT does not fare
better than mean RT (Miller, 1988; Ratcliff, 1993). One
solution is to consider RT means and variances simulta-
neously (Cousineau & Larochelle, in press). Although this
provides greater constraint, some model mimicking can
still occur (Townsend & Colonius, 2001). Higher order
moments (e.g., skew and kurtosis) are of little help be-
cause their sample estimates are unreliable for the sample
sizes typically available in empirical research. As a result,

the importance of considering the whole RT distribution
for testing formal models is now generally acknowledged.

Nonparametric approaches to the description of RT
distributions are possible. For example, estimating the cu-
mulative distribution function (CDF) is easily achieved
with the cumulative frequencies of observed RTs. How-
ever, estimating the probability density function (PDF)
and the hazard function is more difficult (see Silverman,
1986, on the former, and Bloxom, 1984, on the latter).
This is a problem because some models are most easily
tested with nonparametric approaches (e.g., tests of the
hazard function, Burbeck & Luce, 1982, and the crossing
points of two PDFs, Ashby, Tein, & Balakrishnan, 1993).

A parametric approach to RT distribution is achieved
by introducing an important piece of information: a den-
sity or cumulative density function of the distribution. As
we will discuss in the next section, fitting a distribution
is rather easy, and there are many software packages that
can automate this procedure.1 In addition, the estimation
method used, maximization of the likelihood function, is
well understood and is not dependent upon the use of ap-
proximate heuristics (as opposed to nonparametric PDF
and hazard function estimates; see Silverman, 1986).
Also, once the distribution has been fitted, all associated
functions (CDF, PDF, hazard, and log-survivor functions)
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The most powerful tests of response time (RT) models often involve the whole shape of the RT dis-
tribution, thus avoiding mimicking that can occur at the level of RT means and variances. Nonpara-
metric distribution estimation is, in principle, the most appropriate approach, but such estimators are
sometimes difficult to obtain. On the other hand, distribution fitting, given an algebraic function, is
both easy and compact. We review the general approach to performing distribution fitting with maxi-
mum likelihood (ML) and a method based on quantiles (quantile maximum probability, QMP). We show
that QMP has both small bias and good efficiency when used with common distribution functions (the
ex-Gaussian, Gumbel, lognormal, Wald, and Weibull distributions). In addition, we review some soft-
ware packages performing ML (PASTIS, QMPE, DISFIT, and MATHEMATICA) and compare their re-
sults. In general, the differences between packages have little influence on the optimal solution found,
but the form of the distribution function has: Both the lognormal and the Wald distributions have non-
linear dependencies between the parameter estimates that tend to increase the overall bias in param-
eter recovery and to decrease efficiency. We conclude by laying out a few pointers on how to relate de-
scriptive models of RT to cognitive models of RT. A program that generated the random deviates used
in our studies may be downloaded from www.psychonomic.org/archive/.
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are completely determined. Finally, the fitting process
consists simply of finding estimated values for a few pa-
rameters (generally three for RT distributions). Thus, the
whole RT distribution is summarized with a very compact
representation.

All these benefits come at a cost, however. An incor-
rect distribution function, even one fitting the data rea-
sonably well, may give a wrong indication of what kind
of psychological model has produced the data. For this
reason, many authors prefer to use distribution functions
as an atheoretical tool or a descriptive model (Heathcote,
Popiel, & Mewhort, 1991; Ratcliff, 1979). In addition, if
the true RT distribution is in fact different from the fit-
ted distribution in some fundamental way, the param-
eters may not capture the regularities that exist across
different distributions (Schwarz, 2001). For that reason,
it is desirable for experimenters using the parametric ap-
proach to fit more than one distribution function.

In this article, we review software that can perform dis-
tribution fitting. All the software packages reviewed can
fit many distinct distribution functions. The most com-
monly used distributions in cognitive psychology are the
ex-Gaussian (Hockley, 1984), the Gumbel (Gumbel, 1958;
Yellot, 1977), the lognormal (Ulrich & Miller, 1993), the
Wald (Burbeck & Luce, 1982), and the Weibull (Cou-
sineau, Goodman, & Shiffrin, 2002) distributions (see
Heathcote, Brown, & Cousineau, 2004, and Luce, 1986,
Appendix A, for details).2 The software reviewed can all
fit these distributions, although some can fit others, as
well. They are PASTIS (Cousineau & Larochelle, 1997),
QMPE (previously called QMLE; Brown & Heathcote,
2003), DISFIT (Dolan, van der Maas, & Molenaar, 2002),
and MATHEMATICA (Wolfram, 1996). This review will
be carried out in Section 2. Because the methods and the
specific details of a fitting procedure are numerous, we
provide in Section 1 some information to readers inter-
ested in programming their own fitting procedure. Al-
though many readers will prefer to rely on existing soft-
ware, these details are useful to know, because they can
differ from one package to another.

1. DISTRIBUTION FITTING METHODS

Estimation Methods
On one hand, there is a data set T � {ti}, i � 1 . . . n,

a sample containing n response times (RT). On the other
hand, there is a distribution to fit that depends on a pa-
rameter set q. The distribution is given by its probability
density function f. The objective of the fitting procedure
is to find the estimated parameters q̂  so that the theoret-
ical distribution will be most similar to the distribution
of the data set.

Many methods can be used to fit a distribution. Van
Zandt (2000) reviewed sum of square error (SSE) methods
and the maximum likelihood (ML) method (presented
next). Using simulations, she found the standard ML
method to be the best and SSE based on CDF almost as
good. The criteria used were (1) bias—repeated over mul-

tiple samples, the average q̂  should be exactly the true pa-
rameter set q of the population where the samples were
taken; and (2) efficiency—when repeated over different
samples of data, the estimates q̂  should have smaller vari-
ance than when estimated with other methods.

We will concentrate on the ML method. This method
searches for a set of parameters q̂  that maximizes the like-
lihood of observing such data (Hays, 1973). The likelihood
of the data set T is the joint probability of the sample for a
given model and set of parameters, Pr({RT} � T). When
the observations are independent and measured with infi-
nite precision, the probability of the sample becomes

For a given parameter set q̂  and a PDF f, and assuming
the sample to contain independent deviates from this dis-
tribution, we may write

(1)

The function L, called the likelihood function, is a measure
of how likely the data set is, given q̂. The larger it is, the
more likely q̂  is the true q.3

Occasionally, Equation 1 can be solved analytically.
For example, we know that the sample mean is a maxi-
mum likelihood estimator of the population mean m if
the distribution is normal (Gaussian). Maximum likeli-
hood estimators, whether analytic or obtained from nu-
merical optimization, have a desirable property: They
are asymptotically (n Æ •) the most efficient; that is,
they make maximum use of the information contained in
the sample, resulting in the least variable estimation
method (Van Zandt, 2000). Of course, it is not clear
whether such asymptotic property holds for small sam-
ples as well (Heathcote, Brown, & Cousineau, 2004).

One limitation of Equation 1 is that it assumes infinite
precision measurements. In practice, this is never achieved.
In some RT experiments, precision is within 1 msec
(�0.5 msec), sometimes more (e.g., for responses col-
lected through a mouse, �6 msec, see Beringer, 1992). For
data measured with precision 2 e, the exact probability of
observing the response time ti is given by

We can introduce a rectangular approximation by using 

so that Equation 1 becomes

(2)

Because the (2e)n term is generally ignored, numerical
values of L(q̂,T ) cannot be compared between appara-
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tuses that do not have the same accuracy. However, it has
no influence on the maximum likelihood estimates q̂  ob-
tained because the term (2e)n is independent of q and
may be ignored. The method based on the continuous
approximation to the likelihood function of raw data
(Equation 2), denoted L(q̂,T ), will be called CML.

An alternative estimation method, quantile maximum
probability (QMP), was introduced by Heathcote, Brown,
and Mewhort (2000). First, a set of raw data T is grouped
into m categories described by the location of the m � 1
bounds, Q, called quantiles (q̂j, j � 0 . . . m 	 n). The
quantiles are calculated from the order statistics of T (see
Heathcote et al., 2000, for details), with the number of ob-
servations falling into the interval [q̂j�l, qj] denoted nj. In
general, the q̂j are chosen so that there are approximately
the same number of observations in each quantile, but this
need not always be true. Furthermore, the bounds q̂0 and
q̂m are set at the limit of the fitted distribution, sometimes
�• and �•. Estimates are obtained by choosing param-
eters that maximize the product of the probability in each
category:

(3)

One may intuitively expect QML to be inefficient, since
transforming the raw RT into quantiles involves a reduc-
tion of the information available. On the other hand, if m
is close to n, the loss of information can be quite small and
may also provide a benefit for finite samples. This is be-
cause there may be outliers in the data, and creating quan-
tiles simply replaces the absolute value of an outlying ob-
servation with an additional count in n1 or nm. Also,
estimates are robust to the addition of a small amount of
error to a given RT, because Equation 3 will not change at
all, as long as the RT does not move across a quantile
bound.

Heathcote et al. (2000) showed that QML (Equation 3)
is superior to CML (Equation 2) in terms of bias and effi-
ciency when tested on simulated data generated by the ex-
Gaussian distribution; Heathcote et al. (2004) showed
QML to be equal to or better than CML on other distrib-
utions. In order to do so, they extended a software pack-
age called QMPE to include the lognormal, Gumbel,
Wald, and Weibull distributions with both CML and QMP
estimation. Before proceeding to comparisons across soft-
ware, we will discuss some issues related to the imple-
mentation of a maximum likelihood fitting technique be-
cause the software reviewed in Section 2 differ on these
implementation details.

Implementing a Maximum Likelihood Fitting
Procedure

In order to implement an ML procedure, three ingredi-
ents are required: (1) a distribution function to be fitted,
(2) an optimization routine, and (3) starting values for q̂  .

To be a reasonable candidate for characterizing RT, a
distribution function must be able to accommodate pos-

itively skewed data. The most commonly used distribu-
tions are briefly described in Heathcote et al. (2004), and
their equations are presented in Table 1. The choice of a
distribution provides the PDF equation f that is inserted
into the function to be minimized (Equation 2 or 3),
which in this context is usually called the objective func-
tion. Due to numerical considerations, the logarithm of
the objective function is usually employed because the
use of the summation avoids numerical underflows. For
likelihood, for example, maximizing L(q̂,T ) over the
range 0 to 1 is then replaced by minimizing �ln L(q̂,T ),
the value ranging from �• [�ln(0), unlikely] to zero
[ln(1), absolutely certain]. The same rationale applies if
quantiles Q are used instead of raw data T. Most com-
puter software packages report the minimized value of
�ln L(q̂,T ).

The second ingredient is an optimization procedure to
minimize the objective function. Various algorithms exist,
the oldest of which was introduced by Newton. All these
methods are iterative, starting with a tentative q̂0 and up-
dating it through various iterations until an optimal value,
q̂p, is found.4

Appendix A summarizes the most commonly used
minimization algorithms. They are generally distin-
guished (Box, Davies, & Swann, 1969) by whether they
use analytic derivatives of the objective function (gradi-
ent methods) to guide search, or whether they use nu-
merical approximations to the derivative (direct search
methods). In general, gradient methods can find a mini-
mum with a smaller number of iterations. However, it
may take more time to perform the iterations if the gra-
dients are not available in closed-form equations (as is
the case for the ex-Gaussian distribution).

The last ingredient in obtaining a solution consists of
finding reasonable starting values q̂0. If the surface of the
objective function is quadratic, it has only one minimum,
and thus, all starting points will lead the minimization
routine to the same optimal solution q̂p. In practice, how-
ever, there may be many local minima. The best way to
avoid false convergence in a local minimum is to start the
routine at various locations or to start as close as possible
to the optimal solution. To achieve this, heuristic esti-
mates can be developed, often based on the first few mo-
ments of the data in order to automate the starting point
selection. These heuristics are not always accurate, due
to sampling variance in the moment estimates.

2. TESTING THE SOFTWARE PACKAGES

We compare different software packages aimed at fit-
ting distributions. These packages, briefly described in
Appendix B, differ in the minimization routines used and
in the heuristics used for starting values. All of these
packages allow the user to alter the starting value pa-
rameters. Table 2 reviews some features of the software,
and Appendix C shows examples of commands for a typ-
ical fitting session with each.
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Simulation Methods
The simulations repeatedly sample random deviates

from one of the five distributions, with known param-
eters, and then estimate those parameters with each soft-
ware package. The parameter estimates are then com-
pared against the known values for both accuracy (bias)
and variability (efficiency). For each of the five source
distributions (ex-Gaussian, Gumbel, lognormal, Wald,
and Weibull), we sampled n � 250 random deviates. The
parameter values appear in Table 3, along with the asso-
ciated (theoretical) mean, standard deviation, and skew.
They were chosen so that (1) the means and standard de-
viations are all approximately 1,000 and 100, respec-
tively; (2) the overall distribution shapes are positively
skewed (the Gumbel distribution has a constant skew).
We repeated the sample-and-fit process 1,000 times,
making sure that the same samples were fitted by each
software package.

The random samples were generated for each of the
five distributions by variously transforming random uni-
form deviates.5 The source code of a program that gen-
erated these random values is available on the archive
site of the Psychonomic Society.

For all QMP calculations, the number of quantiles used
was 32. This decision probably put the QMP method at a
relative disadvantage because the small number of quan-
tiles was unnecessarily restrictive.

Simulation Results
The programs reviewed were quite robust and never

crashed; MATHEMATICA could not find a solution for
only one simulated set of Wald deviates. Some analyses
did not finish before they reached the maximum number
of iterations allowed. However, because only QMPE and

MATHEMATICA return this information, we did not re-
move these solutions from further analyses.

Parameter space. Before turning to the computation of
bias and efficiency, we take a look at parameter space. In
Figures 1–5, we plotted the estimated parameters as points
in the appropriate parameter spaces (two-dimensional for
the Gumbel distribution and three-dimensional for the
other). Each point represents one of 100 different sam-
ples. The central cross shows the position of the true pa-
rameter set used to generate each sample. The purpose of
these graphs is to see to what extent parameter depen-
dencies are present and, most importantly, whether some
software packages are less sensitive to them than others.

Figure 1 shows the parameters m̂ and ŝ estimated from
the Gumbel random deviates. As seen, the estimates are
all spread out around the true parameters with no sys-
tematic deviations, indicating no important bias. Fur-
thermore, all software shows the same dispersion.

Figure 2 shows the parameters m̂, ŝ, and t̂ estimated
from ex-Gaussian distributed random deviates. One thing
to note is that the cloud is not uniformly spread in all di-
rections but tends to form an ellipse. This is easier to see
with the projections on the sides of the plot box. This el-
lipse more or less goes through the main diagonal of the
box, which illustrates that the parameter estimates are
not independent. For example, a moderately small esti-
mate for m̂ can be compensated by a moderately large
value of t̂ and a moderately small value of ŝ. QMPE and
DISFIT return information about this fact in the form of
estimated parameter correlations, but the other software
packages do not.

The results for the Weibull distribution were similar,
as seen in Figure 3, except that the ellipse is oriented
along a different diagonal of the cube. This indicates that

Table 2
Relevant Features of the Software Packages Tested

Optimization Warning on File Format Starting Point Standard Error Fitting Other
Software Procedure Unsuccessful Fit Flexible Suggested Provided Distributions Requires:

PASTIS Quasi-Newton no yes yes no programming in C
(Chandler, 1965)

QMPE Conjugate gradient yes no, 2 columns yes yes programming in Fortran
(Press et al., 1986)

DISFIT Sequential quadratic yes no, 1 sub. per file yes yes programming in Fortran*
(Gill et al., 1986)

MATHEMATICA Conjugate gradient yes yes no† no† algebraic formula

Note—*In addition, a special library NPSOL must be obtained from their authors (Gill, Murray, Sanders, & Wright, 1986). †These fea-
tures can be added.

Table 3
Parameter Values Used to Generate Random Values as a Function of the Distribution

Standard
Distribution Parameter q Parameter Value Mean Deviation Skew

ex-Gaussian {m, s, t} 910.56, 44.721, 89.443 1,000 100 1.43
Gumbel {m, s} 955, 74 998 94.9 1.13955
Lognormal {k, m, s} 745, 5.45, 0.36 993 92.4 1.16
Wald {k, m, l} 725, 275, 2,000 1,000 102 1.11
Weibull {a, b, g} 800, 220, 2.0 995 102 0.631
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a moderately large estimate for â can be compensated by
a moderately small estimate for b̂ and ĝ. Except for one
outlier obtained by QMPE, the efficiencies are roughly
comparable (that outlier generated an error exit code and
so could have been either censored or remedied by man-
ually setting the starting points).

As can be seen from comparison across the panels of
Figures 2 and 3, all software packages returned an ellipse
of about the same shape and orientation. In all cases, the
centers of gravity of the clouds are near the central cross,
suggesting only a small bias, and the overall volume of
the clouds suggest equal efficiency for all the software
packages. Further investigation of biases and efficiency
will be performed later.

Figure 4 shows the—more complicated—results using
lognormally distributed random deviates: The points form

a crescent. As a consequence, many of the estimates are
close to the true parameter values. However, the center of
gravity, because of the curvature, will not be on the cross,
resulting in mean bias. In addition, all four software
packages are subject to this pathology (although to a
lesser extent for MATHEMATICA), suggesting that it is
due to the distribution function, not the optimization ca-
pabilities of the software. Finally, QMPE has a few out-
liers near the bottom of panel a. On these occasions, a sin-
gular Hessian matrix error was also returned by QMPE.

This pathology is not unique to the lognormal distrib-
ution. Wald-distributed random deviates also produced
estimates that form a crescent when the parameter space
is plotted, as seen in Figure 5. It had the same volume
and orientation, regardless of the software package used.
Such nonlinear pathology cannot be detected by the es-

Figure 1. Two-dimensional plots of the estimated parameters �̂i when the samples were generated with a Gum-
bel distribution. The central cross shows the position of the true parameter �. Only 100 samples are shown. Plot
in panel a was obtained using QMPE, (b) using PASTIS, (c) using MATHEMATICA, and (d) using DISFIT.
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timated parameter correlations; only visual inspection of
the parameter space shows it.

Package capabilities. In the following, we proceed to
an examination of bias and efficiency across packages.
However, we will not consider single-parameter biases
but rather concentrate on the bias shown by the whole
estimated parameter set, relative to the true parameter
set. To achieve this, bias was computed as the distance
between the center of gravity of all the estimated param-
eters q̂i, i � 1 . . . 1,000, and the true q. Thus, bias �
||E (q̂) � q|| � E (||q̂t � q||) where E(q̂) denotes the aver-
age position of all the estimates, and || . || denotes the Eu-
clidean distance (the norm). Efficiency was computed as
the standard deviation in the distances between each
point  q̂i and q, SD(||q̂t � q||).

Figure 6 shows the results expressed as a percentage
relative to ||q ||. Note that the scales for each panel differ.
The two most biased distributions are the lognormal and

the Wald (bottom row), reaching an average of 1% and
25% biases. These are exactly the distributions showing
nonlinear dependencies between parameter estimates, as
seen in Figures 4 and 5. The other three distribution func-
tions (Weibull, Gumbel, and ex-Gaussian) have much
smaller biases, less than 1% in all cases. The bias is even
smaller than 0.1% for the Gumbel. In this last case, since
the parameter space has only two dimensions, there is less
potential for bias. DISFIT turned out to be very apt (low
bias, high efficiency), fitting Weibull deviates, whereas
MATHEMATICA outperformed the other packages for
lognormal deviates.

Overall, the QMP estimates produced by QMPE are
as good as those produced by the CML methods obtained
from the other software packages (DISFIT being worst for
lognormal deviates). This is surprising, considering the
major information reduction imposed on the data: They
were reduced from 250 raw data points to only 32 quan-

Figure 2. Three-dimensional plots of the estimated parameters �̂i when the samples were generated with
an ex-Gaussian distribution. The central cross shows the position of the true parameter �. The gray points
represent the 2-D projections on the 
–�, 
–t, and �–t planes. Only 100 samples are shown. Plot in panel a
was obtained using QMPE, (b) using PASTIS, (c) using MATHEMATICA, and (d) using DISFIT.
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tiles, an almost eight-fold compression. QMPE efficiency,
indicated by the error bars in Figure 6, is slightly worse for
the Weibull deviates, but results almost entirely from a few
outliers (one is visible in Figure 3). Outliers generated by
QMPE were often accompanied by an error exit code re-
lated to the singularity of the Hessian matrix. Therefore, a
very strict selection of the successful fits would have in-
creased considerably the efficiency of the QMPE method,
to the detriment of having a little less than 5% of the data
set either rejected or requiring refit. When manually fit-
ting a data set, the user should consider changing the start-
ing points or changing the criteria for ending a search.

Conclusions
Overall, the four software packages lead to very simi-

lar bias and efficiency measures, confirming that they all

work properly and that the different platforms and algo-
rithms used make little difference, at least with simulated
data. This was true even though different optimization
routines and different starting value heuristics underlie
each package. The single most important factor on the
quality of the estimates was the presence of nonlinear re-
lationships between the parameter estimates. This has im-
plications for comparing groups of subjects. For example,
the Wald estimates are so inefficient that they are likely to
differ more within group than between groups. If the pur-
pose is to see differences, the ex-Gaussian and Weibull
distributions are preferable as atheoretical summaries of
shape. Strategies (such as reparameterization, Bates &
Watts, 1988) can reduce such nonlinearities. However,
the required transformations are difficult to find, some-
times relying on a trial-and-error process.

Figure 3. Three-dimensional plots of the estimated parameters �̂i when the samples were generated with
a Weibull distribution. The central cross shows the position of the true parameter �. The gray points rep-
resent the 2-D projections on the �–�, �–, and �– planes. Only 100 samples are shown. Panel a was ob-
tained using QMPE, (b) using PASTIS, (c) using MATHEMATICA, and (d) using DISFIT.
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3. GENERAL CONCLUSIONS
From Descriptive Models of RT to RT Models

Parametric estimation of RT distribution provides a
compact description of RT data. In addition, once the
distribution is fitted, it is easy to calculate the PDF, CDF
hazard, and more. A main point of this article was to
show that there are good quality software packages to
perform fits and that these packages are reliable and easy
to use.

A more theoretical question is to decide which distri-
bution function to fit. As seen in this paper, five candi-
dates can readily be explored. Although there is no con-
sensus at this time, two points should guide one’s choice.

The first point concerns the informative utility of the
parameters across samples. For example, if a single change

in the experimental procedure results in changes in all the
parameters of the distribution, the representation is not
compact across conditions. Thus, in choosing a distribu-
tion function as a descriptive model, the researcher should
be mostly interested in how concisely the parameters cap-
ture the experimental manipulation. This should be sought
even if it sacrifices some quality of the fit.

Differences in L(q̂,T ) across distributions cannot be
compared since distribution functions can have different
capabilities for fitting random data. For example, a dis-
tribution with more free parameters has more liberty to
fit the data and will likely have a smaller �ln L(q̂,T ). One
solution is to penalize for extra parameters, as in the AIC
test (Bozdogan, 1987). However, even with an equal num-
ber of parameters, some functions may be able to accom-
modate more data sets, a property often termed geometric

Figure 4. Three-dimensional plots of the estimated parameters �̂i when the samples were generated with
a lognormal distribution. The central cross shows the position of the true parameter �. The gray points rep-
resent the 2-D projections on the �–
, �–�, and 
–� planes. Only 100 samples are shown. Panel a was ob-
tained using QMPE, (b) using PASTIS, (c) using MATHEMATICA, and (d) using DISFIT.
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complexity. There are methods to adjust the penalty term
to compensate for complexity, but these can be computa-
tionally difficult (Myung, 2000; Grünwald, 2000).

The second important point in the choice of a distrib-
ution to fit is related to psychological models of cogni-
tion. Whereas a researcher might simply be interested in
a descriptive model of RT for convenient communica-
tion of the results, a more ambitious approach is to have
a model based on psychological mechanisms that can
predict not only RT but also the shape and scale of the
whole RT distribution. Two cases are then possible: First,
the model can be analytically solved to yield an algebraic
formula for the RT distribution (see Cousineau, in press).
It can either be one of the distributions reviewed here or
a yet-unknown distribution function. In this case, the re-

searcher can fit this distribution and ensure that the pa-
rameters are acting according to a priori predictions
(Schwarz, 2001). Second, in the case in which the model
cannot be solved analytically, the researcher can simulate
the model and choose a descriptive model to fit the sim-
ulated RT. By doing the same to the observed RT distrib-
ution, the researcher can check that the descriptions are
convergent. This is the approach used in Ratcliff (1979),
where the ex-Gaussian was the intermediary between em-
pirical and simulated data.

The best solution is to fill the gap between a model
and RT data with more than just the predicted means.
However, it is possible that the observed RTs are conta-
minated by other factors, such as fatigue or fast guess.
We thus have to keep in mind the possibility of fitting
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Figure 5. Three-dimensional plots of the estimated parameters �̂i when the samples were generated with a Wald
distribution. The central cross shows the position of the true parameter �. The gray points represent the 2-D pro-
jections on the �̂–
̂ , �̂–�̂, and 
̂–�̂ planes. Only 100 samples are shown. Panel a was obtained using QMPE, (b)
using PASTIS, (c) using MATHEMATICA, and (d) using DISFIT.



752 COUSINEAU, BROWN, AND HEATHCOTE

mixtures of distributions (Cousineau & Shiffrin, 2004;
Dolan, van der Maas, & Molenaar, 2002) or that the pa-
rameters of the distributions are changing over time. In
this context, QMP estimation is likely to be more robust
to the effects of outliers and measurement noise than stan-
dard CML estimation.
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NOTES

1. In the following, we will use the word fitting to mean the process
of parametric estimation.

2. PASTIS, QMPE, DISFIT, and MATHEMATICA use the same pa-
rameterization for the ex-Gaussian, the Gumbel, the lognormal, and the
Weibull. For the Wald distribution, QMPE differs in using a � ÷l, and
m � a/m. The Wald and the ex-Gaussian are not built into MATHE-
MATICA.

3. To illustrate, consider a distribution that predicts only one possi-
ble value, say a with probability 1. If 100 values are sampled, all iden-
tical and equal to say 10, the likelihood that a is 10, L(10) is 1 � 1
. . . � 1 � 1. On the other hand, for any a not 10, L(a) � 0 � 0
. . . � 0 � 0. Thus, the parameter a � 10 maximizes the likelihood of
observing such data. In general, distribution functions do not predict a
single value, so the parameters that maximize the likelihood will not
reach a value of 1 (and may even not be close to 1) but again, values
closest to 1 indicate the most likely parameter estimates.

4. Three kinds of stopping criteria are used in optimization software.
One is related to the decrease in the objective function. If the difference
in the objective function from one iteration to the next is smaller than a
fixed proportion (say 10�9), the algorithm considers itself close enough
to the minimum and exits. The second stopping criterion concerns the
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change in the solution q̂. If the Euclidian distance between two succes-
sive solutions, measured in the n-dimensional space, is smaller than a
fixed proportion (say 10�4), the algorithm considers itself close enough
to be minimum and exits. The last stopping criterion is based on the
maximum number of iterations (say 150), after which the algorithm
considers that the minimum cannot be found and exits.

5. The algorithm supplied with the Sun Forte Professional Workshop
Fortran compiler (Version 6, Update 2) generated the uniform deviates.
This algorithm uses a pair of linear congruential generators, with a
cycle length in excess of 250. Because only approximately 224 samples
were used for the present study, the long cycle time ensures that sam-
ples were independent. Exponential, Weibull, Gumbel, and c2 deviates
were all generated from uniform deviates by transforming them with
the respective inverse cumulative distribution functions. Normal devi-
ates were produced from uniform deviates (Press, Flannery, Teukolsky,
& Vetterling, 1986). The sum of normal and exponential deviates pro-
duced ex-Gaussian deviates. Exponentially transforming normal devi-
ates and adding a shift parameter produced lognormal deviates. Finally,
Wald deviates were produced from c2 deviates followed by the addition
of a shift parameter.

ARCHIVED MATERIALS

The following materials associated with this article may be accessed
through the Psychonomic Society’s Norms, Stimuli, and Data archive,
http://www.psychonomic.org/archive/.

To access these files or links, search the archive for this article using
the journal (Behavior Research Methods, Instruments, & Computers),
the first author’s name (Cousineau) and the publication year (2004).

File: Cousineau-BRMIC-2004.zip
Description: The compressed archive file contains three files:
randmod.f90 and random.f90 are the two parts of a Fortran 90 program

that generates sets of random numbers corresponding to samples from the
following distributions: ex-Gaussian, Gumbel, lognormal, Wald, and
Weibull. The code is adapted from the work of Dagpunar (1988), Marsaglia
and Tsang (2000), Ahrens and Dieter (1982), and Kemp (1986).

readme.txt is a text file explaining the purpose of the program and
how to compile it on most stations.

Author’s e-mail Address: denis.cousineau@umontreal.ca.
Author’s Web site: http://mapageweb.umontreal.ca /cousined.

APPENDIX A
Optimization Procedures

Simplex. This derivative-free routine constructs a d-dimensional polygon having d � 1 vertices (a simplex,
where d is the number of parameters to be minimized) in the parameter space. For example, in a three-
dimensional space, the simplex is a pyramid. The value of the objective function is computed at each corner,
and the simplex reorients itself around the corner with the lowest value, effectively approximating the gradi-
ent, and either contracting or expanding. This procedure repeats until the simplex is reduced to a very small
volume around a minimum. For more, see Nelder and Mead (1965) and Van Zandt (2000).

Steepest descent. This gradient method searches the space by looking at the slope. If the derivatives are
available in algebraic form, it is easy to locate the direction of steepest descent. If they are not available, the
routine probes a few points in the parameter space surrounding the current q̂i to find the ideal direction by nu-
merically approximating the derivatives. For more details, see Box, Davies, and Swann (1969).

The two above methods are not quadratically convergent. If the objective function near the minimum is well
approximated by a quadratic function (as is often the case), quadratically convergent methods are guaranteed
to find the minimum to a certain precision with a fixed number of iterations (Fletcher, 1980). The following
four methods have been proven to be quadratically convergent:

Newton method. This method is the most efficient, given that its assumptions are true. It is based on the
second-order derivatives of the objective function, called the Hessian matrix, H. Since analytic Hessians can
be difficult to determine (either numerically or algebraically), this method is rarely used. Hessians are also
useful to compute approximate standard errors (SE) and parameter intercorrelations (see Bates & Watts, 1988,
and Dolan & Molenaar, 1991).

Quasi-Newton and conjugate gradient methods. These two methods generate an approximate Hessian
Ĥ using first-order derivatives. They differ in terms of memory requirements. The first method updates large
matrices to build Ĥ, whereas the second updates eigenvectors (Chandler, 1965). For the small number of pa-
rameters typically minimized in RT distribution estimation, these differences are mostly immaterial.

Sequential quadratic method. This method uses Lagrangians instead of Hessians (Gill, Murray, & Wright,
1981). It is mostly useful when very restrictive constraints (in addition to non-negative parameters) are im-
posed on the parameters, which is rarely the case with distribution fitting.
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APPENDIX B
Packages That Perform Likelihood Fitting

PASTIS. A very simple software package which returns �ln L(q̂,T ) and the best-fitting parameters q̂p. It
has very few limits on the format of the input file (Cousineau & Larochelle, 1997; available at http://www.ma-
pageweb.umontreal.ca /cousined/papers/02-pastis).

QMPE. In addition to fitting with both CML and QML, QMPE can compute quantiles and vincentiles
(Dawson, 1988; Ratcliff, 1979). It also returns estimated standard errors of the parameters, calculated with
the second derivative Hessian matrix. File format, however, is restricted to two columns: subject number and
one RT per line (Brown & Heathcote, 2003; Heathcote, Brown, & Cousineau, 2004, available at http://www.
newcastle.edu.au/school/behav-sci/ncl/ ).

DISFIT. A versatile fitting package, aimed at entirely different objectives than QMPE. While it can min-
imize L(q̂,T ), it can also fit mixtures of two or more distributions, and fit data that have been truncated or cen-
sored (see Ulrich & Miller, 1994). It also returns statistics of goodness of fit (c2 and Kolmogorov-Smirnov)
and estimated standard errors of the parameters. However, like QMPE, the file format is not flexible: one sub-
ject per file, one column per file (Dolan et al., 2002, available at users.fmg.uva.nl/cdolan).

MATHEMATICA/FindMinimum. The most versatile software package of all, an all-purpose framework
for data and function manipulation. It can fit any distribution that can be expressed by an algebraic formula,
and, appropriately programmed, can compute starting values and quantiles as well as perform minimizations
on truncated and censored data. However, this flexibility comes with large costs: (1) the user must be trained
on how to use MATHEMATICA since it is a very rich environment; and (2) the analyses are much slower be-
cause the commands are interpreted, not compiled. MATHEMATICA, in contrast to all the above, is a com-
mercial product (see www.wolfram.com for details). Other commercial software packages that allow the same
flexibility are readily available; S-Plus, SAS, and Matlab are perhaps the most widely used of these. For ex-
ample, Heathcote (2004) provides S-Plus routines to fit the Wald.

(Continued on next page)
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APPENDIX C
Examples of Commands Used for Each of the Four Software Packages

Listing 1: Typical PASTIS call for a file with 2 columns, the second being the dependent (RT) variable

pastis -r file.dat -w file.out -c 2 -d 2 -a WEIBULL

Listing 2: Typical QMPE script. Extra information at the end of each line consists of comments.

file.dat input file
file output stem
1 measurement precision, i.e. 2 epsilon
1 mode: 0: silent, 1: one output/cell, 2: trace mode
1.OE-09 proportional objective function change tolerance
1.OE-04 proportional L (inf) norm tolerance
150 maximum number of iterations allowed
2 distribution to fit 1: exgaussian, 2: weibull, ...
2 type of analysis, 1: raw fitting, 2: quantile fitting
1 input type, 1: raw data, 2: quantiles, 3: vincentiles
32 how many quantiles to compute since raw is provided

Listing 3: Typical DISFIT script. Lines beginning with ! are comments

title "fitting file.dat using a Weibull distribution"
!
! subject number and use of starting values heuristics
ns=1 st=yes bs=0
!
! input file and number of observation (missing is -999)
df=file.dat nc=1 no=250 id="One_subject" mi=-999 cp=0
!
! truncation information
tt=no th=no xl=no xh=no
!
! description of the distribution to fit, with starting
! values (not used since st=yes) and range of each parameters.
di=wei
a=[1 200.0 50.0 2000.0] c=[2 2.0 0.5 3.6] k=[3 750.0 400.0 1200.0]

Listing 4: Typical MATHEMATICA script. Lines enclosed between (* and *) are comments.

(* Load distribution-related package *)
<< Statistics`ContinuousDistributions`

(*read the input file into "data"*)
data = ReadList["file.dat", Real];

(* define the log likelihood function *)
LogLikelihood[data_, a_, b_, c_] :=

-Plus @@ Log[PDF[WeibullDistribution[c,b],data-a] /;a<Min[data]

(* error: return a large value if the parameter a is too large *)
LogLikelihood[data_, a_, b_, c_] :=

$MaxMachineNumber /;a>=Min[data]

(* perform a search over the parameter space *)
(* in Mathematica, a direct search requires two starting values *)
FindMinimum[LogLikelihood[data, a, b, c],

{a, {200, Min[data]}},
{b, {40, 60}},
{c, {0.5, 3}}

]

(Manuscript received April 15, 2003;
revision accepted for publication May 13, 2004.)


