
Fitting Formal Methods into the Design Cycle

K. L. McMillan

AT&T Bell Laboratories

Murray Hill, NJ 07974

Abstract

This tutorial introduces several methods of formal hardware
veri�cation that could potentially have a practical impact
on the design process. The measure of success in integrating
these methods into a design methodology is arguably not
the ability to provide formal guarantees of correctness, but
rather to detect design errors in a timely manner, as the
design evolves. Based on this criterion, and some limited
practical experience, we consider where the various methods
might �t into the life cycle of a design, what their capabilities
and shortcomings are, and how the design process might
change in order to accommodate formal methods.

1 Introduction

The term formal veri�cation in system design generally
means using methods of mathematical proof rather than sim-
ulation and testing to insure the quality of a design. There
are several possible bene�ts of taking a formal approach over
simulation. The primary bene�t is that formal veri�cation
covers all possible behaviors of a model, whereas simulation
can miss important behaviors. Thus, formal veri�cation can
improve the robustness of a design. Development time can
also be reduced using formal methods since bugs are caught
in earlier stages of the design process. In addition, formal
mathematical speci�cations are useful in themselves as tools
for communication between designers, especially for de�ning
interfaces and protocols. There are several barriers, however,
to obtaining these bene�ts in practical design. For less au-
tomated veri�cation methods, the chief obstacle is the con-
siderable expertise in methods of mathematical logic and

theorem proving that is required to develop the necessary
proofs. More automated methods exist that do not require
the generation of detailed proofs, but these methods tend to
be limited to small systems. For these reasons and others,
including a lack of robust tools, it has been di�cult to inte-

grate formal methods into commercial design practice in a
signi�cant way.

It appears in practice, however, that considerable bene�t

can be obtained from formal methods without necessarily

0

applying them to all aspects of a design, or generating a
complete formal proof of correctness relative to a complete
speci�cation. In fact, formal veri�cation can be applied at
various levels of detail and on various scales in a system
design. This makes it possible to �nd and correct design
errors before detailed design is completed. In addition, some
automated veri�cation tools can provide feedback about the
cause of errors, making it easier to �nd the 
aws in a design.
The practical bene�ts of using formal methods will more
likely be in the ability to �nd and correct errors quickly,
while a design is evolving, rather than to provide formal
guarantees of correctness once the design is complete.

In this article, we will consider the various stages of the
design process, and how the tools and methods of formal ver-
i�cation �t into these design stages. The emphasis will be
on methods that appear to have the most promise for prac-
tical application in the near future. Our model of the design
process will assume the use of current methods based on
hardware description languages, simulation and gate level
synthesis. The design process will be assumed to proceed
in several roughly de�ned phases, from conceptual design,
through abstract behavioral modeling, register transfer mod-
eling, and synthesis of a gate level net list. We will survey
some of the available methods and tools for formal veri�ca-
tion, and see how they can be used to advantage in various
stages of this process. Two anecdotal examples of the ap-
plication of formal veri�cation tools in commercial design
projects will be used as illustrations. Some observations will
be drawn from these experiences about the strengths and

weaknesses of the methods, and about design practices that
might facilitate a formal approach to veri�cation.

One of the �rst observations to be made about the design
process is that designs evolve very rapidly, especially in the

early stages, because of requirements changes, performance
tradeo�s, added features, etc. Thus, one important test for
formal methods in practice is how quickly they can adapt
to design changes, and provide feedback to designers about
the impact of these changes. If the veri�cation process can

keep up with the design process, then veri�cation can allow
more rapid and extensive exploration of the design space
than would otherwise be possible. The ability to absorb
design changes quickly is one argument for more automated
methods over less automated (but more powerful) methods.

Another observation about formal methods and the de-
sign process is that using formal methods, much more time

will be spent on the earlier stages of the process than using
simulation alone. The tradeo� for this should be less time
spent in the later stages simulating and debugging.

Page 1



2 Veri�cation paradigms

There are two basic paradigms for formal veri�cation. The
�rst uses two models of a system: The speci�cation repre-
sents the desired behavior. The implementation is more op-
erational in nature, and is closer in structure to the actual
device. For example, a speci�cation might be the \program-
mer's manual" of a processor, which models the e�ect of
executing a single instruction on memory and registers that
are visible to the programmer. The implementation would
include the complete register state of the processor, includ-
ing any temporary registers, microcode sequencing, pipeline
registers, etc. The veri�cation task would be to prove that
the speci�cation and implementation are equivalent in a suit-
able sense. This notion of equivalence would depend on what
state information is considered visible to the programmer,
and might entail a change of time scale.
The second veri�cation paradigm is sometimes called

\property veri�cation". The speci�cation in this case con-
sists of a set of properties that are to be proved about the
implementation model. These properties need not be a com-
plete speci�cation of the desired behavior of the system. In-
stead, they tend to be rather general properties, for example
that a given protocol does not deadlock, or that it guaran-
tees mutual exclusion or fair access to some resource. In a
sense, the property veri�cation approach assumes that the
implementation is functionally correct for the typical cases,
and that the goal is to discover the infrequently occurring
\corner cases" that result in deadlocks, access con
icts, etc.
Often, the exact property being checked turns out to be
unimportant { once an error occurs, the system becomes
either locked up or highly chaotic, hence the error can be
found by checking almost any nontrivial speci�cation. This
approach has been very e�ective in discovering control errors
in highly concurrent systems.

The two styles of veri�cation are not mutually exclusive
{ in fact they are somewhat complementary. The property
veri�cation approach has the disadvantage that it is not pos-
sible to know when enough properties have been speci�ed.
Thus, there is the danger of underspeci�cation. On the other
hand, specifying equivalence to an abstract model is also
somewhat dangerous in that a high level model often speci-
�es unintended behavior for cases that were not considered

by the designer. Complete speci�cations tend to be prone
to error themselves (errors which are easily propagated to
implementations), while simple abstract properties are more

easily understood. Thus, it can be useful to verify important
properties of both the \speci�cation" and the \implementa-

tion", as well as verifying the equivalence of the two.

3 Abstraction

The most important issue in formal veri�cation (and per-
haps design in general) is the control of complexity. For this
purpose, the essential tool is abstraction. Generally, abstrac-
tion means eliminating detailed information in the model so
as to make it tractable to analyze. There are various kinds

of information that may be eliminated by abstraction. For
example, details of timing or sequencing can be eliminated
by compressing several time steps of a detailed model into

one time step of an abstract model. Abstraction can also in-
volve hiding internal details of a module or a data structure.
In property veri�cation, abstraction is typically used to sup-
press aspects of the system state that are not relevant to the
particular property being veri�ed. These abstractions have
been called \unbalanced" in the sense that they concentrate
on the state of some components of a system, while ignoring
others.
Abstraction is most useful when done in stages. One be-

gins with a very abstract model, and proceeds through a
succession of increasingly detailed models. As the level of
detail is increased, components of the system are decom-
posed into subcomponents. This produces a hierarchy of
models, in which large system components are modeled at a
very abstract level, while smaller subcomponents are mod-
eled in greater detail. Each model serves as the speci�cation
for the set of components immediately below it in the hierar-
chy. The veri�er's job is to prove an appropriate relationship
between each abstraction level and the level below. This job
is made easier by the fact that each individual model in the
hierarchy is simple, even though the system as a whole may
be quite complex.

Most veri�cation methods rely to some extent on abstrac-
tion to reduce complexity. The di�erences are essentially in
the kinds of relationships that are speci�ed between levels
of abstraction. The stages of the design process mentioned
above, from concept to gates, represent particular levels of
abstraction. These abstractions, however, are not necessar-
ily su�cient for formal veri�cation purposes. Generally, for-
mal veri�cation requires much more careful thought about
how to structure the abstraction hierarchy and what infor-
mation to hide at each level so as to make the veri�cation
process tractable. This may require considerable expertise,
and thus is one area that may be an obstacle to integrating
formal methods into the design process.

4 Methods and tools

In this section, we consider some of the available tools and
formalisms for veri�cation, starting with those methods that

are closest to current practice in terms of the skills required,
and moving up to more powerful methods requiring greater

expertise. It also happens that we move from methods that
are mainly applicable in later, more detailed stages of the
design process, to more abstract methods applicable early in
the design process. This brief survey does not even begin to
cover the variety of formal methods that have been studied

for hardware veri�cation. For more complete surveys, see [9,
14].

4.1 Symbolic simulation

Of the various formal veri�cation methods, symbolic sim-

ulation is closest in spirit to current engineering practice.
In a symbolic simulation of a circuit, initial values and in-

puts are given not as boolean values (0 or 1), but instead
as symbolic variables. At each simulation step, the simula-
tor computes the values of signals as boolean functions of

these variables, rather than as de�nite boolean values. The
COSMOS symbolic simulator can do this for switch level

Page 2



MOS circuits, taking into account pass transistor e�ects,
like precharge, and charge sharing [5]. The boolean func-
tions obtained at the outputs of a circuit can be compared
against the desired functions, and if they are not equivalent,
a speci�c input vector can be produced for which the circuit
output di�ers from the speci�cation. Thus, symbolic simu-
lation di�ers from ordinary logic simulation in that the use
of symbolic variables at the inputs allows one symbolic input
vector to cover many logical input vectors. COSMOS uses
very e�cient algorithms based on a boolean representation
called ordered binary decision diagrams to compare boolean
functions [4]. Nonetheless, comparing boolean functions is
a hard problem in general, and so some means is often nec-
essary to reduce the complexity of the problem. One way
to do this is to introduce the unknown value X for initial
states and inputs that are not relevant to the property be-
ing proved. This kind of abstraction was used, for example,
to verify a static RAM chip [6]. In this case, informal argu-
ments were used to show that the set of symbolic simulation
vectors completely covered all possible required behaviors of
the chip.

Symbolic simulation falls in the category of property ver-
i�cation, since each symbolic vector is essentially one prop-
erty that partially speci�es the desired behavior. It applies
mainly to gate level and switch level design, the last stages
in our design process. Symbolic simulation tools can be
applied, however, to proving speci�cation/implementation
equivalence (albeit at a fairly low level). For example, sup-
pose we are given a description of a microarchitecture, and
would like to show that a pipelined implementation is equiv-
alent to it. This can be done by providing a representa-

tion function. This function takes the state of the pipeline
and translates it into an equivalent microarchitecture state.
This is usually the state that would result if the pipe were
emptied by inserting no-ops. By symbolic simulation, we
can check that one step of the pipelined version is equiv-
alent to one step of the microarchitecture, in terms of the
representation function. This has been done, for example,
to show the equivalence of a pipelined stack circuit to an
idealized stack circuit [3]. A more elaborate technique has
been used to compare a transistor level model of a sim-
ple microcoded microprocessor to its instruction set archi-

tecture [1]. Whether such comparisons can be made be-
tween more complex processors (having, for example, inter-
nal caches, TLB's, deep pipelining, etc.) is unclear, since
the symbolic simulation method relies heavily on intracable
boolean comparison methods, and the representation func-

tions for such systems may be very complex.

4.2 Model checking

Model checking is another method of property veri�cation
that is somewhat more abstract than symbolic simulation.

In this case, the properties to be veri�ed are written in tem-

poral logic [13]. This is a logical notation that can concisely
represent temporal relationships between events. For exam-

ple, one can easily state in temporal logic properties like

� a and b never happen at the same time

� whenever a happens, b eventually happens

� a is always possible in the future

The �rst property is a safety property, stating that some-
thing bad never happens. The second is a liveness prop-
erty, stating that something good eventually happens, and
the third is a modal property, stating that something good
may eventually happen. The latter kind of property is use-
ful, for example, to prove that a protocol does not reach a
deadlocked state. Speci�cations of temporal properties may
also be described using �nite automata instead of temporal
logic. In either case, a model checker can translate the im-
plementation model into a �nite state graph, and then check
automatically that the speci�cation is satis�ed [7]. In addi-
tion, if the speci�cation is not satis�ed, the model checker
can produce a counterexample { a sequence of events that
violates the speci�cation. Counterexamples are perhaps the
most valuable product of model checking, since they help
locate the source of errors. The design can then be cor-
rected and the model checking process repeated. In general,
model checking is most useful for verifying control aspects
of a design, especially for complex protocols between many
concurrent �nite state machines.
The main limitation of model checking is that it requires

building a complete state graph for the model. In general,
the number of states in this graph increases exponentially
with the size of the model. This state explosion means that
it is very important to verify desired properties at the ap-
propriate level of the abstraction hierarchy. It is often nec-
essary to make certain abstractions that are speci�c to a
given property being proved. One veri�cation tool that pro-
vides substantial support for abstraction is the COSPAN
system [10]. In this system, the models are �nite automata,
and the abstractions are homomorphisms, or functions that
map the behaviors of detailed models into the behaviors of
more abstract models in the hierarchy. COSPAN can check
the validity of these abstractions, as well as checking tem-
poral properties that are speci�ed as �nite automata.

As we will see, model checking can be applied early in the
design process, at the behavioral level, or later at the gate
level.

4.3 Theorem proving

The most general and powerful methods of veri�cation are
based on general purpose theorem provers. A theorem
prover (or more properly a theorem checker) is based on a

logic { a formal language language for stating mathematical
propositions. A logic is equipped with a proof system { a set
of axioms and inference rules that make it possible to reason
in a step-by-step manner from premises to conclusions. De-
pending on how powerful the logic is, the proof system may

or may not be complete (meaning that all valid propositions
in the logic can be proved). Most theorem provers are inter-
active, requiring guidance from the user in order to generate
proofs.
A design description can be imported into the theorem

prover in several ways. It might be embedded directly in
the logic { for example, each gate might be represented by
some proposition in the logic. Alternatively, a hardware de-

scription language might be given a semantics that translates
each program into a mathematical object, like an automa-

Page 3



ton. This translation might be done automatically, or the
semantics itself might be embedded in the logic as a func-
tion, and used in the proofs. In any event, proving that the
implementation model is equivalent to (or implies) the spec-
i�cation model requires constructing a detailed proof. Some
steps in the proof may be �lled in automatically by the the-
orem prover, but in general, construction of the proof is an
interactive process that requires a great deal of expertise on
the part of the user, about the particular design, proof tech-
niques, and also the particular capabilities of the interactive
prover.
One advantage of theorem provers is that they allow you

to reason about a system design before certain parameters
have been �xed (for example, the number of bits in a word, or
words in a packets, or processors on a common bus). These
parameters can simply be replaced by symbolic variables in
the model, something that isn't possible with model check-
ers, whoses variables must have �xed �nite ranges. Theorem
provers also don't su�er from the state explosion problem,
since they do not need to examine every possible state of
the model. However, it is still necessary in practice to use
some form of abstraction to control complexity, especially in
systems with signi�cant concurrency.
Another advantage of theorem provers is that they allow

you to reason at much more abstract levels [2]. For exam-
ple, using the Boyer-Moore system, it was proved that a
simple microprocessor design implements its instruction set
architecture. Then a simple programming language was de-
�ned, with an interpreter function and a compiler function,
and it was proved that compiling a program into the ma-
chine language and executing it is equivalent to interpreting
it using the interpreter function. Using the interpreter func-
tion, one can then prove properties of programs written in
the programming language, etc. This kind of top-to-bottom
veri�cation is possible only with a general purpose theorem
prover.
Theorem provers have been used to verify quite a number

of simple microprocessors. Generally, this is done by es-
tablishing a simulation relation between the implementation
and the architecture, in much the same way as one would
with symbolic simulation or model checking. The di�erence
is that the simulation relation is established by logical proof,
rather than by exhaustive analysis. The designs veri�ed by
theorem provers tend to have little concurrency or asyn-

chrony (i.e.., there is little use of pipelining, asynchronous
interrupts, caches, coprocessors, etc.). One notable excep-

tion to this is a cache consistency protocol derived using
the HOL theorem prover [8]. This was done by establishing
simulation relations between models at several levels of ab-

straction. Since model checking deals well with control and
concurrency without the need for detailed proofs, it may be
that a combination of methods will be most e�ective for high
level veri�cation. For low level veri�cation, other methods
are probably more suitable, since they require less user in-

teraction.

5 Veri�cation in practice

We now consider two case studies using formal veri�cation

in di�erent stages of the design process. In both cases formal

veri�cation was done in parallel with standard veri�cation
methods (i.e.., HDL modeling and simulation), in a commer-
cial development environment. The �rst is the veri�cation
of a cache consistency protocol for a distributed multipro-
cessor. This protocol was modeled at an abstract behavioral
level and veri�ed using model checking. In the second case,
model checking was used at the gate level to verify submod-
ules of a packet router chip. We will be concerned mainly
with whether or not the veri�cation process was able to gen-
erate useful and timely information for the designers, and
how the design and veri�cation processes interacted, rather
than with details of the systems and the properties veri�ed.

5.1 Behavioral level veri�cation

Our �rst case study is the veri�cation of the cache consis-
tency protocols of the Gigamax, a distributed multiproces-
sor developed at Encore Computer Corporation [12]. Formal
veri�cation was motivated by the complexity of the proto-
cols { it was considered that using simulation alone could not
provide the desired level of con�dence in the design. The
Gigamax system is structured as a hierarchy, with several
\local" buses, each using a bus snooping coherence proto-
col and connected to a \global" bus via a bus bridge. The
bus bridge snoops transactions on the bus at one end, and
when appropriate, sends messages to the other end, which
are queued and eventually issued as bus transactions. The
bus bridge contains cache tags for all cache blocks from lo-
cal memory that are present in remote caches, allowing it to
send invalidate and call-back messages when appropriate.

The protocol was modeled and veri�ed using the SMV
(symbolic model veri�er) system, a model checker that uses
ordered binary decision diagrams to reduce the state explo-
sion problem [11]. Nonetheless, it was necessary to use a
very abstract model of the protocol in order to make the
model checking process tractable. This model had only one
cache block, with state information about other addresses
eliminated. Operations on the cache block, such as loads,
stores and replacements were completely nondeterministic.
This eliminated any model of the processor or address trace
generation. Similarly, the latency of message delivery was
made completely nondeterministic in order to avoid model-

ing details of message transmission and queueing. Pipelining
of the bus protocols was ignored.

The speci�cations were formulated in temporal logic. The

main speci�cations given were that the protocol does not
deadlock (i.e.., reach a state where some cache is locked out
from read or write access), that accesses to the cache line are
sequentially consistent, and that the diagnostic system not

ag an error while the protocol is running correctly. For the

sequential consistency speci�cation, another abstraction was
used { the data in the cache line were modeled by a single
bit representing a time stamp value. This bit was checked to
make sure no processor observed time stamps out of order.

The modeling approach had a number of disadvantages.
First, the model was extracted by hand from state transi-
tion tables and block diagrams, with some interaction from
the designers. This left open a possibility of error. Second,

the veri�ed behavioral model was not carried forward to the
gate level design stage. Thus, errors introduced in the im-

Page 4



plementation were not covered by formal veri�cation in any
way. Nonetheless, several signi�cant errors in the protocol
were discovered by the model checker and corrected. These
errors would have been much more di�cult to detect and
diagnose either in simulation or in testing the actual hard-
ware. One of these errors involved a complex sequence of
messages leading to a deadlocked state, where two \read"
messages crossed a link in opposite directions, thus blocking
each other, since each held a lock on the bus at one end.
Such a counterexample, produced by the model checker, is
much more easily understood than the corresponding error
occurring in a detailed simulation trace.

Because the model checking process required only ten
minutes to an hour to run, design changes could be eas-
ily incorporated and then tested to see if they introduced
new errors. Thus, the initial e�ort of constructing the ab-
stract model was amortized as the process of �nding and
�xing errors progressed. One reason for the e�ciency of
the model checking was the use of a technique called sym-

bolic model checking, that uses ordered binary decision dia-
grams to implicitly represent the state graph of the model.
This technique is particularly well suited to systems of pro-
cesses with a limited communications structure, such as the
bus structure of the Gigamax protocol. For protocols with
other communications structures, the symbolic model check-
ing technique might be much less e�cient, making the time
for one model checking cycle unacceptably long. In fact, for
the Gigamax, models with two cache blocks instead of one
required an unacceptably long time to check (over a week).
In general, however, one of the strengths of the model check-
ing technique is the ability to quickly change and reverify a
model.

5.2 Gate Level Veri�cation

Now we consider a case of model checking at the gate level
{ speci�cally, veri�cation of submodules of a packet router
chip. This chip was described in a synthesizable subset of
the Verilog hardware description language, which was trans-
lated to a gate level netlist by synthesis tools. At this level
of detail, it was not possible to apply model checking tech-
niques to the chip as a whole. Instead, the formal veri�cation
concentrated on critical submodules of the chip, while sim-
ulation work proceeded in parallel, testing con�gurations of
several router chips embedded in system level models.

The most interesting of the modules was one that main-

tained queues of packet bu�ers using linked list structures.
This module used complex data structures, as well as sig-
ni�cant parallelism and pipelining. The module contained
register �les holding pointers to the head and tail of each
queue, as well as a register �le holding a forward link for

each packet bu�er, pointing to the next bu�er in the queue.
The enqueueing and dequeueing logic allowed packets to be
dequeued from two queues simultaneously, while one packet
was being enqueued. Both these operations were pipelined in
several stages, the pipelines being complicated somewhat by

the limited number of ports of the register �les, which pre-
vented some accesses from happening simultaneously. Even
though the queue manager was only one submodule of the
router chip, with roughly 1400 register bits it was signif-

icantly larger than could be handled by a straightforward
model checking approach.

The approach taken to the veri�cation was to use \rep-
resentation functions" for the pipeline, as described above,
mapping the state of the pipelines onto an idealized un-
pipelined stated. The allowed transitions of this idealized
state were speci�ed by temporal logic formulas, and these
formulas were veri�ed using SMV (although for this pur-
pose, symbolic simulation could also have been used, had
the necessary tools been available). In addition to these for-
mulas, several \representation invariants" had to be proved.
These were used to rule out certain illegal states of the pipe
that do not correspond to any idealized state.

Model checking revealed a number of fairly subtle bugs in
the design. These were typically problems that would occur
when two or three particular operations were inserted in the
pipe in particular temporal relations to each other. In gen-
eral these problems had not been found in the simulations
because enough packets of a particular type had not been
generated to cause required coincidence of tra�c to occur
in the pipeline. In perhaps a greater number of cases, the
counterexamples found by the model checker were not in fact
bugs because they were ruled out by logic outside the queue
management module, or even by software. For example, a
sequencer outside the queue manager ensured that packets
could not be dequeued from the same queue on consecutive
cycles. This fact was used in optimizing the bypass logic of
the pipelines. Such conditions had to be incorporated into
the speci�cations of the queue module as assumptions. The
chip designer was the �nal arbiter as to what was a bug and
what was not. One advantage of model checker counterex-
amples over simulation output was that the former tended
to point more clearly to the source of the problem. Model
checking counterexamples consisted of only a few steps, while
the simulation output was lengthy, making it di�cult to �nd
the source of errors resulting many clock cycles later in in-
correctly delivered packets.

It was necessary to make several optimizations by hand
in order to make the model checking run in an acceptable
amount of time. First, the speci�cation was broken down by
hand into properties that were simple enough for the model

checker to verify. Second, state variables were identi�ed by
hand that were not relevant to the properties being proved,

and these were abstracted away. Third, the ordered binary
decision diagrams were optimized by hand (this involved ad-
justing the order of the state variables of the model as they
appear in the binary decision diagrams). Thus, changes to
the design could not be as easily accommodated as they were

in the Gigamax veri�cation, since they might require mod-
ifying the properties to be proved, the abstractions, or the
variable ordering. Most changes were small and required lit-

tle or no change to rerun the veri�cation, however in some
cases signi�cant e�ort was required to accommodate design

changes.

One fact that signi�cantly hampered the veri�cation e�ort
was the lack of modularity in the design. The control logic
was distributed in a complex way among a number of mod-
ules in the chip, resulting in a very large number of control
signals passing between modules. Many of these signals were

redundant, in the sense that one signal was a delayed version

Page 5



of another signal, or one set of signals was a decoded version
of another set of signals. This redundancy had to be taken
into account in the veri�cation. Tracking down these redun-
dant signals and determining their relation to other control
signals was a time consuming process. This might have been
avoided if the development process had begun using formal
methods and the interfaces between modules been formally
de�ned (for example, in temporal logic).

6 Conclusions

As we have seen, the use of formal methods has certain im-
plications for the design process, mostly deriving from the
need to control complexity. Below are a few suggestions for
design practices that �t in with a formal approach to veri-
�cation. It is interesting to note that these suggestions are
good design practice regardless of whether formal methods
are used:

� More e�ort should be concentrated on the early phases
of a design. In particular, modeling should start in
the conceptual phase of design. Nondeterminism in the
models can be used to postpone design decisions. Ab-
stract models should be veri�ed to the extent possible
before detailed models are made.

� Decompose systems into modules based on boundaries
of least communication. Try to design modules in a
way that requires little knowledge of the state of other
modules. This will simplify the de�nitions of interfaces,
and thus make it easier to decompose large veri�cation
problems into small veri�cation problems. It also makes
symbolic model checking techniques more e�ective, and
means that design changes in one module have less im-
pact on other modules.

� Precise de�nitions of interfaces are required for decom-
posing a large design into parts. An interface de�nition
is simply an abstract model of the components as seen
through the interface. Note that many designs require
maintaining compatibility with existing chips, proto-
cols, etc. Having formal models (i.e.., abstractions) of
interfaces would make it easier determine whether a
new product is compatible with an old one.

To summarize: some of the possible bene�ts of formal
methods are more robust designs, early detection of errors,

and ease of exploring the design space. We have observed
that it is not necessary to have a complete proof of correct-
ness with respect to a complete formal speci�cation in order
to obtain some of these bene�ts. In fact, very subtle er-
rors can often be found automatically by checking general

properties, like absence of deadlock.
Automatic property veri�cation techniques, such as model

checking, can be used either for very abstract global models
of a system (as in the Gigamax veri�cation), or for gate level
models of small parts of a system (as in the queue module
veri�cation). These techniques are still limited mainly by the
state explosion, and though progress in this area continues,
we would not expect to see completely automatic veri�cation
of large systems at the gate level.
Gate level veri�cation techniques (such as symbolic sim-

ulation) may be the �rst to have a signi�cant impact on

design practice because they require the least expertise on
the part of the designer. However, using veri�cation tech-
niques early in the design process can catch errors that are
di�cult to �nd at later stages. In addition, gate level veri�-
cation can be made more di�cult than necessary by a lack of
formal de�nitions of the interfaces between modules. In the
long run, the most e�ective approach would be one that ties
together veri�cation at every level of the design hierarchy.

References

[1] D. Beatty. A Methodology for Formal Hardware Veri�-

cation, with Application to Microprocessors. PhD the-
sis, Carnegie Mellon, 1993. tech. report CMU-CS-93-
110.

[2] W. R. Bevier, Jr. W. A. Hunt, J. S. Moore, and W. D.
Young. An approach to systems veri�cation. Journal

of Automated Reasoning, 5(4):411{428, 1989.

[3] S. Bose and A. Fisher. Verifying pipelined hardware
using symbolic logic simulation. In IEEE International

Conference on Computer Design, 1989.

[4] R. E. Bryant. Graph-based algorithms for boolean func-
tion manipulation. IEEE Transactions on Computers,
C-35(8), 1986.

[5] R. E. Bryant. Boolean analysis of MOS circuits. IEE

Trans. CAD, 6(4):634{649, July 1987.

[6] R. E. Bryant, D. Beatty, K. Brace, and K. Cho. Verify-
ing a static RAM design by logic simulation. In J. Allen
and F. T. Leighton, editors, Proc. 5th MIT Conference

on Advanced Research in VLSI, pages 335{349. MIT
Press, 1988.

[7] Clarke, Emerson, and Sistla. Automatic veri�cation of
�nite state systems using temporal logic speci�cations.
ACM Trans. Program. Lang. Syst., 1986.

[8] D. L. Dill and P. N. Lowenstein. Veri�cation of a mul-
tiprocessor cache protocol using simulation relations.
Formal Methods in System Design, 1(4):335{383, De-
cember 1992.

[9] A. Gupta. Formal hardware veri�cation methods: A

survey. Formal Methods in System Design, 1(2/3):151{
238, October 1992.

[10] R. P. Kurshan. Formal Veri�cation of Coordinating

Processes. Princeton Univ. Press, 1994. to appear.

[11] K. L. McMillan. Symbolic Model Checking. Kluwer
Academic Publishers, 1993.

[12] K.L. McMillan and J. Schwalbe. Formal veri�cation
of the Encore Gigamax cache consistency protocol. In
International Symposium on Shared Memory Multipro-

cessors, 1991.

[13] A. Pnueli. Applications of temporal logic to the speci�-
cation and veri�cation of reactive systems: A survey of

current trends. In Lecture Notes in Computer Science,
volume 224, pages 510{584. Springer-Verlag, 1986.

[14] J. M. Wing. A speci�er's introduction to formal meth-

ods. IEEE Computer, 23(9):8{24, September 1990.

Page 6


