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Abstract: We fitted statistical models, which assumed single-nucleotide polymorphism (SNP) marker
effects differing across the fattened steers marketed into different prefectures, to the records for cold
carcass weight (CW) and marbling score (MS) of 1036, 733, and 279 Japanese Black fattened steers
marketed into Tottori, Hiroshima, and Hyogo prefectures in Japan, respectively. Genotype data on
33,059 SNPs was used. Five models that assume only common SNP effects to all the steers (model 1),
common effects plus SNP effects differing between the steers marketed into Hyogo prefecture and
others (model 2), only the SNP effects differing between Hyogo steers and others (model 3), common
effects plus SNP effects specific to each prefecture (model 4), and only the effects specific to each
prefecture (model 5) were exploited. For both traits, slightly lower values of residual variance than
that of model 1 were estimated when fitting all other models. Estimated genetic correlation among
the prefectures in models 2 and 4 ranged to 0.53 to 0.71, all <0.8. These results might support that
the SNP effects differ among the prefectures to some degree, although we discussed the necessity of
careful consideration to interpret the current results.

Keywords: Japanese Black cattle; degree of marbling; carcass weight; genomic prediction; variance
component estimation

1. Introduction

In genomic prediction (GP) of breeding value, genome-wide single nucleotide polymor-
phisms (SNPs) have been used as markers in linkage disequilibrium (LD) with quantitative
trait loci (QTL). The size of a training population can affect the accuracy of GP [1], while
enlarging the size is often challenging. Larger training populations which are provided
by merging multiple breeds or subpopulations of a single breed could be alternatives
(e.g., [2–4]), however, the accuracy of GP even got worse in some cases (e.g., [5–7]), possibly
due to a lower persistence of LD phase among breeds or subpopulations, which might lead
to the difference in allele substitution effects of SNP markers (e.g., [8–10]). To tackle this,
studies have been conducted to perform GP incorporating sequencing data, which could
give information on causal variants (e.g., [11–13]) and to develop statistical models for GP
with training populations provided by merging multiple breeds or subpopulations of a
single breed (e.g., [14–16]).

Japanese Black cattle are the primary breed of Wagyu which are the native beef cattle
in Japan and are now globally well known for meat qualities such as marbling (e.g., [17–19]).
In this breed, as one representative genetic evaluation scheme via an efficient restricted
maximum likelihood (REML)–empirical best linear unbiased prediction (BLUP) computing
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procedure [20–22], breeding value estimation for several carcass traits has been conducting
in each prefecture. This used the carcass records, including the degree of marbling, of
marketed fattened animals and deep pedigree information. For the use of commercial
SNP markers, previous studies have shown that the genetic characteristics of the Japanese
Black cattle subpopulations could be inferred from genotype data on genome-wide SNP
markers [23–27], and studies about practical use of GP in Japanese Black cattle has been
also conducted (e.g., [28–30]). For carcass traits, GP via genomic BLUP (GBLUP) using
genomic relationship matrix (G matrix) [31] is one operational scheme, in which fattened
animals shipped to carcass markets are used as a large-scale training population [32,33].
Recently, Takeda et al. [33] assessed the performance of GP for carcass traits with fattened
animals collected from 18 out of 47 prefectures in Japan as a training population. Statistical
models assuming that the same allele substitution effects of SNP markers were shared
among all fattened animals have been exploited in previous studies on GP for carcass traits
in Japanese Black cattle (e.g., [32–34]). On the other hand, Zoda et al. [26] recently revealed
a difference concerning the degree of persistence of LD phase among commercial SNP
markers between fattened steers marketed into Hyogo prefecture and those marketed into
other prefectures including Tottori and Hiroshima. This finding brought a hypothesis that
the SNP effects as LD markers are not, at least completely, identical among fattened animals
marketed into different prefectures.

Several studies have reported the results of analyzing data generated by sequencer in
Japanese Black cattle [35–38], and a study on utilizing sequence data into the flamework
of GP is warranted. For developing a better statistical model for GP of carcass traits in
Japanese Black cattle using commercial SNP markers, according to Thomasen et al. [9],
Zoda et al. [39] assessed the performance of the statistical model including the covariates
based on the results of population structure analysis using the STRUCTURE software [40].
On the other hand, de los Campos and Sorensen [41] showed the idea of separating marker
effects into a common part across groups (or subpopulations) and group-specific parts.
Here, using carcass records of fattened steers marketed into Tottori, Hiroshima, and Hyogo
prefectures, we assessed the performance of the models, which assumed SNP effects
differing among the prefectures, for GP of cold carcass weight (CW) and marbling score
(MS) in Japanese Black cattle.

2. Materials and Methods
2.1. Theory

Firstly, let assume the following additive bi-allelic QTL effect model for different
groups (denoted as groups 1 and 2):[

q1
q2

]
=

[
Q1
Q2

]
α+

[
ε1
ε2

]
,

where q is the vector of phenotypic values; Q is the matrix of the genotypes of QTL; α is
the vector of additive QTL allele substitution effects; ε is the vector of non-genetic effects.
In this study, we treated the fattened steers marketed into each of the three prefectures
(Tottori, Hiroshima, and Hyogo) as different groups. When using genome-wide SNPs
in Hardy-Weinberg equilibrium (HWE) as LD markers, the following equation could
be provided: [

Q1
Q2

]
α =

[
1
1

]
2pa +

[
M1 − 2p
M2 − 2p

]
a +

[
β1
β2

]
,

where M is the matrix containing the number of a counted SNP allele (0, 1, or 2); p is the
vector of the frequency of counted SNP alleles; a is the vector of allele substitution effects;
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β is the vector of residual parts not captured by the SNP markers used; and 1 is the vector
of ones. Then:[

q1
q2

]
=

[
1
1

]
2pa +

[
M1 − 2p
M2 − 2p

]
a +

[
β1
β2

]
+

[
ε1
ε2

]
=

[
1
1

]
µ +

[
M1 − 2p
M2 − 2p

]
a +

[
e1
e2

]
=

[
1
1

]
µ +

[
g1
g2

]
+

[
e1
e2

] ,

where µ is the scalar of the intercept; g is the vector of genomic breeding values (GBVs);
and e is the vector of residuals. Now, the vectors a, e1, and e2 was treated as random, and
their expectation and (co) variance structures were assumed to be:

E

 a
e1
e2

 =

0
0
0

 and V

 a
e1
e2

 =

Iσ2
a 0 0

0 Iσ2
e 0

0 0 Iσ2
e

,

where σ2
a is the scalar of the variance of each SNP effect; σ2

e is the scalar of residual variance;
and I is the identity matrix. Then, the (co)variance of the vectors q1 and q2 was:

V
[

q1
q2

]
=

[
(M1 − 2p)(M1 − 2p)′/c (M1 − 2p)(M2 − 2p)′/c
(M2 − 2p)(M1 − 2p)′/c (M2 − 2p)(M2 − 2p)′/c

]
cσ2

a + V
[

e1
e2

]
=

[
G11 G12
G21 G22

]
σ2

g + Iσ2
e = Gσ2

g + Iσ2
e

,

where c equals ∑n
i = 1 2pi(1− pi); σ2

g is the scalar of the genomic variance, or additive
genetic variance explained by the SNP markers used; and G is the G matrix calculated
according to method 1 in VanRaden [31].

Next, according to the idea shown in de los Campos and Sorensen [41], we further
assumed that the SNP effects were different between groups at least partly due to lower
persistence of LD phase. The SNP effects, a, were divided into a common part across
groups, u, and group-specific ones, d [41]:[

Q1
Q2

]
α =

[
2p(u + d1)
2p(u + d2)

]
+

[
M1 − 2p
M2 − 2p

]
u +

[
M1 − 2p

0

]
d1 +

[
0

M2 − 2p

]
d2 +

[
β1
β2

]
The expectation and (co)variance structures of the vectors u, d1, d2, e1, and e2 were

assumed to be:

E


u
d1
d2
e1
e2

 =


0
0
0
0
0

 and V


u
d1
d2
e1
e2

 =


Iσ2

u 0 0 0 0
0 Iσ2

d 0 0 0
0 0 Iσ2

d 0 0
0 0 0 Iσ2

e 0
0 0 0 0 Iσ2

e

,

where σ2
u is the scalar of the variance of each of the common SNP effects; and σ2

d is the
scalar of the variance of each of the group-specific SNP effects. Then, the (co)variance of
the vectors q1 and q2 was:

V
[

q1
q2

]
= Gcσ2

u +

([
G11 0

0 0

]
+

[
0 0
0 G22

])
cσ2

d + Iσ2
e

=

G11

(
σ2

g1
+ σ2

g2

)
G12σ2

g1

G21σ2
g1

G22

(
σ2

g1
+ σ2

g2

)+ Iσ2
e

,

where σ2
g1 equals cσ2

u; and σ2
g2 equals cσ2

d . Values of phenotypic variance, heritability, and genetic

correlation between groups can be obtained as σ2
g1 + σ2

g2 + σ2
e ,
(

σ2
g1 + σ2

g2

)
/
(

σ2
g1 + σ2

g2 + σ2
e

)
,
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and σ2
g1/
(

σ2
g1 + σ2

g2

)
, respectively (e.g., [10,42,43]). When assuming u = 0, σ2

g1 is zero and then
no genetic correlation among the groups is assumed.

2.2. Data Analysis

Animal care and use were according to the protocol approved by the Shirakawa Institute
of Animal Genetics Animal Care and Use Committee, Nishigo, Japan (ACUCH21-1).

We analyzed the carcass records for 2048 fattened steers collected from Tottori, Hi-
roshima, and Hyogo prefectures through 2003 to 2014. The data were also analyzed in
Zoda et al. [39]. Here, the fattened steers marketed within Tottori, Hiroshima, and Hyogo
prefectures are denoted as “To”, “Hi”, and “Hy” steers, respectively. The numbers of the
To, Hi, and Hy steers were 1036, 733, and 279. Traits analyzed were CW and MS. MS were
evaluated as beef marbling standard at the cross-section between the sixth and seventh
ribs of the left side of a cold carcass by official graders according to the carcass grading
standards [44]. Table 1 shows the means and standard deviations (SDs) for phenotypic
records. It should be noted that the information about pedigree and fattening farms was
not available in this study.

Table 1. Number of records (N) and means and standard deviations (SDs) of phenotypic records.

Item; Unit
Tottori Hiroshima Hyogo

N Mean SD N Mean SD N Mean SD

Age at slaughter; month 1036 28.9 1.2 733 30.0 2.1 279 31.0 1.1
Cold carcass weight; kg 474.2 50.2 485.4 57.1 408.2 39.4

Marbling score; 1 (null) to 12
(very abundance) 5.8 2.0 4.1 1.4 6.5 1.9

Genotype information on 33,059 SNPs with position information (UMD 3.1) and minor
allele frequencies > 0.01 in HWE (p > 0.001) in the 2048 steers were used. Genomic DNA
extraction, SNP genotyping, and missing genotype imputation were conducted following
Watanabe [32]. Briefly, extracted DNA samples were genotyped using either the Illumina
BovineSNP50 or BovineLD BeadChip. Missing genotype filling for BovineSNP50 data and
imputation from BovineLD to BovineSNP50 data were carried out using Beagle 3.3.2 soft-
ware [45]. For the imputation, BovineSNP50 genotype data obtained from 651 fattened
animals (617 steers and 34 females) were used as a haplotype reference population.

According to method 1 in VanRaden [31], three G matrices, denoted as G1, G2, and
G3, were calculated:

G1 =

GTo−To GTo−Hi GTo−Hy
GHi−To GHi−Hi GHi−Hy
GHy−To GHy−Hi GHy−Hy

,

G2 =

GTo−To GTo−Hi 0
GHi−To GHi−Hi 0

0 0 GHy−Hy

,

G3 =

GTo−To 0 0
0 GHi−Hi 0
0 0 GHy−Hy

,

where Ga-b is the submatrix for the steers marketed into prefectures a and b. For example,
GTo–Hy is the submatrix with 1036 rows and 279 columns for the To steers and Hy steers.
Allele frequency was calculated using all the 2048 steers. The G1 matrix was used for the
SNP effects common among the steers, the G2 matrix was for the SNP effects differing
between Hy steers and others, the G3 was for the SNP effects differing among To, Hi, and
Hy steers. Figure 1 shows the heatmaps of the elements of G1 and G3 matrices. Note
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that values of the elements of submatrix for the Hy steers, namely GHy–Hy, were higher in
average, as reported by Zoda et al. [39].
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Figure 1. Heatmaps of the two genomic relationship matrices (G matrices). To, Hi, and Hy, the
steers marketed within Tottori, Hiroshima, and Hyogo prefectures in Japan. (a) The G matrix used to
consider allele substitution effects common among To, Hi, and Hy steers (G1 matrix in the main text);
(b) The G matrix used to consider the effects differing among To, Hi, and Hy steers (G3 matrix).

We assessed the performance of the five models below. The first model (denoted as
model 1) was:

y = Xb + g1 + e,

where y is the vector of phenotypic records; b is the vector of main effects of prefecture
(Tottori, Hiroshima, and Hyogo) and year at slaughter (through 2003 to 2014), and the
partial linear and quadratic covariates of age at slaughter; g1 is the vector of GBVs with the
(co)variance structure of G1σ2

g1; e is the vector of residuals and the (co)variance structure is
Iσ2

e ; and X is an incidence matrix for b. Previous studies on GP of carcass traits in Japanese
Black cattle have also used this kind of statistical model (e.g., [32–34]). We also exploited
the following model (model 2):

y = Xb + g1 + g2 + e,

where g2 is the vector of GBVs with the (co)variance structure of G2σ2
g2. We also used

the model which ignored the term g1 in model 2 (model 3). We changed the (co)variance
structure of g2 from G2σ2

g2 to G3σ2
g2 (model 4). Furthermore, the model ignoring the term

g1 in model 4 was used (model 5). Therefore, when using models 2 and 4, the total GBVs
were the sum of g1 and g2.

All parameters were estimated via the Bayesian framework using the Gibbs sampler
in BGLR package [46]. The default settings were used for the prior distributions and
the vectors g1, g2, and e were assumed to follow multivariate normal distributions. A
single chain of 110,000 samples was run, and the first 10,000 samples discarded as burn-
in. Samples after burn-in were used with a thinning rate of 10. We assessed the Gibbs
sampling chains by visual inspection. Parameter estimates and their standard errors (SEs)
were obtained by calculating the means and SDs of the 10,000 posterior samples. Values
of deviance information criterion (DIC) [47], estimated SNP effects, and predicted GBVs
were compared among the models. Values of the SNP effects were estimated according to
previous studies (e.g., [48–50]). For example, the SNP effects common among the steers in
models 1, 2, and 4 were calculated as follows:

(M− 2p)′G−1
1

^
g1

∑33,059
i = 1 2pi(1− pi)

.
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3. Results
3.1. Variance Component Estimation

When using model 1, the estimates of heritability was 0.49 for CW and 0.40 for MS
(Table 2). Previous studies [28,39,51], using carcass records of steers marketed into two to
five prefectures, estimated the heritability to be ranging from 0.52 to 0.61 for CW and from
0.51 to 0.78 for MS. The estimated heritability for MS in this study was slightly lower than
those in these previous studies, possibly because, as well as the difference in the number of
the records, the samples used in the previous studies included ones selectively collected for
genome-wide association study for MS [28,39,51]. On the other hand, using carcass records
of fattened animals collected from 18 prefectures, Takeda et al. [33] estimated the heritability
of CW to be 0.41 and that of marbling score to be 0.35, which were both lower than our
estimates. Possible reason was the difference in the number of prefectures where the carcass
records were collected. Furthermore, information on fattening farms was not available in
this and previous studies and the effect of fattening farm could not be considered, which
might affect the results [52]. Yao et al. [42] reported that the estimated heritabilities of feed
efficiency traits by merging data collected at North America, Netherland, and Scotland
were lower than those estimated using each country data separately and then discussed
that this phenomenon was due to increased residual variance. Most of the previous
studies on GP of carcass traits in Japanese Black cattle used approximately 30,000 SNPs
and G matrix calculated by method 1 of VanRaden [31]. Ogawa et al. [34] compared the
results for variance component estimation and GP of CW and MS, varying the number
of SNPs (approximately 6000, 30,000, and 570,000, corresponding to low-, medium-, and
high-density commercial SNP chips) and the G matrix calculation (methods 1 and 2 of
VanRaden [31]) and found that the differences were small comparing using medium- and
high-density SNP markers and when comparing the methods of G matrix calculation.

Table 2. Deviance information criterion (DIC) and the estimated parameters and their standard
errors (SEs) 1.

Model DIC
σ2

g1 σ2
g2 σ2

e σ2
p Heritability Genetic Correlation

Value SE Value SE Value SE Value SE Value SE Value SE

Cold carcass weight

1 0 1163.6 116.2 - - 1217.7 72.6 2381.3 89.3 0.49 0.04 - -
2 −25.4 748.2 166.2 485.2 156.4 1173.9 74.8 2407.4 90.8 0.51 0.04 0.61 0.12
3 −14.0 - - 1211.4 123.6 1183.5 76.9 2394.9 90.0 0.51 0.04 - -
4 −101.1 941.1 126.9 390.9 105.3 1081.9 79.8 2413.8 90.5 0.55 0.04 0.71 0.07
5 −91.5 - - 1375.2 137.9 1057.9 88.5 2433.0 90.3 0.56 0.04 - -

Marbling score

1 0 1.26 0.15 - - 1.90 0.10 3.16 0.11 0.40 0.04 - -
2 −18.8 0.72 0.18 0.63 0.17 1.84 0.10 3.19 0.12 0.42 0.04 0.53 0.12
3 −2.4 - - 1.28 0.15 1.88 0.11 3.15 0.11 0.40 0.04 - -
4 −47.0 0.98 0.16 0.43 0.11 1.76 0.11 3.18 0.11 0.44 0.04 0.69 0.08
5 42.4 - - 1.23 0.15 1.89 0.12 3.13 0.11 0.39 0.04 - -

1 σ2
p , phenotypic variance calculated as σ2

g1 + σ2
g2 + σ2

e . Each DIC value was calculated as the DIC value obtained
with the model minus that obtained with model 1.

The DIC value of model 1 was the highest among the five models for CW and higher
than models 2, 3, and 4 for MS (Table 2). For both traits, the DIC value of model 2 was
lower than that of model 3, and the value of model 4 was lower than that of model 5. These
results may indicate that the SNP effects were not identical, but assumption of no genetic
correlation among the groups is too extreme. The DIC value of model 4 was lower than that
of model 2, although the estimated genetic correlation in model 4 was nearer to 1 than that
in model 2. This might be due to the difference in proportion of carcass records collected
from each prefecture; model 2 might show better fitting than model 4, when more carcass
records of the fattened animals in Hyogo prefecture were available. Estimated genetic
correlation ranged from 0.53 to 0.71, or all <0.8 proposed by Robertson [53]. However,
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genetic correlations estimated by using models 2 and 4 in this study have a constrain
that the genomic variance was the same between the groups. Under this condition, it is
unknown that the value of 0.8 could perform as a criterion to judge whether assuming
the same SNP effects in two groups is better or not. Yao et al. [42] estimated the genetic
correlations for feed efficiency traits in dairy cattle among North America, Netherland, and
Scotland to be ranging from 0.36 to 0.47, namely all lower than ours.

Estimated phenotypic variance was almost the same for all models; the heritability
was estimated to be slightly higher for the model with lower DIC value. In Yao et al. [42],
the model assuming different SNP effects across countries gave lower residual variance
and higher heritability. In the framework of multi-breed GP for residual feed intake in
cattle, Khansefid et al. [10] showed the tendency that using models assuming different SNP
effects between breeds gave lower REML log-likelihood value and residual variance and
higher heritability. On the other hand, larger SEs of σ2

g1 and σ2
g2 in models 2 and 4 would

reflect the difficulty in separating the SNP effects. Moreover, posterior samples for the two
variance components showed the negative correlation (Figure 2). These results might be
due to increased model complexity by simultaneously considering two terms relating to
GBV, namely g1 and g2, in a given model, multicollinearity occurred by using the same
SNP markers to consider g1 and g2, and the degree of similarity among the three G matrix,
or G1, G2, and G3 used in this study.
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Hy 0.39 0.40 –0.03  0.02 0.98 0.28 –0.04 –0.02 1.00 0.02 0.02 0.98 

3 To-Hi 0.92 0.92 1.00 0.03  0.05 0.96 0.69 0.64 0.00 0.75 0.70 0.07 

Figure 2. Scatter plots of 10,000 posterior samples for two variance components, σ2
g1 and σ2

g2, in
models 2 and 4.

3.2. SNP Effects and Genomic Breeding Values

Within trait, Pearson correlation coefficients of the corresponding SNP effects were
>0.9 among the models (Table 3). For example, correlation of the SNP effects specific to Hy
steers was ≥0.96 for CW and ≥0.99 for MS among the four models other than model 1. The
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correlation of SNP effects specific to different groups were low to negligible. For example,
the correlation of SNP effects specific to the steers marketed into different prefectures in
model 4 ranged from −0.09 to −0.04 for CW and −0.08 to −0.01 for MS. However, the
correlation of common SNP effects with those specific to each group was positive, possibly
reflecting the difficulty in separating the effects, and values of the correlation was higher
when the size of group was larger. For instance, the correlations of common effects with
the effects specific to, Hi, and Hy steers in model 4 were 0.65, 0.62, and 0.27, respectively,
for CW and 0.78, 0.40, and 0.38, respectively, for MS.

Table 3. Pearson correlation coefficients of allele substitution effects of single nucleotide polymor-
phism (SNP) markers for cold carcass weight and marbling score (above and below diagonals,
respectively) 1.

Model Effect
Model 1 Model 2 Model 3 Model 4 Model 5

C C To-Hi Hy To-Hi Hy C To Hi Hy To Hi Hy

1 C 1.00 0.95 0.27 0.96 0.31 1.00 0.66 0.61 0.26 0.73 0.67 0.31

2
C 1.00 0.95 0.29 0.96 0.33 1.00 0.65 0.61 0.27 0.73 0.67 0.33

To-Hi 0.91 0.91 −0.02 1.00 0.02 0.95 0.69 0.64 −0.05 0.75 0.70 0.02
Hy 0.39 0.40 −0.03 0.02 0.98 0.28 −0.04 −0.02 1.00 0.02 0.02 0.98

3
To-Hi 0.92 0.92 1.00 0.03 0.05 0.96 0.69 0.64 0.00 0.75 0.70 0.07

Hy 0.41 0.42 0.01 0.99 0.07 0.32 −0.01 0.01 0.96 0.06 0.06 1.00

4

C 0.99 1.00 0.91 0.39 0.92 0.41 0.65 0.62 0.27 0.74 0.68 0.32
To 0.77 0.77 0.84 0.00 0.84 0.02 0.78 −0.09 −0.01 0.97 0.01 −0.01
Hi 0.40 0.39 0.46 −0.07 0.45 −0.06 0.40 −0.07 −0.08 0.03 0.97 0.01
Hy 0.38 0.39 −0.03 1.00 0.01 0.99 0.38 −0.05 −0.04 0.00 0.00 0.96

5
To 0.81 0.81 0.86 0.04 0.87 0.06 0.81 0.99 −0.02 0.03 0.13 0.06
Hi 0.52 0.52 0.57 0.00 0.57 0.02 0.53 0.10 0.92 −0.01 0.16 0.01
Hy 0.41 0.42 0.01 0.99 0.05 1.00 0.41 0.02 −0.06 0.99 0.06 0.05

1 C, SNP effects common among all the steers; To, Hi, and Hy, SNP effects specific to the steers marketed into
Tottori, Hiroshima, and Hyogo prefectures, respectively; To-Hi, SNP effects specific to the steers marketed into
Tottori and Hiroshima prefectures.

For both traits, Pearson and Spearman’s rank correlations of GBVs for the steers
marketed into each prefecture predicted using model 1 were lower with those predicted
using model 3 than the correlations with those predicted using model 2 and were lower
with those predicted using model 5 than the correlations with those predicted using model 4
(Table 4). These results would reflect the difference in model assumption, model 1 assumed
the genetic correlation of 1 among the prefectures, while models 2 and 4 assumed the
positive genetic correlation but lower than 1 and models 3 and 5 assumed no genetic
correlation among the prefectures. On the other hand, as shown in Figure 3 as an example,
the differences in the mean of predicted GBVs among the prefectures were observed.
Furthermore, the degree of this difference was varied when fitting different models (Table 5).
For example, the mean of predicted GBVs for CW of 279 Hy steers was 68.9 kg and 55.3 kg
lower than that of 1036 To steers when using model 1 and model 4, respectively, while
that for MS of Hy steers was 0.08 point lower but 0.15 point higher than that of To steers
when using model 1 and model 4, respectively. Similar results with larger differences
were observed when comparing model 1 which was the model considered the common
SNP effects only and models 3 and 5 which were the models ignoring the common SNP
effects. The differences in the mean of predicted GBVs among the models were reduced by
adding the estimated effects of the prefectures to the corresponding means of predicted
GBVs. Zoda et al. [26] also reported a difference in SNP allele frequencies between fattened
steers marketed into Hyogo prefecture and those marketed into Tottori and Hiroshima
prefectures, which likely affected the results.
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Table 4. Pearson and Spearman’s rank correlations of predicted genomic breeding values obtained
using model 1 and those obtained using other 4 models for the steers marketed into Tottori, Hiroshima,
and Hyogo prefectures.

Prefecture
Cold Carcass Weight Marbling Score

Model 2 Model 3 Model 4 Model 5 Model 2 Model 3 Model 4 Model 5

Pearson correlation

Tottori 0.999 0.996 0.992 0.968 0.998 0.993 0.995 0.976
Hiroshima 0.999 0.997 0.991 0.965 0.997 0.990 0.977 0.896

Hyogo 0.982 0.914 0.987 0.912 0.988 0.957 0.994 0.957

Spearman’s rank correlation

Tottori 0.999 0.996 0.992 0.968 0.998 0.993 0.995 0.976
Hiroshima 0.999 0.997 0.990 0.961 0.997 0.990 0.977 0.892

Hyogo 0.980 0.912 0.985 0.910 0.987 0.957 0.993 0.957
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Table 5. Means and standard deviations (SDs) of predicted genomic breeding values for the steers
marketed into each prefecture 1.

Model
Tottori Hiroshima Hyogo Mean + Effect of Prefecture

Mean SD Mean SD Mean SD Tottori Hiroshima Hyogo

Cold carcass weight

1 0 29.6 −10.1 32.2 −68.9 18.2 0 7.2 −102.7
2 0 30.2 −9.8 32.9 −42.7 18.4 0 7.1 −102.1
3 0 29.9 −9.4 32.5 −5.8 17.3 0 7.7 −102.2
4 0 31.3 −10.8 34.2 −55.3 19.6 0 7.7 −98.8
5 0 31.1 −10.8 33.8 −5.9 19.0 0 9.2 −96.9

Marbling score

1 0 0.93 −0.36 0.76 −0.08 0.78 0 −1.90 0.59
2 0 0.96 −0.36 0.78 0.33 0.83 0 −1.92 0.61
3 0 0.93 −0.35 0.76 0.60 0.79 0 −1.90 0.59
4 0 1.03 −0.39 0.72 0.15 0.86 0 −1.88 0.72
5 0 0.94 −0.34 0.59 0.54 0.78 0 −1.82 0.71

1 Each value was calculated as the value obtained for each prefecture minus that obtained for Tottori prefecture to
facilitate comparison of the results.
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4. Discussion

In Japanese Black cattle population, the performance of a relatively simple model,
such as model 1 in this study, has been investigated in GP using carcass records of fattening
animals collected from multiple markets in Japan (e.g., [32–34]). Recently, Zoda et al. [26]
reported a lower degree of persistence of LD phase between the fattened steers marketed
into Hyogo prefecture and those marketed into Tottori and Hiroshima prefectures. Ac-
cording to this finding, we hypothesized that more sophisticated modeling of SNP effects
might be required. Then, according to the idea of de los Campos and Sorensen [41], we here
attempted to assess the performance of models considering SNP effects differing among
the steers marketed into different prefectures (Tottori, Hiroshima, and Hyogo). Except for
model 5 in MS, the DIC values were lower when using the models assuming different SNP
effects among the steers rather than when using model 1 which is without such assumption
(Table 2). Furthermore, models assuming different SNP effects among the prefecture gave
slightly decreased residual variance, and the genetic correlation among the prefecture
estimated using models 2 and 4 were <0.8 proposed by Robertson [53]. These results might
support our hypothesis. On the other hand, it appeared rather difficult to divide SNP effects
into common and specific parts (Figure 2, Table 3) and confounding occurred between the
effects of prefectures and the means of GBVs of the steers marketed into each prefecture
(Table 5). Khansefid et al. [10] pointed out non-additive genetic effects as one of the possible
reasons why SNP × breed interactions exist, other than the differences in LD patterns
between SNP and QTL among breeds. A few studies reported the results of variance
component estimation for carcass traits in Japanese Black cattle using models including
non-additive genetic effects [54,55]. Another choice might be a multiple-trait model where
carcass traits collected at different prefectures were regarded as genetically different traits.
Overall, continued efforts to seek a better statistical model for GP in Japanese Black cattle
with a larger training population, as well as to prepare for the use of sequence data in GP,
is required.

Zoda et al. [39] assessed the performance of the model for GP considering the results
of the STRUCTURE analysis using commercial SNP markers, according to the findings in
the previous study [26]. Recently, by simulation using real SNP genotype data from Danish
Holstein, Swedish Red, and Danish Jersey cattle purebred and their admixed individuals,
Karaman et al. [56] compared the performance of the two model; one including breed
proportions inferred using SNP genotypes as covariates and the other considering breed-
of-origin effects. Kudinov et al. [57] applied the single-step genomic evaluation with the
metafounder approach to the Holstein and Russian Black & White admixed population. On
the other hand, we assessed the performance of models assuming the SNP effects differing
across the steers marketed into each prefecture. The performance of this type of models
has been assessed in livestock populations (e.g., [10,42,43]) as well as crops and human
(e.g., [58–60]), and Steyn et al. [61] have introduced this concept into the framework of the
single-step evaluation. We assumed homogeneous additive genetic variance across the
prefectures to avoid over-parameterization, however, assuming heterogeneous variance
might be more reasonable [62,63]. Additionally, a genetic correlation constant across the
genome was assumed in this study, while there are studies introducing heterogeneous
(co)variance patterns across the genome in multi-trait model flamework, which gave
improved performance of GP (e.g., [64–66]). However, introducing these assumptions
further complicates the model and would require a significant number of records to obtain
accurate results.

This and previous studies (e.g., [32–34]) on GP of carcass traits in Japanese Black cattle
with carcass records collected from multiple markets exploited models that consider the
effects of prefectures. The historically closed breeding system in Japanese Black cattle,
with breeding plans varying from prefecture to prefecture, has brought a subpopulation
structure [17], and then prefectures may be roughly divided into those as suppliers of
seedstocks including ones such as Tottori, Hiroshima, and Hyogo prefectures, and those
as their multipliers [67]. In 1991, genetic evaluation of carcass traits based on pedigree
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information using mixed model methodology was begun [22], which led to intensive use of
frozen semen from fewer elite sires beyond prefectural borders, resulting in an increase in
the genetic relationship among subpopulations and a sharp decline in effective population
size [68]. The genetic composition of the prefectures including Tottori and Hiroshima
prefectures has been penetrated by gene flow due to intensive use of fewer common elite
sires across prefectures [23,68], whereas there has been continuing closed breeding in
Hyogo prefecture [69]. In many cases, fattened animals are shipped to carcass markets
which are in the same as or near prefecture from that the animals are raised in. These
facts could affect the genetic composition of the fattened animals marketed into a given
prefecture. As additional attempt, when using model 1 but ignoring the effect of prefectures,
additive genetic variance and residual variance were estimated to be 1241.0 ± 121.6 and
1210.8 ± 73.8, respectively, for CW and 1.53 ± 0.17 and 2.00 ± 0.11, respectively, for MS,
both were greater than those estimated considering the effect of prefectures. This could
be also the evidence of confounding between the effects of prefectures and mean GBV. On
the other hand, it should be noted that the genetic diversity of commercial populations
could change in relatively short time frames, since the sires mated for producing progenies
fattened may vary year by year [23,26], which might be also crucial for the performance of
GP with fattened animals collected from multiple markets as a larger training population.

Zoda et al. [26] also reported the difference in SNP allele frequencies between the
fattened steers marketed into Hyogo prefecture and those marketed into Tottori and Hi-
roshima prefectures, which might also affect the results obtained in this study. We found
that the allele frequencies of the three SNPs previously reported as ones associated with
QTL candidate regions for CW, namely CW-1, CW-2, and CW-3, by Nishimura et al. [70]
were different between Hy steers and others (Table S1). The three regions were estimated
to be responsible for totally one-third of additive genetic variance for CW in Japanese Black
cattle population [70]. The low allele frequency of CW-3 seems to be because this was
detected in a specific line of Japanese Black cattle and is closely related to dysplasia [71,72]
and therefore considered rather undesirable. On the other hand, MS is likely an especially
highly polygenic trait according to the findings from previous studies (e.g., [28,29,51]).
Zoda et al. [26] found that a certain number of SNPs were monomorphic in Hy steers,
which were distributed across the genome. Zoda et al. [73] extracted genes within the
regions gathering homozygous SNPs in Hy steers and performed gene ontology analysis
to the extracted genes, detecting terms possibly relating to meat quality, such as lipid
metabolism. Ookura et al. [74] reported that the frequency of favorable alleles of SCD
(Stearoyl-CoA Desaturase) and FASN (Fatty Acid Synthase), genes related to fatty acid
composition were very high in fattened animals from Hyogo prefecture.

To account for the differences in allele frequencies and SNP effects across groups, one
can assume, for example, the following equation:[
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where G* is the G matrix often used for multi-breed GP (e.g., [15,75,76]). Under these
assumptions, the genetic correlation between groups is fixed to 1 but the genomic variance
is different. On the other hand, in this case, it might be better to perform quality control
per group. It should be noted that the discussion above is based on the case where allele
frequencies in current population, but not those in base population, are used. Carcass
records collected from Hyogo prefecture was available in this study and Zoda et al. [39],
but was not used in Takeda et al. [33], while Takeda et al. [33] used the records collected
from 18 prefectures with varying the number of records collected from each prefecture.
Therefore, it should be noted that an appropriate discrimination of groups in SNP effect
modelling might be different, depending on the data structure.

Sophisticated studies on long-term implementation of genomic selection in Japanese
Black cattle are warranted. As observed especially in Holstein cattle populations [77–83],
introducing genomic selection might bring more rapid accumulation of inbreeding and
then a decrease in genetic diversity. This perspective is important for Japanese Black cattle
because, following Nomura et al. [68], the genetic diversity has been already low in this
breed. For example, selection intensity is already high for sire selection in Japanese Black
cattle population, so the impact of introducing genomic selection on genetic diversity might
be more prominent for dam selection. Commercial SNP markers could be available to assess
the information on genetic diversity of Japanese Black cattle (e.g., [23–27]), while using
imputed genotypes might cause bias in evaluating genomic inbreeding coefficients for
some individuals [84,85]. Ogawa et al. [86] reported that the imputation accuracy was high
in average for Japanese Black cattle population, but the individual-level performance could
be varied. We used SNP markers genotyped using the Illumina BovineSNP50 chip, and
therefore, ascertainment bias in the chip might affected the results. Additionally, even if the
use of the results of GP is limited to preselection for carcass traits, the impact of selection on
genetic evaluation might be considerable (e.g., [87–89]). Regarding the difference between
the results of selection based on pedigree-based evaluation and that based on genomic-
based evaluation, using chickens, Heidaritabar et al. [90] reported that selection pressure is
much more locally for GBLUP, resulting in larger allele frequency change, than pedigree-
based BLUP. With computer simulation, Liu et al. [91] compared the results of continued
selection based on phenotypic values of candidates and results from pedigree-based BLUP,
GBLUP, and Bayesian LASSO analyses in terms of the rate of genetic improvement, degree
of inbreeding, QTL allele frequency, changes in genetic variance, and hitch-hiking effect.
Gómez-Romano et al. [92] proposed the idea to apply optimal contribution selection
approach to a specific genomic region. There are studies on partitioning GBVs based on
prior information, such as SNP marker location (e.g., [51,93,94]). In this study, models 2 and
4 also gave partitioned GBVs as the terms g1 and g2, and this partitioning was according to
the finding about the persistence of LD patterns by Zoda et al. [26]. Further study would be
beneficial to exploit the results of GP to efficiently improve while considering the genetic
diversity of Japanese Black cattle. Moreover, assessing predictive ability of the models
should be encouraged by using a larger dataset and the results of routine genetic evaluation
based on deep pedigree information, as previous studies did [32,34].

5. Conclusions

Here, we fitted statistical models assuming SNP effects differing across the prefec-
tures to the record for CW and MS of Japanese Black fatten steers marketed into Tottori,
Hiroshima, and Hyogo prefectures. Except for model 5 in MS, lower DIC values were
obtained when using the models assuming different SNP effects than when using model
1 which considered only common SNP effects. Models assuming different SNP effects gave
slightly decreased residual variance. Estimated genetic correlations among the prefectures
in models 2 and 4 were <0.8. These results could support the validity of assuming the SNP
effects differing among the prefectures to some degree. However, careful consideration is
required to interpret the current results, from the viewpoints of the difficulty in separating
the SNP effects and the possible confounding. Further comprehensive studies to seek a
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better statistical model for GP of carcass traits in Japanese Black cattle with a larger sized
training population, as well as to provide an approach to successfully implement the results
of GP into the ongoing selection scheme of this breed, should be encouraged.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes14010024/s1, Table S1: Allele frequencies in the steers
marketed into Tottori, Hiroshima, and Hyogo prefectures of single nucleotide polymorphisms (SNPs)
reported by Nishimura et al. (2012) to be associated with quantitative trait loci (QTLs) for cold carcass
weight in Japanese Black cattle.
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