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Abstract Growth curve modeling is a popular methodolog-

ical tool due to its flexibility in simultaneously analyzing

both within-person effects (e.g., assessing change over time

for one person) and between-person effects (e.g., comparing

differences in the change trajectories across people). This

paper is a practical exposure to fitting growth curve models

in the hierarchical Bayesian framework. First the mathemat-

ical formulation of growth curve models is provided. Then

we give step-by-step guidelines on how to fit these models

in the hierarchical Bayesian framework with corresponding

computer scripts (JAGS and R). To illustrate the Bayesian

GCM approach, we analyze a data set from a longitudinal

study of marital relationship quality. We provide our com-

puter code and example data set so that the reader can have

hands-on experience fitting the growth curve model.

Keywords Bayesian modeling · Growth curve modeling

Longitudinal data are defined as repeated measures over

time from the same unit (e.g., person). In psychology, lon-

gitudinal studies aim to measure certain characteristics of

individuals, and their time scales span from short, such as

one-day diurnal studies, to long, such as macro time scales
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across a lifespan. Compared to cross-sectional research,

which emphasizes differences between individuals, longi-

tudinal research emphasizes changes within the individual.

Measures of person-specific, or within-person change,

allow longitudinal studies to capitalize on capturing how

people differ from each other in their change patterns over

time. The most frequently used longitudinal designs in psy-

chology help us zoom in on the facets of individual change

trajectories, and zoom out to compare multiple trajectories.

Longitudinal models are typically formulated in one of

the following frameworks: ANOVA (see, e.g., in Laursen &

Little, 2012), multilevel or hierarchical modeling (see, e.g.,

Raudenbush & Bryk, 2002), generalized linear mixed mod-

eling (GLMM, see, e.g., Verbeke & Molenberghs, 2009),

structural equation modeling (see, e.g., Bollen & Curran,

2006), dynamical systems modeling (see, e.g., Boker &

Wenger, 2012) or Bayesian modeling (see, e.g., Gelman &

Hill, 2006). It is important to note that the first 5 frame-

works above determine model specification, but do not set

a fixed estimation method; thus they can overlap with the

Bayesian framework depending on the choice of estimation

framework. Bayesian models most often involve Markov

chain Monte Carlo algorithms for estimation (see more in

Robert & Casella, 2004), while most other frameworks rely

on maximum likelihood estimation (MLE). For example:

multilevel and hierarchical models can be formulated in

the GLMM framework, while a Bayesian version of these

models can also be specified.

The main merit of longitudinal modeling is that it pro-

vides insights into mechanisms of within-person change, or

intraindividual variability. This person-specific focus per-

mits better understanding of basic human functioning and

development, and addresses many interesting questions that

arise in the field of psychology (see, e.g., Molenaar, 2004).

Repeated measurements from one individual exhibit certain
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similarities that are quantified by longitudinal models,

which provide parameters for person-specific patterns

and change mechanisms that cross-sectional approaches

cannot capture. Moreover, focusing only on group-level

characteristics and neglecting within-person trends can lead

to erroneous conclusions as averaged curves can show a dis-

torted representation of the individuals’ growth curves (see,

e.g., in Brown & Heathcote, 2003, also known as Simpson’s

paradox, see, e.g., Hamaker, 2012; Kievit, 2013).

In this paper we focus on one of the most frequently used

classes of longitudinal models in psychology, the growth curve

model (GCM). Depending on researcher’s methodological

framework, GCMs are also referred to as latent trajectory or

latent curve models (see, e.g., Laursen & Little, 2003). The

GCM allows us to model individual trajectories over time,

and to compare these trajectories across individuals and

groups. In application, the GCM has been used to assess a

broad range of multifaceted longitudinal studies. To name a

few, Curran and Bollen (2001) investigated the developmen-

tal link between antisocial behavior and depression; Mirman

et al. (2008) modeled the time course of eye tracking data

in a language processing task; Ferrer and McArdle (2004)

tested new hypotheses about how cognitive ability from

childhood to early adulthood influences academic achieve-

ment; Widaman and Reise (1997) examined measurement

invariance of psychological constructs, and whether latent

factors - such as attitudes towards smoking (i.e., drug abuse)

- exhibit structural growth over time; and Walker et al.

(2007) modeled change over time in moral reasoning devel-

opment in children and adolescents. Good summaries of

GCM applications can be found in books on longitudinal

and latent variable modeling (e.g., Preacher, 2008; Bollen &

Curran, 2006; Little, 2013; Singer & Willett, 2003).

Growth curve modeling is a popular methodological tool

due to its flexibility in simultaneously analyzing both

within-person (e.g., changes with age, change due to inter-

vention, etc.) and between-person effects (i.e., individual dif-

ferences); in other words, the GCM models inter-individual

differences in intra-individual variation. A person-specific

growth trajectory, specified as a mathematical function that

describes how variables relate to each other over time,

captures how an individual uniquely changes. This paper

focuses on the linear growth curve model, in which the

function of change is linear. Note that curvilinear polyno-

mial functions (e.g., quadratic, cubic, etc.) also fall under

the linear GCM umbrella - meaning that we are not lim-

ited to considering straight-line functional growth. Beyond

handling varying growth functions, GCM can flexibly han-

dle unbalanced designs, meaning study participants may be

measured at different occasions and need not be excluded

from analysis if some of their measurements are missing.

We advocate using the Bayesian statistical framework

(see. e.g., Gelman et al., 2013; Kruschke, 2015; McElreath,

2016) for fitting growth curve models. Bayesian methods

provide flexible tools to fit GCMs with various levels of

complexity. We will show that by using generic Bayesian

software programs, such as JAGS (see e.g., Plummer et al.,

2003), a variety of simple and complex growth curve mod-

els can be implemented in a straightforward manner. One

unique strength of Bayesian modeling is that results can be

interpreted in an intuitive and direct way by summarizing

the posterior distribution of the parameters. The posterior

distribution can be described in terms of the likely range

of parameters, and is derived based on the data without

depending on hypothetical data or on the data collection

plan. Moreover, prior knowledge on the likely values of

the parameters can be included in the Bayesian frame-

work, providing a principled approach to accumulating and

incorporating scientific knowledge.

This paper introduces a basic growth curve model, pro-

vides a detailed description with computer code for fitting

the model, and gives guidelines on how to incorporate

further extensions for particular research questions. We pub-

lished our computer code and example data set, described

below, in a Git repository - available for the user via

this link: https://git.psu.edu/zzo1/FittingGCMBayesian - to

provide hands-on experience with model fitting.

To demonstrate the advantages of the Bayesian approach

to GCM, we analyze a data set from a longitudinal study

of marital relationship quality, measured across the transi-

tion to parenthood, described in Belsky and Rovine (1990).

We are interested in studying how a father’s feelings of mar-

ital love change in conjunction with the birth of his first

child. We will show how to describe each father’s change

in experiencing marital love as a function of time (the love

trajectory), beginning at 3 months before the birth of his

first child. Moreover, to study the moderating effect of the

fathers’ overall positivity towards marriage, we will group

fathers according to their number of positive experiences in

marriage up to 3 months before birth.

We start by explaining the Bayesian formulations of the

growth curve model. Next we provide details on the mari-

tal study. This is followed by a step-by-step guide on how

to analyze the marital data with a Bayesian GCM. Then

we consider several extensions that can easily be incorporated

to extend the introduced GCM. Finally, we recap the potential

applications and benefits of using this modeling framework.

Capturing dependency in repeated measures via

growth curve modeling in the Bayesian framework

Growth curve modeling can be seen as a multilevel regres-

sion technique, a special case of the generalized linear

mixed model designed for analyzing the time course of one

or more selected variables of interest. Below we describe the

https://git.psu.edu/zzo1/FittingGCMBayesian
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GCM in the GLMM framework. Historically however, the

GCM originates from confirmatory factor analysis. As such,

a similar model can also be formulated in the structural

equation modeling framework (see more details in Kaplan,

2014, page 220).

Within-person measurements are prone to show similar-

ity. Therefore a major challenge of longitudinal statistical

analysis is to adequately account for the association in mea-

surements. Such association manifests in repeated measure

clustering, meaning that measures exhibit person-specific,

or within-person, variance patterns. These patterns violate

statistical assumptions of the data being independent and

identically distributed. In other words, if unaccounted for,

this dependency leads to biased parameter estimates and

underestimated standard errors (see e.g., in Diggle et al.,

2002). The GCM, like any multilevel model, accounts for

longitudinal dependency by adaptively modeling grouped

data. Participants are considered exchangeable, and the

measurement occasions within-person are ordered in time.

The GCM assumes that each measurement has a noise com-

ponent which follows a specific distribution, centered on

the underlying growth curve. Moreover, these noise com-

ponents are independent and unrelated each other. When

the growth curve adequately captures the true underlying

trend, the estimates will not be contaminated by systematic

changes across time. Although this tutorial will focus on the

simplest distribution (i.e., normal) for noise structure over

time, we will give guidelines for extending this to model

complex structures.

Though commonly specified in the classical frequentist

framework, the GCM can be specified in the Bayesian statis-

tical framework as well. In Bayesian models, parameters are

conceptualized as random variables with probability distri-

butions. Therefore we must assign a probability distribution

for each model parameter before fitting the model. This dis-

tribution is called the prior distribution, and it expresses

our knowledge about the most likely values of the unknown

parameters. Note that these prior specifications are inte-

gral to Bayesian modeling, and should always be carefully

chosen and justified when fitting a GCM in the Bayesian

framework. For the current example we will set priors that

extend broadly over the plausible range of the data, express-

ing vague information on the likely values of the parameters.

The implication of a vague prior like this is that it has min-

imal influence on the quantitative details of the posterior

distribution. Once priors are specified, we fit our Bayesian

model by calculating the posterior distribution of model

parameters: the product of the prior distributions and the

data likelihood, normalized by the marginal likelihood. The

posterior is the focal point of Bayesian estimation, repre-

senting the updated probability distribution assigned to our

parameters after conditioning on our data. We will show

how to calculate the posterior distribution for each model

parameter, that is, a probability distribution describing the

most likely values of a GCM parameter given our data and

other model parameters.

The research question

Our illustration of the Bayesian GCM approach is based on

a longitudinal marital love study (N = 106), with 4 mea-

surements per subject (father). The measurements aim to

capture levels of marital love, quantified via self-reports on

the Braiker and Kelley (1979) 9-point 10-item love subscale

(see more details on the scales in the study description).

Measurements were first drawn at 3 months before the first

child’s birth, then at 3 months, 9 months and 36 months

after childbirth. Each father’s individual love trajectory is

shown in Fig. 1. Data are grouped into three categories (low,

medium, high positivity) based on a father’s total number of

positive experiences that occurred between marriage and 3

months before birth of their first child, measured by a 45-

item checklist of positive events (e.g., job promotion, birth

of family member; or reverse coded ones such as job loss,

death of family member, etc.). The categories were created

with equal number of subjects in each group. Note that the

main purpose of this categorical binning is demonstrative,

and including positivity as a continuous predictor would

retain more information on the original measure. The visual-

ization in Fig. 1 provides multifaceted observation of overall

trends, group trends, and how widely individual trajectories

vary.

Firstly, visualizing separate lines for each individual

helps identify overall group variability in initial starting val-

ues, represented by the distance between lines at 3 months

before the child was born. In Fig. 1 we observe lower levels

of marital love for low positivity, as opposed to medium and

high positivity. Secondly, observing the differing angles for

each line helps identify overall group variability in growth

trajectory (slope). Since we do not observe an overall com-

mon trend in slope, this indicates variability - and possible

group differences - in growth. Moreover, the low positivity

group exhibits the steepest decline in marital love over time,

suggesting that fathers in this group have more negative love

trajectories, compared to higher positivity groups, which

appear to maintain more constant values of love. These

preliminary visual observations help guide our attention to

specific statistical follow-up measures.

Specification of the linear growth curve model

A typical longitudinal data set contains T measurements at

occasions t (t = 1, . . . , T ) from an individual i, where

i = (1, . . . , N), with N indicating the total number of

people in the sample. The exact measurement time points

can vary and need not be fixed across people; however,
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Fig. 1 Individual trajectories of father’s love scores across measurement occasions; group corresponds to the fathers’ level of positivity (1 = low,

2 = medium, or 3 = high number of positive life events post-marriage at first measure)

this tutorial considers fixed time points across people. The

number of measurement occasions (T) can also vary among

participants, as the model flexibly handles various forms

of missingness. The simplest assumption behind missing-

ness is that it is unrelated to the modeled phenomenon, that

is “missing completely at random” (MCAR, see in Little,

1995). If this is reasonable to assume, R users need no fur-

ther action, since missing values are automatically coded as

“NA ” (”not available”), and will be automatically dealt with

in proposed Bayesian engine or can be completely elimi-

nated from the data (see in discussion on long format later

with corresponding computer script). If MCAR does not

apply, the missingness mechanism should also be included

in the model.

The measure of love by father i at measurement occa-

sion t is denoted by Yi,t . In a simple growth curve model,

we can express the change within-person over measurement

occasions in terms of intercept (initial level) and slope (rate

of change) parameters. That is, we are fitting a straight

line to each father’s 4 measurements, with x-axis (inde-

pendent variable) being the time, and y-axis (dependent

variable) being the love measure. We can specify this GCM

as follows:

Yi,t ∼N(βi,1 + βi,2Tt , σ
2
eLevel1

) (1)

βi,1∼N(µβ1
, σ 2

eβ1
) (2)

βi,2∼N(µβ2
, σ 2

eβ2
). (3)

In all three lines above, N stands for the normal (Gaussian)

distribution. We specify the normal distribution in terms of

mean and variance parameters. The tilde (∼) symbolizes

“distributed as”, indicating that the parameters on the left

hand side are assumed to follow the normal distributional

form.

Equation 1 captures the effect of time at the person

level, therefore it is often referred to as the level-1 equa-

tion. This specifies the likelihood function. In Eq. 1, the

mean of our observed data Yi,t is a function of a per-

son i’s intercept parameter β1,i and the product between

person i’s slope parameter and the measurement occasion

Tt at t , this way providing the conditional distribution

of Yi,t given β1,i and β2,i . The distributional shape of

Eq. 1 is chosen to be Gaussian, with the time-specific

residuals having variance σ 2
eLevel1

. This allows for there to

be error relative to the predicted person-specific change,

with larger deviations becoming exponentially less likely.

Note that the σ 2
eLevel1

term could be modified to account

for autocorrelation in the residual variation by adding an

extra parameter to directly model this autocorrelation, and

account for the time-dependency in the mean and variance

structure captured by this parameter. Interested readers can

consult the Git repository mentioned above for a worked out

example.1

In contrast to our level-1 equation, Eqs. 2 and 3 are

level-2, or population- (group) level equations, which cap-

ture between-person variability in initial levels (intercepts)

and rates of change (slopes). In Eq. 2 parameter µβ1
is

called the population mean or level-2 mean, and is a group

parameter shared across participants. The variance term σ 2
eβ1

is the level-2 variation of the intercepts, representing the

magnitude of the individual differences in initial values.

Equation 3 describes the population level distribution of the

slope parameters βi,2: it has the shape of the normal distribu-

tion with µβ2
capturing the population mean slope and σ 2

eβ2

representing the individual differences in rates of change.

1See RAnalysisACerror.R file.
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Later we will explicitly model the covariation between inter-

cept and slope parameters. However, it is important to note

that if we kept independent univariate priors on βi,1 and βi,2

they could still co-vary in the posterior distribution.

Properties

As opposed to fitting a separate regression equation for

each person’s data, an important aspect of hierarchically

modeling intercepts and slopes is that the level-2 or hyper-

prior distributions pool information across subjects. In other

words, a person’s intercept and slope estimates are drawn

from both individual- and population- (group) level infor-

mation. This partial pooling is not particular to the Bayesian

framework, nor does it happen only in the GCM: it is a

general characteristic of hierarchical/multilevel modeling.

To clarify, a completely pooled estimate would mean esti-

mating only one intercept parameter and one slope param-

eter, which are the same for every person. A completely

unpooled estimate would mean fitting a regression line sepa-

rately for each individual’s data over time. The person-level

and population-level estimates in the GCM compromise

between these two extremes: person-specific estimates are

pooled towards group means, causing “shrinkage” towards

the more general, population-level trend. In other words, the

person - and population-level estimates share information:

each individual’s data contribute to the population mean,

which in turn informs the person-specific terms.

Shrinkage of person-level intercept and slope estimates

is a desirable attribute of multilevel modeling. Often within-

person measurements are noisy, and we have fewer obser-

vations from some individuals than from others. Borrowing

information from the whole group (from all data available)

helps reduce the random sampling noise in person-specific

estimates. Note that although the population trend con-

strains person-level estimates, person-level estimates are

still pulled towards the individual’s data. For the GCM in

particular, it is interesting to highlight that even if we had

one (or a few) participant(s) with only one observation,

we could still estimate their person-specific intercept and

person-specific slope parameters. Moreover in the Bayesian

GCM these person-specific intercept and slope parameters

have posterior distributions that quantify uncertainty around

the estimates. Also, it turns out that Bayesian hierarchical

modeling can provide relatively low uncertainty in these

types of posterior estimates (for a worked example see

Kruschke, 2015, Chapter 17).

Finally, we would like to emphasize the advantages of

implementing these hierarchical models in the Bayesian

framework in terms of accuracy of the estimates. Consider

estimating the variation in person-specific intercept or slope

parameters; that is in population level variances representing

individual differences. Often the variance components have

a lot of uncertainty due to the fact that they capture

variation in latent, person-specific constructs, which are

themselves estimated with uncertainty. In Bayesian param-

eter estimation we integrate over the uncertainty in all the

parameter values, meaning that the posterior uncertainty of

the latent, person-specific constructs influences the poste-

rior uncertainty in the population level constructs and vice

versa.

Specification of the linear GCM with a grouping

variable

To examine individual variation in initial levels and rates of

change, Eqs. 2 and 3 can be extended in several ways. In

our application to the marital love study, we add a group-

ing factor based on fathers’ levels of positivity. As stated

in the introduction, we test whether fathers’ baseline mar-

ital positivity - that is, the positivity fathers experienced

in marriage, up until 3 months before the birth of their

first child - can explain how their feelings of love towards

their partner change post birth. Fathers were grouped into

low, medium, and high positivity categories, based on self-

reported numbers of positive events they had experienced

at marriage to date (these reports were provided during

the first measurement occasion, -3 months). We use fathers

who scored medium positivity as our baseline group, and

estimate their level-2 intercept and slope parameters. We

model low and high positivity groups in terms of their

deviations from medium positivity baseline. Compared to

Eqs. 2 and 3, the GCM with grouping factors exten-

sions (Eqs. 4 and 5 below) has additional components for

interpretation, namely, group parameters with categorical,

comparative estimates.

Whether a person belongs to a low or high positivity

group will be coded by two dichotomous (dummy coded)

0-1 variables: Xi,1 has value 1 for person i, if that person

belongs to the low positivity group, while Xi,2 has value

1 for person i, if that person belongs to the high positiv-

ity group. Persons belonging to the medium positivity group

will have 0-s for both Xi,1 and Xi,2. These X-s represent

individual level, time-invariant predictors. Our new level-2

equations extend Eqs. 2 and 3 with these systematic group

level variations as follows:

βi,1 ∼ N(µMedPInt + βlowPIntXi,1 + βhighPIntXi,2, σ
2
eβ1

) (4)

βi,2 ∼ N(µMedPSlope + βlowPSlopeXi,1

+βhighPSlopeXi,2, σ
2
eβ2

). (5)

As in Eqs. 2 and 3, intercept (βi,1) and slope (βi,2) param-

eters are person-specific, and therefore account for indi-

vidual differences within groups. Parameters µMedPInt and
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µMedPSlope capture baseline intercept (initial value) and

slope (rate of change) values for the medium level posi-

tivity group in our example. Regression coefficient βlowPInt

represents systematic deviations from baseline initial values

(intercept for medium positivity group) in the low positivity

group, while βhighPInt captures these for the high positiv-

ity group. Parameter βlowPSlope represents deviations from

the baseline rate of change (slope for the medium positivity

group) in the low positivity group, while βhighPSlope cap-

tures these for the high positivity group. The likelihood

specification, that is Eq. 1, is not repeated here as it remains

the same.

In Eqs. 4 and 5 we specified level-2 distributions on inter-

cepts and slopes univarietly. However, traditionally these

terms are allowed to co-vary. To have a more complete cor-

respondence with the original GCM models we can also

formulate the distribution of the person-specific intercepts

and slopes bivariately. That is to say that we set a bivari-

ate normal population (Level-2) hyperprior distribution on

these parameters:

[

βi,1

βi,2

]

∼ N2

(

[

µMedPInt + βlowPIntXi,1 + βhighPIntXi,2

µMedPSlope + βlowPSlopeXi,1 + βhighPSlopeXi,2

]

,

[

σ 2
eβ1

σeβ12

σeβ21
σ 2

eβ2

])

. (6)

This mean vector of the bivariate distribution in Eq. 6 is a

function of regression coefficients and predictors just like

in Eqs. 4 and 5. Variation around the bivariate mean is

expressed in terms of a covariance matrix. The elements of

this matrix are σeβ12
, which expresses covariation between

person-specific intercepts and slopes, and σ 2
eβ1

and σ 2
eβ2

, which

represent the variances of these terms. Dividing the covari-

ance with the product of the standard deviation gives us the

population-level correlation between intercepts and slopes.

Prior specification

Now we specify prior distributions for all model parameters:

normal distributions with mean zero and reasonably high

variation for the group means for intercept and slope. The

specification below is interpreted as setting a diffuse prior

distribution on a wide range of possible values the parame-

ter can take. Since we know that marital love was measured

on a 9-point scale with 10 items, we use this knowledge to

make sure we make the prior wide enough to fully cover

the plausible range of the data. This corresponds to min-

imally informative priors on the baseline values (medium

positivity group) and on the group-specific regression terms.

The priors could be made even more diffuse, but this would

negligibly differ from the chosen prior in its impact on

the posterior. We specified the following normal priors,

parameterized in terms of mean and variances:

µMedPInt ∼ N(0, 100)

µMedPSlope ∼ N(0, 100)

βlowPInt ∼ N(0, 100)

βhighPInt ∼ N(0, 100)

βlowPSlope ∼ N(0, 100)

βhighPSlope ∼ N(0, 100).

We set standard non-informative uniform distributions

over a set of possible values for the error term, the standard

deviations of intercept and slope, and on the correlation of

these two terms (see more information on this prior choice

in Barnard et al., 2000):

σeLevel2
∼ unif(0, 100)

σeβ1
∼ unif(0, 100)

σeβ2
∼ unif(0, 100)

ρeβ12
∼ unif(−1, 1).

To get the covariance matrix, we can simply calculate the

covariance from the standard deviations and correlation:

σeβ12
= σeβ21

= ρeβ12
σeβ1

σeβ2
. Note that in our current

bivariate GCM specification, the correlation of intercept

and slope parameter also has a posterior distribution and its

likely range can be easily evaluated.

Application: babies, fathers and love

Study aims

To reiterate, the original purpose of this marital study was

to assess aspects of marital change across the transition

to parenthood. A longitudinal design was chosen to assess

how trajectories for marital quality, measured from the last

trimester of pregnancy through three years postpartum, var-

ied in form and rates of change across individual fathers.

In our application, we use a sample dataset that is a sub-

set of the original dataset, consisting of fathers’ measures of

feelings of love and positivity scores.
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Subjects

Subjects in this dataset are 108 fathers. At time of enroll-

ment, all were in intact marriages and expecting their first

child. All families were Caucasian and of middle- and

working-class socioeconomic status. For our purposes, we

assess a subset of the original sample, containing only

those fathers who had provided grouping measures for their

pre-childbirth level of marital positivity.

Love factor of marital quality

To identify patterns of marital change, Belsky and Rovine

(1990) measured four aspects of the marital relationship:

love, conflict, ambivalence, and maintenance. In the current

study our sample dataset includes fathers’ love measures

only. The love scores are self-reports on the Braiker and

Kelley (1979) love subscale, from fathers at -3 months, 3

months, 9 months, and 36 months relative to when they had

their first child. This love subscale is a 10-item scale of

intimate relations, assessing attitudes and beliefs about the

parties in the relationship. Questions such as “to what extent

do you have a sense of belonging with your partner?” (love)

are answered on a 9-point scale (from very little or not at

all, to very much or extremely). Internal consistencies of

these scales across the four waves ranged from .61 to .92 for

fathers and wives.

Positivity scores were constructed based on a 45-item life

events checklist. This tool measured whether or not each

listed event had taken place since onset of marriage, and

measured the effect of the experienced events on a 7-point

scale (low point = very negative effect, midpoint = no

effect, high point = very positive effect). All fathers com-

pleted the checklist at measurement occasion 1, and ratings

for positive effect responses were summed to create each

individual’s total positivity score.

Step-by-step guide to fitting a Bayesian growth

curve model in R

Here we provide step-by-step guidelines and computer

script to fit GCM in the Bayesian framework by using R

(with RStudio, RStudio Team, 2015) and JAGS (see e.g.,

in Plummer et al., 2003), which are open source statisti-

cal software packages. The most frequently used programs

for fitting GCMs in the structural equation modeling frame-

work include LISREL, Amos, and Mplus, whereas fitting

GCMs as linear mixed models is more commonly done in

SAS or SPSS. Some of these software packages have a

Bayesian module in which GCM can be fitted, however all

these programs include license fees.

Fitting models in JAGS provides more flexibility for cus-

tom extensions, including various prior specifications. As

an alternative to using R to communicate with JAGS, MAT-

LAB can also be used to formulate the Bayesian GCM via

the Trinity package presented in this issue. See more details

on the currently available programs in the Software options

section later. Note that the Bayesian formulation of the

GCM models applies across different statistical computing

languages.

The following section explains how to fit a linear

Bayesian GCM. We provide written explanation to guide the

reader through five key modeling steps, with programming

syntax that provides the necessary R code and output. The

R output is always preceded by double hashtags. For exe-

cution in R Studio, the reader can copy our code from this

paper directly, or access the corresponding R file or a .Rnw

formatted version of this paper at the Git repository of the

project.

Step 0: First install R, RStudio and JAGS. Then install

the rjags package in RStudio so that R can work with

JAGS.

Step 1: Once the appropriate software is installed, we begin

by reading the dataset into R and specifying which perti-

nent variables should be extracted for the analysis (note that

in the script below it is assumed that the current working

directory in R contains the data set). The code chunk below

describes these steps: reading in the data, checking the data,

counting the number of persons, extracting the 4 measurements

for each person (data), and defining the grouping variable

(grouping, separated to X1 for low positivity and X2 for

high positivity). Then we create the time vector by based

on when the measurements were taken relative to the birth

of the child (in month units). Finally, we create a list of all

these variables in a format that can be read by JAGS, which

is our generic Bayesian estimator engine for the analysis.
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Step 2: Next we write out the GCM in JAGS language, fol-

lowing the model specifications in Eqs. 1 and 6, and their

corresponding prior specifications. In this code chunk, we

use loop functions to handle the nesting structure in our data

(i.e., multiple people in the population, multiple measures

per person). First we create a population-level loop func-

tion over our multiple participants, then within this loop we

create an individual-level loop function over the multiple

observations of an individual. At the center of these nested

loops, we define the likelihood function (under the line The

likelihood), which describes the assumed data gener-

ating distribution, as shown in Eq. 1. The shape of the

likelihood is chosen to be normal. Due to programming

requirements in JAGS, we specify the normal distribution
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in terms of mean and precision, instead of mean and vari-

ance. Precision is defined as the reciprocal of the variance,

therefore it is a simple one-to-one transformation: precision

= 1/variance. Every time we specify a normal distribution,

denoted with dnorm in JAGS, we will plug in the reciprocal

of the variance as the second parameter. This is a technical

matter and does not impact specification of the GCM.

Next, we close our inner, individual-level loop over

observations and specify our person-specific hyperprior dis-

tributions, which correspond to the two person-specific

parameters, the person intercept and the person slope

(beta[i,1:2]). We call this a hyperprior distribution

because it sets priors on hyperparameters, that is on

parameters of the population distributions of the β-s, as

specified in Eq. 6. Technically, the prior distribution of the

β-s is hyperparameterized, instead of its parameters being

set to a fixed value, like we have seen in the Equations spec-

ifying priors above. We chose this population distribution

to be a bivariate (or more generally, multivariate) normal

distribution with a mean vector and a precision matrix, as

shown in Eq. 6. The precision matrix is simply the matrix

inverse of our covariance matrix in Eq. 6. As with dnorm,

the JAGS language expects a precision matrix as an input

for the multivariate normal distribution (denoted dmnorm in

the syntax), and requires a one-to-one transformation from

precision to variance.
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Next, beneath the line Specifying priors and

transforming variables we specify our prior dis-

tributions (non-hyperpriors) on parameters in line with

the equations that described the priors. Lastly we create

some new variables for planned comparison of our groups,

(e.g., LowPInt; these variables all have the <- specifica-

tion), which are one-to-one transformations of previously

defined variables corresponding to our grouping levels.

Inclusion of variable transformation is optional and depends

on unique research questions; in our case it is interesting to

add these contrast terms between the groups. The variable

HighLowPInt for example represents the posterior prob-

ability distribution of the difference between the intercepts

in the high and in the low positivity groups. The last line of

code writes our model variable into file named GCM.txt.

Step 3: Next we estimate our Bayesian model parame-

ters through sampling from their posterior distribution via

MCMC algorithms, implemented in JAGS. To illustrate this

process, we outline some important settings and specifica-

tions for the Bayesian estimation algorithm.

Monitoring parameters. First we create a vector called

parameters in which we collect the names of all param-

eters that we want to examine. JAGS will save the posterior

samples only for the parameters included in this vector. We

will first check whether the posterior sample chains have

converged to the same area; more details on how to check

the “convergence” will be provided below. The results are

considered stable and reliable only after convergence cri-

teria are met. Recall that we sometimes create parameters

inside the JAGS code by simply transforming some other

parameter(s) (i.e., computing the variance by squaring the

standard deviation): these transformed parameters are nec-

essary to include in the list if we want to draw inference

about their likely values.

Specifying sampler settings. After collecting parameters, the

remaining lines of Step 3 concern specifications for han-

dling JAGS’s sampling algorithm. Since Bayesian posteriors

are described through representative samples, we focus on

how to handle our chosen algorithm to ensure that samples

are accurate representations. Sampling is carried out in sev-

eral iterations, typically in the range of thousands. In each

iteration a new sample is drawn from the conditional poste-

rior for each parameter (or a vector of parameters), and this

new sample is conditional on the previously drawn value of

all other parameters and the data. First, the sampling algo-

rithm has to be adapted for the model and data: for this

purpose 2000 adaptation iterations are typically suffi-

cient. Second, while JAGS generates random initial values
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for sampling, it is good practice to restart the sampling algo-

rithm several times: that is to say several chains should be

run (e.g., we recommend 6, although this number is some-

what arbitrary, and running only 3-4 chains can also be a

good option when the burnin-in and adaptation iterations

take a long time). The first iterations from our chains should

always be discarded, as they are most likely influenced

by the starting value of the chain and not yet converged

to the target posterior area. This can be done by setting

the burnin value to for example 1000: these first 1000

samples are drawn, but not included in the final posterior

samples.

Within a chain the sampled parameter values might have

high autocorrelation. We need a reasonable number of sam-

ples that are free from autocorrelation (as these contain

more information, see below), therefore when high auto-

correlation occurs, we must run longer chains. In complex

models with many person-specific parameters long chains

may exceed computer memory for storing and process-

ing (calculating posterior summaries), an issue that may be

addressed by thinning. By thinning the chains we only

save every xth sample (e.g., in our example, we save every

fifth sample), this way decreasing autocorrelation among

consecutive samples, while also reducing the size of the

chain resulting in less demand in terms of memory require-

ments. We choose to use thinning of 5. Link and Eaton

(2012) showed that thinned chains have somewhat reduced

information, thus thinning is only recommend if computer

memory is an issue.

We focus on reducing autocorrelation in sample chains

because lower autocorrelation means more representative

random sampling – “quality” samples are barely correlated.

We will later quantify the quality of our samples in terms

of effective sample size (ESS). In the postSamples line

we specify how many posterior samples we want for each

parameter, our chosen value of 30000 (5000 for each chain)

suffices for most models. The final line calculates how

many number of iterations JAGS will need, as a function

of number of chains and thinning, to achieve the required

postSamples sample size.

Step 4: The package rjags (connecting JAGS with R)

must be loaded into the R environment, as shown in the

first R command line of the following code chunk. The

next line uses an rjags function to compile a JAGS

model object and adapt its samplers, it is named as

jagsModel in our example. Then sampling is done in

two phases: a burnin phase (see update line, these first

iterations are discarded), and a posterior sampling phase.

Posterior samples are retained from this latter phase only,

and are saved in a variable named codaSamples (note

that seed is set to 5 here only to make this example

replicable).
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Step 5: Once sampling is done, we can explore the posterior

distributions of the model parameters of interest. We make

use of function, posteriorSumStats.R, which can be

found as an online resource on the Git project site. The

script uses functions from the coda package from Plummer

et al. (2006) and from the utility script of Kruschke (2015).

We note here that the coda package loads automatically

with rjags and has built in summary and convergence checks

functions that the reader might find useful, which calculates

summary statistics from the posterior distributions.
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Part 1. The first R command of the Step 5 code chunk

calls this function into the R environment. The subsequent

lines check convergence. As mentioned above, for each

parameter, we ran several chains with disperse starting val-

ues to explore the posterior distributions. For our results to

be reliable, we must confirm that the chains converge to the

same area, per parameter; this ensures that all chains are

tuned to find similar likely values for the parameter.

We recommend graphical and numerical convergence

checks of the posterior distribution. Figure 2 shows two

graphical checks of the level-2 high positivity intercept

parameter.2 The plot on the left depicts the six sample

chains: we can see that the chains overlap very well, indi-

cating that they converged to the same area. The plot on

the right shows the smoothed posterior probability densities

for the same parameters, depicted with different colors for

each chain. These densities also nicely overlap, supporting

convergence.

2Computer scripts generating the figures are available in the Git

repository of the project.

Aside from graphical checks, we use R̂ statistic (see,

e.g., in Gelman et al., 2013) as a numerical indicator for

convergence. The R̂ statistic is a ratio of the between and

the within chain variances. If all chains converged to a

region of representative samples, then the variance between

the chains should be more or less the same as the mean

variance within the chains (across iterations). Conven-

tionally, R̂ < 1.1 suggests that the chains for a certain

parameter reached convergence. While this criterion is com-

monly set at 1.1, it can be changed to be more conservative

(e.g., 1.05). In the code block above, there is a if statement

to send a confirmation message if all parameters converge

(as below, “Convergence criterion was met for every param-

eter.”), otherwise R will display the name and posterior

statistics of the unconverged parameters. If this unconverged

parameter table appears (an example is not shown here) and

the R̂ values are around 1.2, you can often solve the problem

by re-running the analysis with an increased required pos-

terior sample size (sizeofPost). R̂ values above 2 most

likely refer to serious misfit between model and data, or cod-

ing error. Results should only be interpreted when chains

are converged for all parameters.
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Fig. 2 Graphical checks for convergence: traceplots (left) and smoothed posterior probability densities (right) of the six sample chains. The

overlapping chains in both plots support convergence

Part 2. The second part of the code chunk calculates

posterior statistics for the parameters of interest: intercept

and slopes in the low, medium and high positivity groups,

contrast terms between the groups, standard deviations and

correlation between intercepts and slopes. A useful poste-

rior point estimate for parameters of interest is the mean of

the posterior distribution. The PSD column shows the pos-

terior standard deviation, which quantifies the uncertainty

around the point estimate (similarly to a standard error in

the classical statistical framework). The 2.5% and 97.5%

columns designate the two ends of the 95% posterior credi-

bility interval (PCI), which is the center 95% of the posterior

probability distribution of the parameter: parameters will

fall in this interval with probability .95. Next to these are

the low and high ends of the 95% highest probability den-

sity (HDI) interval: this interval designates the 95% range

of values with the highest probability density. As seen in

our summary table, the limits of PCI and HDI are almost

identical, due to the fact that the posterior distribution is

approximately symmetrical. However, for skewed distribu-

tions the equal tailed PCI might exclude values with high

probability density in favor of values with low probability

density.

The next three columns concern statistics related to the

Region of Practical Equivalence (ROPE, defined later). The

script posteriorSumStats.R automatically sets this

region to be -0.05 and 0.05, but the limits of the ROPE can

be tailored depending on the questions of interest.3 For a

specified ROPE we calculate the probability that a certain

parameter is smaller than the lower limit of ROPE (column

7), falls within the specified ROPE interval (column 8), and

is larger than the upper ROPE limit (column 9).

As referenced in our discussion of ”quality” samples

above, the ESS column of the summary table measures

3For this add argument: e.g., ROPE=c(2,4), for limits 2 and 4, when

calling the function. This mean that you designated a region around 3,

extending plus/minus 1 in each direction.

effective sample size: number of total posterior samples

that do not correlate substantially. ESS counts our “quality”

samples. As a general rule of thumb we should have a cou-

ple of thousands effective samples per parameter; Kruschke

(2015, Section 7.5.2) recommends 10,000 for getting sta-

ble estimates on the limits of some selected HDI. As can

be seen some of the reported parameters have somewhat

less than 10,000 effective samples. For these cases we could

simply draw more iterations to achieve a higher ESS, but

we decided not to as we are not interested in their HDI

limits (e.g., for population variance parameters). Lastly, the

Rhat column in the summary table shows the R̂ statis-

tics values discussed above in the context of convergence.

Values very close to 1 suggest good convergence; most of

our parameters have this value, and none has Rhat larger

than 1.1.

Results

Graphical illustrations

The Bayesian GCM helps us articulate how men expe-

rience marital love during their transition to fatherhood.

Per the summary table above, results of this study sug-

gest that husbands’ experience of marital love across the

transition to fatherhood is adequately explained by a linear

Bayesian GCM, which accounts for within- and between-

person dynamics. While not shown in this paper to conserve

space, the above GCM analysis provides us with esti-

mates of all person-specific (N = 106) intercept and slope

parameters. These person-specific estimates have proba-

bility distributions and the most probable range of values

can be inferred. The user can print these estimates by

adding the variable names (‘betas’) into the filter argu-

ment of the summarizePost function in Step 5, Part 2.

Figure 3 shows the model predicted person-specific slopes

based on the posterior mean estimates of the person-specific

parameters.
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Fig. 3 Person-specific trajectory estimates

Compared with the raw data trajectories in Fig. 1,

the estimated lines in Fig. 3 reflect both person-specific

(each line) and group-specific (each panel) patterns. The

person-specific estimates shrink away from the raw obser-

vations in Fig. 1 and towards the estimated population

trajectory, illustrated in Fig. 4 (see more on that below). By

using multiple levels of information, these estimated trajec-

tories shift in magnitude to their sample size (i.e., smaller

samples shrink more, and benefit most from shrinkage) and

exhibit better out-of-sample prediction.

Figure 4 gives a graphical illustration of the level-2

results. The thick lines illustrate the population slope for

a given group, and the surrounding area shows the poste-

rior uncertainty around the population slope estimate, based

on the posterior samples. As in Fig. 3, trends governed by

the time-invariant positivity grouping factor can be noticed

in Fig. 4: low and high positivity groups visibly differ in

their love trajectories. Although we can visually spot dif-

ferences in these plots, we next examine whether there is

enough supporting evidence to confirm there are meaningful

differences in group trends.

Numerical summaries

The Bayesian GCM yields a multi-parameterized solution,

however here we extract only the most pertinent estimates

for interpretation. As can be seen by comparing intercept

values across positivity groups, the higher a father’s positiv-

ity level, the higher his level of marital love, with intercept

values quantifying the (linearly interpolated) levels of felt

love at childbirth: high positivity intercept (M = 77.3, 95%

HDI = (74.7, 79.9)), medium positivity intercept (M = 75.3,

95% HDI = (73.0, 77.8)), low positivity intercept (M =

72.3, 95% HDI = (69.9, 74.9)).

When it comes to slope estimates or differences among

groups, it is useful to ask how likely it is that these vari-

ables would differ from 0, or be practically equivalent to

0. We can designate a Region of Practical Equivalence (or

ROPE, see more discussion in Kruschke, 2015, Section

12.1) around 0, which defines a range of parameter values

that we consider to be practically equivalent to 0. The ROPE

range is typically small, with limits that depend on the sub-

stantive meaning of the parameters. In other words, ROPE

answers the question: what is a negligible amount of devia-

tion from 0, with respect to the problem at hand? For exam-

ple in the current analysis, we selected a ROPE with upper

and lower limits −0.05 and +0.05 for the raw-scale regres-

sion coefficients that expressed the association between

the outcome measure (ranged between 0 and 100) and the

measurement time points (ranged between −3 and 36). Mul-

tiplying the predictors with the very small values contained

in the ROPE results in a negligible change on the scale of the

outcome.

With a chosen ROPE, we can directly quantify (1) the

percentage of the posterior probability distribution that falls

within the Region of Practical Equivalence to 0 (column

(−0.05 0.05) in the R output), (2) the percentage of the

posterior that is larger than the upper limit of the ROPE (col-

umn lt 0.05 in the R output), supporting positive values

for the coefficient, and (3) the percentage of the posterior

that is smaller than the lower limit of the ROPE (column st

−0.05 in the R output), supporting negative values for the

coefficient. Note also that based on the ROPE and the 95%

HDI, Kruschke (2015) proposes to set up a decision rule

by checking whether the ROPE includes the 95% HDI, or

whether the 95% HDI is completely below/above the ROPE,

leading to conclusions such as that the 95% most credible

parameter values are practically equal to or less/more than

0, respectively. If the ROPE and the 95% HDI partly overlap

this decision rule remains undecided based on the current

data (see more discussion in Kruschke, 2015, Section 12.1).

To allow for this type of conclusion, we report the HDI

alongside with the proportion of posterior mass inside or

outside the ROPE.

First, we explore the results on the group specific slope

coefficients (rates of change in self-reported marital love).
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The posterior mean for the low positivity group is −.20

(95% HDI = (−0.28, −0.13)), with the entire posterior

probability distribution falling on the left (negative) side of

the ROPE (st −0.05 = 1), which leads us to conclude

that there is a negative slope for the low positivity group.

Substantively, this suggests that fathers who reported a low

number of positive life events before childbirth experienced

decreasing feelings of marital love over the transition to par-

enthood. In contrast, fathers with high or medium pre-birth

positivity did not exhibit remarkable upward or downward

trajectories. The medium positivity group had a slight neg-

ative slope (M = −.08), with a lot of uncertainty around

the estimate: the 95% HDI ranges from −0.16 to −0.01,

which partly overlaps with the ROPE, and with 82% of

the probability mass on the negative side of the ROPE (st

−0.05 = 0.82). The high positivity group’s trajectory is

practically flat, with most likely values centered on zero: M

= −.03 (95% HDI = (−0.11, 0.04)) and the probability that

this slope is practically equivalent to 0 is 66% ((−0.05,

0.05) = 0.66).

Specific to our research interests, we aim to assess

whether there are statistically meaningful differences in the

intercepts and slopes of the low, medium and large pos-

itivity groups. Recall that we specified contrast terms to

compare the 3 groups’ intercepts and slopes in the model fit-

ting algorithm (Step 2 above): for example HighLowPInt

represented the difference between the credible values of the

intercept in the high and in the low positivity groups. Each

contrast term has its own posterior probability distributions.

In case of the HighLowPInt, the posterior distribution

is based on subtracting the sampled value of the low pos-

itivity intercept from the high positivity intercept at every

iteration. We specified 6 contrast terms, representing dif-

ferences between groups, in terms of intercepts and slopes:

HighLowPInt, HighLowPSlope, HighMedPInt, HighMedP-

Slope, MedLowPInt, MedLowPSlope. The posterior mean

of the contrast term summarizes the magnitude of these

group differences, and the 95% HDIs quantify the amount

of uncertainty around these group differences. Based on

these results, the high and low positivity groups showed

remarkable differences: (1) the high-positivity group, com-

pared to low-positivity group, was higher in mean levels

of felt love with 5.0 magnitude (difference in intercepts,

HighLowPInt, 95% HDI = (1.6, 8.7), lt 0.05 = 1%)

and (2) the high-positivity group, compared to low positivity

group, experienced slightly less decline (M = 0.17) in felt

love over time (difference in slopes, HighLowPSlope,

95% HDI = (0.06, 0.28), lt 0.05 = 0.99). These differ-

ences between low and high positivity groups can be spotted

when looking at the left and right panels of Fig. 4. As for

the rest of the contrast terms, the medium-positivity group,

compared to the low-positivity group, experienced slightly

more love (M = 3.0) and less decline in felt love (M = 0.12).

However, there is considerable uncertainty around these

estimates, reflected by the relatively wide 95% HDIs, partly

overlapping with the ROPE (MedLowPInt, 95% HDI =

(−0.5, 6.4); MedLowPSlope, 95% HDI = (0.01, 0.22)).

Finally, we did not find remarkable differences between

high and medium positivity groups in terms of intercept and

slope (HighMedPInt, M = 2.1, 95% HDI = (−1.5, 5.5);

HighMedPSlope, M = 0.05, 95% HDI = (−0.05, 0.16)).

To conclude, overall we find interesting differences between

high and low positivity groups; however the effect sizes are

rather small.

With respect to the Level-2 covariance matrix defined

in Eq. 6, results are summarized in terms of standard

deviations and correlation in the R output. The person-

specific intercept and slope terms showed a slight positive

correlation (corrIntSlope, M = 0.23), but the 95%

HDI for this estimate ranged from −0.22 to 0.76, indicating

a lot of uncertainty in this estimate. Parameter sdSlope

represents the individual differences in slopes, and had

a posterior mean of 0.12 with 95% HDI ranging from

0.05 to 0.19. The standard deviation parameter representing

individual differences in intercepts (sdIntercept) had

posterior mean 6.7, with 95% HDI from 5.6 to 7.9, which
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Fig. 4 Group differences. The thick line is based on the population values, and the surrounding area is based on all the posterior samples
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corresponds to sizeable individual differences considering

the scale of the outcome. Finally, the posterior estimate for

the standard deviation on level-1 (sdLevel1Error) is 5.7

with 95% HDI from 5.2 to 6.3. The ROPE related proba-

bilities, given the −0-05 and 0.05 limits are also displayed

in the R output for these three standard deviation parame-

ters, however, they are less useful here as standard deviation

parameters are constrained to be positive.

Next we assess how appropriate our complex model is

for this data set by comparing the fit of the above GCM to a

more complex and some simpler models.

Model comparison via the Deviance Information

Criterion

To assess the overall performance of our fitted GCM, we

may evaluate its relative goodness of fit in comparison to

other models. Our chosen fit statistic for this purpose is

the Deviance Information Criterion (DIC, Plummer 2008).

DIC is a Bayesian information criterion that quantifies

the information in the fitted model by measuring how

well the model reduces uncertainty of future predictions.

Adding more parameters most often improves model fit,

but overly complex models may risk overfitting to sample

data; overfitted models yield poor out-of-sample prediction.

In traditional measures of goodness-of-fit such as explained

variance (e.g., R2), increases in model fit do not penalize for

the amount of parameters included in the model, regardless

of complexity. DIC, on the other hand, simultaneously

accounts for model complexity (number of parameters) and

model fit, by penalizing based on the number of (effective)

parameters. DIC is calculated based on the sum of the effec-

tive number of parameters and the posterior mean of the

Table 1 Deviance Information Criterion values for five models fitted

to the marital love data

Model type DIC

Quadratic change with positivity grouping 2890

Linear change with positivity grouping 2856

Linear change with no positivity grouping 2855

No change with positivity grouping 2925

No change with no positivity grouping 4905

Note that these models all allow for person-specific intercepts. The

Linear Change model, with positivity grouping, is the central model

presented in this paper. Lower DIC values indicate better model

performance in predicting future values

deviance, with deviance defined as −2 times the log of

likelihood function.

When comparing several models fitted to the same data,

models with smaller DIC have less out-of-sample deviance,

and thus will yield more accurate future predictions about

populations similar to our sample. It should be noted that

DIC has limitations. Since DIC is not based on n model

probabilities, models cannot be compared in probabilistic

terms, only in terms of their relative goodness of fit. Also,

DIC is based on the assumption that the posterior distri-

bution has a multivariate normal shape. Bayesian goodness

of fit indices continue to be assessed in the literature (see,

e.g., Gelman et al., 2014). Finally, we point out again that

DIC can only evaluate the predictive performance of a

model in comparison to others. Absolute model fit in the

Bayesian framework is typically evaluated via posterior pre-

dictive checks (see, e.g., Kruschke, 2015, Section 17.5.1 and

Gelman et al., 2013, Section 6.3).

DIC calculation in JAGS is easily implemented with the

following lines:

To assess performance of our fitted Bayesian GCM, we

compare our model (denoted as “Linear change with posi-

tivity grouping”) to four other models: one more complex,

and three simpler models. The more complex model allows

change over time to take a quadratic curvature (“Quadratic

change with positivity grouping” model). This model has

an extra person specific regression coefficient (βi,3), which

would add an extra dimension to Eq. 6. A worked example

of this model can be found as an online supplement.4

4See scriptForDICCalculations.R file.

When it comes to simpler models, one of the simpler

models we included does not add the grouping variable

based on fathers’ initial level of positivity in marriage

(‘‘Linear change with no positivity grouping”), since not

all the contrast terms capturing group differences were

convincingly different from 0. Another simpler model (“No

change with positivity grouping”) assumes no change in

marital love levels over time, and participants in the three

groups are simply described by their means across the four

measurement occasions. In other words, this model has no

slope parameter, but allows for individual differences in the
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intercept. Finally, the simplest model “No change with no

positivity grouping”, excludes the positivity grouping factor

but allows for a random intercept for each person.

The resulting DIC values are displayed in Table 1. The

models are ordered according to their level of complexity,

starting with the most complex one on the top and ending with

the most parsimonious one in the bottom. As mentioned, a lower

DIC value indicates better model performance in predicting

future values, therefore, based on DIC the model with linear

change but no positivity grouping is the preferred model of

this ensemble, with DIC = 2855. However, the difference

between this simpler model and our featured model with

positivity grouping is only 1 point, which is not interpreted

as considerable difference in DICs (typically values larger

than 5 indicate some difference and values above 10 are con-

siderable, for more discussion see Lunn et al., 2012). There

is considerable increase in DIC when the slope parameter

is removed (simpler models), and adding a quadratic term

does not substantially improve future predictive accuracy.

To summarize, the more parsimonious model without

positivity grouping shows similar performance in predicting

future values as our model. Our model is not considerably

worse and might allow for exploring some substantively

interesting aspects of how changes in felt love marital love

are related to initial levels of positivity.

Further considerations

Different patterns of growth

An additional straightforward GCM extension is to model

different shapes of the growth curve, beyond just a straight

line. For example, as already discussed in the model com-

parison section above, polynomial growth may be measured

in terms of a quadratic shape. With this extended model we

capture individual differences not only in terms of initial

values and rate of change, but also acceleration or deceler-

ation. This extension requires adding one extra term to the

mean structure in Eq. 1, namely βi,3T2
t , where βi,3 stands for

the person-specific acceleration and T2
t is the measurement

time vector squared.

An alternative polynomial extension involves adding a

cubic term, that is T3
t . For that we need to add yet another

term, βi,4T3
t to the mean structure in Eq. 1. Extending

with quadratic and cubic terms yields more complex inter-

pretations: our longitudinal growth process now contains

higher-order features of rates of change, acceleration, and

curvature, which all depend on (i.e., are multiplied by) the

time index. Another complexity is that in our marital dataset

we only have 4 time points per individual and extending

up to cubic term would mean estimating as many person-

specific parameters as we have data points per person. In

other words, a cubic GCM would be considered a saturated

model for this dataset, according to the classical framework.

We note here that the individual level parameters would

be constrained by both hierarchical shrinkage and Bayesian

hyperpriors, therefore while this model appears saturated it

still leaves some space for generalizability in the Bayesian

framework. Overall, for longitudinal psychology research,

the most pertinent polynomial functions have curvilinear

forms, typically up to quadratic order.

Besides polynomial linear models of increasing degree,

the GCM framework offers a wide range of possibilities for

modeling change over time. For example spline functions

can be useful growth functions for processes which appear

to follow a growth trajectory that dramatically changes form

at a transition, or knot point. Spline functions hinge on a

transition point in our time index, in which the function of

growth completely changes. These models have useful inter-

pretations for developmental studies of transitions between

major life phases, such as from childhood to adolescence, or

of transitions before and after a major life event. To specify

a spline model requires two equations - one which describes

the growth (linear or nonlinear) prior to transition, and one

which describes growth (linear or nonlinear) after transition.

More information can be found in McArdle et al. (2008).

Finally the most popular non-linear GCM is one that

models exponential growth (see e.g., in Grimm et al.,

2011). Interested researchers should also reference Ram

and Grimm (2015) for a good summary of growth mod-

els include curvilinear, latent basis, exponential, sigmoid,

sinusoid, and spline functions and their applications in psy-

chological research. The exponential model, with either

additive or multiplicative random coefficients, serves as a

useful nonlinear approach for modeling developmental pro-

cesses exhibiting curved growth towards an asymptote, and

have been applied to studies including cognitive, learn-

ing, and language development, due to its straightforward

application. Exponential curves have interpretable advan-

tages for asymptotic growth, and these functions are able

to model complex developmental patterns with few parame-

ters. However, if a study’s measurement occasions miss the

asymptotic growth phase, we might mistakenly choose an

exponential model over a logistic growth process. Depaoli

and Boyajian (2014) provide an accessible summary of non-

linear (and linear) models implemented in the Bayesian

framework, and argues that GCMs fit via non-Bayesian

estimation techniques can yield inaccurate parameter esti-

mates under certain conditions. For careful consideration of

nonlinear models, readers can consult for example Ghisletta

et al. (2010) or Grimm and Ram (2009).

Most GCM extensions can be implemented in a straight-

forward manner into the JAGS script presented in this paper.

Results for additional parameters can be interpreted in the

same manner as demonstrated above: we can look at the
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posterior of each parameter directly and make statements in

probabilistic terms about the likely values of the parameters.

It is crucial advantage of the Bayesian framework that once

the researcher becomes familiar with the Bayesian model

structure and computation of a basic model (like the exam-

ple shown above), all further extension can be formulated in

a straightforward and transparent manner.

Long format

In the current application we use a data frame structured in

person-by-observations format, which is sometimes called

“wide” format. Typically, however, we prefer a less concise

but more flexible representation called “long” format: that

is all repeated observations are stacked under each other in

a long vector. In this format the data frame includes two

additional columns for hierarchical indexing and nesting

purposes: a person-ID column, and a time column, in the

metric of the measurement occasion (e.g., seconds, days,

waves).5 This formatting adds extra flexibility to the model.

For example, it offers straightforward implementation for

unbalanced, unstructured and unequally spaced data. More-

over, we can simply delete the missing observations (given

the missing at random assumption is met) from the data

vector and its corresponding index vectors, this way saving

computation time.

Software options

For researchers not familiar with the R environment, Open-

BUGS’ point and click interface offers a user friendly

alternative (see examples in Lunn et al. 2012). The cur-

rent JAGS script can also be easily adapted to be run from

BUGS. Another easy to use package designed specifically

for fitting latent variable models (in the classical and in

the Bayesian framework) is Mplus. Depaoli and Boyajian

(2014) provide computer code examples for fitting Bayesian

growth curve models in OpenBUGS and Mplus.

A more generic, flexible software is Stan, which

was specifically developed for hierarchical modeling. As

opposed to JAGS or BUGS, Stan uses a different sam-

pling algorithm that may more efficiently estimate complex

growth curve models with higher order time effects. Stan

model specification involves additional specification for

model parameters and data, but shares several common fea-

tures with the JAGS syntax. Kruschke (2015) and McElreath

(2016) provide description and annotated computer code (on

the authors’ websites) for some linear and quadratic growth

curve models, implemented both in Stan and JAGS. Finally,

5See our worked out example in long format in file

Ranalysislongformat.R in the Git repository.

the rstanarm package in R provides a user-friendly solu-

tion for specifying GLMMs (concise syntax, similar to

lme4, see more in Gabry & Goodrich, 2016), while relying

on Stan to estimate the model parameter.

Computational considerations

To reiterate, the computational time demand is consider-

ably higher for Bayesian estimation than MLE. Especially

for complex GCMs, with correlated parameters, the MCMC

algorithms implemented in JAGS take time to collect qual-

ity samples from highest density region, as discussed in

regards to thinning earlier. When this computational burden

becomes prohibitive, one should consider re-parameterizing

the model for more efficient sampling of posteriors (see,

e.g., in Browne et al., 2009; Gelfand et al., 1995).

Complex issues in growth curve modeling

The simple GCM presented in this paper, and the extensions

described above, cover a large part of the modeling needs

in substantive applications. However, researchers may have

more complex GCM questions that can only be addressed

with highly versatile models. The Bayesian framework

has shown great potential in handling the complex issues

involved in fitting these models. For example, Depaoli

(2013) shows that when fitting growth curve models with

latent classes (growth mixture models) optimal parameter

recovery can only be obtained in the Bayesian framework

with informative priors. Lu and Zhang (2014) highlight the

advantages of Bayesian modeling in handling non-ignorable

missingness in growth mixture models. We expect that the

number of sophisticated extensions to growth curve models

will increase rapidly in the future.

Discussion

In this study we argued that implementing Bayesian estima-

tion procedures for growth curve modeling is acceptable in

terms of ease via generic Bayesian inference engines such

as JAGS. Although computation time is often higher in the

Bayesian framework than with MLE, the benefits - namely,

flexible extension and results with rich, intuitive probabilis-

tic interpretations - are substantial. The Bayesian framework

also allows for incorporating existing knowledge on the

likely values of the growth curve model parameters, via the

prior distribution when such information available.

Beyond a wide array of statistical advantages to mod-

eling with posterior distributions, the Bayesian framework

offers robust estimating approaches for fitting the GCM.

Previous studies have shown this robustness by demon-

strating: (1) that Bayesian GCMs with uninformed priors
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yield maximum a posteriori (MAP) estimates that are iden-

tical to maximum likelihood estimates; and (2) that the use

of increasingly informative priors serve to reduce standard

deviations (Bayesian standard errors) of Bayesian GCM

estimates, as shown by Zhang et al. (2007). Zhang (2013)

have also demonstrated the robust nature of Bayesian GCMs

to handle nonnormal residual variance via the generalized

error distribution without adding error to inference. Zhang

et al. (2013) and Kruschke (2015) also demonstrate how

the likelihood function for the growth curve model can be

easily adapted to the unique features of a given dataset;

for example to adapting the likelihood to a t-distribution to

accommodate outliers (see e.g., in Kruschke, 2015, Section

16.2).

In our example of marital love, GCM parameter esti-

mates facilitated assessment of the psychological process

in question. By accounting for within- and between-person

trajectories, as well as grouping factors, we find meaning-

ful measures to describe our subjects’ multifaceted emo-

tional change process. We demonstrated how our proposed

Bayesian analysis can be implemented in JAGS and how

posterior distributions of the parameters of interest can be

calculated and interpreted in straightforward, probabilistic

terms.

We end with a final note on the advantage of using

Bayesian estimation for GCM, as we enter a new era of

longitudinal data analysis. Although traditional GCMs have

captured incremental linear change processes, longitudinal

applications and time scales are rapidly expanding, and

researchers must consider more complex functional forms

of growth. The Bayesian approach provides flexible tools

to estimate parameters of complex change functions in the

GCM framework.
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