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Abstract. Markov models have been used extensively in psychology of learning. Applications of hidden Markov models are rare

however. This is partially due to the fact that comprehensive statistics for model selection and model assessment are lacking in

the psychological literature. We present model selection and model assessment statistics that are particularly useful in applying

hidden Markov models in psychology. These statistics are presented and evaluated by simulation studies for a toy example. We

compare AIC, BIC and related criteria and introduce a prediction error measure for assessing goodness-of-fit. In a simulation

study, two methods of fitting equality constraints are compared. In two illustrative examples with experimental data we apply

selection criteria, fit models with constraints and assess goodness-of-fit. First, data from a concept identification task is analyzed.

Hidden Markov models provide a flexible approach to analyzing such data when compared to other modeling methods. Second,

a novel application of hidden Markov models in implicit learning is presented. Hidden Markov models are used in this context to

quantify knowledge that subjects express in an implicit learning task. This method of analyzing implicit learning data provides a

comprehensive approach for addressing important theoretical issues in the field.

1. Introduction

Markov models have been used in psychology at

least since the 1950’s [27,28]. They have been applied

mostly in the areas of learning and memory [3,21,30].

In the area of learning, Markov models have proven to

be very flexible models in describing and formalizing

the development of knowledge. Although hidden or

latent Markov models have been around for a while in

psychology (see e.g. [45]), there have been relatively

few applications. This is possibly due to inherent prob-

lems in estimating latent variable models. Estimation

of parameters was usually based on the method of mo-

ments, which is hard to adapt to different kinds of data

to be modeled. Using method of moments estimation,

it is not feasible to model long sequences of trials or
many different sequences of trials, such as those gath-

ered in implicit learning experiments. Hidden Markov

models are very flexible and can be used to model any
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set of sequences of trials, whether these are fixed length

sequences, single sequences, or multiple sequences of

different lengths. There is a great advantage of us-

ing discrete HMMs in the context of implicit learning

and concept identification which is that the raw data

from these experiments are modelled instead of de-

rived measures which is necessary when using contin-

uous models. New applications are available due to

the flexibility in parameter estimation. The maximum

likelihood framework provides methods for comparing

models with different constraints imposed on their pa-

rameters. Adopting the framework of hidden Markov

model (HMM) parameter estimation in applications of

Markov models has many advantages.

In spite of the improvement of model estimation, for

applications in psychology to be feasible, some impor-

tant statistical features are lacking in the HMM frame-

work. First, model selection criteria are needed to com-

pare models and to decide which model best describes

the data. In the present paper we compare and eval-

uate several candidate criteria for example data sets.

Second, absolute measures for goodness-of-fit, called

model assessment criteria, are needed to decide whether

a model is adequate for the data at hand. We propose
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a prediction error measure for this purpose, which is

applicable to a wide range of Markov models. Other

measures for testing goodness of fit, and for testing spe-

cific hypotheses, are considered as well. Third, in some

applications it may be necessary to impose equality or

other linear constraints on parameters for theoretical

reasons. As far as we are aware, equality constraints

in HMMs have received little attention. We compare

three methods for fitting equality constraints, and, in

specific cases, general linear constraints. There is sim-

ilar work on equality constraints in latent class analy-

sis [29], which points to difficulties in finding general

solutions for fitting equality constraints. We developed

a program for fitting HMMs, based on the EM algo-

rithm [33], which incorporates all these features. Many

goodness-of-fit statistics are standard output, others are

available on request [40].

1.0.0.1. Hidden versus latent Markov models In the

psychological literature on the subject hidden Markov

models are usually referred to as latent Markov models

(LMM [45]). In fact, the literature on latent Markov

models, which are used in sociological and psycholog-

ical applications, is largely separate from the literature

on hidden Markov models which are mainly used in

speech recognition and biological sequence analysis.

In this paper we use the term hidden Markov model

for two main reasons. The main difference in the lit-

erature between HMMs and LMMs is the kind of data

they applied to. Although this may not seem a prin-

cipled difference, the consequences for parameter esti-

mation are profound. Fitting HMMs to timeseries data

asks for different parameter estimation techniques than

those that are usually applied in the context of LMMs.

Hence, we refer to the models as HMMs while being

aware that they are identical to LMMs.

1.0.0.2. Overview of the paper In the present paper

only discrete hidden Markov models are considered,

that is, HMMs with a discrete hidden state space and

discrete observation symbols. In Section 2, we first

present the definitions and notation that we use through-

out the paper. Next, we describe a toy model and data

set. We discuss model fitting with and without equal-

ity constraints, using this data set. In Section 3, we

compare and evaluate model selection criteria and cri-

teria for assessing goodness-of-fit. In Sections 4 and

5, we present two applications of fitting HMMs to ex-

perimental data. The first data set is from a concept

identification experiment. Models are fitted in both ex-

ploratory and confirmatory analyses. We discuss fitting

an HMM with a linear constraint between parameters,

which is based on theoretical considerations. We show

how the likelihood ratio statistic can be used to test the

tenability of such constraints. The second data set is
from an implicit learning experiment. In this experi-

ment subjects unconsciously learn finite state languages

by reproducing them. In order to gain insight into the
knowledge that subjects acquire in such an experiment,

we fit HMMs to the data. In addition, we discuss the

connection between HMMs, finite state automata and

regular languages in this section.

2. Fitting hidden Markov models

2.1. Definitions and notation

A discrete HMM may be represented as a five-

tuple < S,O,A,B, π >. S represents a set of states

Si, i = 1 . . . n. O is a set of observation symbols
Oj , j = 1 . . . m. Observation symbols are alternately

called observations, symbols or responses. A repre-

sents a transition matrix with conditional probabilities

aij , i, j = 1 . . . n of moving from state Si to state Sj ,
i.e. aij = P (Si|Sj). B is the matrix of conditional

observation probabilities bij of observing symbol (or

category) Oj in state Si, i.e. bij = P (Oj |Si). π is a
vector of initial, unconditional probabilities π i of start-

ing in state Si, i.e. πi = P (Si). All parameters are

probabilities and are subject to constraints of the form
∑n

j=1
aij = 1, and similarly for the observation prob-

abilities (
∑n

j=1
bij = 1) and initial state probabilities

(
∑n

i=1
πi = 1). The parameters together are denoted

λ = (A, B, π). This notation is taken from [33], and
is used throughout this paper.

2.2. Toy model and data

In this section, we consider a two-state HMM with

three observation symbols. The two states are called

S1 and S2 and the observation symbols 1, 2, and 3. The
parameter values are:

A =

(

0.9 0.1
0.3 0.7

)

B =

(

0.7 0.0 0.3
0.0 0.4 0.6

)

π =
(

0.5 0.5
)

From this model, we generated a data set consisting

of a single sequence of 1000 symbols. This data set
is used below to illustrate parameter estimation, esti-

mation with equality constraints, model selection, and

model assessment.
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2.3. Parameter estimation

Throughout this paper, parameter estimates are ob-

tained by maximizing the likelihood using the Baum-

Welch or EM algorithm for HMM parameters [33].

The EM algorithm is an iterative procedure for find-

ing maximum likelihood (ML) parameter estimates of

a given model and a data set. The likelihood of a data

set is denoted P (O|λ). The general expression for the

likelihood is [33, p. 272]:

P (O|λ) =
∑

q∈Q

πq1
bq1

(O1)aq1q2
bq2

(O2)

(1)
. . . aqT−1qT

bqT
(OT )

where O is a sequence of T observations O1 . . . OT ,

bqt
(Ot) is the observation probability bij with i = qt

and j = Ot. The sum runs over all possible sequences

of the hidden states. The EM algorithm finds the pa-

rameter values λ that maximize the likelihood. In our

implementation of the EM algorithm we maximize the

logarithm of the likelihood or the loglikelihood, rather

than the likelihood itself. This is necessary because

for long sequences, computing the likelihood leads to

problems with underflow, i.e., the likelihood becomes

too small to compute as can be seen easily from the

expression for the likelihood above.

The loglikelihood may have many local maxima.

Hence, in order to retrieve the model parameters and

to find the global maximum of the loglikelihood, it

is necessary to fit a model repeatedly with different

starting values for the parameters. On the data set

specified above, we fitted 100 two-state models, using

random starting values for the model parameters λ. All

the models converged to the same solution, up to a

reshuffling of states. Note that in specifying an HMM,

states are assigned arbitrary designations, and hence

the identity of a given state is only determined by the

transition probabilities to other states, the observation

symbol probabilities, and the initial state probabilities.

The loglikelihood of the model equals −883.068. The

parameter estimates of the fitted model is

A =

(

0.888 0.112
0.316 0.684

)

B =

(

0.708 0 0.292
0 0.384 0.616

)

π =
(

1 0
)

Note that the parameter estimates are very close to

their true values, except for the initial state probabilities

which are estimated as one for stateS1 and zero for state

S2. The reason for this is that the sequence of symbols

that was generated actually starts with the symbol 1

which can only be produced from state S1. As a result,

the value for that initial state probability has to be one.

In order to be able to estimate initial state probabilities,

multiple sequences have to be available because these

probabilities can only be estimated on the basis of the

first symbols of a number of sequences.

When fitting HMMs to single sequences it is (almost)

always the case that one of the initial state probabilities

is estimated at a value of one and the others at zero.

For long sequences of observations, the contribution of

this parameter to the loglikelihood is negligible. This

is not the case for non-ergodic models, i.e. models with

absorbing states, but in general, non-ergodic models

can not be estimated on the basis of single sequences.

In Section 4 a non-ergodic model is fitted on multiple

sequences.

2.4. Equality constraints

In some applications it may be desirable to estimate

parameters subject to equality constraints. Some mod-

els of concept identification and paired associate learn-

ing, contain free parameters that theoretically should

be equal. In these applications, the hidden states of

an HMM are interpreted as knowledge states. Theory

may dictate that in some situations, or at specific tri-

als, two knowledge states should lead to identical re-

sponses. As a consequence, the associated observation

probabilities should be estimated at equal values. In

the EM algorithm for HMMs, it is not obvious how

to implement equality constraints within the steps of

the algorithm itself. At each iteration of the algorithm,

the model parameters are re-estimated independently

of each other. Re-estimation is only subject to row sum

constraints that ensure that the rows of the matrices A

and B and the vector of initial state probabilities π sum

to one. These constraints are defined explicitly above

in Section 2.1. As far as we are aware, no solutions

exist for imposing equality constraints in HMMs using

the EM algorithm.

This problem is similar to the situation in latent

class analysis. In latent class analysis, solutions have

been found for some special cases that are of particu-

lar interest for psychologists [29]. In particular, in re-

estimation of response probabilities in latent class anal-

ysis, these probabilities are weighted with the class pro-

portions, i.e., the proportion of subjects that are mem-

ber of that class. Without changing the optimization
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routine, specification of equality constraints in HMMs

may be achieved by setting the parameters of interest

to be equal after each iteration of the EM algorithm,

i.e., after the M-step of the algorithm and before the

next E-step. This is done by calculating a weighted av-

erage of these parameters. Weighting is necessary be-

cause different parameters have different contributions

to the loglikelihood. When weighting is not applied,

the maximization does not result in ML estimates of

the parameters.

The weight factor for parameters that we used is the

long term expected proportion of passages through the

state with which the parameter is associated. The ex-

pected proportion of passage times through each state

of the model is different for each state because the tran-

sition probabilities from each state to itself are differ-

ent. For example, there are more passages through state

S1 in our toy model. In general, the expected propor-

tions are computed by solving p from the following

equation:

pA = p,

where p is a probability vector of length n, the number

of states in the model, and A is the transition matrix

of the model [?, ]]Kem60. The vector p contains the

long term probabilities of the process being in each

state. For a regular and ergodic Markov chain (not

for non-ergodic or cyclic chains), p is found easily by

computing increasing powers of A. The convergence

of the series An is fast. For the transition matrix from

this model:

A =

(

0.888 0.112
0.316 0.684

)

,

A15 =

(

0.73838 0.26162
0.73815 0.26185

)

As can be seen from this example, the probabilities

in A15 are converged up to the third decimals. This

procedure can be repeated until the desired degree of

accuracy is reached.

The justification for using this weighting scheme is

best illustrated with an example. Suppose a model has

three states. Suppose further that 95% of the observa-

tions results from only one of these states. This means

that observation parameters belonging to this state con-

tribute more to the loglikelihood than the observation

parameters from other states do. Conversely, changing

one of these latter observation parameters is unlikely to

result in a large change in the loglikelihood since the

contribution of these parameters is small.

For the toy model, we imposed an equality constraint

on two parameters of the observation matrix, b11 and

b23. Weighting was done by the expected proportions

of passage times. In order to check whether in fact the

ML estimates of the parameters were found, instead of

weighting, a search algorithm within the EM algorithm

was used to optimize the loglikelihood of this model

with the equality constraint in place. After each itera-

tion of the EM algorithm, i.e., after the M-step of the al-

gorithm, the maximum likelihood for a range of values

of b11 and b23 is found by the secant method [12]. In

this search, the other parameters of the model, i.e. the

transition parameters and initial state probabilities, re-

main fixed. For each step in this search, the likelihood

has to be evaluated so this may seem a time-consuming

procedure. However, in comparison with an iteration

of the EM algorithm, computing the loglikelihood for

a fixed set of parameter values is relatively fast. In

Table 1 we present the resulting parameter estimates

and the corresponding loglikelihood. For comparison,

we also present the parameter estimates of the model

without the weighting. In Table 1, only the parameter

estimates of the observation matrix are provided, be-

cause the other parameters hardly differ between the

models.

The parameter estimates that result from the weight-

ing method and the search method are identical to the

third decimal, but differ slightly thereafter. The log-

likelihoods were identical to the fifth decimal number.

As can be seen, when weighting is not applied dur-

ing optimization of the model, both the parameter esti-

mates and the loglikelihood are very different from the

other results. An important disadvantage of the search

method in fitting equality constraints is that it can not

be implemented for general models within the EM al-

gorithm, whereas the weighting method can. Unless

parameter estimates need to be more precise than in this

example, i.e., up to and including the third decimal, it is

therefore easier to use the weighting method for fitting

equality constraints. When analyzing relatively small

data sets, as will generally be the case in applications

in psychology, the differences in parameter estimates

are far from significant.

The method of computing weighted averages of pa-

rameters within the EM algorithm is, however, not

without problems. In latent class analysis, it is known

that using this method for particular types of (com-

plex) equality constraints leads to bad estimates [29].

We suspect that similar problems may arise in fitting

HMMs. By computing likelihood profiles (see Sec-

tion 3.4), it is always possible to find out whether the
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Table 1

Parameter estimates for model with equality constraint

method observation matrix parameters log L

weight 0.689712 0 0.310288 −886.732

0 0.310288 0.689712

search 0.689961 0 0.310039 −886.732

0 0.310039 0.689961

no weights 0.639599 0 0.360401 −889.662

0 0.360401 0.639599

difference between the maximum likelihood and the

likelihood of the fitted model is significant. That is,

when the parameter estimates are not the ML estimates,

the likelihood profile has negative values in the neigh-

borhood of the estimated value (cf. Section 3.4).

2.5. Likelihood ratio statistic

In both the comparison of models with an identical
number of states, and in testing the tenability of spec-

ified equality constraints, the likelihood ratio statistic

can be used [14]. It is defined as follows [43]:

Rc = −2 log

[

P (O|λc)

P (O|λ)

]

, (2)

where Rc is likelihood ratio statistic, logP (O|λc) is

the loglikelihood of the constrained model, e.g. a model

with an equality constraint, and logP (O|λ) is the log-

likelihood of the unconstrained model. If the model

specified by λc is correctly specified, i.e., it is the true

model, and it is nested under λ, Rc follows a χ2 dis-

tribution with the df degrees of freedom, where df
equals the difference in freely estimated parameters in

logP (O|λc) and logP (O|λ).
For the above fitted model with an equality con-

straint between b11 and b23, df equals 1 because the

equality involves two parameters, i.e., one of them is
not freely estimated in the constrained model. In this

case Rc = 7.328, p < 0.01. Hence, if α = 0.05, the

equality constraint results in a model that is worse than

the unconstrained model and the constraint should be

dropped. However, this decision should ultimately also

depend on the power, i.e., on the number of datapoints

used to estimate the parameters. The likelihood ratio

statistic is also used in computing likelihood profiles

which are discussed in Section 3.4.

3. Model selection and model assessment

The EM algorithm estimates parameters of a fully

specified model, that is, a model with a fixed number

of states and a fixed number of observation symbols.

We only fitted a two-state model to the data set from

the toy model. In general however, the optimal number

of states for a given data set may not be known before-

hand. In such a case, it is necessary to fit a number of

models with an increasing number of states, to find the

model that best describes the data. Of these, the best

model is selected by some criterion that weights the

model fit, i.e., the loglikelihood, and the economy, the

number of parameters of the model. The latter restric-

tion is needed, because for a sequence of observations

of length T = 100, it is possible to specify a model

with 100 states which will have a likelihood of one.

Such a model does not reduce the data in any useful

sense.

Statistics for model selection are, for example, the

Minimum Description Length principle [13], Akaike’s

Information Criterion [1], the Bayesian Information

Criterion [34], and many variants of these [2]. Because

these statistics are defined for all kinds of models, sim-

ulation studies are necessary to gain insight into their

applicability to specific models. In this section, the

AIC, the BIC, and a variant of the BIC are compared

in selecting fitted HMMs in a simulation study.

3.1. Definitions

When comparing HMMs with a fixed number of

states, the likelihood ratio statistic can be used as a se-

lection criterion. In fact, it is implicitly used when se-

lecting the model with the best likelihood from a num-

ber of fitted models with equal numbers of states. When

comparing HMMs with different numbers of states the

situation is different. In particular, HMMs with dif-

ferent numbers of (hidden) states are not nested. The

reason for this is the following. In order to arrive at,

say a two-state model from a three state model, a num-

ber of parameters have to be set to zero, in particular

one initial state probability and the transitions to and

from that same state. As a consequence the observation

probabilities of that particular state are not identified

anymore. Moreover, when constraining a three-state

model to a two-state model, the functional roles of the
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remaining two states may be very different from the
states in the three-state model (see [7], for the similar
case in latent class analysis). As a consequence of the
models not being nested, the likelihood ratio test for
comparing model fits can not be used, because the dis-
tribution of the likelihood ratio is unknown. Criteria
for comparison of non-nested models include Akaike’s
Information Criterion (AIC) and Bayesian Information
Criterion (BIC) criterion. They are defined as follows:

AIC = −2 logL + 2np
(3)

BIC = −2 logL + np log(T ),

where L is the likelihood of the fitted model, np the
number of parameters of the model and T the num-
ber of observations used in fitting the model (see [2],
for definitions and theoretical foundation of these mea-
sures and [24] for an application in latent class anal-
ysis). Both criteria consist of two terms: one for the
model fit, i.e. the loglikelihood, and a second term for
parsimony. The second term is the penalty term, as it
increases with the number of parameters used in fitting
the model. Usually np is taken to be the number of
freely estimated parameters. In the present example
np = 2 × (2 − 1) + 2 × (3 − 1) + (2 − 1) = 7. The
first contribution is from the transition matrix, the sec-
ond is from the observation matrix and the last is from
the initial state vector (because each row of parameters
sums to one, one of those parameters is not freely es-
timated). In fitting HMMs, we also use two variants
of these measures that we denote the adjusted AIC,
(A-AIC) and adjusted BIC (A-BIC). The adjustment
of these measures is in the number of parameters that
are counted as freely estimated parameters. In fitting
large HMMs, with more than 5 states say, often a large
number of both the transition parameters and observa-
tions parameters is found to be zero. This is certainly
the case when fitting data from finite state automata, as
we do in Section 5. In the A-AIC and A-BIC, instead
of using np as above, we first determine the number
of freely estimated parameters and then subtract the
number of parameters estimated at zero. Next we add
the number of parameters that is estimated at a value
of one. The justification for this is that parameters that
are estimated at zero do not provide information about
the data, i.e. they do not occur in computing the log-
likelihood. The parameters that are estimated at one
are added because otherwise there would be no differ-
ence in the numbers of parameters between, say a four-
and a five-state model, with all zeroes and ones in the
parameter matrices. In particular, in such models the
number of parameters would be zero. A similar proce-
dure for (dis)counting parameters is used in latent class
analysis [39].

1760

1780

1800

1820

1840

1860

1880

1900

1920

1-state 2-state 3-state a 4-state

BIC

AIC

A-BIC

A-AIC

Fig. 1. AIC, BIC, A-AIC and A-BIC selection criteria for models

with a different numbers of hidden states.

3.2. Simulation

A 3-state model was optimized for the above de-

scribed data set from the toy model. Of 100 sets of ran-

dom starting values, only two convergedwithin the pre-

set limit of 500 iterations. In comparison, all two state

models converged within 100 iterations. We should

note here, that this is not generally the case. Especially

for larger models, the EM algorithm is quite sensitive

to different starting values and there can be many local

maxima in the likelihood. Therefore we always gen-

erate many sets of random starting values and choose

the model with the maximum loglikelihood from the

(converged) models. In this case, setting the maximum

to 2000 iterations improved the situation somewhat, 4

of 100 3-state models converged. Similarly, 100 4-state

models were fitted on the same data set (the maximum

number of iterations was again set to 2000) of which 4

converged. In Fig. 1 the resulting values of AIC, BIC,

A-AIC and A-BIC are plotted for models including one

to four states.

According to the AIC, BIC and A-BIC criteria, the

two-state model is the best model. The A-AIC is lower

for the three-state model and even lower for the four-

state model, though the two-state model is the cor-

rect model. Also in examples with larger models, we

noted that the A-AIC is too liberal in selecting the cor-

rect model. With larger models and many datapoints,

we have observed that the A-BIC performs very well.

When fitting large models, the AIC tends to select even
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larger models, whereas the BIC (especially with many

data points) tends to select models that have less states

than the true model has. More importantly, the A-BIC

can also be used for choosing between models with

equal numbers of states. Although in general the like-

lihood suffices in selecting models with equal numbers

of states, in cases where many parameters are estimated

at zero, it could be argued that resulting models are not

nested. For example, when, in fitting two seven-state

models, different parameters are estimated at zero in

the resulting models, these models are no longer prop-

erly nested. As a consequence, the likelihood ratio

statistic can not be used. In such a case the BIC does

not discriminate between models, because when both

models are seven-state models their theoretical num-

bers of freely estimated parameters are equal. Hence,

model selection using the BIC in this case reduces to

choosing the model with the largest loglikelihood.

3.3. Assessing model fit: Prediction errors

The AIC, BIC and A-BIC measures work well for

selecting models. They do not however, provide in-

formation about the absolute fit of the model. That is,

they can not be used to assess whether a fitted model

is an adequate probability model for the data. A mea-

sure that can be used for this purpose is a prediction

error statistic based on occurrences of n-tuples in the

data. For example, the fitted two-state model predicts

a certain (relative) frequency for the occurrence of the

triples 123, 322 etc., which can be compared with the

data. The prediction error measure Pǫ used here is a

Pearson χ2 and is defined as follows:

Pǫ =
∑ (FO − FE)

2

FE

,

where FO are observed frequencies, FE are expected

frequencies based on the model and the sum runs over

all n-tuples of interest. See for example [46] for χ2

measures of goodness-of-fit for contingency tables.

See [8] for a discussion of similar measures in latent

class analysis. For n = 5 the sum runs over 35 = 243
cells since there are three observation symbols in these

data. Theoretically, for a correctly specified true model,

Pǫ follows a χ2-distribution with df = k − np − 1 de-

grees of freedom, where k is the number of frequencies

over which the sum is computed, and np is the number

of free parameters in the model. If any of these assump-

tions is false, Pǫ follows a non-central χ2-distribution.

In Table 2, the values of Pǫ, df and p-values arte given

for the 2-state model fitted on the data set from the toy

Table 2

Prediction errors

tuple Pǫ df p-value p-value (b)

2 3.43 2 0.178 0.26

3 17.64 20 0.612 0.44

4 78.81 74 0.329 0.18

5 208.07 236 0.905 0.62

6 625.72 722 0.996 0.66

model. Pǫ is given for 2-tuples to 6-tuples of observed

sequences.

The third column has the df ’s, which are the theo-

retical values of df . As can be seen from the table, the

p-values in column four of the table, are very high, in-

dicating that the model captures the frequency informa-

tion in the data very well. For two reasons, there may

be an error in the number of degrees of freedom. First,

there are dependencies between the parameters. Ra-

biner [33] shows that for a particular two-state model,

with constrained parameter matrices, there is a struc-

tural dependence between the parameters. For larger

models, with many more parameters, this is certainly

also the case. Second, there are dependencies between

the cells from which Pǫ is formed. In general, the fre-

quencies of different sequences of symbols are depen-

dent on each other. For example, if the frequency of 12
is very low, the frequencies of 122 and 123 tend to be

low as well, when compared with other triplets of sym-

bols. For these reasons we also computed bootstrapped

p values [22]. For an introduction to the principles of

bootstrapping see [10]. We generated 100 data sets and

fitted a two-state model on each data set. The boot-

strapped p-values are now computed as the proportion

of models for which Pǫ of the originally fitted model

is smaller than the bootstrapped models. As can be

seen in the fifth column of Table 2, these p-values, p(b),
are substantially lower than the p-values based on the

theoretical values of df except for the 2-tuples.

3.4. Confidence intervals/standard errors

Computing confidence intervals or standard errors is

an important part of establishing that a model is ad-

equate. Large confidence intervals may be indicative

of identification problems of the model. The standard

way of computing confidence intervals is by calculation

of the Hessian, the matrix of second partial derivatives

of the loglikelihood to the parameters. The diagonal

of the inverted Hessian provides the variances of the

parameters. Visser et al. [41] have shown that in fit-

ting timeseries with HMMs, with the length T of the

series over 100, it becomes computationally unfeasi-
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Table 3

Bootstrapped standard errors

parameter value mean std error t-ratio

a11 0.8882 0.8884 0.0172 51.65

a21 0.3155 0.3237 0.0358 8.81

b11 0.7085 0.7071 0.0278 25.50

b22 0.3841 0.3876 0.0453 8.48

ble to compute the Hessian. Therefore, they compare

three other methods of computing confidence intervals

for HMM parameters: the bootstrap, likelihood pro-

file and the finite differences approximation to the Hes-

sian. The latter method is very sensitive to round-off

errors, to differences in machine precision, and should

therefore be used with care.

In likelihood profiling [38,26], a parameter is fixed

at a series of values just off its ML estimate and the

other parameters are re-estimated. The plot of the fixed

parameter values against the likelihood ratio of the re-

fitted models is the likelihood profile. Using likelihood

ratio testing, the confidence interval can be determined.

That is, the fixed values of the parameter, below and

above its ML estimate value, that result in a likelihood

ratio of 3.84, provide the 95% confidence interval.

In bootstrapping, a data set is generated using the

fitted model and a new model, with the same number

of states as the fitted model, is optimized for these data,

resulting in a new set of parameter values. The standard

deviations of the resulting distributions of the parame-

ters are the approximate standard errors of the param-

eters [9,10]. In Table 3 the bootstrapped standard er-

rors are given along with the mean of the bootstrapped

distribution of the parameter. Note that only standard

errors of four parameters are given. Some parameters

are estimated at zero or one, and hence have no stan-

dard errors. The standard-errors of the other non-zero

parameters are identical to those parameters of which

they are the complement. For example, the standard

error of a12 is identical to the standard error of a11

because they sum to one.

As can be seen from the standard errors of the pa-

rameters, the parameters are all significantly different

from zero, i.e., their confidence intervals do not include

zero. The t-ratio, which is computed as the ratio of

the standard error and the parameter value, is also pro-

vided. It is used to check whether parameters are sig-

nificantly different from zero using the rule of thumb

that it should be larger than two, when α equals 0.05.

For a more precise statistic to test whether parameters

are different from zero, the likelihood ratio statistic R
can be used (cf. Section 2.5), which in this case is de-

fined as R = −2 × (logL0 − logLf), where L0 is

the likelihood of the model that results from setting the

parameter of interest to zero and Lf is the likelihood

of the fitted model. This statistic has a χ2 distribution

with df = 1, if the parameter is zero in the true model.

Note that for computing this likelihood ratio statistic,

the parameter of interest has to be set to zero, and the

model has to be re-estimated. Hence, for large mod-

els this can be a time consuming procedure. For the

parameters in this model, the likelihood ratio statistics

are infinite for the transition matrix parameters and for

parameters b11 and b22. That is, setting any of these

parameters to zero, leads to an inadmissible model with

a likelihood of zero and a loglikelihood of−∞. Hence,

this provides an extra confirmation that these parame-

ters are significantly different from zero. Parameters

b13 and b23, have associated likelihood ratios of 60.99

and 80.22 respectively. Using an α equal to 0.05, it

follows that these parameters are also significantly dif-

ferent from zero.

4. Concept identification

Markov models were used frequently in psychology

in the 1970’s and 1980’s [45]. Applications of Markov

models included paired-associate learning [4] concept-

identification [32], forgetting [20], and conservation

learning [3]. Judging by the large number of spe-

cialized programs for different applications – Markov-

forget for models of forgetting [20], Markov-count for

2-stage learning [19], an SAS module for testing homo-

geneity in Markov response sequences [11] – a compre-

hensive framework for parameter estimation seemed to

be lacking. In many applications moment-estimators

of the parameters are used [45]. For example, parame-

ters are estimated on the basis of the mean number of

errors until a certain criterion is reached or the number

of errors on the first trial, the second trial et cetera. In

fitting simple models, such as the all-or-none model of

paired-associate learning, this method works well. For

more intricate models, however, maximum likelihood

(ML) estimation of parameters is more efficient and

powerful. Brainerd [5] used ML estimation for obtain-

ing parameter estimates of a three-state Markov model

for memory development. Adopting the framework

of hidden Markov models for parameter estimation for

these models has many advantages. Maximum like-

lihood parameter estimates are easily obtained, model

selection statistics are available and likelihood ratio

statistics are available for testing whether constraints

on parameters are in agreement with the data. More-
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over, the HMM framework provides the possibility of

explorative model fitting. We illustrate these advan-

tages using data from a concept identification experi-

ment. In particular, we discuss model selection, fitting

and testing linear constraints between parameters, ex-

ploratory and confirmatory approaches to model fitting

and goodness-of-fit tests.

4.1. Experimental data

In concept identification tasks, subjects are typically

presented with two stimuli, that differ in various di-

mensions, from which they have to choose. After a

choice is made, feedback is given on their correctness

of the choice. From a series of such trials, subjects have

to deduce the features of the stimuli that identify the

concept. The stimuli that were used in this experiment

are shown in Fig. 2.

In the experiment, two of the four stimuli shown

in Fig. 2 were presented on a computer screen. Sub-

jects’ task was to choose one of them and identify the

intended concept. Subjects were required to respond

quickly. They received a financial reward for respond-

ing within the preset time. When subjects responded

outside the time limit, feedback was withheld at that

trial, and one Dutch guilder was subtracted from their

financial rewards. At each trial, subjects were told

whether the chosen stimulus was correct or incorrect.

To succeed, subjects needed to find out which concept

defined the correct stimuli. In this case, the set of con-

cepts to choose from is ‘small’, ‘big’, ‘circle’ or ‘tri-

angle’. Sixty two subjects participated in the experi-

ment, producing 62 sequences of responses scored as

correct or incorrect. Subjects were said to have identi-

fied the concept when the last ten responses were cor-

rect. Once this condition was satisfied, the experiment

was stopped. On average, subjects needed 22.3 tri-

als before they learned the concept. Usually, in such

an easy task, less trials are needed to identify the cor-

rect concept. However, because of the time pressure

applied, subjects did not have much time to consider

their best choice. We compare two candidate models of

concept identification data, the all-or-none model, and

the win-stay/lose-shift model or concept identification

model. To check whether other models may describe

the data better, we also fitted unconstrained models and

included those in the analysis.

4.2. Model fits and constraints

The all-or-none model has two states, whereas the

concept identification model has three states. Both

models have a learned state, in which subjects are when

they have mastered the task [45]. In this state, the prob-

ability of producing a correct answer is one or close to

one. In order to accomodate for the possibility that sub-

jects make an error, say due to a lapse of concentration,

even though they have mastered the task, the probabil-

ity of making an error in the learned state is estimated

instead of being set to zero. The all-or-none model

supposes that learning is an all-or-none process: either

subjects have mastered the concept or they have not.

If they have not, the probability of producing a correct

answer is hypothesized to be 0.5, because there are two

possible alternatives. This is the guessing probability

and the knowledge state that underlies this is called the

guessing state. In the fitted model, the guessing prob-

ability was estimated instead of being fixed at 0.5. In

Fig. 3(a) this model is represented graphically. Once

subjects enter the learned state, they can not leave it,

and hence the transition probability a ll of remaining in

the learned state is one. The probability of learning, α,

of moving from the guessing state to the learned state,

was estimated. In Markov modeling this parameter is

usually called the learning rate.

In the win-stay/lose-shift model or concept identifi-

cation model (‘ci model’ henceforth), an extra assump-

tion is introduced into the model. This assumption is

that learning is an hypothesis testing process and that

learning only occurs after an error has been made [45].

Just as the all-or-none model, the ci model has a learned

state, which represents the knowledge state of subjects

who have mastered the concept. In the learned state,

the probability of making an error is zero or close to

zero. In addition, there are a guessing state and an error

state. Subjects remain in the guessing state as long as

they are producing correct answers, but fail to iden-

tify the concept. They move to the error state, when

they have made an error. When in the error state, sub-

jects choose a new hypothesis about the concept to be

learned, which is informed by their last error. The ci

model is depicted in Fig. 3.

The parameters of the ci model are constrained in the

following way. First, the probability of guessing the

correct hypothesis before the first trial is 0.5 times the

learning rate. Learning only occurs after an error. An

error implies that only half of the possible hypotheses

remain to be chosen from, since the other half is incon-

sistent with the error just made. As a result, when the
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Fig. 3. The all-or-none model and the win-stay/lose-shift model for concept identification

learning rate is α, the initial probability of the learned

state is α/2. This constraint is fitted in the following

way. After each iteration in the EM algorithm, the op-

timal likelihood is found by varying α and the param-

eters that systematically depend on it. The value of α
that maximizes the likelihood is then entered into the

next iteration of the EM algorithm. It is important to

note here that in this search, only α and the parameters

that depend on it vary. The parameters that depend on

α are in the same row of the transition matrix and the

initial state probabilities. The other parameters in the

model remain fixed, which makes the search very fast

to compute. By computing the likelihood profile of α,

it is easily verified that indeed the ML estimate is found

(cf. Section 3.4).

To be able to better evaluate the confirmative model

fits, several unconstrained models were fitted as well.

A number of models with 2, 3, and 4 states were fitted.

Fitting was done using 100 sets of starting values for

each n-state model. In Table 4, parameter estimates

for all the models are presented, that is, the all or none

model (all), the ci model (ci) and exploratory two- and

three-state models, denoted exp 2 and exp 3, respec-

tively. In columns two to four the estimated parame-

ters are listed, A gives the transition matrix, pc is the

probability for a correct answer in each state and π are

the initial state probabilities.

We have left out the four-state explorative model be-

cause it does not fit any better than the exp 3 model.

Table 4 shows that the all-or-none model and the un-

constrained model (exp 2 in the table) are very sim-

ilar. The exp 2 model clearly has a learned state in

which the probability of a correct answer is very high

(0.948) and a guessing state in which this probability
is close to 0.5 (0.569). The exp 2 model has only one
additional free parameter which the all-or-none model
does not have which is a12, i.e., the transition from the
learned state back to the guessing state. In fact, set-
ting this parameter to zero and reestimating the other
parameters results in the all-or-none model. The likeli-
hood ratio statistic for this model constraint is equal to
R = −2×(logLall−logLexp2) = −2×(−669.574+
667.685) = 3.778, df = 1, p = 0.0519. It follows
that the parameter is not significant. As a consequence
the exp 2 model reduces to the all-or-none model.

The exp 3 model,which is the result from exploratory
fitting of three-state models, has clearly identifiable
states. State 1 is the learned state with pc = 0.940.
The other two states can both be interpreted as guessing
states, but with a different learning rate, i.e., a differ-
ent transition probability to the learned state. States
2 and 3 are best interpreted as guessing states for two
types of persons, slow learners and fast learners. State
2 has a learning rate of 0.233, which is comparable
to the ci model, whereas state 3 has a learning rate of
0.034. It might be suspected that this latter parameter
is non-significant. The likelihood ratio statistic assooc-
ciated with setting the parameter to zero is 12.83 which
makes the parameter highly significant. Also, the in-
terpretation for the resulting would be very different
from the one given above: instead of having a group of
slow learners we would have a group of non-learners
represented by the disconnected state. Discussion of
the ci-model is deferred until after presentation of the
goodness-fo-fit measures.

In Table 5, the goodness-of-fit measures of these
models are provided, except for the exp 2 model, since
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Table 4

Models for concept identification: parameter estimates

model A pc π log L

exp 2 S1 0.985 0.015 0.948 0 −667.685

S2 0.114 0.886 0.569 1

all S1 1 0 0.957 0 −669.574
S2 0.088 0.912 0.603 1

exp 3 S1 1 0 0 0.940 0

S2 0.233 0.767 0 0.467 0.753 −660.918

S3 0.034 0 0.966 0.626 0.247

ci S1 1 0 0 0.945 0.102

S2 0 0.5 0.5 1 0.405 −671.305

S3 0.204 0.398 0.398 0 0.493

it reduces to the all-or-none model. In Table 5, first

the loglikelihood logL is given, then the BIC and the

number of free parameters df that is used in comput-

ing the BIC, the (bootstrapped) prediction errors P ǫ

for 5-tuples, i.e., Pǫ is the χ2 statistic for observed

and expected frequencies of sequences of five symbols,

df(Pǫ) is the theoretical number of df ’s for Pǫ, p is the

p-value associated with Pǫ and p(b) is the bootstrapped

p-value associated with Pǫ.

As can be seen from the p-values associated with

Pǫ, all three models are adequate descriptions of the

data. The current data set may not be large enough to

bring out differences between these models. The boot-

strapped p-values are close to one, which may indicate

that the models are overfitted. To alleviate this, the

models can be further constrained. According to the

BIC criterion, the ci model is the best model for these

data. As expected, the states of the model are clearly in-

terpretable. The probability correct in the learned state

is comparable to the other models, pc = 0.945. The

fact that it is not 1 can be explained by imprecision of

the subjects. The learning rate α = 0.204 is somewhat

smaller than expected. Given a total of four possible

hypotheses, after having made an error, the probabil-

ity of choosing the correct hypothesis should be 0.5.

Alternatively, when the position of the stimulus is also

considered as a possible hypothesis, the total number

of hypotheses becomes six and correspondingly α is

hypothesized to be 0.33. The 95%- confidence inter-

val of α is 0.165 < α < 0.267 and 0.33 is not in the

interval. A possible interpretation for this is that the

hypothesis sampling procedure that subjects engage in

is not very efficient. This inefficiency may be due to the

time pressure imposed on subjects while performing

the task.

We tested the constraint that we imposed onα and the

initial state probability for the first state for significance

with the likelihood ratio statistic. Fitting the model

again without the constraint results in a loglikelihood of

-670.569. Using the likelihood ratio statistic R, which

equals 1.277 (df = 1, p = 0.258), we conclude that
the constraint is warranted.

4.3. Conclusion

It can be seen from this example that using the HMM

framework for estimating parameters for well-known
Markov models provides much flexibility in compar-

ing models and in testing the significance of parameter
values and constraints. It is therefore much easier to
test model assumptions that are provided by theoretical

considerations than it is when using standard estimation
procedures such as the method of moments. Moreover,
a single estimation program can be used for all these

applications instead of the specialized programs such
as those of [19,20].

5. Implicit learning

HMMs are equivalent to regular grammars. As such,
they can be used for describing data of several kinds of
experiments, such as inductive learning, systems con-

trol and implicit learning experiments. In this section
we focus on this latter kind of experiment. In both sys-

tems control and implicit learning experiments, often
regular grammars are used to generate stimuli (see [15],
for an introduction to formal languages). The canonical

representations of regular grammars are finite state au-
tomata (FSA). In this section we will consider HMMs

and FSAs as representations of regular grammars.
HMMs can be represented as FSAs, by shifting from

an edge representation to a vertex representation, that is,

instead of having labeled states, FSAs have labeled arcs
(see e.g. [25], for different representations of FSAs).

The example data that we will present are from an
implicit learning experiment in which an FSA is used
to generate stimuli. In Fig. ?? both an HMM and an

FSA representation of the same grammar are depicted.
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Table 5

Models for concept identification: goodness-of-fit measures

model log L BIC df Pǫ(5) df(Pǫ) p p(b)

all −669.574 1375.30 5 25.43 27 0.55 0.97

exp 3 −660.918 1401.36 11 27.81 21 0.15 0.97

ci −671.207 1371.33 4 24.02 28 0.68 0.99

In Fig. ?? the grammar is represented as HMM. The

generation of strings in the HMM is very similar to

the procedure with the FSA: starting from a particular

state, one of the arcs leaving that state is chosen and the

letter in that state becomes a symbol in the sequence.

Again it can be seen that ADBC is a legal sequence

as it is in the FSA, but BAC is not; none of the nodes

with labels B, A and C are connected in that particular

order. This FSA is depicted in Fig. 4. Sequences are

generated using this FSA by moving from state to state,

starting in state # 1/7 until state # 1/7 is reached again.

For example, the sequence ADBD is a grammatical

sequence that passes through states 1, 3, 4, 6 and 7.

5.1. Experimental data

Sequence learning has become the paradigm of

choice in studying implicit learning as witnessed many

recent papers using that paradigm [17,16,36,35,37].

Typically, in sequence learning, subjects are presented

with a sequence of stimuli that, unbeknownst to them,

is manipulated such that the order is not random. Sub-

jects are required to reproduce the stimuli by typing a

key that corresponds to the presented stimulus. Sub-

jects’ performance is measured by reaction times (RT).

The typical result is a larger decrease in RTs for sub-

jects in the experimental condition than for subjects

in the control condition where the sequence of stim-

uli is random. From this result, we can conclude that

subjects use knowledge of the sequential structure to

respond faster than subjects in the random condition.

When asked, subjects are usually not aware of the fact

that the stimulus sequence is manipulated. Hence, the

knowledge that subjects have is said to be implicit.

As an illustration, we use data from an experiment

by [42]. In their experiment, there were four different

stimuli and the sequence of stimuli that we used was

generated by the FSA in Fig. 4. There were a total of

12000 trials that were divided into 24 blocks of 500

trials each. Each block of 500 trials was divided into

runs of trials that subjects had to reproduce. Alternated

with the standard RT trials, subjects were presented

with free generation trials. At those trials, instead of re-

producing the stimulus, subjects were required to guess

where they thought the next stimulus would appear. In

each block of 500 trials, there was an average of 95

such trials, in runs from 3 to 7 trials. These are the data

that we are interested in here. Blocks 6, 12, 18 and 24

were blocks with randomly ordered stimuli to provide

a baseline for the RT analysis. Those blocks are not

analyzed here.

The generation trials are seen as a direct expression

of knowledge from the grammar that subjects gained

during the sequence learning experiment. It is there-

fore interesting to compare this knowledge with the

grammar in such a way that it is possible to quantify

how much subjects have learned. This is accomplished

by fitting HMMs to the data generated by subjects and

comparing these with the HMM representation of the

grammar. In this case, the similarity or dissimilarity

between models is of interest, which is quantified by a

distance measure.

5.2. Distance between models

Comparing fitted HMMs in general can be done by

the model selection criteria that were described in Sec-

tion 2. Model selection criteria can be very helpful

in selecting the best model. However, in the case of

implicit learning data, it would be interesting to com-

pare a fixed model, the grammar, with the fitted model

and model criteria are not very helpful in this case.

For comparing models in this sense, i.e., for determin-

ing the similarity or dissimilarity between models, Ra-

biner [33] provides a distance measure. In the implicit

learning experiment, we expect free generation data to

become more like the grammar as learning continues.

Hence, we expect the distance between fitted models

and the grammar to decrease. The distance measure

for comparing models for this purpose, is computed as

follows [33, p. 281]:

D(λf , λt)
(4)

=
− logP (OT |λf ) + logP (OT |λt)

T
,

where Ot, t = 1 . . . T is a sequence generated by the

true model, that is, the grammar, T is the length of

the sequence, logP (Ot|λt) is loglikelihood of the se-

quenceOt given the parameter values of the true model

λt (i.e. the HMM representation of the grammar) and
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Fig. 4. Finite state automaton and hidden Markov model for the same grammar. In both figures the thickness of the arrows represents the

probability of going from one state to the next. The probabilities of arcs leaving a state sum to one. See the text for further details.

logP (Ot|λf ) is loglikelihood of the sequenceOt given
the parameter values of the fitted model λf . Note that
we use the real values of the loglikelihood here which
are all negative.

This distance measure expresses how well the fit-
ted model can describe data that are generated from
the grammar in comparison with how well the gram-
mar itself does so. The distance measure can be in-
terpreted as the cross-entropy between the models (see
e.g. [44], for an introduction to entropy and information
distance measures). Cross-entropy or entropy in turn
can be interpreted as a measure of coding-efficiency.
When, in comparison with another model, a model has
a lower entropy, this means that the latter model repre-
sents a more efficient coding of the data than the first
model. Hence, positive values of D indicate that the
fitted model λf is less efficient in coding data from
the true model λt than the true model itself is [25,23].
Conversely, negative values of D indicate that the fitted
model represents a more efficient encoding of the data
than does the original model.

Note that this distance is not symmetric. It measures
the distance from the true model to the fitted model
but not vice-versa. In general, it can be made to be
symmetric by computing [33]:

Ds(λ1, λ2) =
D(λ1, λ2) + D(λ2, λ1)

2
This can only be done however, when the values

logP (Oi|λj)for all combinations of i, j = 1, 2 exist.
This is only the case when data produced by the one
model can be fitted by the other and vice versa. If for ex-
ample, the model given by parameter values λ2 allows
a transition AB but λ1 does not, then logP (O2|λ1) be-
comes −∞. Computing a distance with this likelihood
then is not possible.

5.3. Fitting hidden Markov models to generation data

In implicit learning, generation data are often an-
alyzed by counting numbers of n-tuples that subjects

generate. For example, triples of generated sequences

are counted and compared with a control group or con-

trol condition in which subjects were presented with

random sequences of stimuli [36,31]. Alternatively,

n-tuples may be compared with chance levels of gen-

erating them [6]. Using HMMs, analysis of n-tuples

is done simultaneously. That is, instead of analyzing

pairs, triples, quadruples, et cetera, separately, HMMs

provide a way of finding a model that best describes all

these n-tuples simultaneously.

The goal of fitting HMMs on implicit learning data

is to compare them with the grammar that was used in

the experiment. Hence, it is important that the distance

defined in Eq. (5) is computable. In computing this

distance, we use a data set generated by the grammar.

For the distance to be computable, the likelihood of

this data set under the fitted model should exist. This

is achieved by using the HMM representation of the

grammar as a starting point. When the fitted models

contain all the state transitions that also occur in the

grammar, the distance is surely computable. Because

subjects do not only generate grammatical sequences,

this model has to be adapted such that it can accom-

modate arbitrary sequences. Starting with the transi-

tion probabilities from the grammar, this is achieved

by setting all other transitions to random values dif-

ferent from zero. The observation probabilities of the

model remain fixed at the values from the grammar. In

this way, we ensure that the fitted models can generate

grammatical sequences, while at the same time allow

for arbitrary sequences of subjects to be modeled.

The implicit learning data consist of sequences of

trials generated by the subjects. The generation data

from the subjects were pooled for each grammatical

experimental block, resulting in a total of 20 data sets

to be analyzed. Each of these data sets consists of

152 sequences of trials, varying in length from 3 to

7 symbols resulting in data sets of approximately 800
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data points.1 HMMs were fitted to these sets in the

following way. We generated 300 sets of starting values

for each data set, according to the scheme described

above. These models were optimized and the A-BIC

criterion was used to select the best model. In this

case, the A-BIC is an appropriate selection criterion

because all the models have equal numbers of states and

hence equal numbers of freely estimated parameters.

However, fitted models may differ in the numbers of

parameters in the transition matrix that are estimated

at zero. Hence these models are not nested and the

likelihood ratio can not be used to select the best model.

Using either AIC or BIC results in identical models as

using the likelihood ratio because all fitted models have

equal numbers of freely estimated parameters. Hence,

we used the A-BIC criterion for model selection. For

the resulting 20 models we computed their distance to

the grammar.

The distances decrease from 0.619 in the first ex-

perimental block to 0.371 in the last block. A regres-

sion analysis of the distances with the block numbers

as predictor shows that the distances decrease signifi-

cantly due to training (R2 = 0.636, p < 0.0001). Our

goal here was to devise a method of quantifying how

much knowledge is expressed in a generation task of a

sequence learning experiment. The distance measure

provided here does exactly that. For a complete de-

scription of this experiment, more elaborate analyses of

the generation data, analyses of the RT data and a dis-

cussion of the theoretical implications, see [42]. The

distance measure provided in Eq. (5) can also be used

more generally for comparing similarity or dissimilar-

ity between models.

6. Summary and conclusion

Markov and latent or hidden Markov models have

been popular in psychology for a long time. They have

proven to be very flexible models in describing all kinds

of data, mostly in the area of memory and learning [45].

In the 1980s, however, there is a drop in the number

of articles published on the subject. This may be in

1In our experience these data sets are about the size needed to

get reliable parameter estimates, certainly in the case of explorative

model fitting. With smaller data sets there is a real danger of selecting

models that have less states than the true model. In the setting

described here, involving confirmatory model fits, data sets may be

as small as 100 data points, however only at the cost of large standard

errors.

part due to the lack of a comprehensive framework for

estimating parameters of such models. Hidden Markov

models, and the associated maximum likelihood esti-

mation procedure, provide such a framework. How-

ever, latent or hidden variable models present extra

challenges. Notably, model selection and the assess-

ment of goodness-of-fit, are notorious problems in fit-

ting latent variable models.

In Section 3, we proposed and compared several can-

didate measures for model selection. We found both

AIC and BIC to work well in a simulation study. How-

ever, for comparing larger models, we use an adjusted

BIC, because in such models many parameters tend to

be estimated at zero. Hence, using the number of freely

estimated parameters in computing the BIC overesti-

mates the number of parameters that is used in com-

puting the likelihood of a given data set. We also in-

troduced and compared two methods for fitting HMMs

with equality constraints imposed on the observation

parameters which to the best of our knowledge is novel

in the context of fitting HMMs. We showed that the

weighted average method is adequate and can be used

for general equality constraints, whereas the more labo-

rious search method can be used for fitting HMMs with

general linear constraints imposed on the parameters.

In two illustrative examples, we applied model selec-

tion criteria and likelihood ratio testing of constraints.

Moreover, we used the prediction error measure that

we introduced, in the concept identification example.

In both examples we showed new ways of analyzing

data which provide insight into theoretical issues in the

respective areas of investigation.
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