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Abstract

Previous research has compared methods of estimation for multilevel models fit to binary data but

there are reasons to believe that the results will not always generalize to the ordinal case. This

paper thus evaluates (a) whether and when fitting multilevel linear models to ordinal outcome data

is justified and (b) which estimator to employ when instead fitting multilevel cumulative logit

models to ordinal data, Maximum Likelihood (ML) or Penalized Quasi-Likelihood (PQL). ML

and PQL are compared across variations in sample size, magnitude of variance components,

number of outcome categories, and distribution shape. Fitting a multilevel linear model to ordinal

outcomes is shown to be inferior in virtually all circumstances. PQL performance improves

markedly with the number of ordinal categories, regardless of distribution shape. In contrast to

binary data, PQL often performs as well as ML when used with ordinal data. Further, the

performance of PQL is typically superior to ML when the data includes a small to moderate

number of clusters (i.e., ≤ 50 clusters).
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Psychologists, as well as researchers in allied fields of health, education, and social science,

are often in the position of collecting and analyzing nested (i.e., clustered) data. Two

frequently encountered types of nested data are hierarchically clustered observations, such

as individuals nested within groups, and longitudinal data, or repeated measures over time.

Both data structures share a common feature: dependence of observations within units (i.e.,

observations within clusters or repeated measures within persons). Because classical

statistical models like analysis of variance and linear regression assume independence,

alternative statistical models are required to analyze nested data appropriately.

In psychology, a common way to address dependence in nested data is to use a multilevel

model (sometimes referred to as a unit-specific model, or conditional model). A model is

specified to include cluster-level random effects to account for similarities within clusters

and the observations are assumed to be independent conditional on the random effects. A

random intercept captures level differences in the dependent variable across clusters (due to

unobserved cluster-level covariates), whereas a random slope implies that the effect of a

predictor varies over clusters (interacts with unobserved cluster-level covariates).
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Alternative ways to model dependence in nested data exist, including population-average (or

marginal) models which are typically estimated by Generalized Estimating Equations (GEE;

Liang & Zeger, 1986). These models produce estimates of model coefficients for predictors

that are averaged over clusters, while allowing residuals to correlate within clusters.

Population-average models are robust to misspecification of the correlation structure of the

residuals, whereas unit-specific models can be sensitive to misspecification of the random

effects. However, unit-specific models are appealing to many psychologists (and others),

because they allow for inference about processes that operate at the level of the group (in

hierarchical data) or individual (in longitudinal data). Indeed, in a search of the

PsycARTICLES database, we found that unit-specific models were used more than fifteen

times more often than population-average models in psychology applications published over

the last five years.i To maximize relevance for psychologists, we thus focus on the unit-

specific multilevel model in this paper. Excellent introductions to multilevel modeling

include Raudenbush and Bryk (2002), Goldstein (2003), Snijders and Bosker (1999) and

Hox (2010).

Though the use of multilevel models to accommodate nesting has increased steadily in

psychology over the past several decades, many psychologists appear to have restricted their

attention to multilevel linear models. These models assume that observations within clusters

are continuous and normally distributed, conditional on observed covariates. But very often

psychologists measure outcomes on an ordinal scale, involving multiple discrete categories

with potentially uneven spacing between categories. For instance, participants might be

asked whether they “strongly disagree,” “disagree,” “neither disagree nor agree,” “agree,” or

“strongly agree” with a particular statement. Although there is growing recognition that the

application of linear models with such outcomes is inappropriate, it is still common to see

ordinal outcomes treated as continuous so that linear models can be applied (Agresti, Booth,

Hobert & Caffo, 2000; Liu & Agresti, 2005).

Researchers may be reluctant to fit an ordinal rather than linear multilevel model for several

reasons. First, researchers are generally more familiar with linear models and may be less

certain how to specify and interpret the results of models for ordinal outcomes. Second, to

our knowledge, no research has expressly examined the consequences of fitting a linear

multilevel model to ordinal outcomes. Third, it may not always be apparent what estimation

options exist for fitting multilevel models with ordinal outcomes, nor what the implications

of choosing one option versus another might be. Indeed, there is a general lack of

information on the best method of estimation for the ordinal case. Unlike the case of normal

outcomes, the likelihood for ordinal outcomes involves an integral that cannot be resolved

analytically, and several alternative estimation methods have been proposed to overcome

this difficulty. The strengths and weaknesses of these methods under real-world data

conditions are not well understood.

The goals of this paper are thus twofold. First, we seek to establish whether and when fitting

a linear multilevel model to ordinal data may constitute an acceptable data analysis strategy.

Second, we seek to evaluate the relative performance of two estimators for fitting multilevel

models to discrete outcomes, namely Penalized Quasi-Likelihood (PQL) and Maximum

Likelihood (ML) using adaptive quadrature. These two methods of estimation were chosen

for comparison because of their prevalence within applications and their availability within

commonly used software (PQL is a default estimator in many software programs, such as

iA full text search of articles published in the past five years indicated that 211 articles included the term “multilevel model,
“hierarchical linear model,” “mixed model,” or “random coefficient model” (all unit-specific models), whereas 14 articles included the
term “generalized estimation equations” or “GEE.” More general searches would be possible but this brief PsychARTICLES search
gives an indication of the proportion of unit-specific to population-average applications in psychology.
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HLM6, the GLIMMIX procedure in SAS, and is currently the only estimator available in

SPSS, and ML with adaptive quadrature is available in the GLIMMIX and NLMIXED SAS

procedures as well as Mplus, GLLAMM, and Supermix).

We begin by presenting the two alternative model specifications, the multilevel linear model

for continuous outcomes versus a multilevel model expressly formulated for ordinal

outcomes. We then discuss the topic of estimation and provide a brief review of previous

literature on fitting multilevel models to binary and ordinal data, focusing on gaps involving

estimation in the ordinal case. Based on the literature, we develop a series of hypotheses

which we test in a simulation study that compares two model specifications, linear versus

ordinal, under conditions that might commonly occur in psychological research. Futher, we

compare the estimates of ordinal multilevel models fit via PQL versus ML with adaptive

quadrature. The findings from our simulation translate directly into recommendations for

current practice.

Alternative Model Specifications

Multilevel Linear Model

We first review the specification of the multilevel linear model. For exposition, let us

suppose we are interested in modeling the effects of one individual-level (level-1) predictor

Xij and one cluster-level (level-2) predictor Wj, as well as a cross-level interaction,

designated XijWj. To account for the dependence of observations within clusters, we will

include a random intercept term, designated u0j, and a random slope for the effect of Xij,

designated u1j, to allow for the possibility that this predictor varies across clusters. This

model is represented as:

(1)

All notation follows that of Raudenbush and Bryk (2002), with coefficients at level 1

indicated by β, fixed effects indicated by γ, residuals at level 1 indicated by r, and random

effects at level 2 indicated by u. Both the random effects and the residuals are assumed to be

normally distributed, or

(2)

and

(3)

An important characteristic of Equation (1) is that it is additive in the random effects and

residuals. In concert with the assumptions of normality in Equations (2) and (3), this

additive form implies that the conditional distribution of Yij is continuous and normal.
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The use of linear models such as Equation (1) with ordinal outcomes can be questioned on

several grounds (Long, 1997, p. 38-40). First, the linear model can generate impossible

predicted values, below the lowest category number or above the highest category number.

Second, the variability of the residuals becomes compressed as the predicted values move

toward the upper or lower limits of the observed values, resulting in heteroscedasticity.

Heteroscedasticity and non-normality of the residuals cast doubt on the validity of

significance tests. Third, we often view an ordinal scale as providing a coarse representation

for what is really a continuous underlying variable. If we believe that this unobserved

continuous variable is linearly related to our predictors, then our predictors will be

nonlinearly related to the observed ordinal variable. The linear model then provides a first

approximation of uncertain quality to this nonlinear function. The substitution of a linear

model for one that is actually nonlinear is especially problematic for nested data when

lower-level predictors vary both within and between clusters (have intraclass correlations

exceeding zero). In this situation, estimates for random slope variances and cross-level

interactions can be inflated or spurious (Bauer & Cai, 2009).

Multilevel Models for Ordinal Outcomes

In general, there are two ways to motivate models for ordinal outcomes. One motivation that

is popular in psychology and the social sciences, alluded to above, is to conceive of the

ordinal outcome as a coarsely categorized measured version of an underlying continuous

latent variable. For instance, although attitudes may be measured via ordered categories

“strongly disagree” to “strongly agree,” we can imagine that a continuous latent variable

underlies these responses. If the continuous variable had been measured directly, then the

multilevel linear model in Equation (1) would be appropriate. Thus, for the continuous

underlying variable, denoted , we can stipulate the model

(4)

To link the underlying  with the observed ordinal response Yij we must also posit a

threshold model. For Yij scored in categories c=1, 2…, C, we can write the threshold model

as:

(5)

where ν(c) is a threshold parameter and the thresholds are strictly increasing (i.e., ν(1) <

ν(2)… < ν(C–1)). In words, Equation (5) indicates that when the underlying variable 

increases past a given threshold we see a discrete jump in the observed ordinal response Yij

(e.g., when  crosses the threshold ν(1), Yij changes from a 1 to a 2).

Finally, to translate Equations (4) and (5) into a probability model for Yij we must specify

the distributions of the random effects and residuals. The random effects at Level 2 are
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conventionally assumed to be normal, just as in Equation (2). Different assumptions can be

made for the Level 1 residuals. Assuming rij ∼ N (0,1) leads to the multilevel probit model,

whereas assuming rij ∼ logistic(0,π2/3) leads to the multilevel cumulative logit model. In

both cases, the variance is fixed (at 1 for the probit specification and at π2/3 for the logit

specification) since the scale of the underlying latent variable is unobserved. Of the two

specifications, we focus on the multilevel cumulative logit model because it is

computationally simpler and because the estimates for the fixed effects have appealing

interpretations (i.e., the exponentiated coefficients are interpretable as odds ratios).

Alternatively, the very same models can be motivated from the framework of the

generalized linear model (McCullagh & Nelder,1989), a conceptualization favored within

biostatistics. Within this framework, we start by specifying the conditional distribution of

our outcome. In this case, the conditional distribution of the ordinal outcome Yij is

multinomial with parameters describing the probabilities of the categorical responses. By

modeling these probabilities directly, we bypass the need to invoke a continuous latent

variable underlying the ordinal responses.

To further explicate this approach we can define cumulative coding variables to capture the

ordered-categorical nature of the observed responses. C – 1 coding variables are defined

such that  (the cumulative coding variable for category C is omitted as it

would always be scored 1). The expected value of each cumulative coding variable is then

the cumulative probability that a response will be scored in category c or below, denoted as

.

The cumulative probabilities are predicted via the linear predictor, denoted ηij, which is

specified as a weighted linear combination of observed covariates/predictors and random

effects. For our example model, the linear predictor would be specified through the

equations

(6)

where the random effects are assumed to be normally distributed as in Equation (2).

The model for the observed responses is then given as

(7)

where ν(c) is again a threshold parameter that allows for increasing probabilities when

accumulating across categories and g−1(.) is the inverse link function, a function that maps

the continuous range of [ν(c) − ηij] into the bounded zero-to-one range of predicted values

(model-implied cumulative probabilities) for the cumulative coding variable (Hedeker &

Gibbons, 2006; Long, 1997). Any function with asymptotes of zero and one could be

considered as a candidate for g−1(.) but common choices are the Cumulative Density

Function (CDF) for the normal distribution, which produces the multilevel probit model, and

the inverse logistic function,
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(8)

which produces the multilevel cumulative logit model.

Both motivations lead to equivalent models, with the selection of the link function in

Equation (7) playing the same role as the choice of residual distribution in Equation (4). The

two approaches thus differ only at the conceptual level. Regardless of which conception is

preferred, however, a few additional features of the model should be noted. First, the full set

of thresholds and overall model intercept are not jointly identified. One can set the first

threshold to zero and estimate the intercept, or set the intercept to zero and estimate all

thresholds. The former choice seems to be most common, and we will use that specification

in our simulations. Additionally, an assumption of the model, which can be checked

empirically, is that the coefficients in the linear predictor are invariant across categories (an

assumption referred to as proportional odds for the multilevel cumulative logit model). This

assumption can be relaxed, for instance by specifying a partial proportional odds model. For

additional details on this assumption and the partial proportional odds model, see Hedeker

and Gibbons (2006).

Alternative Estimation Methods

To provide a context for comparison of estimation methods, first consider a general

expression for the likelihood function for cluster j:

(9)

where θ is the vector of parameters to be estimated (fixed effects and variance components),

Yj is the vector of all observations on Yij within cluster j, and ujis the vector of random

effects. The density function for the conditional distribution of Yj is denoted f (·) and the

density function for the random effects is denoted h(·), both of which implicitly depend on

the parameters of the model. Integrating the likelihood over the distribution of the random

effects returns the marginal likelihood for Yj, that is, the likelihood of Yj averaging over all

possible values of the random effects. This averaging is necessary because the random

effects are unobserved. The overall sample likelihood is the product of the cluster-wise

likelihoods, and we seek to maximize this likelihood to obtain the parameter estimates that

are most consistent with our data (i.e., parameter estimates that maximize the likelihood of

observing the data we in fact observed).

In the linear multilevel model, both f (·) and h(·) are assumed to be normal and in this case

the integral within the likelihood resolves analytically; the marginal likelihood for Yj is the

multivariate normal density function (Demidenko, 2004, pp. 48-61). No such simplification

arises when f(·) is multinomial and h(·) is normal, as is the case for ordinal multilevel

models. Obtaining the marginal probability of Yj would, in theory, require integrating over

the distribution of the random effects at each iteration of the likelihood-maximization

procedure, but this task is analytically intractable. One approach to circumvent this problem

is to implement a quasi-likelihood estimator (linearizing the integrand at each iteration) and

another is to evaluate the integral via a numerical approximation.
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The idea behind quasi-likelihood estimators (PQL and MQL) is to take the nonlinear model

from Equation (7) and apply a linear approximation at each iteration. This linear model is

then fit via normal-theory ML using observation weights to counteract heteroscedasticity

and non-normality of the residuals. This is an iterative process with the linear approximation

improving at each step. More specifically, the linear approximation typically employed is a

first-order Taylor series expansion of the nonlinear function g−1(ν(c) – ηij) . Algebraic

manipulation of the linearized model is then used to create a “working variate” Zij which is

an additive combination of the linear predictor ν(c) – ηij and a residual eij (see online

appendix for more details). The working variate is constructed somewhat differently in

MQL and PQL; it is constructed exclusively using fixed effects in the former but using both

fixed effects and empirical Bayes estimates of the random effects in the latter (see Goldstein,

2003, pp. 112-114; Raudenbush & Bryk, 2002, pp. 456-459). The residual is the original

level-1 residual term scaled by a weight eij = rij/ wij derived from the linearization procedure

to render the residual distribution approximately normal, i.e., eij ∼ N(0,1/wij). The resultant

model for the “working variate”, Zij = (ν(c) − ηij)+eij, approximately satisfies assumptions of

the multilevel linear model, and can be used to construct an approximate (or quasi-)

likelihood.

An alternative way to address the analytical intractability of the integral in Equation (9) is to

leave the integrand intact but approximate the integral numerically. Included within this

approach is ML using Gauss-Hermite quadrature, adaptive quadrature, Laplace algorithms,

and simulation methods. Likewise, Bayesian estimation using Markov Chain Monte Carlo

with non-informative (or diffuse) priors can be viewed as an approximation to ML that

implements simulation methods to avoid integration. Here we focus specifically on ML with

adaptive quadrature. With this method, the integral is approximated via a weighted sum of

discrete points. The locations of these points of support (quadrature points) and their

respective weights are iteratively updated (or adapted) for each cluster j, which has the effect

of re-centering and re-scaling the points in a unit-specific manner (Rabe-Hesketh, Skrondal

& Pickles, 2002). At each iteration the adapted quadrature points are solved for as functions

of the mean or mode and standard deviation of the posterior distribution for cluster j.

Integral approximation improves as the number of points of support per dimension of

integration increase, at the expense of computational time. Computational time also

increases exponentially with the dimensions of integration, which in Equation (9)

corresponds to the number of random effects. The nature of the discrete distribution

employed differs across approaches (e.g. rectangular vs. trapezoidal vs. Guass-Hermite)

where, for example, rectangular adaptive quadrature considers a discrete distribution of

adjoining rectangles.

Prior Research

Fitting a Multilevel Linear Model by Normal-Theory ML

The practice of fitting linear models to ordinal outcomes using normal-theory methods of

estimation remains common (Agresti, Booth, Hobert & Caffo, 2000; Liu & Agresti, 2005).

To date, however, no research has been conducted to evaluate the performance of multilevel

linear models with ordinal outcomes from which to argue against this practice. A large

number of studies have, however, evaluated the use of linear regression or normal-theory

Structural Equation Modeling (SEM) with ordinal data (see Winship & Mare, 1984, and

Bollen, 1989, pp. 415-448 for review). These studies are relevant here because the

multilevel linear model can be considered a generalization of linear regression and a

submodel of SEM (Bauer, 2003; Curran, 2003; Mehta & Neale, 2005). Overall, this research

indicates that, for ordinal outcomes, the effect estimates obtained from linear models are

often attenuated, but that there are circumstances under which the bias is small enough to be

tolerable. These circumstances are when there are many categories (better resembling an
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interval-scaled outcome) and the category distributions are not excessively non-normal.

Extrapolating from this literature, we expect multilevel linear models to perform most

poorly with binary outcomes or ordinal outcomes with few categories and best with ordinal

outcomes with many categories (approaching a continuum) and roughly normal distributions

(Goldstein, 2003, p. 104).

Fitting a Multilevel Cumulative Logit model by Quasi-Likelihood

Simulation research with PQL and MQL to date has focused almost exclusively on binary

rather than ordinal outcomes. This research has consistently shown that PQL performs better

than MQL (Breslow & Clayton, 1993, Breslow & Lin, 1995; Goldstein & Rasbash, 1996;

Rodriguez & Goldman, 1995, 2001). In either case, however, the quality of the estimates

depends on the adequacy of the Taylor series approximation and the extent to which the

distribution of the working variate residuals is approximately normal (McCulloch, 1997).

When these approximations are poor, the estimates are attenuated, particularly for variance

components. In general, PQL performs best when there are many observations per cluster

(Bellamy et al., 2005; Ten Have & Localio, 1999; Skrondal & Rabe-Hesketh, 2004, pp.

194-197), for it is then that the provisional estimates of the random effects become most

precise, yielding a better working variate. The performance of PQL deteriorates when the

working variate residuals are markedly non-normal, as is usually the case when the outcome

is binary (Breslow & Clayton, 1993; Skrondal & Rabe-Hesketh, 2004, pp. 194-197). The

degree of bias increases with the magnitude of the random effect variances (Breslow & Lin,

1995; McCulloch, 1997; Rodriguez & Goldman, 2001).ii

Though it is well-known that PQL can often produce badly biased estimates when applied to

binary data (Breslow & Lin, 1995; Rodriguez & Goldman, 1995; 2001; Raudenbush, Yang

& Yosef, 2000), it is presently unknown whether this bias will extend to multilevel models

for ordinal outcomes. The assumption seems to be that the poor performance of PQL will

indeed generalize (Agresti, et al., 2000; Liu & Agresti, 2005), leading some to make blanket

recommendations that quasi-likelihood estimators should not be used in practice

(McCulloch, Searle, & Neuhaus, 2008, p. 198). This conclusion may, however, be

premature. For instance, Saei and MacGilchrist (1998) detected only slight bias for a PQL-

like estimator when the outcome variable had four categories and was observed for three

individuals in each of 30 clusters. Beyond the specific instance considered by Saei and

McGilchrist (1998), we believe that the bias incurred by using PQL will diminish

progressively with the number of categories of the ordinal outcome (due to the increase in

information with more ordered categories). To our knowledge, this hypothesis has not

previously appeared in the literature on PQL, nor has the quality of PQL estimates been

compared over increasing numbers of categories.

Fitting the Multilevel Cumulative Logit Model by ML with Adaptive Quadrature

ML estimation for the multilevel cumulative logit model is theoretically preferable to quasi-

likelihood estimation because it produces asymptotically unbiased estimates. Moreover, a

number of simulation studies have shown that ML using quadrature (or other integral

approximation approaches) outperforms quasi-likelihood estimators such as PQL when used

to estimate multilevel logistic models with binary outcomes (Rodriguez & Goldman, 1995;

Raudenbush, Yang & Yosef, 2000). As one would expect given its desirable asymptotic

properties, ML with numerical integration performs best when there is a large number of

clusters.

iiTo improve performance, Goldstein & Rabash (1996) proposed the PQL2 estimator, which uses a second-order Taylor series
expansion to provide a more precise linear approximation. Rodriguez & Goldman (2001) found that PQL2 is less biased than PQL, but
less efficient and somewhat less likely to converge.
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There are, however, still compelling reasons to compare the ML and PQL estimators for the

cumulative logit model. First, although ML is an asymptotically unbiased estimator, it

suffers from small sample bias (Demidenko, 2004, p. 58; Raudenbush & Bryk, 2002, p. 53).

When the number of clusters is small, ML produces negatively biased variance estimates for

the random effects. Additionally, this small-sample bias increases with the number of fixed

effects. For ordinal outcomes, the fixed effects include C – 1 threshold parameters, so a

higher number of categories may actually increase the bias of ML estimates. Second,

Bellamy (2005) showed analytically and empirically that when there is a small number of

large clusters, as often occurs in group-randomized trials, the efficiency of PQL estimates

can equal or exceed the efficiency of ML estimates. Third, as discussed above, PQL may

compare more favorably to ML when the data are ordinal rather than binary, as the

availability of more categories may offset PQL's particularly strong need for large clusters.

Research Hypotheses

From the literature reviewed above, we now summarize the research hypotheses that

motivated our simulation study.

1. A linear modeling approach may perform adequately when the number of

categories for the outcome is large (e.g., 5+) and when the distribution of category

responses is roughly normal in shape, but will prove inadequate if either of these

conditions is lacking.

2. ML via adaptive quadrature will be unbiased and most efficient when there is a

large number of clusters, but these properties may not hold when there are fewer

clusters. In particular, variance estimates may be negatively biased when the

number of clusters is small and the number of fixed effects (including thresholds,

increasing with number of categories) is large.

3. PQL estimates will be attenuated, especially when the variances of the random

effects are large and when the cluster sizes are small. More bias will be observed

for variance components than fixed effects.

4. PQL will perform considerably better for ordinal outcomes as the number of

categories increases. With sufficiently many categories, PQL may have negligible

bias and comparable or better efficiency than ML even when cluster sizes are small.

Of these hypotheses, no prior research has been conducted directly on Hypothesis 1, which

is based on research conducted with related models (linear regression and SEM).

Hypotheses 2 and 3 follow directly from research on binary outcomes. We believe

Hypothesis 4 to be novel, notwithstanding the limited study of Saei and MacGilchrist

(1998), and it is this hypothesis that is most important to our investigation.

Simulation Study

Design and Methods

To test our hypotheses, we simulated ordinal data with 2, 3, 5 or 7 categories, and we varied

the number of clusters (J=25, 50, 100 or 200), the cluster sizes (nj = 5, 10, or 20), the

magnitude of the random effects, and the distribution of category responses. Our population-

generating model was a multilevel cumulative logit model, with parameter values chosen to

match those of Raudenbush, Yang, and Yosef (2000) and Yosef (2001), which were based

on values derived by Rodriguez and Goldman (1995) from a multilevel analysis of health

care in Guatemala. Whereas Rodriguez and Goldman (1995) considered three-level data

with random intercepts, Raudenbush, Yang and Yosef (2000) modified the generating model

to be two levels and included a random slope for the level-1 covariate. We in turn modified
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Raudenbush, Yang and Yosef's (2000) generating model to also include a cross-level

interaction. The structure of the population generating model was of the form specified in

Equations (4) and (5) or, equivalently, Equations (6) and (7).

The fixed effects in the population model were γ00 = 0, γ01 = 1, γ10 = 1, γ11 = 1. Following

Raudenbush, Yang and Yosef (2000) and Yosef (2001), the two predictors were generated to

be independent and normally distributed as Xij ∼ N(.1,1) and Wj ∼ N(−.7,1).iii In one

condition, the variances of the random effects were τ00 = 1.63, τ10 = .20, τ11 = .25, as in

Raudenbush, Yang and Yosef (2000). We also included smaller and larger random effects

by specifying τ00 = .5, τ10 = .03, τ11 = .08 and τ00 =8.15, τ10 = .50, τ11 = 1.25, respectively.

Using the method described by Snijders and Bosker (1999, p. 224) these values imply

residual pseudo-Intraclass Correlations (ICCs) of . 13, .33, and .72, holding Xj at the mean.

For hierarchically clustered data, an ICC of .33 is fairly large, whereas an ICC of .13 is more

typical. For long-term longitudinal data (e.g., annual or biennial), an ICC of .33 might be

considered moderate, whereas the larger ICC of .72 would be observed more often for

closely spaced repeated measures (e.g., experience sampling data). Since typical effect sizes

vary across data structures, we shall simply refer to these conditions in relative terms as

“small”, “medium” and “large.”

The thresholds of the model were varied in number and placement to determine the number

of categories and shape of the category distribution for the outcome. For the binary data,

thresholds were selected to yield both balanced (P(Y = 1) = .50) and unbalanced (P(Y = 1)

= .75) marginal distributions. Note that for binary data, manipulating the shape of the

distribution necessarily also entails manipulating category sparseness. In contrast, for

ordinal data, we considered three different marginal distribution shapes, bell-shaped,

skewed, and polarized, while holding sparseness constant by simply shifting which

categories had high versus low probabilities. For the bell-shaped distributions the middle

categories had the highest probabilities, whereas for the skewed distributions the

probabilities increased from low to high categories, and for the polarized distribution the

highest probabilities were placed on the end-points. The resulting distributions are shown in

Figure 1.iv As stated in Hypothesis 1, the bell-shaped distribution, approximating a normal

distribution, was expected to be favorable for the linear model, although in practice skewed

distributions are common when examining risk behaviors and polarized distributions are

common with attitude data (e.g., attitudes towards abortion). The PQL and ML estimators of

the multilevel cumulative logit model were not expected to be particularly sensitive to this

manipulation.

SAS version 9.1 was used for data generation, some analyses, and the compilation of results.

The IML procedure was used to generate 500 sets of sample data (replications) for each of

the 264 cells of the study. The linear multilevel model was fit to the data with the MIXED

procedure using the normal-theory REML estimator (maximum 500 iterations). The

multilevel cumulative logit models were fit either by PQL using the GLIMMIX procedure

(with Residual Subject-specific Pseudo-Likelihood, RSPL, maximum 200 iterations), or by

ML with numerical integration using adaptive Gauss-Hermite quadrature with 15 quadrature

points in Mplus version 5 (with Expectation-Maximization algorithm, maximum 200

iiiRaudenbush, Yang and Yosef (2000) mistakenly indicated that the variances of their predictors were .07 for Xij and .23 for Wj;
however, Yosef (2001, p. 70) correctly indicated a variance of 1 for both. When data are generated using the lower variances of .07
and .23, both ML by adaptive quadrature and the 6th-order Laplace estimator produce estimates with larger RMSEs than PQL,
opposite from the results reported in Raudenbush, Yang & Yosef (2000). This difference is likely due to the interplay between
predictor scale and effect size (i.e., a random slope variance of .25 for a predictor with variance .07 corresponds approximately to a
slope variance of 3.7 for a predictor with variance 1).
ivInformation on category thresholds and the method used to determine these to produce the target marginal distributions can be
obtained from the first author upon request.
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iterations).v,vi The NLMIXED and GLIMMIX procedures also provide ML estimation by

adaptive quadrature, but computational times were shorter with Mplus. The MIXED

(REML) and GLIMMIX (PQL) procedures implement boundary constraints on variance

estimates to prevent them from going below zero (no such constraint is necessary when

using ML with quadrature).

Complicating comparisons of the three model fitting approaches, results obtained from the

linear and cumulative logit models are not on the same scale. To resolve this problem, linear

model estimates were transformed to match the scale of the logistic model estimates. Fixed

effects and standard errors were multiplied by the factor  (where σ ̂2 is the

estimated Level 1 residual variance from the linear model, and π2/3 is the variance of the

logistic distribution) and variances and covariance parameter estimates were multiplied by

s2. A similar rescaling strategy has been recommended by Chinn (2000) to facilitate meta-

analysis when some studies use logistic versus linear regression (see also Bauer, 2009).

Performance Measures

We examined both the bias and efficiency of the estimates. Bias indicates whether a

parameter tends to be over- or underestimated, and is computed as the difference between

the mean of the estimates (across samples) and the true value, or

(10)

where θ is the parameter of interest, θ ̂r is the estimate of θ for replication r, and E(θ ̂r) is the

mean estimate across replications. A good estimator should have bias values near zero,

indicating that the sample estimates average out to equal the population value. Bias of

5-10% is often considered tolerable (e.g., Kaplan, 1989). Likewise, to evaluate efficiency,

one can examine the variance of the estimates,

(11)

A good estimator will have less variance than other estimators, indicating more precision

and, typically, higher power for inferential tests.

Bias and variance should be considered simultaneously when judging an estimator. For

instance, an unbiased estimator with high variance is not very useful, since the estimate

obtained in any single sample is likely to be quite far from the population value. Another

estimator may be more biased, but have low variance, so that any given estimate is usually

not too far from the population value. An index which combines both bias and variance is

the Mean Squared Error (MSE), which is computed as the average squared difference

between the estimate and the true parameter value across samples

vThe Mplus implementation of adaptive quadrature iteratively updates quadrature points based on the mean (rather than mode) and
variance of the cluster-specific posterior distribution.
viA number of consistency checks were performed to evaluate the adequacy of the ML estimates obtained with these settings. First,
nearly identical estimates were obtained using 15 versus 100 quadrature points, or using trapezoidal versus Gauss-Hermite quadrature.
Second, results did not differ meaningfully between Mplus and either SAS NLMIXED or SAS GLIMMIX using adaptive quadrature
(version 9.2). Finally, the results obtained with adaptive quadrature were also consistent with those obtained via the sixth-order
Laplace ML estimator in HLM 6.0.
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(12)

It can be shown that MSE = B2+ν, thus MSE takes into account both bias and efficiency

(Kendall and Stuart, 1969, Section 17.30). A low MSE is desirable, as it indicates that any

given sample estimate is likely to be close to the population value.

Results

We first consider the estimates of the fixed effects, then the dispersion estimates for the

random effects. To streamline presentation, some results are provided in an online appendix.

In particular, bias in threshold estimates is presented in the online appendix as thresholds are

rarely of substantive interest (and are not estimated with the linear model specification). The

pattern of bias in threshold estimates obtained from PQL and ML was (predictably) the

mirror image of the pattern described below for the other fixed effects.vii

Fixed Effect Estimates—Our first concern was with identifying factors relating to bias in

the estimators. Accordingly, a preliminary ANOVA model was fit for each fixed effect,

treating model fitting approach as a within-subjects factor and all other factors as between-

subjects, and using Helmert contrasts to (1) compare the linear model estimates to the

estimates obtained from the logistic (cumulative logit) model fit, and (2) differentiate

between the two logistic model estimators, PQL and ML. The three fixed effect estimates of

primary interest were the main effect of the lower-level predictor Xij, the main effect of the

upper-level predictor Wj, and the cross-level interaction of XijWj. Binary conditions were

excluded from the ANOVAs (since the binary distribution shapes differed from the ordinal

distribution shapes), but summary plots and tables nevertheless include these conditions.

Given space constraints, we provide only brief summaries of the ANOVAs, focusing on the

contrasts between estimators. Effect sizes were computed using the generalized eta-squared

 statistic (Olejnik and Algina, 2003; Bakeman, 2005).  values computed for mixed

designs are comparable to partial η2 values for fully between-subject designs. Our

interpretation focuses on contrast effects with  values of .01 or higher, shown in Table 1.

The largest effect sizes were obtained for the main effect of the first Helmert contrast,

comparing the estimates obtained from the linear versus cumulative logit model

specifications. As hypothesized, two interaction effects involving the first contrast were

identified for all three fixed effects: the number of categories and the distribution shape.

Table 1 shows that effect sizes were larger for the effects of X and XW than W, but the

pattern of differences in the estimates was similar (see online appendix). As depicted in

Figure 2, averaging over the three fixed effects, the bias of the linear REML estimator was

quite severe with binary data, especially when the distribution was unbalanced. The degree

of bias for this estimator diminished as the number of categories increased, and was least

pronounced with the bell-shaped distribution. The bias of the linear REML estimator

approached tolerable levels (<10%) only with seven categories and a bell-shaped

distribution. In comparison, both estimators of the multilevel cumulative logit model

viiThreshold bias was anticipated to be opposite in sign to the bias of other fixed effects given the sign difference of thresholds and
fixed effects in the function g−1 (ν(c) −ηij) . Bias would be in the same direction had we used an alternative parameterization of the
multilevel cumulative logit model that includes a unique intercept for each cumulative coding variable but no threshold parameters,

e.g.,  with . The intercepts obtained with this alternative

parameterization and the thresholds obtained with the parameterization used in our study differ only in sign, i.e., .
Given this relationship, threshold bias results are consistent with the bias results observed for other fixed effects.
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produced less biased estimates that demonstrated little sensitivity to the shape of the

distribution.

The second Helmert contrast, comparing the PQL and ML estimates of the multilevel

cumulative logit model resulted in the second largest effect sizes. As hypothesized, the top

three factors influencing differences in PQL versus ML estimates of all three fixed effects

were the magnitude of the variance components, number of categories, and cluster size.

Figure 3 presents the average bias of the three fixed effects as a function of these three

factors (results were similar across fixed effects; see online appendix). In general, PQL

produced negatively biased estimates whereas ML produced positively biased estimates. As

expected, PQL performed particularly poorly with binary outcomes, especially when the

variances of the random effects were large and the cluster sizes were small. With five to

seven categories, however, PQL performed reasonably well even when the random effect

variances were moderate. With very large random effects, PQL only performed well when

cluster sizes were also large. In absolute terms, the bias for ML was consistently lower than

PQL. Somewhat unexpectedly, ML estimates were more biased with binary outcomes than

with ordinal outcomes.

To gain a fuller understanding of the differences between the PQL and ML estimators of the

multilevel cumulative logit model, we plotted the MSE, sampling variance and bias of the

estimates in Figure 4 as a function of all design factors except distribution shape. In the

figure, the overall height of each vertical line indicates the MSE. The MSE is partitioned

between squared bias and sampling variance by the symbol marker (dot or diamond). The

distance between zero and the marker is the squared bias, whereas the distance between the

marker and the top of the line is the sampling variance. Note that the scale differs between

panels to account for the naturally large effect of number of clusters on the sampling

variance, and the increase in sampling variance associated with larger random effects. There

is also a break in the scale for the upper right panel due to exceptionally high sampling

variance observed for ML with binary outcomes and few, small clusters.

Figure 4 clarifies that, in most conditions, the primary contributor to the MSE was the

sampling variance, which tended to be lower for PQL than ML. An advantage was observed

for ML only when there were many clusters and the random effects were medium or large,

especially when there were also few categories and low cluster sizes. In all other conditions,

PQL displayed comparable or lower MSE, despite generally higher bias, due to lower

sampling variance. Both bias and sampling variance decreased with more categories,

considerably lowering MSE.

Finally, we also considered the quality of inferences afforded by PQL versus ML for the

fixed effects. Bias in the standard error estimates was computed for each condition as the

difference between the average estimated standard error for an effect and that effect's

empirical standard deviation across replications. Figure 5 presents the average SE for the

fixed effects in the same format as Figure 3 (results were again similar across fixed effects;

see online appendix). SE bias was generally minimal for both estimators except for ML with

binary outcomes and small cluster size. Given the low level of SE bias, the quality of

inferences is determined almost exclusively by point estimate bias. Indeed, confidence

interval coverage rates (tabled in the online appendix) show that ML generally maintains the

nominal coverage rate whereas PQL has lower than nominal coverage rates under conditions

when PQL produces biased fixed effects.

Estimates of Dispersion for the Random Effects—An initial examination of the

variance estimates for the random effects revealed very skewed distributions, sometimes

with extreme values. We thus chose to evaluate estimator performance with respect to the
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standard deviations of the random effects (i.e.,  and ), rather than their variances.

Stratifying by the magnitude of the random effects, preliminary ANOVA models were fit to

determine the primary sources of differences in  and  between the three estimators.

The same two Helmert contrasts were used as described in the previous section. Effect sizes

are reported in Table 2.

In all the ANOVA results for the dispersion estimates, larger random effect sizes resulted in

more pronounced estimator differences and more pronounced factor effects on estimator

differences. The largest effect sizes were again associated with overall differences in

estimates produced by the linear model versus cumulative logit models. For ,

interactions with the first contrast were detected for the number of categories of the outcome

and, to a much smaller degree, cluster size. For , no interactions with the first contrast

consistently approached  values of .01.

Results for the second contrast indicated that PQL and ML estimates of dispersion also

diverged with the magnitude of the random effects. The number of categories had an

increasing effect on estimator differences with the magnitude of the random effects, as did

cluster size. The number of clusters also had a small effect on estimator differences.

To clarify these results, Tables 3-6 display the mean and standard deviation of the dispersion

estimates  and  respectively, as a function of characteristics of the outcome variable

and estimator. For both the random intercept (Table 3) and slope (Table 4), the estimates

obtained from the linear model show the most bias, but they improve markedly as the

number of categories increases. Like the linear model estimator, PQL performance improves

markedly as the number of categories increases, whereas the estimates obtained from ML

are generally less biased (but more variable) when there are fewer categories. Indeed, the

ML estimates actually become negatively biased as the number of categories increases, a

trend that is consistent with the known negative bias of ML dispersion estimates as a

function of the number of fixed effects (with more categories requiring the addition of more

thresholds).

Similarly, Tables 5 and 6 present the mean and standard deviation of the dispersion

estimates  and , respectively, as a function of sample size. Both the linear model

and PQL showed decreased levels of negative bias as the cluster sizes increased. For the

linear model, the effect of cluster size was most evident with the random slope. For the

random intercept, ML typically produced negatively biased dispersion estimates, attenuating

as the number of clusters increased. In contrast, the bias of the PQL estimates increased

slightly with the number of clusters. For the random slope, ML performed well when the

population random effect was medium or large, but showed some positive bias when the

population random effect was small, particularly at the smallest sample sizes. As anticipated,

PQL was again negatively biased, and generally benefited from larger cluster sizes. PQL

estimates generally exhibited less sampling variability than ML estimates, with ML

estimates being particularly unstable for the combination of large random effects, few

clusters, and small cluster sizes.

To contextualize these differences between the PQL and ML estimators, Figures 6 and 7

present (squared) bias, variance, and MSE for the  and  estimates in the same

format as Figure 4. The results generally parallel the results presented previously for the

fixed effects. Although the PQL random effect dispersion estimates are more biased, their

sampling variance is also often smaller. PQL thus produces lower MSE values than ML in

many conditions. A consistent and appreciable MSE advantage for ML is observed only
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when there are many clusters (e.g., 100 or 200) and medium to large random effects.

Further, this advantage diminishes as the cluster size and/or number of categories increases.

Discussion

Summary

An initial question we sought to address was, “When can the results of a multilevel linear

model fit to an ordinal outcome be trusted?” Our results suggest the answer, “Rarely.” Only

when the marginal distribution of the category responses was roughly normal and the

number of categories was seven did the negative bias of the linear model decrease to the

acceptable level of approximately 10% for the fixed effects. The dispersion estimates of the

random effects were similarly negatively biased. In almost all cells of the design, the linear

model estimates were inferior to the cumulative logit model estimates (from either PQL or

ML). In contrast, neither PQL nor ML estimators of the multilevel cumulative logit model

demonstrated much sensitivity to the category distribution. In sum, these results argue

against the practice of fitting multilevel linear models to ordinal outcomes.viii

The second major aim of this study was to evaluate the relative performance of two

estimators of the multilevel cumulative logit model, PQL versus ML with adaptive

quadrature. In general, our results suggest that PQL has been somewhat unfairly maligned.

While we did indeed find that PQL estimates of fixed effects, and especially dispersion

parameters, were negatively biased in many conditions, PQL nevertheless often

outperformed ML in terms of MSE. In other words, the degree of excess bias associated

with using PQL was often within tolerable levels and compensated for by lower sampling

variability (similar to what Bellamy et al., 2005, found for binary outcomes). As shown in

other studies, PQL performed best when the random effects were small and the cluster sizes

were large. In addition, a new result of our study is that the performance of PQL greatly

improves with the number of categories for the outcome. The ML estimator also behaved as

expected. Consistent with asymptotic theory, ML was least biased and most efficient for

data with 100 or 200 clusters. With 25 or 50 clusters, however, ML estimates were more

variable and often had higher MSE than PQL estimates.

A final finding worth noting is that all of the estimators generally perform better for ordinal

than binary data. Furthermore, there is a sharp reduction in MSE associated with increasing

the number of categories available for analysis, particularly in moving from two levels to

three or more. These results indicate that ordinal scales are generally preferable to binary

and underscore previous pleas for researchers to abandon the practice of dichotomizing

ordinal scales (Sankey and Weissfeld, 1998; Strömberg, 1996).

Limitations and Directions for Future Research

As with all simulation studies, the conclusions we draw from our results must be limited by

the range of conditions we evaluated. We discuss these limitations here as potentially

fruitful directions for future research. First, we studied only one model for ordinal outcomes,

the cumulative logit model. We did not evaluate model performance with alternative link

functions, such as the probit. Also, as mentioned previously, the cumulative logit model

imposes an assumption of invariant slopes across categories (i.e., proportional odds), which

is not always tenable in practice. A generalized logit or partial proportional odds model

might then be preferable. For the interested reader, Hedeker and Gibbons (2006, p. 191-194,

viiiIndeed, the linear model estimates were generally unacceptable despite the fact that data were generated under something of a best-
case scenario. Because Xij was simulated with an ICC of zero, misspecification of the nonlinear relation between Yijand Xij could not
spuriously inflate estimates for the random slope variance or cross-level interaction (Bauer & Cai, 2009). That is, the linear model
would likely have performed even more poorly had Xij been simulated with an appreciable ICC.
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202-211) provide a useful discussion of the proportional odds assumption, how to check this

assumption empirically, and models that relax this assumption.

Second, we manipulated the shape of the ordinal outcome distributions while holding

category sparseness constant. Although we regard it as a strength of our design that shape

and sparseness were not confounded for ordinal outcomes, these two factors are inextricably

confounded for binary outcomes. Our binary outcome results should be interpreted in light

of this fact. Additionally, because we did not manipulate the sparseness of the ordinal

outcomes, our results do not speak to the possible effects of sparseness on model estimates.

Third, our study was limited to multilevel models with random effects. A worthy topic of

future research to compare the results of models fit by PQL or ML to the results obtained

using GEE. Although unit-specific and population-average model estimates differ in scale

and interpretation, marginalized estimates obtained from PQL or ML are comparable to the

estimates obtained from GEE (Liang & Zeger, 1986).

Fourth, there are different approaches to implementing ML with numerical integration

beyond adaptive quadrature (e.g. Laplace algorithms), different versions of adaptive

quadrature (e.g. quadrature points iteratively updated based on mode versus mean of

posterior), and different modifications of PQL in use (e.g. PQL2; Goldstein & Rabash,

1996). The generalization of these results across these other estimation algorithms cannot be

fully guaranteed.

Recommendations

Notwithstanding the limitations noted above, we believe that our results can be used to

better inform the analysis of ordinal outcomes in nested data. As noted, our results clearly

indicate that use of a linear model with ordinal outcomes should be avoided. In selecting the

multilevel cumulative logit model as more appropriate for ordinal outcomes, the central

question is then which estimator is to be preferred, PQL or ML with adaptive quadrature?

The answer to this question depends not only on the bias and sampling variability of the

estimates, but also on other factors. For instance, one issue that must be considered when

choosing between PQL and ML is whether one wishes to evaluate the relative fit of

competing models. Because PQL uses a quasi-likelihood, rather than a true likelihood, it

does not produce a deviance statistic that can be used for model selection (e.g., by likelihood

ratio test or penalized information criteria). This is a significant limitation of PQL that is not

shared by ML. If comparing between competing models is a key goal of the analysis then

ML may be preferred to PQL on these grounds alone. Another factor that might influence

estimator selection is computational efficiency. PQL is much faster, particularly when the

number of random effects (dimensions of integration) is large. Finally, a third factor related

to estimator selection is model complexity. Some models may only be feasible with one

estimator or the other. For instance, PQL readily admits the incorporation of serial

correlation structures for the level-1 residuals.

Beyond these factors, our simulation results suggest that the preferred choice between PQL

and ML depends on the characteristics of the data. If data are obtained on 100 or more

clusters, cluster sizes are small, dispersion across clusters is anticipated to be moderate to

large, and the outcome variable has only two or three categories, then ML is the best choice.

Under virtually all other conditions, however, PQL is a viable, often superior alternative. In

particular, if data are available on 50 clusters or less, PQL will generally have lower MSE --

even with just two- or three-category outcomes. The bias of the PQL estimates is also

tolerable when either cluster sizes are large or outcomes have five or more categories.
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Table 7 translates our results for PQL and ML into a table of working recommendations for

fitting multilevel cumulative logit models (primarily based on MSE but also considering

bias). These are gross recommendations and we encourage researchers to consider the more

detailed results of our simulation before making a final selection. Situations under which

ML with adaptive quadrature or PQL perform similarly (and thus either could be chosen) are

denoted with the table entry “PQL, ML-AQ.” Situations under which PQL is preferable are

denoted “PQL” and situations where ML-AQ is clearly preferable are denoted “ML-AQ.”

Note that the cell of Table 7 corresponding to few clusters, small cluster size, binary

outcomes, and large random effects is empty because the performance of both estimators

was unacceptable (PQL showed excessive bias, whereas ML showed excessive sampling

variability). For this situation, researchers will need to look outside of the two estimators

studied here (e.g., MCMC might perform better through the implementation of mildly

informative priors that prevent estimates from becoming excessively large).

To see how Table 7 might be used in practice, we will consider two common situations.

First, many samples of hierarchical data consist of a relatively small number of groups but a

fairly large number of individuals in each group. For instance, a study might sample thirty

students from each of thirty schools. In this instance, the variance components are likely to

be on the smaller side, and PQL can be expected to perform as well or better than ML

regardless of the number of categories of the outcome. Second, many experience sampling

studies include a modest number of participants, say 25-50, but many repeated measures per

person. Experience suggests that variance components are often sizeable in such studies. If

our outcome is binary, we might choose ML due to the higher bias of PQL (despite similar

MSE). Alternatively, if our outcome is a 5-level ordinal variable then PQL becomes a more

attractive option: the bias of PQL will then be within tolerable levels and PQL will have

lower MSE than ML. One additional factor that might tip the balance in favor of PQL is that

PQL easily incorporates serial correlation structures for the residuals at level 1, and serial

correlation is often present with experience sampling data.

In conclusion, although further research on the estimation of multilevel models with ordinal

data is warranted, it is our hope that the results of the present study can help analysts to

make better-informed choices when fitting multilevel models to ordinal outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Marginal category distributions used in the simulation study (averaged over predictors and

random effects). Notes. Within 3-, 5-, and 7-category outcome conditions, marginal

frequencies are held constant but permuted across categories to manipulate the distribution

shape (bell-shaped, skewed, or polarized) without changing sparseness. Within 2-category

outcome conditions, it is impossible to hold marginal frequencies constant while

manipulating shape (balanced or unbalanced).
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Figure 2.

Average bias for the three fixed effect estimates (excluding thresholds) across estimator,

number of outcome categories, and distribution shape. Notes. The normal-theory REML

(Restricted Maximum Likelihood) estimator was used when fitting the linear multilevel

model. The estimators of PQL (Penalized Quasi-Likelihood) or ML (with adaptive

quadrature) were used when fitting the multilevel cumulative logit (logistic) model. Points

for two-category conditions are not connected to points for 3-7 category conditions because

their distribution shapes do not correspond. Results show that bias is large and sensitive to

distribution shape when using the linear model but not when using the cumulative logit

model (either estimator). Results are collapsed over the number of clusters, cluster size, and

the magnitude of the random effects.
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Figure 3.

Average bias for the three fixed effect estimates (excluding thresholds) across logistic

estimators, number of outcome categories and cluster size. Notes. Logistic estimators were

either PQL (Penalized Quasi-Likelihood) or ML (Maximum Likelihood) with adaptive

quadrature. Results show that PQL produces somewhat negatively biased fixed effect

estimates, particularly when random effects have large variances, whereas the estimates

obtained from logistic ML show small, positive bias. In both cases, bias decreases with the

number of categories of the outcome. Results are collapsed over number of clusters and

distribution shape and do not include linear multilevel model conditions.
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Figure 4.

Mean-Squared Error (MSE) for the fixed effects (excluding thresholds) across number of

outcome categories, number of clusters, and cluster size. Notes. MSE is indicated by the

height of the vertical lines, and it is broken into components representing squared bias

(portion of the line below the symbol) and sampling variance (portion of the line above the

symbol). The scale differs across panels and is discontinuous in the upper right panel. MSE

is averaged across the three fixed effects.Results are plotted for multilevel cumulative logit

models; PQL denotes Penalized Quasi-Likelihood and ML denotes Maximum Likelihood

with adaptive quadrature. This plot does include linear multilevel model conditions.
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Figure 5.

Average bias for the standard errors (SE) of the three fixed effect estimates (excluding

thresholds) across number of outcome categories and cluster size. Notes. Results are plotted

for multilevel cumulative logit models; PQL denotes Penalized Quasi-Likelihood and ML

denotes Maximum Likelihood with adaptive quadrature. This plot does include linear

multilevel model conditions.
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Figure 6.

Mean-Squared Error (MSE) for the standard deviation of the random intercept, across

number of outcome categories, number of clusters, and cluster size. Notes. The scale differs

across panels and is discontinuous in the upper right panel. See Figure 4 notes for definition

of quantities in this plot.
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Figure 7.

Mean-Squared Error (MSE) for the standard deviation of the random slope, across number

of outcome categories, number of clusters, and cluster size. Notes. The scale differs across

panels and is discontinuous in the upper right panel. See Figure 4 notes for definition of

quantities in this plot.
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Table 1

Top  effect sizes for contrasts of fixed effect estimates across model specifications/estimators

Fixed Effect Estimates

Design Factor Xij (γ ̂10) Wj (γ̂01) XijWj (γ̂11)

Contrast 1: Linear versus Logistic Model

Main Effect 0.37 0.11 0.44

× Number of Categories 0.02 0.01 0.03

× Distribution Shape 0.02 < 0.01 0.03

Contrast 2: PQL versus MLLogistic Model

Main Effect 0.06 0.03 0.07

× Size of Random Effects 0.02 0.01 0.02

× Number of Categories 0.01 < 0.01 0.01

× Cluster Size 0.01 < 0.01 0.01

Note. “×” indicates an interaction of the designated between-subjects factor of the simulation design with the within-subjects contrast for method of

estimation.
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