
1999. Polynomials are much beloved by mathematicians but
are of limited value for modeling measured data. Natural
processes often display linear trends, and occasionally a con-
stant acceleration process exhibits quadratic variation. How-
ever, higher-order polynomial behavior is rare in nature,
which is more likely to produce exponentials, sinusoids, lo-
gistics, Gaussians, or other special functions. Modeling such
behaviors with high-order polynomials usually gives spuri-
ous wiggles between the data points, and low-order poly-
nomial fits give nonrandom residuals. We saw an example
of this syndrome in Figure 4 of Part I, where we attempted
to model a quasicyclic variation with a fifth-degree polyno-
mial. That example also illustrated that polynomial fits usu-
ally give unrealistic extrapolations of the data.

Fitting an exponential
Consider the problem of fitting an exponential function

y(t) = C0eβt, (1)

with unknown parameters C0 and β, to a set of measured
points {(ti,yi), i = 1, 2, …, m} with additive random errors εi
in the yi. Because y(t) depends nonlinearly on β, making the
fit by linear least squares is impossible. Linearization is pos-
sible by taking natural logarithms,

ln[y(t)] = ln(C0) + βt ≡ L0 + βt, (2)

but a linear fit of this model does not give the same result as
a nonlinear fit of the original.

As an example, we consider the record of fossil-fuel CO2
emissions compiled by Gregg Marland, Thomas Boden, and
Robert Andres.3 You can obtain these data at http://cdiac.

ornl.gov/trends/emis/em_cont.htm. Figure 1 plots the annual
total global emissions, expressed in megatons of carbon, as dis-
crete points. Figure 2 plots the natural logarithms of these to-
tals; the dashed line represents a linear least squares fit of

ln[y(t – t0)] = L0 + β( t – t0), (3)

with t0 = 1856.0 chosen for consistency with our previous
global temperature fits. The parameter estimates were

(4)

The fit confirms the growth’s basically exponential charac-
ter, despite the systematic variations around the straight line.
We will address those variations later. For now, we note that
the back transformed function

, (5)

plotted as a dashed curve in Figure 1, does not track the data
nearly so well as the solid curve, which we obtained by a
nonlinear fit of

, (6)

which gave the parameter estimates

(7)

Although the mathematical models in Equations 3 and 6 are
equivalent, the statistical models

(8)

(9)

are not.
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Nonlinear least squares
When the mathematical model

y(t) = φ(t, α) ≡ φ (t, α1, α2, …, αn) (10)

depends nonlinearly on one or more of the αj, the mini-
mization problem

(11)

does not admit a closed form estimate for α*. In fact, R2(α)
will often have more than one local minimum, only one of
which gives a good fit. Algorithms to estimate α* are itera-
tive, beginning with initial estimates α0 and proceeding by
a series of corrections,

αv+1 = αv + δαv, (12)

that obtain each δαv by solving a linear minimization prob-
lem. The estimates in Equation 4 gave the initial values used
for the nonlinear fit in Figure 1. Convergence to the esti-
mates in Equation 7 required 45 iterations.

To explain the iteration, we assume that v steps have car-
ried the approximation to . Ideally, the next would be
chosen to minimize

(13)

but this is just another way of writing the intractable prob-
lem in Equation 11. We define m-vectors y and φ(α) by

y ≡ (y1, y2, …, ym)T (14)

φ(α) ≡ (φ(t1, α), φ(t2, α), …, φ(tm, α))T, (15)

so that we can write Equation 13 as

(16)

To get something that we can minimize, we will replace
with the multivariate, first-order Taylor series

approximation

(17)

where is the m × n Jacobian matrix with elements

(18)

To compress the notation further, let and
, so the Taylor series approximation becomes

. (19)

Substituting this expression into Equation 16 gives

(20)

for the function to be minimized. It has the same form as
the linear least-squares objective function (Part I, Equation
22), so we can estimate the minimum in the same way:

    L v v v
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Figure 1. Nonlinear exponential and back-transformed linear 
logarithmic fits to annual global fossil fuel emissions, 1751–1998.
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annual global total fossil fuel emissions.
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(21)

which is analogous to Equation 26 in Part I. The corrected es-
timate, , will hopefully be closer to α* than
was . Such an improvement is not guaranteed, so the step
is usually shortened to

(22)

where the step factor λ is adjusted to guarantee that
. The iteration might still converge to a

local minimum that does not give a good fit. The only re-
course then is to start again with a new α 0.

The above procedure is called the Gauss-Newton iteration.
In practice it is usually modified to accelerate convergence.
The commonly used Levenberg-Marquardt variant effec-
tively replaces Equation 21 with

(23)

where D is a suitably chosen diagonal matrix and τ 2 is an ad-
justable damping constant. The calculation actually works
with a QR factorization

, (24)

analogous to Equation 27 in Part I.
At each step we need to compute both the m values

and the m × n partial derivatives .
For the nonlinear fit in Figure 1, if

(25)

the required partial derivatives values are

(26)

(27)

We can use numerical derivatives ∆φ /∆αj if we properly
choose ∆αj, and the iteration will usually converge despite
the loss of accuracy at each step.

Estimating uncertainties
The linear least-squares objective function (Part I, Equa-

tion 22),

LLLS(α) = (y – Φα)T(y – Φα), (28)

defines a quadratic response surface with a unique minimum
sum of squared residuals (SSR—Part I, Equations 3 and 5) at

(29)

so we can also write it as

(30)

The function R2(α) is more complicated than a quadratic
bowl, but we can regard each of the Lv(δα) as a local quadratic
approximation to R2(α), which we have reparameterized by
shifting the origin to . Let be the final converged esti-
mate of α *. We can write the local quadratic approximation
at the minimum as

(31)

which is analogous to Equation 30. Accordingly, we can con-
struct approximations of the statistical diagnostics and tests dis-
cussed in Part II by taking and using 
for (ΦTΦ)–1. This is how we approximated the ±1σ uncertain-
ties in Equation 7. Such approximations are reliable only if
Equation 31 is a good approximation to R2(α) in the neighbor-
hood of α*. So, it is advisable to use analytic derivatives rather
than ∆φ /∆α j approximations in calculating . Also,
±1σ confidence intervals will probably be more reliable than
±3σ intervals.

This and the preceding sections have given only the
briefest introduction to nonlinear regression. Readers who
want more details might like the excellent text by Douglas
Bates and Donald Watts.4

Global temperatures again
Figure 3 gives an updated record of 146 annual global

temperatures for 1856 to 2001. It is obtainable from
www.cru.uea.ac.uk/cru/cru.htm, which is maintained by Phil
Jones at the University of East Anglia. The dotted and
dashed curves are updates to linear least-squares fits done in
Parts I and II. They correspond to the first two models in
the array
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(32)

where t0 = 1856.0. The solid curve corresponds to the third
model, which contains an exponential with fixed-rate con-
stant —the value Equation 7 estimated
for the rate of growth in fossil-fuel emissions. We consider
this model because the buildup of fossil-fuel CO2 in the at-
mosphere is a possible cause of the global warming. Because

is fixed, the third fit is also done by linear least squares. In
the fourth model, the rate constant is an adjustable parame-
ter, so nonlinear least squares is required. The fitted curve
falls roughly halfway between the reduced quadratic and
fixed-rate exponential but is not plotted, to reduce the clut-
ter. The fits are extrapolated through the year 2026.

Table 1 gives the parameter estimates and some statistical
diagnostics for the fits. The only estimate with doubtful sta-
tistical significance is , for the ad-
justable-rate exponential. The correlation matrix,

, (33)

exhibits a high , cross-correlation, which indicates that
the data cannot support all the parameters. Let’s apply the
F-test to compare the SSR for models 3 and 4. Equation 29
in Part II,

, (34)

gives

. (35)

So, u < F0.95(1, 143) = 3.907, which indicates that 
is not significantly better than . The same com-
parison between models 2 and 4 gives u = 5.4876 > F0.95(1,
143), which indicates a significant reduction in SSR, but this
is not strong evidence for exponential warming.

Fitting sinusoids
The Fourier spectra of the residuals for the fits in Table 1

were dominated by a cycle with a period of approximately
63 years (see Figures 2 and 4 in Part II). In fitting a model
of the form
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Figure 3. Two-parameter linear least-squares fits to the annual
global average temperature anomalies, 1856–2001.

Table 1. Parameter estimates and statistics for baseline fits to annual temperature data.

Model 1 Model 2 Model 3 Model 4
Fixed-rate Adjustable-rate 

Straight line Reduced quadratic exponential exponential

–0.463 ± .023 –0.363 ± .015 –0.333 ± .014 –0.385 ± .037

(4.36 ± .28) × 10–3 (3.06 ± .16) × 10–5 (1.385 ± .072) × 10–2 (3.7 ± 1.8) × 10–2

(2.07 ± .33) × 10–2

SSR 2.841397 2.225842 2.195375 2.143582
100R2 63.40% 71.33% 71.72% 72.39%
Cycle [yr] 62.5 61.5 64.5 63.5

α̂3
1yr −[ ]

ˆ /α2 C ° −[ ]

α̂1 C°[ ]
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, (36)

it is usually more convenient to define new parameters

(37)

and fit the equivalent model

. (38)

(If the value of T is known, the second form is linear in the
unknown parameters.) We can convert estimates , , and

to estimates of amplitude and phase by

(39)

We can convert uncertainty estimates , , and
by

(40)

and

(41)

where is the appropriate off-
diagonal element of

(42)

Table 2 gives the estimates and diagnostics for nonlinear
fits of the four models

(43)
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Table 2. Parameter estimates and statistics for (baseline + sinusoid) fits to annual global temperature data.

Model 1 Model 2 Model 3 Model 4
Fixed-rate Adjustable-rate 

Straight line Reduced quadratic exponential exponential

–0.488 ± .021 –0.375 ± .014 –0.349 ± .014 –0.469 ± .053

(4.59 ± .26) × 10–3 (3.18 ± .16) × 10–5 (1.502 ± .077) × 10–2 (8.0 ± 3.5) × 10–2

(1.60 ± .28) × 10–2

63.0 ± 1.9 63.1 ± 1.9 67.4 ± 2.4 64.9 ± 2.1

0.117 ± .014 0.105 ± .012 0.094 ± .014 0.102 ± .013

–4.2 ± 2.4 –6.6 ± 2.3 –4.6 ± 2.9 –5.1 ± 2.4

SSR 1.881892 1.478319 1.630168 1.476133
100R2 75.76% 80.96% 79.00% 80.98%
u 23.964 23.766 16.296 21.101

θ̂ yr[ ]

Â C °[ ]

T̂ yr [ ]

α̂3
1yr 

−[ ]
α̂2 C /° −[ ]

α̂1 C °[ ]
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with and , gotten from , , via Equa-
tion 39. Figure 4 shows plots of the first three fits, with the
plot of the fourth again omitted to reduce clutter. It fell be-
tween the quadratic and the exponential, but closer to the
former. Note the statistical significance of all the amplitude
estimates, and ignore the apparent insignificance of the
phase estimates because θ * = 0 is not prohibited. The last
row gives the u-values for testing the null hypothesis,

, which is rejected in every case because
F0.95(3, 141) = 2.6688 and F0.95(3, 140) = 2.6692.

Comparing models 3 and 4 gives u = 14.609 > F0.95(1, 140) =
3.9087, so significantly reduces the SSR. This indicates that
if the warming is exponential, the rate is significantly smaller
than that of the fossil-fuel emissions. On the other hand, com-
paring models 2 and 4 gives u = 0.2073 < F0.95(1, 140), which
implies that the additional parameter does not significantly
reduce the SSR. This is not solid evidence against exponential
warming. Remember that all these tests are based on the local
quadratic approximation given by Equation 31.

T he previous fits do not constitute a discovery of the
approximately 63-year cycle. In 1963, J.M. Mitchell

Jr. found evidence for “a rhythm somewhere between 60
and 90 years in period,”5 and in 1994, Michael Schlesinger
and Navin Ramankutty reported an oscillation of 65 to 70
years.6 The residuals for the fits also exhibit evidence for
shorter period cycles that other observers have noted. We
will explore those possibilities in the next installment us-
ing a simplified and improved nonlinear least-squares 
algorithm.
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Figure 4. Five-parameter nonlinear least-squares fits to the
annual global average temperature anomalies.
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