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Abstract

Fitting circles and ellipses to given points in the plane is a problem that arises in
many application areas, e.g. computer graphics [1], coordinate metrology [2], petroleum
engineering [11], statistics [7]. In the past, algorithms have been given which fit circles
and ellipses in some least squares sense without minimizing the geometric distance to
the given points [1], [6].

In this paper!’ we present several algorithms which compute the ellipse for which the
sum of the squares of the distances to the given points is minimal. These algorithms
are compared with classical simple and iterative methods.

Circles and ellipses may be represented algebraically 1.e. by an equation of the form
F(x) = 0. If a point is on the curve then its coordinates x are a zero of the function
F. Alternatively, curves may be represented in parametric form, which is well suited
for minimizing the sum of the squares of the distances.

Keywords. least squares, curve fitting, singular value decomposition.

'This report and the MATLAB sources are available via anonymous ftp from ftp.inf.ethz.ch
as doc/tech-reports/1994/217.ps and doc/tech-reports/1994/217 .matlab. tar respectively.
A shortened version of this report is to appear in BIT 34(1994), pp. 556-577.
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1 Preliminaries

Ellipses, for which the sum of the squares of the distances to the given points is minimal
will be referred to as “best fit” or “geometric fit”, and the algorithms will be called
“geometric”.

Determining the parameters of the algebraic equation F(x) = 0 in the least squares
sense will be denoted by “algebraic fit” and the algorithms will be called “algebraic”.

We will use the well known Gauss-Newton method to solve the nonlinear least squares
problem [15]. Let u = (uy,.. .,un)T be a vector of unknowns and consider the nonlinear
system of m equations f(u) = 0.

If m > n, then we want to minimize

f:fi(u)2 = min .
=1

This is a nonlinear least squares problem, which we will solve iteratively by a sequence of
linear least squares problems.
We approximate the solution @t by @ 4+ h. Developing

f(u) = (f1(), fo(w), ..., fu(u))"
around 1 in a Taylor series, we obtain
f(a4+h)~f(a)+J(a)h =0, (1)

where J is the Jacobian. We solve equation (1) as a linear least squares problem for the
correction vector h:

J(u)h =~ —f(q). (2)
An iteration then with the Gauss-Newton method consists of the two steps:
1. Solving equation (2) for h.
2. Update the approximation @ := a + h.

We define the following notation: a given point F; will have the coordinate vector
x; = (i1, $Z'2)T. The mx2 matrix X =[xy, .. .,xm]T will therefore contain the coordinates
of a set of m points. The 2-norm || - |l3 of vectors and matrices will simply be denoted by
-1l

To improve the readability of the paper, we have moved the MATLAB implementation
of the algorithms and some input data to the appendix. The MATLAB sources for the
examples are available via anonymous ftp from ftp.inf.ethz.ch.

2 Circle: Minimizing the algebraic distance
Let us first consider an algebraic representation of the circle in the plane:
F(x) =ax'x+blx+¢=0, (3)

where a # 0 and x,b € IR?%. To fit a circle, we need to compute the coefficients a, b and ¢
from the given data points.



If we insert the coordinates of the points into equation (3), we obtain a linear system
of equations Bu = 0 for the coefficients u = (a, b1, by, C)T7 where

2 2
ity wyy xpp 1
B— . .

2 2
Tl + Tm2 Tm1 Tma 1

To obtain a non-trivial solution, we impose some constraint on u, e.g. u; = 1 (commonly
used) or [lull = 1.

For m > 3, in general, we cannot expect the system to have a solution, unless all the
points happen to be on a circle. Therefore, we solve the overdetermined system Bu = r
where u is chosen to minimize [[r]l. We obtain a standard problem (c.f. [3]):

[|[Bull = min subject to [lull = 1.

This problem is equivalent to finding the right singular vector associated with the smallest
singular value of B. If a # 0, we can transform equation (3) to

b\ 2 b2 \* _lbI> ¢
<$1+%) +<$2+%) =02 4 (4)

from which we obtain the center and the radius, if the right hand side of (4) is positive:

z =(z z)—<—b—1—b—2) r—\/”bnz—f
- \bhsz = 2¢" 2a V 4a? a

The MATLAB procedure algcircle computes the center z = (21, z2) and the radius r of
the circle by minimizing the algebraic distance. This approach has the advantage of being
simple. The disadvantage is that we are uncertain what we are minimizing in a geometrical
sense. For applications in coordinate metrology this kind of fit is often unsatisfactory. In
such applications, one wishes to minimize the sum of the squares of the distances. Figure 1
shows two circles fitted to the set of points

|1 257 9 3
y|7 6 8 7 5 7° (%)

Minimizing the algebraic distance, we obtain the dashed circle with radius » = 3.0370 and
center z = (5.3794, 7.2532).

The algebraic solution is often useful as a starting vector for methods minimizing the
geometric distance.

3 Circle: Minimizing the geometric distance

To minimize the sum of the squares of the distances d? = (llz — x;Il — r)2 we need to solve
a nonlinear least squares problem. Let u = (21, z2,7) ", we want to determine @ so that
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Figure 1: algebraic vs. best fit

Best fit
— — — — Algebraic fit

The Jacobian defined by the partial derivatives 0d;(u)/0u; is given by:

UL — 11 Uy — T12 _1
\/(U1 —211)% + (uz — 212)? \/(U1 —211)% + (uz — 212)?
J(u) = : :
Ul — Tl Uy — Tom 1

\/(ul — Tm1)? 4 (ug — 2m2)? \/(U1 — Zm1)? 4 (ug — 2p2)?

A good starting vector for the Gauss-Newton method may often be obtained by solving
the linear problem as given in the previous paragraph. The MATLAB procedure circle

then iteratively computes the “best” circle.

If we use the set of points (5) and start the iteration with the values obtained from
the linear model (minimizing the algebraic distance), then after 11 Gauss-Newton steps
the norm of the correction vector is 2.05/'—6. We obtain the best fit circle with center

z = (4.7398,2.9835) and radius r = 4.7142 (the solid circle in figure 1).

4 Circle: Geometric fit in parametric form
The parametric form commonly used for the circle is given by

r = zZ1+rcosy

y = 23+ rsing.



The distance d; of a point P; = (2;1,2;2) may be expressed by

@2 = min [(z:1 = 0(00))? + (202 — y(:))?] -

@i

Now since we want to determine zy, z3 and r by minimizing

m

2 .
g d; = min,
=1

we can simultaneously minimize for zy, zo, r and {¢;};=1. n; i.e. find the minimum of the
quadratic function

m

Qo182 pmr 21, 22,7) = 3 [(win = 2(90))? + (w2 = y(0)?] -

—1

o

This is equivalent to solving the nonlinear least squares problem

0
0 fori=1,2,...,m.

Z1 +rcosp; — x5
zo + rsing; — x4

€

Let u= (¢1,...,¢m, 21, 22,7). The Jacobian associated with @ is
rS A
/= ( —-rC B ) ’
where S = diag(sin ¢;) and C' = diag(cos ¢;) are m X m diagonal matrices. A and B are

m X 3 matrices defined by:

a1 = —1 a9 = 0 a3 = —cosy;
bil = 0 bZ’Q = —1 big = —sincpi.

For large m, J is very sparse. We note that the first part (_Zﬁ%) is orthogonal. To compute
the QR decomposition of J we use the orthonormal matrix

S C
Multiplying from the left we get
v, (rl SA-CB
@ = ( O CA+SB |-

So to obtain the QR decomposition of the Jacobian, we only have to compute a QR
decomposition of the m x 3 sub-matrix CA+ SB = UP. Then

I 0\, v, (rl SA-CB
[0 )an=(5 7))

and the solution is obtained by backsubstitution. In general we may obtain good starting
values for z1, z9 and r for the Gauss-Newton iteration, if we first solve the linear problem



by minimizing the algebraic distance. If the center is known, initial approximations for
{¢k}k=1...m can be computed by

o = arg ((vp1 — 21) + 1 (vp2 — 22)) -

The MATLAB procedure parcircle computes the best fit circle using the parametric
form. We use again the points (5) and start the iteration with the values obtained from
the linear model (minimizing the algebraic distance). After 21 Gauss-Newton steps the
norm of the correction is 3.43F—06 and we obtain the same results as before: center
z = (4.7398,2.9835) and radius r = 4.7142 (the solid circle in figure 1).

5 Ellipse: Minimizing the algebraic distance

Given the quadratic equation

xTAx+bix+¢c=0 (8)

with A symmetric and positive definite, we can compute the geometric quantities of the
conic as follows.

We introduce new coordinates X with x = ()x+t, thus rotating and shifting the conic.
Then equation (8) becomes

X1 (QTAQ)x + (2tTA+ bT)Qx +tTAt + bTt + ¢ = 0.
Defining A = QTAQ, and similarly b and ¢, this equation may be written
x'Ax+bTx+é=0.

We may choose () so that A = diag(A1, A2); if the conic is an ellipse or a hyperbola, we
may further choose t so that b = 0. Hence, the equation may be written

Alf%‘FAzf%‘FE: 07 (9)

and this defines an ellipse if Ay > 0, A2 > 0 and ¢ < 0. The center and the axes of the
ellipse in the non-transformed system are given by

z = t

a = y/—¢/M\
b = /—¢/Xy.

Since QTQ = I, the matrices A and A have the same (real) eigenvalues A1, Ag. It
follows that each function of Ay and g is invariant under rotation and shifts. Note

det A = ajjazs —anaix = A
traceA = al + ag9 = Al + AQ s
which serve as a basis for all polynomials symmetric in Ay, Ag. As a possible application

of above observations, let us express the quotient x = a/b for the ellipse’s axes a and b.

With a? = —¢/A; and b* = —¢/\; we get

Ay A A+ A3 (traceA)® —2det A af) + a3, +2ad,

24 (/2222 _ _
R VS W VW det A 4y, — a2y



and therefore

KE = pta/p -1

(trace A)?

e Y

To compute the coefficients u from given points, we insert the coordinates into equa-

where

tion (8) and obtain a linear system of equations Bu = 0, which we may solve again
as constrained least squares problem: [|Bull = min subject to [|lull = 1. The MATLAB
procedure algellipse fits an ellipse by minimizing this algebraic distance.

The disadvantage of the constraint ||ul| = 1 is its non-invariance for Euclidean coordi-
nate transformations

x=Qx+t, whereQTQ=1.
For this reason Bookstein [9] recommended solving the constrained least squares problem
xTAx+b'x+¢ ~ 0 (10)
M+A=afy+2df,+a3 = 1. (11)

While [9] describes a solution based on eigenvalue decomposition, we may solve the same
problem more efficiently and accurately with a singular value decomposition as described
n [12]. In the simple algebraic solution by SVD, we solve the system for the parameter
vector

u = (01172@12702275175270)T (12)

with the constraint |lull = 1, which is not invariant under Euclidean transformations. If
we define vectors

v = (bh bz, C)T

W= (0117\/561127@22)T
and the coefficient matrix
Tyy Ty 1 fy \/595119512 S
g — . . . 7
T T2 1 T \/ixm1$m2 T
then the Bookstein constraint (11) may be written |lw|l = 1, and we have the reordered

system

S( v ) ~ 0.

w

The QR decomposition of S leads to the equivalent system
Ry1 Ria v ~0
0 R22 W ’

which may be solved in following steps:

RQQW ~ 0

lwll = 1.

10



Using the singular value decomposition of Ryy = USVT, finding w = v3, and then
v = —R11_1R12W.

The MATLAB procedure bookstein and the MATLAB procedure bookstein_svd imple-
ment the two algorithms. Note that the problem

(51 52) (V) ~ 0 where ||[w|l=1
w

is equivalent to the generalized total least squares problem finding a matrix Sy such that

rank (51 S5) 5

1(Sy S2) — (Sy So)ll = rank<is?fg2)g5 1(S1 S2) — (S1 S2)ll -

IN

In other words, find a best rank 5 approximation to S that leaves S fixed. A description
of this problem may be found in [16].
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-10 -5 0 5 10
Figure 2: Euclidean-invariant algorithms

Constraint /\% + /\% =1
— — — —  Constraint Ay + A3 =1

To demonstrate the influence of different coordinate systems, we have computed the
ellipse fit for this set of points:

|

1
y |7

25 79 6 3 8
6 8 7 5 7 2 47 (13)

11
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-8 I I I I I
-10 -5 0 5 10

Figure 3: Non-invariant algebraic algorithm

Fitted ellipses
— — — —  Originally fitted ellipse after transformation

which are first shifted by (=6, —6), and then by (—4,4) and rotated by 7 /4. See figures 2-3
for the fitted ellipses.

Since A? 4+ A2 #£ 0 for ellipses, hyperbolas and parabolas, the Bookstein constraint is
appropriate to fit any of these. But all we need is an invariant I # 0 for ellipses—and one
of them is Ay + Ay. Thus we may invariantly fit an ellipse with the constraint

A+ Az =an +axn =1,
which results in the linear least squares problem

2 2 2
201124, Ty — Xy Ty Typ 1 -7

2 2 2
melme T2 = Tm1 Tm1 T2 1 R

See the dashed ellipses in figure 2. The MATLAB procedure alge_simple implements this
algorithm.

6 Ellipse: Geometric fit in parametric form

In order to fit an ellipse in parametric form, we consider the equations

x =z + Q(a)x, X/:(acoscp)7 Q(a):(cosoa —sinog)‘

bsin ¢ sina cosa

12



Minimizing the sum of squares of the distances of the given points to the “best” ellipse is
equivalent to solving the nonlinear least squares problem:

g = (xﬂ) - (Zl) _Q(Oé) (aC-OSSOi) %0, 7,:17777”0
42 29 bsin ;

Thus we have 2m nonlinear equations for m + 5 unknowns: ¢y, ..., 05, a, a, b, z1, z2. To
compute the Jacobian we need the partial derivatives:

g _ —5;;Q(a) (_mn%)

dp; b cos p;

agi 4 COS ©;
Ju bsin ¢,

ol
aaii _ ( soz)
% (a

og;
sin ¢;

0b

Jgi
82’1

;
20

82’2

where we have used the notation

Thus the Jacobian becomes:
-Q(u) QG - - () ()

J — .. . . . E E
) (&)

where we have used as abbreviation s; = sin ¢; and ¢; = cos ;. Note that

Q(a) = ( —sina T ) and therefore QT(Q) = ( (1) -1 )

—QUE) —0EE) —Q) -Q(0)

Sm

cosa —sinao 0

Since Q) is orthogonal, the 2m x 2m block diagonal matrix U = — diag(@,...,Q) is or-
thogonal, too, and
Cher') Gan @ () () ©

Ul = . A

Gy Gy ) () () ()

where s = sin @ and ¢ = cos a. If we permute the equations, we obtain a similar structure
for the Jacobian as in the circle fit:

- —aS A
().

13



That is, S = diag(sin ¢;) and C' = diag(cos ;) are two m x m diagonal matrices and A
and B are m X 5 and are defined by:

A(1,1:5) = [ —bsing; cosg; 0 cosa  sina ]
B(i,1:5) = [ acosg; 0 sing; —sina cosa |.

We cannot give an explicit expression for an orthogonal matrix to triangularize the first
m columns of J in a similar way as we did in fitting a circle. However, we can use Givens
rotations to do this in m steps. The MATLAB procedure rot_cossin—which computes
the angles for the Givens rotation matrices—is used by the MATLAB procedure pare to
compute the best ellipse fit using the parametric form.

Figure 4 shows two ellipses fitted to the points given by

z|1 2579 36 8
14
y|7 6 8 75 7 24 (14)
By minimizing the algebraic distance with [Jull = 1 we obtain the large cigar shaped

dashed ellipse with z = (13.8251,—2.1099), ¢ = 29.6437, b = 1.8806 and residual norm
r = 1.80. If we minimize the sum of squares of the distances then we obtain the solid
ellipse with z = (2.6996,3.8160), @ = 6.5187, b = 3.0319 and r = 1.17. In order to obtain

25 | | | | | | | | | | |
-10 -5 0 5 10 15 20 25 30 35 40

Figure 4: algebraic versus best fit
———  Best fit
— — — — Algebraic fit ([lull = 1)

starting values for the nonlinear least squares problem we used the center, obtained by
fitting the best circle. We cannot use the approximation by = ag = r, since the Jacobian
becomes singular for b = a! Therefore, we used by = r/2 as a starting value. With oy = 0,
we needed 71 iteration steps to compute the “best ellipse” shown in Figure 4.

14



7 Ellipse: Iterative algebraic solutions

In this section, we will present modifications to the algebraic fit of ellipses. The algebraic
equations may be weighted depending on a given estimation—thus leading to a simple
iterative mechanism. Most algorithms try to weight the points such that the algebraic
solution comes closer to the geometric solution. Another idea is to favor non-eccentric
ellipses.

7.1 Curvature weights

The solution of

XTAX—I—bTX—I—C%()

in the least squares sense leads to an equation for each point. If the equation for point
(21, 2;2) is multiplied by w; > 1, the solution will approximate this point more accurately.
In [6], w; is set to 1/R;, where R; is the curvature radius of the ellipse at a point p;
associated with (z;1,2;2). The point p; is determined by intersecting the ray from the
ellipse’s center to (1, 2;2) and the ellipse. The MATLAB procedure lyle fits ellipses
using these curvature weights.

Tests on few data sets show, that this weighting scheme leads to better shaped ellipses
in some cases, especially for eccentric ellipses; but it does not systematically restrict the
solutions to ellipses. Lets look at the curvature weight solution for two problems. Figure 5
shows the result for the data set (14) presented earlier: unluckily, the algorithm finds a
hyperbola for the weighted equations in the first step. On the other side, the algorithm is
successful indeed for the data set in appendix C.1. Figure 6 shows the large solid ellipse
(residual norm 2.20) found by the curvature weights algorithm. The small dotted ellipse
is the solution of the unweighted algebraic solution (6.77); the dashed ellipse is the best
fit solution using Gauss-Newton (1.66), and the dash-dotted ellipse (1.69) is found by the
geometric-weight algorithm described later.

7.2 Geometric distance weighting

We are interested in weighting schemes which result in a least square solution for the
geometric distance. If we define

Qx) = xTAx +blx +¢ ,

then the simple algebraic method minimizes () for the given points in the least squares
sense. () has the following geometric meaning: Let h(x) be the geometric distance from
the center to point x

hx) = V(1 = 2)" + (2 = )’
and determine p; by intersecting the ray from the ellipse’s center to x; and the ellipse.
Then, as pointed out in [9]

Q(xi) = w((h(xi)/h(p:))* 1) (15)
" o i) —hP)
~ QHW , if x>~ p; (16)

for some constant k. This explains why the simple algebraic solution tends to neglect
points far from the center.

15



Figure 5: algebraic fit with curvature weights

Conic after first curvature-weight step
— — — — Unweighted algebraic fit

Thus, we may say that the algebraic solution fits the ellipse with respect to the relative
distances, i.e. a distant point has not the same importance as a near point. If we prefer
to minimize the absolute distances, we may solve a weighted problem with weights

w; = h(p:)

for a given estimated ellipse. The resulting estimated ellipse may then be used to determine
new weights w;, thus iteratively solving weighted least squares problems.

Consequently, we may go a step further and set weights so that the equations are solved
in the least squares sense for the geometric distances. If d(x) is the geometric distance of
x from the currently estimated ellipse, then weights are set

wi = d(x;)/Q(x:).

The MATLAB procedure wate2 implements this geometric weight algorithm. See the dash-
dotted ellipse in figure 6 for an example.

The advantage of this method compared to the non-linear method to compute the
geometric fit is, that no derivatives for the Jacobian or Hessian matrices are needed. The
disadvantage of this method is, that it does not generally minimize the geometric distance.
To show this, let us restate the problem:

1G/(x)x]I? = min  where [Ix]| = 1. (17)
An iterative algorithm determines a sequence (y;), where yj; is the solution of

IG(yx) ylI* = min  where [lyll = 1. (18)
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Figure 6: comparison of different fits

——  Curvature weights solution
— — — —  Best fit

------- Unweighted algebraic fit

— - — - — Geometric weights solution

The sequence (y;) may have a fixed point y = y., without solving (17), since the conditions
for critical points x and y are different for the two equations. To show this, we shall use
the notation dz for an infinitesimal change of z. For all dx with Xx"dx = 0 the following

holds
2xTGTdGx + xTGTGdx) = dIGxI* = 0

for equation (17). Whereas for equation (18) and yTdy = 0 the condition is
20y GTGdy) = dIIGyl)* = 0.

This problem is common to all iterative algebraic solutions of this kind, so no matter how
good the weights approximate the real geometric distances, we may not generally expect
that the sequence of estimated ellipses converges to the optimal solution.

We give a simple example for a fixed point of the iteration scheme (18), which does

not solve (17). For z = (x,y)" consider

20
(4 1)

then zo = (1,0) is a fixed point of (18), but z = (0.7278, 0.6858)" is the solution of (17).
Another severe problem with iterative algebraic methods is the lack of convergence in
the general case—especially if the problem is ill-conditioned. We will shortly examine the

17



solution of (18) for small changes to G. Let

G = usvt

G = G+dG=UZvT
and denote with o4, ..., 0, the singular values in descending order, with v; the associated
right singular vectors—where v,, is the solution of equation (18) for G. Then we may
bound ||dv,|| = |lv, — v, || as follows. First, we define

A = VTVn thus |[All =1
o= 1- P
e = |ldd]|

and note that
o;—e<0;<0;+¢ foralli.

We may conclude

ISAl = NUSAl = [|Gv, |l

and

1GVLll < NGVl + 1dGV Ll < oy + £,
thus
> Aot <ol 420, + <7
=1
Using that a; > 7,1 for i < n—1, and that |[Al]| = 1, we simplify the above expression to
(1= A2)a2_, + \262 < 02 + 20, + 2% (19)
Assuming that o,, # 0 (otherwise the solution is exact) and ¢ < o, we have
0? —2e0; +* < &
Applying this to inequality (19), we get
4eo,
S ———
ol

7
1~ 0n

Note that

2
||Vn - ‘_/n||2 = ||A - (07 ce ey 1)T||

=M =D+ (1 =2)=2(1-))).
Assuming that [[v, — ¥, is small (and thus A, =~ 1, p & 0), then we may write ¢ for &
and g = (14 X,)(1 = Ay) = 2(1 — A,); thus we finally get

deo 2e
||Vn - vn” S 2 ~ 2 S .
Opn—1—0h 0nh_1— 0y

This shows that the convergence behavior of iterative algebraic methods depends on how
well—in a figurative interpretation—the solution vector v,, is separated from its hyper-
plane with respect to the residual norm ||GV|. If ¢,_1 =~ &,, the solution is poorly
determined, and the algorithm may not converge.
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Figure 7: geometric weight fit vs. best fit

Geometric weight solution
— — — —  Best fit

While the analytical results are not encouraging, we obtained solutions close to the
optimum using the geometric-weight algorithm for several examples. Figure 7 shows the
geometric-weight (solid) and the best (dashed) solution for such an example. Note that
the calculation of geometric distances is relatively expensive, so a pragmatic way to limit
the cost is to perform a fixed number of iterations, since convergence is not guaranteed
anyway.

Appendix C.1 lists the points to be approximated, resulting in a residual norm of 2.784,
compared to 2.766 for the best geometric fit. Since the algebraic method minimizes w;();
in the least squares sense, it remains to check that w;@); is proportional to the geometric
distance d; for the estimated conic. We compute

M; = [(w:Q:)/d;l (20)
hi = 1= M;/IIMll (21)

and find—as expected—that [|h|| = 1.1F-5.

7.3 Circle weight algorithm

The main difficulty with above algebraic methods is that the solution may be any conic—
not necessarily an ellipse. To cope with this case, we extend the system by weighted
equations, which favour circles and non-eccentric ellipses:

l
—~

N

N
~—

w (6111 - 022)

w 2@12

Q
o
&
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Note that these equations are Euclidean-invariant only if w is the same in both equations,
and the problem is solved in the least squares sense. What we are really minimizing in
this case is

w2((f111 - 022)2 + 40%2) = wz(/\1 - /\2)2§

hence, the constraints (22) and (23) are equivalent to the equation
w (Al — AQ) ~ 0.

The weight w is fixed by
w=-¢f((A1 = A)P), (24)

where ¢ is a parameter representing the badness of eccentric ellipses, and
f:10,00[ = [0,00[ continuous, strictly increasing.
The larger ¢ is chosen, the larger will w be, and thus the more important are equa-

tions (22-23), which make the solution be more circle-shaped. The parameter w is deter-
mined iteratively (starting with wg = 0), where following conditions hold

0=wy<wy <... <w<... w3 <w. (25)

Thus, the larger the weight w, the less eccentric the ellipse; we prove this in the following.

10 -1 0 00
= ( 01 0 000 ) '
then we find solutions x and z for the equations
B
X
Y F
z
wk

Given weights v < w and

respectively. It follows that

I1BxI1? + X*I1Fx|? < 11Bzll* + X*lI Fzl?
| Bzll* + W2 Fzl> < 1Bx|* + w? || Fx|?
and by adding
VAIFxI? + @I Fzl? < XPlIFzl* + | Fx|?

and since w? — x? > 0
I1FzlI> < IIFx|?,

so that
w=cf(IlFzl*) < ef(IFxI?*) =x.

This completes the proof, since f was chosen strictly increasing. One obvious choice for f
is the identity function, which was used in our test programs.
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8 Comparison of geometric algorithms

The discussion of algorithms minimizing the geometric distance is somewhat different from
the algebraic distance problems. The problems in the latter are primarily stability and
“good-looking” solutions; the former must be viewed by their efficiency, too. Generally, the
simple algebraic solution is orders of magnitude cheaper than the geometric counterparts
(for accurate results about a factor 10-100); thus iterative algebraic methods are a valuable
alternative. But a comparison between algebraic and geometric algorithms would not be
very enlightening—because there is no objective criterion to decide which estimate is
better. However, we may compare different nonlinear least square algorithms to compute
the geometric fit with respect to stability and efficiency.

8.1 Algorithms
Several known nonlinear least square algorithms have been implemented:

1. Gauss-Newton (gauss)

2. Newton (newton)

3. Gauss-Newton with Marquardt modification (marq)
4. Variable projection (varpro)

5. Orthogonal distance regression (odr)

The odr algorithm (see [13], [14]) solves the implicit minimization problem

fxit6B) = 0

> 1617 = min
;

where

fx,08) = Bs(wr— B1)” +284(wy — B1) (w2 — B2) + Bs(w2 — f2)* — 1.

Whereas the gauss, newton, marq and varpro algorithms solve the problem

m

Q(X7 PL P2y - -y Pmy 215 72, T‘) = Z {(le - x(@z))z + ($i2 - y(%)ﬂ = min .

=1

For a = b, the Jacobian matrix is nearly singular, so the gauss and newton algorithms are
modified to apply Marquardt steps in this case. Not surprising, this modification makes
all algorithms behave similar with respect to stability if the initial parameters are accurate
and the problem is well posed.

The MATLAB procedure pare implements algorithms 1-3, the MATLAB procedure
varpro the variable projection algorithm, and the MATLAB procedure odr the orthog-
onal distance regression. The algorithms are described in the appendix.

8.2 Results

To appreciate the results given in table 1, it must be said that the varpro algorithm
is written for any separable functional and cannot take profit from the sparsity of the
Jacobian. The algorithms were tested with example data—each consisting of 8 points—
for following problems (the data sets are listed in appendix C.2)
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1. Special set of points (14)

2. Uniformly distributed data in a square
3. Points on a circle

4. Points on an ellipse with /b = 2

5. Points on hyperbola branch

gauss newton marq varpro odr
Special 146 85 468 1146 o
Random o o o 2427 o
Circle 22 22 22 36 7
Circle+ 86 67 189 717 69
Ellipse 30 37 67 143 41
Ellipse+ 186 o 633 1977 103
Hyperbola 22 22 22 36 10
Hyperbola+ o o o o o

Table 1: Geometric fit with initial parameters of algebraic circle

#flops/1000, minimum is underlined
‘o’ if non-convergence

The tests with points on a conic were done both with and without perturbations. For
table 1, the initial parameters were derived from the algebraically best fitting circle (radius
rq, center z,); initial center zp = z,, axes a9 = rq, bp = r, and ag = 0. Note that these
initial values are somewhat rudimentary, so they serve to check the algorithms’ stability,
too. Table 1 shows the number of flops (in 1000) for the respective algorithm and problem;
the smallest number is underlined. If the algorithm didn’t terminate after 100 steps, it
was assumed non-convergent and a ‘o’ is shown instead. Table 2 contains the results if
the initial parameters were obtained from the Bookstein algorithm.

Table 2 shows that all algorithms converge quickly with the more accurate initial
data for exact conics. For the perturbed ellipse data, it’s primarily the newton algo-
rithm which profits from the starting values close to the solution. Note further that the
newton algorithm does not find the correct solution for the special data, since the alge-
braic estimation—which serves as initial approximation—is completely different from the
geometric solution.

General conclusions from this (admittedly) small test series are

o All algorithms are prohibitively expensive compared to the simple algebraic solution
(factor 10-100).

e If the problem is well posed, and the accuracy of the result should be high, the
newton method applied to the parameterized algorithm is the most efficient.

e The odr algorithm—although a simple general-purpose optimizing scheme—is com-
petitive with algorithms specifically written for the ellipse fitting problem. If one
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gauss newton marq varpro odr
Special 165 896 566 1506 o
Random o o o 2819 o
Circle 32 32 32 102 7
Circle+ 76 63 145 574 66
Ellipse 22 22 22 112 7
Ellipse+ 161 40 435 1870 74
Hyperbola o o o 1747 o
Hyperbola+ o o o 2986 o

Table 2: Geometric estimation with initial data of algebraic ellipse

#flops/1000, minimum is underlined
‘o’ if non-convergence

takes into consideration further, that we didn’t use a highly optimized odr proce-
dure, the method of solution is surprisingly simple and efficient.

e The varpro algorithm seems to be the most expensive. Reasons for its inefficiency
are that most parameters are non-linear and that the algorithm does not make use
of the special matrix structure for this problem.
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A Algorithms

A.1 Gauss-Newton with Marquardt correction

Given parameters X = (¢1, ..., ¢m, , a, b, z1, ZQ)T, we consider the simplified equation of
the Gauss-Newton method

—aS A
Jh_( b B)hNX. (26)

Then, the equation for the same problem with Marquardt correction is

)

If A is chosen diagonal (e.g. A = AI), we can triangularize the first m colums of the
extended system with 2m Givens rotations. Thus, as in the case of the Gauss-Newton
algorithm, the full QR algorithm has to be applied only to the last 5 columns.

The A; parameter for the ith step is determined as follows: A; = vRN_y (v>1,k>-1)
where k is chosen minimal so that ||r;|| < |lr;—1|| holds for the residual r.

A.2 The Newton algorithm

Using the terminology of the previous section, the equations for one Newton step may be
written as

(J'J + H)h=-JTx, (28)

With parameter vector X = (¢1,...,¢m, @, a,b, 21, ZQ)T, we may define H by
Z g T 0 078
! 8$]8$k '
For completeness, we’ll list the second derivatives of the residual functions g;:

2. .
J g _ (SZ](SZkQ(Oé) (a C‘OS 992)

D09y bsin ¢;
g . —asin @;
dp;da —0Q(e) ( b cos p; )
0*g; sin ¢;
dp;0a —0ij Q) ( 0 )
0%g; 0
dp;0b —0ij Q) (COSQOZ')
2.

0°g; — o

89%‘82%
d*g; @ COS ©;
da® @) (bsincpz)




g : 0
dadb —Q(e) (sincpi)

32&'

80&82’k =0
g 0%g D' O 0% O’ —o
da?  Qadb  dadz,  Ib*  ObOz  0z;0z,

The main disadvantage of the Newton method is that we have to solve a linear system
with a non-sparse matrix, which is awfully conditioned for ill-posed problems.
A.3 varpro—The variable projection algorithm

This chapter only gives a survey on the algorithm; for a detailed description see [10].
)T ~

The following problem is considered: Find optimal parameters & = (a1,...,a,) , & =
(41,...,é)" that minimize the nonlinear functional
m e 2
r(a,a) = {yz - Zajqu(oe;ti)} . (29)
=1 7=1
Let
{@}27] :¢j(a;t2)7 1= 17 7m7]:17 y
Then (29) can be written as
r(a, o) = lly — ®(a)all’. (30)

The idea is to minimize first a modified functional which depends only on the nonlinear
parameters «, and then proceed to obtain the linear parameters a. In order to obtain the
separation of variables, the modified functional

ra(@) = lly — ()@ (a)yll’ (31)

is considered, which is called the variable projection functional. Once optimal parameters

& have been obtained by minimizing (31), then the parameters & are obtained as a solution

of ®(&)a =~ y. This approach to finding a critical point requires an important hypothesis:

not only must the involved functions be continuously differentiable, but the matrix ®(«)

must have constant rank for an open set containing the desired solution. If this condition

does not hold, the pseudo-inverse of ® is a discontinuous function in the critical point.
For any given o we have the minimal least squares solution

a(a) = @1 (a)y. (32)

Thus,
min r(a,a) =r(a,a) =y — <I>(04)<I>"'(04)y||2 = ro(a). (33)

The modified functional is then the variable projection functional that we mentioned
earlier. See [10] for a proof that—under the assumption mentioned above—(&, &) is a
minimizer for r if and only if & is a minimizer for ro. To apply the Gauss-Newton algorithm
(possibly with Marquardt correction), it is necessary to differentiate the pseudo-inverse;
this is the primary contribution of [10]. Further, the developed formulas allow to study
the stability of the solution of perturbed linear least square problems.
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A.4 odr—The Orthogonal Distance Regression algorithm

The odr algorithm provides an elegant method to the general solution of the problem

yi+e = f(xi+6,0)
ST+ ¢ = min,

which may further be extended by a general weighting scheme. See [13] for details, and [14]
for an implementation in FORTRAN. The form finally chosen results in the general ODR
problem

fgigl w} [(f(Xi + 61, 8) — yi)* + 5iTD225i} (34)

where w; > 0, and D; = diag(d;;) where d;; > 0.

The odr algorithm solves the problem (34) using Levenberg-Marquardt. The number
of unknowns involved is the number of model parameters plus the number of data points.
By exploiting sparsity, however, the algorithm has a per step computational effort similar
to the Levenberg-Marquardt method for ordinary least squares.

The implicit problem

S IIGIP = min,
may be solved by a penalty function method (see e.g. [15]). The penalty function is

P(B3,8;m) = > rif(xi + 6, 8)2 + 6, D25

with penalty parameter r;. A sequence of unconstrained minimization problems

min P(8,0;1)

for a sequence of values {r;} results in weighted orthogonal distance regression problems
(which are explicit)
€ = f(xi+ 6, 0)
and their solutions approach for rp — oo the solution of
To apply this algorithm to the ellipse fitting problem, we may use the algebraic equation
F(B) = Bs(x = B1)? + 2B4(x — B1)(y — Ba) + Bs(y — B2)* — 1,

which is simple to differentiate and does not require trigonometric functions.

B MATLAB Implementation

Various small MATLAB functions have been written for this paper, documented herein to
provide an easy way to reproduce the results.
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B.1 Utilities

Linear least squares problem with special constraint

function [c, n] = clsq (A, dim);
%CLSQ  Special constrained least squares

%

% [c, n] = clsq (A, dim) solves the constrained
% least squares Problem

% A (¢ n)’ == 0 subject to norm(n,2)=1

% dim=length (n)

[m,p]l = size(A);

if p < dim+1, error (’not enough unknowns’); end;
if m < dim, error (’not enough equations’); end;
n = nin (m, p);

R = triu (qr (4));

[U,S,V] = svd(R(p-dim+l:m,p-dim+l:p));

n = V(:,dim) ;

¢ = -R(1:p-dim,1:p-dim)\R(1:p-dim,p-dim+1:p)*n;

end % clsq

Draw circle

function drawcircle (z, r, pat, OPTIONS);
%DRAWCIRCLE Draw circle

drawcircle (z, r, pat{’-’}, OPTIONS{[1})
% draws a circle into the current figure.

% z, r: center and radius of circle
% pat: pattern to be used (e.g. ’--’ for dashed)

if (nargin < 4), OPTIONS = [2]; end;
if (nargin < 3), pat = ’-’; end;

theta = [0:0.02:2%pi];

u = z(1) + r*cos(theta);

v = z(2) + r*sin(theta);

plot(u, v, pat);

if (£find (OPTIONS==2) == []),
plot(z(1),z(2),’+’);

end

end % drawcircle

Draw ellipse

function drawellipse (z, a, b, alpha, pat, OPTIONS)
%DRAWELLIPSE Draw ellipse

drawellipse (z, a, b, alpha, pat{’-’}, OPTIONS{[1})
% draws ellipse into current figure.

% z, a, b, alpha: parameters of ellipse
% pat: pattern to be used

if (nargin < 6), OPTIONS = [2]; end;
if (nargin < 5), pat = ’-’; end;
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g = sin(alpha); ¢ = cos(alpha);
Q =[lc -s; s cl;
theta = [0:0.02:2%pi];
u = diag(z)*ones(2,length(theta)) + ...
Q*[a*cos (theta); b*sin(theta)];
plot(u(l,:),u(2,:), pat);
if (£find (OPTIONS==2) == []),
plot(z(1),z(2),’+’);
end
if (find (OPTIONS==1) "= [1),
if (a < b),
alpha = alpha + pi/2;
tmp = a; a = b; b = tmp;
end
alpha = alpha - pi*floor(alpha/pi);
at = text(z(1),z(2),’> a’);
at2 = text(z(1)+1,z(2),’ a’);
set (at2,’Visible’, ’off’);
ext = get(at, ’Extent’);
xa2 = ext(1);
set(at, ’FontName’, ’Symbol’);
ext = get(at, ’Extent’);

wa = ext(3);

xa = ext(1);

bt = text(z(1l)+(xa2-xa)/wa,z(2),sprintf(’ = %1.4f’,alpha));
end

end % drawellipse

Compute angles for Givens-Rotation matrix

function [c, s] = rot_cossin (x, y);
%ROT_COSSIN Givens rotation angles

[c, s] = rot_cossin (x, y);
returns cos and sin vectors for Givens-rotation matrix
which rotates y to zero.

% x, y: vectors

% c(i), s(1): [c(i) -s(1); (1) c(D)I*[x(i); y()] == [..; 0]

m = size(x,1);
c = zeros(m,1); s = zeros(m,1);
for i=1:m,
if (abs(y (1)) > abs(x(i))),
cot = -x(i)/y(1); si = 1/sqrt(l+cot™2); co = si*cot;

else
tan = -y(i)/x(i); co = 1/sqrt(l+tan"2); si = coxtan;
end
g(i) = si; c(i) = co;
end

end % rot_cossin

Compute nearest points on ellipse to given points

function phi = ellipse_phi (X, a, b, phi, myeps);
%ELLIPSE_PHI Compute nearest points to ellipse
%
% phi = ellipse_phi (X, a, b, phi{}, myeps{sqrt(myeps)});
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compute angles for nearest points on ellipse to given points X

X:
a,

given points <X(i,1),X(i,2)>
b: ellipse parameters with a-axis in x-coordinate

phi: starting values for iteration
myeps: convergence limit

phi: phi(i) angle of point on ellipse (in parametric form)

nearest to point <X(i,1), X(i,2)>

if (nargin < 5), myeps = sqrt(eps); end;
if (nargin < 4), phi = []; end;

if (phi == [1), phi

m

angle (X(:,1)/a + sqrt(-1)*X(:,2)/b); end;

= size(X,1);

for i = 1:m,

par = [b"2 - a”2; a*X(i,1); b*X(i,2)];

ni = phi(i);
step = 0;
while (1),

¢ = cos(ni);
g = sin(ni);
dni = - (par(1)*sxc + par(2)*s - par(3)*c) / ...
(par(1)*(c"2 - 872) + par(2)*c + par(3)*s);
while ((X(i,1) - a*c)"2 + (X(1,2) - b*s)"2) < ...
((X(i,1) - a*cos(ni+dni)) "2 + (X(i,2) - b*sin(ni+dni))"2),
dni = -0.2%dni;
end
ni = ni + dni;
if (abs(dni) <= sqrt(eps)) break; end;
step = step + 1;
if (step > 40),
disp (’warning: no convergence’);
str = sprintf (’angle, diff-angle = %g, %g’, ni, dni);
disp (str);
break;
end
end
phi(i) = ni;

end % for all points

end % ellipse_phi

Compute distance vectors from given points to ellipse

function [Y] = ellipse_residual (X, z, a, b, alpha);
%ELLIPSE_RESIDUAL Computes the residual vector "X - ellipse"

[Y] = ellipse_residual (X, z, a, b, alpha);
computes the residual vector "X - ellipse" in the
transformed system (rotated by -alpha).

X:
z,

Y:

O

given points <X(i,1), X(i,2)>
a, b, alpha: ellipse parameters

residual vector "X - ellipse" for the transformed system.
<Y(i), Y(i+m)> difference vector for i-th point (m == nofpoints)

gin(alpha);
cos(alpha);
= [c -s; s cl;

[X(:,1) - z(1), X(:,2) - z(2)1%Q;

phi = ellipse_phi (x, a, b);
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Y = x - [a*cos(phi), b*sin(phi)];
= [YCG,1); YCG:,2)];

]
|

end % ellipse_residual

Find ellipse parameters from algebraic equation

function [z, a, b, alpha, err] = ellipse_params (u, show);
%ELLIPSE_PARAMS Get ellipse params from algebraic equation

% [z, a, b, alpha, err] = ellipse_params (u, show{0});
% get the ellipse parameters

% from algebraic equation

% u()x"2 + u(2)xy + u@)y 2 + ...

% u(4)x + u(6)y + u(6) = 0.

%

% u: coefficients of algebraic equation
% show: == 1, then plot figure if error.
%

% z, a, b, alpha: ellipse parameters

% err: != 0, if not an ellipse

if (nargin < 2) show = 0; end;

err = 0;

A = [u(1) u(2)/2; u(2)/2 u(3)1;
bb = [u(4); u(5)]1;

¢ =u(8);

[Q D] = eig(A);

det =D(1,1)*D(2,2);
if (det <= 0),
err = 1;
if (show == 1), drawconic (u); end;
z = [0;0];
a=1; b=1; alpha = 0;
else
bs = Q’*bb;
alpha = atan2(Q(2,1), Q(1,1));
zs = —(2%D)\bs;
Z = Q*zs;
h = -bs’*zs/2-c;
a = sqrt (b/D(1,1));
b = sqrt (b/D(2,2));
end

end % ellipse_params

B.2 Circle estimation

Algebraic circle solution

function [z, r] = algcircle (X);

%ALGCIRCLE Algebraic circle fit

h

% [z, r]l = algcircle (X);

% fits a circle by minimizing the "algebraic distance"
% in the least squares sense a x’x + b’x + ¢ =0

% X : given points <X(i,1, X(i,2)>
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% z, r: center and radius of the found circle

w
1]

[ X(:,1).724X(:,2).72 X(:,1) X(:,2) ones(size(X(:,1)))1;
[U s V]= svd(B);

u=V(:,4); a=ull); b=M©2); uld)]l; c =ul4d);

z = -b/2/a; r = sqrt(norm(z)"2 - c/a);

end % algcircle

Geometric circle solution in explicit form

function [z, r] = circle (X, z, r);
%CIRCLE Geometric circle fit

% [z,r] = circle (X, z, 1)
% fits the best circle by nonlinear least squares

% for true geometric distance.

% X: given points <X(i,1), X(i,2)>
% z, r: starting values for ellipse solution

% z, r: parameters for ellipse found

u [z(1), z(2) , ]’ % Starting values
h = u;
while norm(h)>norm(u)*le-6,
a=u(l)-X(:,1); b=u(2)-X(:,2);
fak = sqrt(a.*a + b.*b);
J = [a./fak b./fak -ones(size(a))];
f = fak -u(3);

h = -J\f;
u=1u+ h;
end;

z =u(1:2); r = u(3);

end % circle

Geometric circle solution in parametric form

function [z, r, phi, step] = parcircle (X, z, r, show);
%PARCIRCLE Geometric circle fit

[z, r, phi, step] = parcircle (X, z, r, show{0});
computes the best fit circle in parameterform
x =z(1) + r cos(phi), y = z(2) + r sin(phi)

X: given points <X(i,1), X(i,2)>
z, r: starting values for circle
ghow: if (show == 1), test output

z, r: circle found
phi: phi(i) angle to nearest point on circle
% step: nof iterations

P e I I

m = size(X,1);

% compute initial approximations for phi_i
phi = angle(X(:,1)-z(1)+ i*(X(:,2)-2(2)));
step = 0;

h =1;

while (norm(h) > 1e-5),
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step = step+l;
if (step > 100),
disp (’warning: number of iterations exceeded limit’);
break;
end
form Jacobian
S = diag(sin(phi));
diag(cos(phi));
[ -ones(size(phi)) zeros(size(phi)) -cos(phi)];
[ zeros(size(phi)) -ones(size(phi)) -sin(phi)];
[r*S A; -r*C B];

o w0
1]

QR decomposition of Jacobian

Q=1[s¢C; -CSl;

[U R] = qr(CxA+S*B);

RR = R(1:3, 1:3);

RRR = [r*eye(m) S*A-C*B; zeros(size(A’)) RR];
transform right hand side

Y = [X(:,1)-z(1)-r*cos(phi); X(:,2)-z(2)-r*sin(phi)];
Y = [eye(m) zeros(m); zeros(m) U]’ *Q’*Y;

solve triangular system

h = -RRR\Y(1:m+3);

update solution

phi = phi + h(1:m);
z=z+ h(mnt+tl:m+2);
r = r+h(m+3) ;

if (show == 1),
drawcircle (z,r);
[z’ r phi’]

end

end

end % parcircle

B.3 Algebraic ellipse estimation

SVD algebraic ellipse estimation

function [z, a, b, alpha, err] = algellipse (X, W, show);
%ALGELLIPSE Algebraic least square ellipse fit

[z, a, b, alpha, err] = ...
algellipse (X, W{default ones}, show{default 0})

fits an ellipse by minimizing the "algebraic distance"

in the least squares sense x’A x + b’x + c =0
weighting the i-th data by W(i)

X: given points Pi = [X(i,1), X(i,2)]
W: weight W(i) for the i-th equation
show: if (show == 1) make test output

z, a, b, alpha: parameters for found ellipse
err: error indication

if (err == 1), not an ellipse

if (err == 0), ok

if (nargin < 2), W = ones(size(X,1), 1); end;
if (nargin < 3), show = 0; end;

[U s V] = svd(diag(W) * [X(:,1).72 X(:,1).*X(:,2) X(:,2).72 ...
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X(:,1) X(:,2) ones(size(X(:,1)))1);
u =V(:,6);

[z, a, b, alpha, err] = ellipse_params (u, show);

end % algellipse

Linear algebraic ellipse estimation

function [z, a, b, alpha, err] = alge_simple (X, show);
%ALGE_SIMPLE Algebraic least squares ellipse fit.
%

% [z, a, b, alpha, err] = alge_simple (X, show{default 0})
% fits an ellipse by minimizing the "algebraic distance"
% in the least squares sense x’A x + b’x + c =0

% weighting the i-th data by W(i).

% Constraint: A1l + A22 ==

%

% X: given points Pi = [X(i,1), X(i,2)]

% show: if (show == 1) make test output

%

% z, a, b, alpha: parameters for found ellipse

% err: error indication

% if (err == 1), not an ellipse

% if (err == 0), ok

if (nargin < 2), show = 0; end;

b = -X(:,1).72;

A= [XC,1).%X(:,2), X(:,2).72-X(:,1).72 ...
X(:,1) X(:,2) ones(size(X(:,1)))];

x = A\b;

u = [1-x(2);x];

[z, a, b, alpha, err] = ellipse_params (u, show);

end % alge_simple

Bookstein algorithm

function [z, a, b, alphal = bookstein (X, show);
%BOOKSTEIN Algebraic ellipse fit

[z, a, b, alpha] = bookstein (X, show{0});

Approximate ellipse to points <X(i,1),X(i,2)>.

Invariant under euclidian transformation, see

BOOKSTEIN, "Fitting conic secions to scattered data", in
Computer graphics & image processing 9, 56-71 (1979).

% X: given points <X(i,1),X(i,2)>
% show: if (show == 1), test output

% z, a, b, alpha: parameters for ellipse found
if (nargin < 2), show = 0; end;
m = size(X,1);
A = [X(:,1).72 X(:,1).%X(:,2) X(:,2).72 ...
X(:,1) X(:,2) ones(size(X(:,1)))];

S = Ar*A;
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T =85(1:3,1:3) - 8(1:3,4:6)%(S(4:6,4:6)°\5(4:6,1:3));
T = diag([1,2,1])*T;
[V, DI = eig(T);

emin = 0;
kmin = 0;
for k = 1:3,
A=V(1,k); B=V(2,k); C=V(3,k);
I0 = (A + C);
I1 = (A*C - B~2/4);
if (I1 <= 0),
% this is not an ellipse !
else
val = (I0°2 - 4xI1)/(I0"2 - 2%I1);
if (emin == | val < emin),
emin = val;
kmin = k;
end
end
end
if (kmin == 0), kmin = 1; end; % not an ellipse

yl = V(:,knin);
y2 = -(S(4:6,4:6)°)\(S(1:3,4:6) ’*xyl);
u [y1; y21;

[z, a, b, alpha, err] = ellipse_params (u, show);

end % bookstein

SVD solution for Bookstein constraint

function [z, a, b, alphal = bookstein_svd (X, show);
%BOOKSTEIN_SVD Algebraic ellipse fit

[z, a, b, alpha] = bookstein_svd (X, show{0});
Approximate ellipse to points <X(i,1),X(i,2)>.

Invariant under euclidian transformation, see

BOOKSTEIN, "Fitting conic secions to scattered data", in
Computer graphics & image processing 9, 56-71 (1979).
unlike BOOKSTEIN, SVD is used for solution.

% X: given points <X(i,1),X(i,2)>
% show: if (show == 1), test output

% z, a, b, alpha: parameters for ellipse found
if (nargin < 2), show = 0; end;
m = size(X,1);
AA = [ X(:,1) X(:,2) ones(size(X(:,1))) .
X(:,1).72 sqre(2)*X(:,1).%X(:,2) X(:,2).72];

[d, al = clsq (A4, 3);
u = [a(1l); sqrt(2)*a(2); a(3); dl;

[z, a, b, alpha, err] = ellipse_params (u, show);

end % bookstein_svd

Curvature weights
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function [z, a, b, alpha, step] = lyle (X, show);
%LYLE TIterative algebraic ellipse fit

%
% [z, a, b, alpha, step] = lyle (X, show{0});
% fit ellipse with algebraic method using curvature weights.

% X: points given <X(i,1), X(i,2)>
% show: if (show == 1), test output

% z, a, b, alpha: ellipse found
% step: nof iterations

delta = 1;
omega =
myeps = le-3;

|
N
o

new = [0;0;0;0;0];

old = new;

W = ones(size(X,1), 1);
step = 0;

m = size(X, 1);

while (delta > myeps),
step = step + 1;
if (step > 20),
disp (’warning: number of steps exceeded limit’);
break;
end
myeps = omega¥myeps;
[z, a, b, alpha, err] = algellipse (X, W, show);
if (err),
disp (’warning: found non-ellipse’);
break;
end
new = [z; a; b; alphal;
if (step == 1),

delta = 1;
else

delta = norm (new - old);
end

old = new;

¢ = cos(alpha); s = sin(alpha);

Q = [c -s; 5 cl;

% compute initial approximations for phi_i

du = Q’*[ X(:,1)-z(1) X(:,2)-z(2)]7;

phi = angle(du(1,:)/a + sqrt(-1)*du(2,:)/b)’;

%% weights is inverse of ellipse radius
C = cos(phi); S = sin(phi);
W= (axb) ./ (a"2%5.72 + b"2%C."2).7(3/2);

end % while

z = new(1:2);
new(3);
b = new(4);
alpha = new(5);

o
1]

end % lyle

Geometric weights

function [z, a, b, alpha, step] = wate2 (X, show);

36



if

de
om

my

m
sul
X
no
X

ol
Wi
Al
A2

st

[z, a, b, alpha, step] = wate2 (X, show{0});

fit ellipse with algebraic method using geometric distance weights.

X: given points <X(i,1), X(i,2)>
show: if (show), test output

z, a, b, alpha: ellipse found
step: nof iterations

(nargin < 2), show = 0; end;
lta = 1;
ega = 0;
eps = le-6;
= size(X, 1);

mX = sum(X)/m;

= X - ones(m,1)*sumX;
rmX = norm(X, inf);

= X/normX;
du = zeros(6,1);
[ones(size(X,1), 1)1;
[X(:,1).72 X(:,1).#X(:,2) X(:,2).72 ...
X(:,1) X(:,2) ones(size(X(:,1)))1;
[10-100 0;
01 000 0];
0;

ep

while (1), %% breaks

[U S V] = svd([diag(W1l) * Al; omega * norm(W1,inf) * A2]);
u=V(,6);
if (norm (oldu - u) <= myeps), break; end;

[z, a, b, alpha, err] = ellipse_params (u);

if (err),
%% the result is not an ellipse, adjust weight !
disp (’warning: weighted’);

if (omega == 0), omega = 1;
else omega = 4*omega;
end
else
oldu = u;
¢ = cos(alpha); s = sin(alpha);

Q= [c-s; 8 cl;

% compute initial approximations for phi_i

du = Q%[ X(:,1)-z(1) X(:,2)-z(2)]1";

phi = angle(du(l,:)/a + sqrt(-1)*du(2,:)/b)’;
du = du’;

phi_geom = ellipse_phi (du, a, b, phi);
%% weights is "real distance / algebraic weight"

C = cos(phi); S = sin(phi);
C_geom = cos(phi_geom); S_geom = sin(phi_geom);

D_geom = sqrt ((du(:,1) - a*C_geom). 2 + (du(:,2) - b*S_geom)."2);

D = (du(:,1).72 + du(:,2).72) ./ (a"2%C.”2 + b"2%5.72) - ...
ones (size(du,1), 1);

Wi = D_geon./D;

end % if (is ellipse 7)

step = step + 1;
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if (step > 20),
disp (’warning: number of steps exceeeded limit’);
break;
end
end % while

= z*normX;
a*normX;
b*normX;
z + sumX’;

N T m N
o

if (show == 3),
M = abs((diag(W1)*(Al*u))./D_geomn);
M = M/norm(M,-inf) ;
disp (Coutput of M = wQ/g, M = M/norm(M), norm(M - 1)’);
norm (M - 1)
end

end % wate2

B.4 Geometric ellipse estimation

B.4.1 Utilities

Parameter vector to parameter translation

function [phi, alpha, a, b, z] = pare_get (x);
%PARE_GET Vector to param conversion

%

% [phi, alpha, a, b, z] = pare_get (x);

% gets single parameters from param vector

% x: x == [phi; alpha; a; b; z]
% phi, alpha, a, b, z: splitted parameters

m = size(x, 1) - 5;

phi = x(l:m);
alpha = x(m+1);
a = x(m+2) ;
b = x(m+3);
z = x(m+4:m+5) ;

end % pare_get

Parameter to parameter vector translation

function x = pare_set (x, phi, alpha, a, b, z);
%PARE_SET Param to vector conversion

% x = pare_set (x, phi, alpha, a, b, z);
% stores single parameters into param vector

% x: x == previous values of [phi; alpha; a; b; z]
% phi, alpha, a, b, z:
% if (<val> !'= []), then set this param

% x: updated param vector

m = size(x, 1) - 5;
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if (Tisempty(phi)), x(1:m) = phi; end;
if ("isempty(alpha)), x(m+1) = alpha; end;

if (Tisempty(a)), x(m+2) = a; end;
if (Tisempty (b)), x(m+3) = b; end;
if (Tisempty(z)), x(m+4:m+5) = z; end;

end 7, pare_set

Set initial angle estimation

function x = pare_initphi (X, x);
PARE_INITPHI

% X = pare_initphi (X, x);

% assigns approximate values for angles

% relative to the transformed system.

0,

/A

% X: given points <X(i,1), X(i,2)>

% X: parameters

%

% x: parameters, with ’phi’ values approximate
% nearest point angles

[phi, alpha, a, b, z] = pare_get (x);

¢ = cos(alpha); s = sin(alpha);

Q = [c -85 s cl;

% compute initial approximations for phi_i

du = Q[ X(:,1)-z(1) X(:,2)-z(2)]";

phi = angle(du(1l,:)/a + sqrt(-1)*du(2,:)/b)’;

x = pare_set (x, phi, [1, [0, 01, [1);

end % pare_initphi

Computing the residual vector

function res = pare_residual (X, x);
%PARE_RESIDUAL Residual vector for ellipse

0,
A
% res = pare_residual (X, x);

% compute residual vector in the transformed system
%

%

for parameter ellipse.

% X: given points <X(i,1), X(i,2)>
% x: ellipse parameters

% res: residual "X - ellipse" for the transformed system.
% <res(i), res(m+i)> is residual for i-th point (m == nofpoints).

[phi, alpha, a, b, z] = pare_get (x);
g = sin(alpha);

¢ = cos(alpha);

Q = [c -s; s cl;

s = X*Q;

zs = Q7*z;

res = [Xs(:,1)-zs(1)-a*cos(phi); Xs(:,2)-zs(2)-b*sin(phi)];

end % pare_residual
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QR algorithm with rank determination

function [Q, R, P, r] = varpro_qr (X, defeps);

%VARPRO_QR Special QR decomposition

%

[Q, R, P, r] = varpro_qr (X, defeps);

makes Q*X*P == R ( == [Ri(r,r), R2(r,n-r); O(m-r,r), O(m-r,n-r)]).

defeps: limit for rank-deficiency
% r: rank of R (with respect to defeps)

[m, n] = size(X);
[Q, R, P] = qr(X);

normr = norm(R);

r =1;

while (r <= min(m,n)),
if (norm(R(r,r:n)) < defeps#*normr), break; end;
r=r + 1;

end

end % varpro_qr

B.4.2 Gauss-Newton, Newton and Marquardt algorithms

Gauss-Newton iteration step

function [x, lambdal] = pare_gauss_step(X, x, lambda);
%PARE_GAUSS_STEP Gauss-Newton iteration step

[x, lambda] = pare_gauss_step(X, x, lambda);
makes basic step for this x. Adds marquart correction if
abs(a - b)/(a + b) < lambda(l).

X: given points <X(i,1), X(i,2)>
x: given parameters
lambda: lambda(l) marquardt correction factor

x: updated parameters
lambda: (possibly new) marquardt factor

P I i e -

[phi, alpha, a, b, z] = pare_get (x);

if (abs(a - b)/(a + b) < lambda(1)),

[x, lambda] = pare_marq_step(X, x, lambda);
else
m
Y

size(X,1);
pare_residual (X, x);

%% form Jacobian

= sin(phi);

= cos(phi);

= sin(alpha);

= cos(alpha);

= [-b*S C zeros(size(phi)) c*ones(size(phi)) s*ones(size(phi))];
= [ a*C zeros(size(phi)) S -s*ones(size(phi)) c*ones(size(phi))];

D=0 n QW
|
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[cg, sg]l = rot_cossin (-a*5, b*C);
G = sparse ([diag(cg), -diag(sg); diag(sg), diag(cg)]l);
Y = GxY;

D = diag (- a*S.%cg - b*C.*sg);
J [[D; zeros(m,m)], Gx[A; B1];

[qq, J(m+1:2*%m, m+1:m+5)] = qr(J(m+1:2%m, m+1l:m+5));
Y(m+1l:m+5, :) = qq(:,1:5) %Y (m+1:2%m,:);

h=J1:n+5, 1:m+5)\Y(1:m+5);
X =x + h;

end % if (marq term necessary)

end % pare_gauss_step

Newton iteration step

function [x, lambda] = pare_newton_step (X, x, lambda);
%PARE_NEWTON_STEP Newton iteration step

[x, lambda] = pare_newton_step (X, x, lambda);
makes basic step for this x. Adds marquart correction if
abs(a - b)/(a + b) < lambda(l).

X: given points <X(i,1), X(i,2)>
x: given parameters
lambda: lambda(l) marquardt correction factor

x: updated parameters
lambda: (possibly new) marquardt factor

P e I I

[phi, alpha, a, b, z] = pare_get (x);

if (abs(a - b)/(a + b) < lambda(1)),

[x, lambda] = pare_marq_step(X, x, lambda);
else

m = size(X,1);

ALPHA =m + 1;

A =m + 2;

B =m + 3;

Y = pare_residual (X, x);
YY = [Y(1:m, 1), Y(m+1:2%m, 1)];

%% form Jacobian

= sin(phi);

= cos(phi);

= sin(alpha);

cos(alpha);
[-b*S C zeros(size(phi)) c*ones(size(phi)) s*ones(size(phi))];
[ a*xC zeros(size(phi)) § -s*ones(size(phi)) c*ones(size(phi))];

SO ®nm Qun
|

o =
1]

DA = -axsparse(diag(S));
DB = b*sparse(diag(C));

H zeros (m+5, m+5);
for i = 1:m, H(i,i)

[a*xC (i), b*S(i)]*YY(i,:)’; end;
2y

for i = 1:m, H(i,ALPHA) = [b*C(1i), a*S(i)]1*YY(i,:)’; end;
H(1:m,A) = S.*%YY(:,1);
H(1:m,B) = -C.*%YY(:,2);

H(ALPHA, ALPHA) [a%xC’, xS ]*Y;
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H(ALPHA, A) CI*YY(:,2);
H(ALPHA, B) = -8 %YY(:,1);
H=H+ triu(d, 1)’;

DD = a"2%5.72 + b"2%C."2;

J1 = DA*JA + DB#*JB;
J2 = [diag(DD), Ji; J1°, JA’*JA + JB’%JB];
Y2 = [DA*Y(1:m) + DB*Y(m+1:2%m); JA’*Y(1:m) + JB’*Y(m+1:2%m)];

s = (J2 + H)\Y2;

X =X + 83
end % if (marq term necessary)

end % pare_newton_step

Gauss-Newton iteration step with Marquardt modification

function [x, lambda] = pare_marq_step(X, x, lambda);
%PARE_MARQ_STEP Gauss-Newton step with Marquardt
%

% [x, lambdal = pare_marq_step(X, x, lambda);

% makes basic step for this x with marquardt correction.

% X: given points <X(i,1), X(i,2)>
% x: given parameters

% lambda: lambda(i) i-th previous marquardt correction factor

% x: updated parameters
% lambda: updated marquardt factors

[phi, alpha, a, b, z] = pare_get (x);

mu = le-3;
omega = 0.5;
W = ones(size(x,1), 1);

size(X,1);

m
Y = pare_residual (X, x);

%% form Jacobian

= sin(phi);

cos(phi);

gin(alpha);

cos(alpha);

[-b*S C zeros(size(phi)) c*ones(size(phi)) s*ones(size(phi))];
[ a*C zeros(size(phi)) S -s*ones(size(phi)) c*ones(size(phi))];

D=0 n Qwn

[cg, sg]l = rot_cossin (-axS, b*C);
= sparse([diag(cg), -diag(sg); diag(sg), diag(cg)l);
= G*Y;

=G
[

D = - ax3.xcg - bxC.*xsg;
Gx[A; BI;

==
(vs]
1]

%% do marquart step
istep = 0;
while (1),
[cg, sg]l = rot_cossin (D, lambda(l)*ones(m,1));
DD = D.*cg - lambda(1)*sg;
AA = sparse(diag(cg))*AB(1:m,:);

YY = [sparse(diag(cg))*Y(l:m,:); Y(m+1:2%m,:);
sparse(diag(sg))*Y(1l:m,:)];
BB = [AB(m+1:2*m,:); sparse(diag(sg))*AB(1:m,:);
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lambda (1) *eye(5,5)];
[aq, RR] = gqr(BB);

YY = [YY(1:m,:); qq(1:2*%m,1:5) > *YY(m+1:3%m,:)];

JJ
s

[diag(DD), AA; zeros(5,m),
JINYY;

RR(1:5,:)1;

h = norm(Y) - norm(pare_residual (X, x + 8));

if (h >= 0), break; end;
lambda(1) = lambda(1)/omega;
istep = istep + 1;
end % while
if (istep == 0),
lambda(1) = lambda(1)*omega;
end

X =x + 8;

end % pare_marq_step

Geometric estimation loop

function [z, a, b, alpha, phi, step] =

pare (X, z, a, b, alpha, meth, show)

%PARE  Geometric ellipse fit loop

% [z, a, b, alpha, phi, step] =

% pare (X, z, a, b, alpha, meth, show{0}) ;
% computes the best fit ellipse in parameterform

% x =2z(1) + a cos(phi-alpha),

% X: given points <X(i,1), X(i,2)>

y = z(2) + b sin(phi-alpha)

% z, a, b, alpha: starting values for ellipse

% meth:

% 0 --> gauss-newton with marquardt for a near b
% 1 --> newton with marquardt for a mear b

% 2 --> marquardt
% 3 --> gauss-newton
% show: if (show == 1), test output

% z, a, b, alpha: ellipse found

% phi: values for the nearest points (in parametric form)

% step: nof iterations

if (nargin < 7), show = 0; end;
if (nargin < 6), meth = 1; end;

epsr = le-5;

m = size (X, 1);

x = zeros (m+5, 1);

x = pare_set (x, phi, alpha, a, b, z);
x = pare_initphi (X, x);

step 0;

normr = 1;

norma = 1;

lambda = [1;1;1];

while (normr > epsr#*norma),

if (meth == 0), [x, lambda]
elseif (meth == 1), [x, lambdal]
elseif (meth == 2), [x, lambdal]
elseif (meth == 3), [x, lambda]

= pare_gauss_step (X, x, lambda);

pare_newton_step (X, x, lambda);
pare_marq_step (X, x, lambda);
pare_gauss_step (X, x, [0;0;0]);
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else error (’unknown meth’);
end

if (step > 0),
normr = norm (X - prevx);
norma = norm (x);

end

prevx = x;
step = step+l;

if (show == 1),
[phi, alpha, a, b, z] = pare_get (x);

drawellipse(z, a, b, alpha)
end

if (step > 100),
disp (’warning: number of steps exceeded limit’);
break;
end
end % while
[phi, alpha, a, b, z] = pare_get (x);

end % pare

B.4.3 The varpro algorithm

The general varpro procedure

function [vn, vl, err, step] = varpro (HOOK, Y, vn, vl, OPTIONS,
PO, P1, P2, P3, P4, P5, P6, P7, P8, P9);
%VARPRO Variable Projection Algorithm

% [vn, vl, err, stepl = ...
% varpro (HOOK, Y, vn, vl, OPTIONS, PO, P1, ... );

%  Computes values for the non-linear ’vn’ and the linear ’vl’
% to approximate ’Y’ in the least-squares sense.

% On input, ’vn’ contains approximative values of the solution
% (as good as possible); ’vl1’ is used for its size only.

% err == 0: everything OK.
% err == 1: too many iterations.

% Algorithm by GOLUB/PEREYRA:

% "The differentiation of pseudo-inverses and nonlinear least
% squares problems whose variables separate".

% SIAM J. Num. Anal. 10(2), april 1973.

% HOOK is a user-supplied function receiving

% (what, vn, OPTIONS, PO, ...) as arguments.

% It evaluates

% - function values (what == ’Phi’) with linear factor

% - function values without linear factor (’Psi’)

% - derivatives (’DPhi’ and ’DPhi_Inc’ for packed version)
% (’DPsi’ for the independent term).

% - incidence matrix (’Inc’), to tell that a function

% does not depend on certain variables.

% - (possgibly) Cholesky factor of positive definite
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symmetric matrix to be used in the marquart step.

if (what == ’Phi’),
Ret := Phi = [Phi(1) ... Phi(4)];
elseif (what == ’DPhi’ | ’DPhi_Inc’),
Ret := Derivative of Phi
[dPhi/dvn(1) ... dPhi/dvn(nof-nonlinear)],
that is, jacobians are stored sequentially into Ret.
For ’DPhi_Inc’, some columns are left out,
(all dPhi(j)/dvn(k) where INC(i,j) == 0),
INC is passed as the last arg to function.
elseif (what == ’Inc’),
Ret := incidence matrix, to tell the ’varpro’ routine that
gome Phi(i) does not depend from vn(j). See ’DPhi_Inc’
elseif (what == ’Psi’),

Ret := Psi, function without linear factor
elseif (what == ’DPsi’),

Ret := Derivative (jacobian) of ’Psi’
elseif (what == ’LM’),

Ret := Cholesky factor for Levenberg-Marquardt
positive-definite matrix (default eye)

end
fun = [HOOK];
arg = [1;

if “any(fun<48)
fun = [fun, ’(];
arg = [arg, >, vn, OPTIONS’];
for i = 1l:nargin - 4
arg = [arg,’,P’,int2str(i-1)];
end
arg_open = arg;
arg = [arg, ’)’];
end
if (nargin < 5), OPTIONS=[]; end

OPTI_EPS
OPTI_LMSPEC
OPTI_NOFSTEP
OPTI_ERRPR
OPTI_PACKM
OPTI_MARQ
OPTI_PSI

; % should memory be packed 7

1]
~NO O WN =

ERR_OK = 0;
ERR_NOFSTEP = 1;

epss = 1.0e-8;
epsr = 1.0e-5;

k = size(vn,1);

m = size(Y,1);

n = size(vl,1);

F = eye(k,k);
lambda = 1.0;
omega = sqrt(0.5);
nofstep= 100;

err = ERR_OK;
errpr = 1;

packm = 1;

marq = 1;

psi = 0;

for 1 = 1:8ize(0OPTIONS,1),
kind = OPTIONS(i,1);
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if
elseif
elseif
elseif
elseif
elseif
elseif
else
end
end

(kind ==
(kind ==
(kind
(kind ==
(kind
(kind
(kind ==

OPTI_EPS)
OPTI_LMSPEC)
OPTI_NOFSTEP)
OPTI_ERRPR)
OPTI_PACKM)
OPTI_MARQ)
OPTI_PSI)

if (Tpsi), YY =
step = 0;
if &k >
normr 1;
norma 1;
while (normr > epsr#*norma),

Y; end;

Phi
h

eval ([fun,

”’Phi”’,

epsr = OPTIONS (i,2);

F = eval([fun, ’’’LM’’’,
nofstep = OPTIONS(i,2);
errpr = OPTIONS(i,2);
packm = OPTIONS(i,2);
marq = OPTIONS(i,2);

psi = OPTIONS(i,2);

error (’unknown option’);

argl);

0), % number of non-linear variables

argl);

% Phi (i,k) is k-th component of phi (i)

%

if (packm),
Inc = eval ([fun,
DPhi = eval ([fun,
else
DPhi
end

%

”’Inc’

eval ([fun,

>?’DPhi_Inc’’’,

”’Dphi”’,

2

, argl);

arg_open, ’,Inc’, ’)’1);

argl);

% DPhi contains columns dphi(i)/dalpha(k), for

%
%
)

- unpacked at DPhi(:, 1+(k-1)*n + i)
- packed in the same order, but only for Inc(i,k) !'= 0.

, argl);

Yky(r+l:m);
C(r+1:m,p)*x(j);

*n:i%n)*x] ;

[Q, T, S, r] = varpro_qr(Phi, epss);
if (psi),
Psi = eval ([fun, ’’’Psi’’’
YY =Y - Psi;
end
v = Q*YY;
C = Q*DPhi;
x=8C,1:r)*(T(1:r,1:x)\v(1l:1));
if (packm),
U = zeros(n,k); Dx = zeros(m-r,k);
p = 0; % column into DPhi
for i = 1:k,
for j = 1:n,
if (Inc(j,1i)),
p = ptl;
U(j,i) = C(r+il:m,p)
Dx(:,1i) = Dx(:,1) +
end
end
end
else
U=1[1; Dx = [1;
for i = 1:k,
= [U, C(r+1:m,1+(i-1)*n:i*n) *v(r+1:m)];
Dx= [Dx, C(r+1:m,1+(i-1)
end
end
H = S’%U;
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W="T{:r,1:r)’\H(1:1r,:);

B = -Q’*[W; Dx];
res = Q(r+1:m,:) *v(r+i:m);
if (psi),
DPsi= eval ([fun, ’’’DPsi’’’, argl);
B =B - Q(r+l:m,:)’*Q(r+1:m,:)*DPsi;
end
if (marq),
vvn = vn;
istep = 0;
while (1),
h = - [B; lambda*F]\[res; zeros(k,1)];
vn = vvn + h;
Phi = eval ([fun, ’’’Phi’’’, argl);
if (psi),
Psi = eval ([fun, ’’’Psi’’’, argl);
YY =Y - Psi;
end

[Q, T, S, r] = varpro_qr (Phi, epss);
tonp = Q(r+1l:m,:)*YY;
if (norm(tmp) <= norm(v(r+i:m))),
break;
end
lambda = lambda/omega;
istep = istep + 1;
end
if (istep == 0),
lambda = lambda*omega;

end

vn = vvn;
else

h = -B\res;
end

norma = norm(vn) ;
normr = norm(h) ;

vn = vn + h;

step = step + 1;

if (step > nofstep),
err = ERR_NOFSTEP;
break;

end

end % while
end % if vn == []

if (n > 0),
Phi = eval ([fun, ’’’Phi’’’, argl);
if (psi),
Psi = eval ([fun, ’’’Psi’’’, argl);
YY =Y - Psi;
end
vl = Phi\YY;
end

if (" (err == ERR_0K) & errpr),
if (err == ERR_0OK),
disp (’no error’);
elseif (err == ERR_NOFSTEP),
disp (’warning: number of steps exceeded limit’);
else
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error (’fatal: illegal error number’);
end
end

end ¥ varpro

The varpro interface procedure

function [z, a, b, alpha, phi, step] =
pare_varpro (X, z, a, b, alpha, show)

%PARE_VARPRO Geometric ellipse fit using varpro
%
[z, a, b, alpha, phi, step] =

pare_varpro (X, z, a, b, alpha, show{0}) ;
computes the best fit ellipse in parameterform
x = z(1) + a cos(phi-alpha), y = z(2) + b sin(phi-alpha)
using the varpro algorithm.

% X: given points <X(i,1), X(i,2)>
% z, a, b, alpha: starting values
% show: if (show), test output

% z, a, b, alpha: ellipse found
% phi: values for the nearest points (in parametric form)
% step: nof iterations

n = size(X,1);

g = sin(alpha);
cos(alpha);
[c -s; s cl;

(9]
1]

fm)
1]

% compute initial approximations for phi_i
du = Q*[X(:,D-2z(1) X(:,2)-z(2)]7;
phi = angle(du(l,:)/a + sqrt(-1)*du(2,:)/b)’;

[vn, vl, err, step] = varpro (’pare_varpro_hook’, ...
[X(:,1);X(:,2)], [phi;alphal, [a;b;z]);

phi = vn(l:m);
alpha = vn(l+m);
a = vl(1);
b = v1(2);
Z = v1(3:4);

end % pare_varpro

The varpro hook function

function Ret = pare_varpro_hook (what, vn, OPTIONS, INC);
%PARE_VARPRO_HOOK Hook for varpro ellipse fit

Ret = pare_varpro_hook (what, vn, OPTIONS, INC);

Hook for the ’varpro’ routine, returns data depending on ’what’.
given data is Y = [x-coord(1l:m,1); y-coord(1l:m,1)]

estimation function is

a*Phi(1) + b*Phi(2) + z(1)*Phi(3) + z(2)*Phi(4)

what: kind of data needed (see ’varpro’)

vn: non-linear parameters

OPTIONS: same as options passed to ’varpro’ routine
% INC: incidence matrix, for what == ’DPhi_Inc’ only

P g 2 T
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%

% Ret: see ’varpro’

m = size(vn,1) - 1;
if (strcmp(what,’Phi’) | strcmp(what,’DPhi’)
strcmp (what, ’DPhi_Inc’)),

C = cos (vn(l:m));
S = sin (vn(l:m));
c = cos (vn(m+1));
s = sin (vn(m+1));
end
if (strcmp (what, ’Phi’)),

Ret = [ c*C, -s*S, ones(m,1), zeros(m,1);
s*C, c*S, zeros(m,1), ones(m,1)];
elseif (strcmp(what, ’DPhi’)),

Ret = [1;

for i = 1:m,
J = zeros(2*m,4) ;
J(i,1) = -c*8(i);
J(i+m,1) = -s*S(1);
J(i,2) = -s*xC(i);

J(i+m,2) = c*C(1);
Ret = [Ret, J];
end
Ret = [Ret, [-s*C, -c*S, zeros(m,2); c*C, -s*S, zeros(m,2)]];
elseif (strcmp(what, ’DPhi_Inc’)),
%% INC(i,j) if column phi(i)/dalpha(j) should be added.

p = ones(1,4)*INCxones(m+1,1);
Ret = zeros(2#*m,p);
p =0;

for i = 1:m,
if (INC(1,1)), p = p+1l; Ret(i,p) = -c*S(i);
Ret (i+m,p) = -s*5(i);
end;
if (INC(2,1)), p*tl; Ret(i,p) = -s*C(1);
Ret (i+m,p) = c*C(i);

el
1]

end;
if (INC(3,1)), p = p+l; end;
if (INC(4,1)), p = p+l; end;
end
i = m+1;
if (INC(1,i)), p = p+1; Ret(:,p) = [-s*C; c*C]; end;
if (INC(2,i)), p = p+1; Ret(:,p) = [-c*S; -s*S]; end;
if (INC(3,i)), p = p+l; end;
if (INC(4,i)), p = p+l; end;
elseif (strcmp(what, ’Inc’)),

Ret = [ones(2,m+1); zeros(2,m+1)];

else
gtr = sprintf (’unknowm: command %s.’, what);
error (str);

end

end Y% pare_varpro_hook

B.4.4 The odr algorithm

The general odr procedure

function [b, delta, err, step] = ...
odr (HOOK, x, y, b, OPTIONS, W, D, delta,
PO, P1, P2, P3, P4, P5, P6, P7, P8, P9);
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%0DR Orthogonal Distance Regression

[b, delta, err, step] = odr (HOOK, x, y, b, .
OPTIONS, W, D, delta,

determines eps[i], deltal[i] so that
- HOOK (’f’, x+delta, b) = y+eps

- norm(eps,2)"2 + norm(delta,2)"2 = minimal

You may think of it as a flexible total least

PO,

squares algorithm, or just an algorithm to fit

a curve with minimal geometric distances.

HOOK is user-supplied function evaluating

- (f’) --> £(x,b)
- (df’) --> [df/db, df/dx](x,b)

Algorithm by Boggs/Byrd/Schnabel

"A stable and efficient algorithm for nonlinear

orthogonal distance regression"

SIAM J. Sci. Stat. Comput. 8(6):1052--1078, nov. 87.

fun = [HOOK];
arg = [1;
if “any(fun<48)
fun = [fun, ’(];
arg = [arg, >, x+delta, b’];
for i = 1:nargin - 8,
arg = [arg,’,P’,int2str(i-1)];
end
arg_open = arg;
arg = [arg, ’)’];
end
if (nargin < 8), delta = []; end
if (nargin < 7), D = []; end
if (nargin < 6), W = []; end
if (nargin < 5), OPTIONS=[]; end

OPTI_EPS = 1;
OPTI_NOFSTEP = 3;
OPTI_ERRPR = 4;
OPTI_ONEW = 9;
OPTI_ONED = 10;
OPTI_DIFFCHK = 11;

ERR_OK = 0;
ERR_NOFSTEP = 1;

epss = 1.0e-8;
epsr = 1.0e-5;
oned = 0;

onew = 0;

err = ERR_OK;
nofstep = 100;
diffchk = 0;

alpha = 0.01;

[n, m] = size(x);

p = size(b, 1);

if (delta == []), delta = zeros(n,m); end
if (D == [1), oned = 1; end

if (W == []), onew = 1; end

for 1 = 1:8ize(0OPTIONS,1),
kind = OPTIONS(i,1);
if (kind == OPTI_EPS)
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elseif (kind =
elseif (kind =

OPTI_NOFSTEP) nofstep = OPTIONS(i,2);

OPTI_ERRPR) errpr = OPTIONS(i,2);
elseif (kind == OPTI_ONEW) onew = OPTIONS(i,2);
elseif (kind == OPTI_ONED) oned = OPTIONS(i,2);
elseif (kind == OPTI_DIFFCHK) diffchk = OPTIONS(i,2);
else error (’unknown option’);
end

end

if (onew), W = onew*ones(n,1); end
if (oned), D = oned*ones(n,m); end

if (size(y,2) "= 1) error (’y must be column vector’); end
if (size(y,1) "= n) error (’x and y incompatible’); end

if (size(b,2) "= 1) error (’b must be column vector’); end
if (size(W,2) "= 1) error (’W must be column vector’); end
if (size(W,1) "= n) error (’W incompatible’); end

if (gize(D,2) "= m) error (’D incompatible’); end

if (gize(D,1) "= n) error (’D incompatible’); end

flag variables (scalar coeff?)

wscalar = (onew "= 0);
dscalar = (oned "= 0);
scalar = (wscalar & dscalar);

gize variables
omega = zeros(mn,1);
M = zeros(n,1);

yb = zeros(n,1);

JB = zeros(n,p);

t = zeros(n,m);

loop until change small
(or nof steps too large)
step = 0;
regs = -1;
normr = 1;
norma = 1;
while (normr > epsr#*norma),
step = step + 1;
if (step > nofstep),
err = ERR_NOFSTEP;
disp (’warning: number of steps exceeded limit’);

break;
end
f = eval ([fun, ’’’f’’’, argl);
df = eval ([fun, ’’°df’’’, argl);
if ((df == [1) | (diffchk "= 0)),

save_X = X;

save_b = b;

h = 1le-5;

DF = [1;

for i=1:size(b,1),
b(i) = b(i) - h;

f1 = eval ([fun, ’>’’f’°’, argl);
b(i) = b(i) + 2%h;
£2 = eval ([fun, ’>’’f’°’, argl);

b(i) = b(i) - h;

DF = [DF, (f2 - f1)/(2%h)];
end
hv = h*ones(size(x,1),1);
for i=1:size(x,2),

x(:,1) = x(:,1) - hv;

f1 = eval ([fun, ’>’’f’°’, argl);
x(:,1) = x(:,1) + 2%hv;
£2 = eval ([fun, ’>’’f’°’, argl);
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x(:,1) = x(:,1) - hv;
DF = [DF, (f2 - £1)/(2%h)];
end
if (daf == [1),
df = DF;
else
if (norm(DF-df) > epsr*norm(DF)),
disp (’warning: differentiate may be inexact’);
if (diffchk == 2), disp(’DF - df =’); disp(DF-df); end;
else
disp (’status: differentiate 0K’);
end
end
X = save_x;
b = save_b;
end

if (onew == 1),
Gl = (f - y);
elseif (onew)
Gl = onew*(f - y);
else
Gl = W.x(f - y);
end
if (onew*oned == 1),
G2 = delta;
elseif (scalar),
G2 = (oned*onew)*delta;
else
G2 = D.*xdelta;
for i=1:n,
G2(1,:) = W(1)*G2(di,:);

end
end
v = df (:,p+l:p+m);
J = df(1:n,1:p);
alpha = alpha/2;
while (1),
if (oned),
E = oned”2 + alpha;
Ei = 1/E;
for i=1:n,
omega(i) = (V(i,:)*Ei)*V(i,:)’;
end
M = sqrt(1./(1+omega));
Tmp = (Eixoned)*G2;
else
E = D."2 + alpha*ones(n,m);
Ei = 1./E;
for i=1:n,
omega(i) = (V(i,:).*Ei(i,:))*V(i,:)’;
end
M = sqrt(1./(1+omega));
Tmp = Ei.*D.*G2;
end
if (onew == 1),

for i=1:n,
JB(i,:) = M(i)*J(i,:);
end
elseif (onew),
for i=1:n,
JB(i,:) = M(1i)*onewxJ(i,:);
end
else
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for i=1:n,
JB(i,:) = M(i)*W(i)*J(i,:);
end
end
for i=1:n,
yb(i) = -M(i)*(G1(1) - V(i,:)*Tmp(i,:)’);
end
g = [JB; sqrt(alpha)*eye(p)]\[yb; zeros(p,1)];
tmp = -JB*s + yb;
tmp = tmp.*M;
if (oned),
for i=1:n,
t(i,:) = tmp(L)*V(i,:)*Ei - Tmp(i,:);

end
else
for i=1:n,
t(i,:) = tmp(L)*V(i,:).*Ei(i,:) - Tmp(i,:);
end
end
b=Db+ s;
delta = delta + t;
newres = 0;
newf = eval ([fun, >’’f£’’’, argl);
epsilon = newf - y;
if (oned),
for i=1:n,
newres = newres + ...
W(i)"2*(epsilon(i) "2 + (oned*norm(delta(i,:),2))"2);
end
else
for i=1:n,
newres = newres + ...
W(i) "2*(epsilon(i) "2 + norm(delta(i,:).*D(i,:),2)"2);
end
end
if ((res < 0) | (newres < res*(l+epsr))),
norma = norm(delta) + norm(b);
normr = norm(t) + norm(s);
res = newres;
break;
end
b=Db - s;
delta = delta - t;
alpha = alphax*3;
end
end
end % odr

The odr interface procedure

function [z, a, b, alpha, step] = ...
alge_odr (X, z, a, b, alpha, show);

%ALGE_ODR

%

% [z, a, b, alpha, step] = ...

% alge_odr (X, z, a, b, alpha, show);

%

% computes the best fit ellipse in parameterform

% x = z(1) + a cos(phi-alpha), y = z(2) + b sin(phi-alpha)
% using the odr algorithm. %
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X: given points <X(i,1), X(i,2)>
z, a, b, alpha: starting values
show: if (show), test output

z, a, b, alpha: ellipse found
step: nof iterations

See also ODR, ALGE_ODR_HOOK

This implicit problem is solved by successive

solution of weighted explicit problems.

For further discussion see
Gill/Murray/Wright

"Practical Optimization"
Academic Press, New York, 1981.

OPTI_ONEW
OPTI_ONED

9;
10;

wate = sqrt(eps);
awate = sqrt(sqrt(wate))+1le-3;

¢ = cos(alpha); s = sin(alpha);
Q= [c -85 s cl;
A =0Qx[1/(a"2) 0; 0 1/(b"2)1%Q’;

beta = [z(1); z(2); A(1,1); A(1,2); A(2,2)];

delta = zeros(size(X));

step = 0;
while (awate >= wate),
OPTIONS = [[OPTI_ONED, awatell;

[beta, delta, err, astep] = odr (’alge_odr_hook’,

X, zeros(size(X,1),1), beta, OPTIONS, [],

awate = awate™2;
step = step + astep;
end

[zno, a, b, alpha, err] = ellipse_params (...

[beta(3); 2%beta(4); beta(5); 0; 0; -1]1);

z = [beta(1); beta(2)];

end % alge_odr

[1, delta);

The odr hook function

function [res] = alge_odr_hook (what, x, b);

%ALGE_ODR_HOOK

Function called by odr,
wants either ’f’ or ’df’

See also ODR.

xc = x(:,1) - b(1)*ones(size(x,1),1);
yc = x(:,2) - b(2)*ones(size(x,1),1);

if (strcmp (what, £7)),

res = b(3)*xc.”2 + 2*%b(4)*xc.*yc + b(5)*yc."2 - ones(size(x,1),1);

elseif (strcmp(what, ’df’)),
res = zeros(size(x,1),7);
res(:,6) = 2%b(3)*xc + 2xb(4) xyc;
res(:,7) = 2%b(5)*yc + 2¥b(4) *xc;
res(:,1) = -res(:,6);
res(:,2) = —-res(:,7);
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res(:,3) = xc."2;

res(:,4) = 2*xc.*yc;

res(:,5) = yc."2;
else

str = sprintf (’unknown command: %s’, what);
error (str);
end

end % alge_odr_hook

C Data sets

This section lists the data sets used in the paper.

C.1 Various data sets

Data for eccentric ellipse

X=1
1.9400 3.7540
2.8640 4.7500
4.9420 6.6280
5.6360 8.1520
6.5120 9.2080
8.4060 10.6160
9.3760 11.5540
10.5780 12.8440
11.5940 14.9560
13.8100 16.2460
16.3520 16.5980
16.2120 13.7240
15.3340 12.4920
14.7340 11.4960
12.0100 9.5600
10.5780 8.2120
9.3760 7.0380
9.3760 7.0380
7.5760 4.3980
5.8200 3.9300
4.4800 2.9320
3.0020 2.6980
1;
Points near ellipse
X=1
2.0143 10.5575
17.3465 3.2690
-8.5257 -7.2959
-7.9109 -7.6447
16.3705 -3.8815
-15.3434 5.0513
-21.5840 -0.6013
9.4111 -9.0697
1;
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C.2 Comparison of the geometric estimation algorithms

Special data

X=10
1 7
2 6
5 8
7 7
9 5
3 7
6 2
8 4
1;
Random data
X=10
4,3792 0.6914
0.9409 1.0692
13.5773 10.5940
13.5859 13.4230
18.6939 0.1540
7.6700 7.6683
10.3883 1.3368
16.6193 8.3497
1;
Points on a circle
X=1
3.8760 19.6208
19.1326 5.8261
-8.6445 -18.0353
-8.5955 -18.0587
18.3397 -7.9784
-14.8771 13.3668
-19.8514 -2.4339
9.7412 -17.4674
1;
Points on a circle, with perturbations
X=1
-0.7783 21.4885
14.6672 6.7159
-8.3475 -13.7310
-6.8840 -14.5970
13.4167 -7.7091
-16.0429 9.2865
-24.1829 -0.8947
8.9161 -18.3074
1;

Points on ellipse
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3.8760 9.8104
19.1326 2.9130
-8.6445 -9.0177
-8.5955 -9.0294
18.3397 -3.9892

-14.8771 6.6834
-19.8514 -1.2169
9.7412 -8.7337
1;
Points on ellipse, with perturbations
X=1
-0.7783 11.6781
14.6672 3.8028
-8.3475 -4.7133
-6.8840 -5.5677
13.4167 -3.7199
-16.0429 2.6031
-24.1829 0.3222
8.9161 -9.5737
1;
Points on hyperbola branch
X=1
20.0658 -0.8118
20.1711 -1.3107
20.0266 0.5163
20.0268 0.5176
20.1575 1.2575
20.0113 -0.3362
20.0003 0.0560
20.0913 0.9564
1;
Points on hyperbola branch, with perturbations
X=1
15.4115 1.0559
15.7057 -0.4209
20.3236 4.8207
21.7383 3.9792
15.2345 1.5268
18.8455 -4.4166
15.6687 1.5952
19.2661 0.1164
1;

57





