
Journal of Data Science 8(2010), 349-360

Fitting Parametric and Semi-parametric Conditional Poisson
Regression Models with Cox’s Partial Likelihood in

Self-controlled Case Series and Matched Cohort Studies

Stanley Xu1, Paul Gargiullo2, John Mullooly3, David McClure1,
Simon J. Hambidge1,4,5 and Jason Glanz1

1Kaiser Permanente Colorado, 2CDC, 3Kaiser Permanente Northwest, 4

University of Colorado and 5Denver Health

Abstract: The self-controlled case series (SCCS) and the matched cohort are
two frequently used study designs to adjust for known and unknown con-
founding effects in epidemiological studies. Count data arising from these
two designs may not be independent. While conditional Poisson regres-
sion models have been used to take into account the dependence of such
data, these models have not been available in some standard statistical soft-
ware packages (e.g., SAS). This article demonstrates 1) the relationship of
the likelihood function and parameter estimation between the conditional
Poisson regression models and Cox’s proportional hazard models in SCCS
and matched cohort studies; 2) that it is possible to fit conditional Pois-
son regression models with procedures (e.g., PHREG in SAS) using Cox’s
partial likelihood model. We tested both conditional Poisson likelihood and
Cox’s partial likelihood models on data from studies using either SCCS or a
matched cohort design. For the SCCS study, we fitted both parametric and
semi-parametric models to model age effects, and described a simple way to
apply the parametric and complex semi-parametric analysis to case series
data.
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1. Introduction

Epidemiological and medical studies frequently use count data in which ex-
posed and unexposed incidence rates are compared. The data are usually ana-
lyzed with Poisson regression models, and the observations may not be indepen-
dent due to clustering naturally or by study design. For example, in studies of
vaccine safety, a method known as the self-controlled case series (SCCS) has been
used. The SCCS is a case-only method in which a subject’s follow-up period is
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partitioned into exposed and unexposed intervals. Incidence rates in risk periods
following vaccination are compared to those in unexposed control periods out-
side of the risk periods, and each case acts as its own control (Farrington, 1995;
Farrington, Nash and Miller, 1996; Kramarz et al., 2000; France et al., 2004;
Glanz et al., 2006). SCCS data are analyzed with conditional Poisson regression
models to account for the within-subject dependence. Conditioning is used to
obtain a likelihood in which only cases need to be sampled. As a result, intercept
parameters explaining each subject’s individual baseline risk for the event count
of interest is not present in the likelihood (Farrington, 1995; Roy, et al., 2006).
This results in a de facto adjustment for all subject-level risk factors and po-
tential confounders (measured and not measured), allowing only within-subject
comparisons of incidence rates between exposed and unexposed time intervals.
This is similar to a stratified analysis with each subject as a unique stratum.
SCCS is particularly useful for controlling for confounding by indication, wherein
the probability of exposure to vaccine is related to the subject-level risk of the
outcome (Whitaker, et al., 2006).

Another example of dependent count data is the matched cohort method, in
which exposed subjects are matched to unexposed subjects on certain characteris-
tics to reduce confounding effects. Matched cohort methods have been applied to
injury studies (Walker et al., 1981; Walker et al., 1983; Kannus, et al., 2000) and
to studies of traffic crashes (Evans, 1986; Cummings, McKnight and Weiss 2003;
Cummings, McKnight and Greenland, 2003) where drivers and passengers are
naturally matched on the vehicle-related variables such as vehicle model, speed,
place, time, and type of crash. The matched subjects form a unit called a cluster
or stratum. The events within the strata are often considered dependent, and
the data are also analyzed with conditional Poisson regression models (Cameron
and Trivedi, 1998, chap. 9; Diggle, 2002, chap. 5).

In addition to conditional Poisson regression models, proportional hazards
models using Cox’s partial likelihood can be used to analyze matched count data.
It is well known that conditional logistic regression can be performed using a
stratified Cox’s proportional hazards model, resulting in a product partial likeli-
hood with strata representing matched sets (Cox, 1975; Hosmer and Lemeshow,
1999). Similarly, by conditioning on the total number of events in each stratum,
the conditional Poisson likelihood function is of a product multinomial likelihood
(Agresti, 2002, chap. 8). It is claimed that the stratified Cox’s partial likeli-
hood with an arbitrary constant as the time to event gives the same results as
a conditional Poisson regression model (Cummings, McKnight and Weiss 2003;
Cummings, McKnight and Greenland, 2003). The Cox’s stratified partial like-
lihood has been used in vaccine safety studies for modeling count data (France
et al., 2004; Glanz et al., 2006; Hambidge, et al., 2006). But this has not been
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mathematically proven and studied in depth. Our study examines this claim
and shows why conditional Poisson regression models and Cox’s stratified pro-
portional hazard models produce the same coefficient estimates and variances in
SCCS and matched cohort studies.

We first demonstrate the relationship between the conditional Poisson like-
lihood and Cox’s stratified partial likelihood for count data in the SCCS study
design. We will then extend this comparison to the matched cohort study design.
We will then give examples of each study design, and finish with a discussion of
implications of our findings.

2. SCCS Study

2.1 Conditional Poisson likelihood and Cox’s stratified partial likeli-
hood

Suppose that the ith subject is followed for a period of time, ti days, in which
there are tie exposure days and tiu unexposed days, ti = tie + tiu. Let zij denote
an indicator variable equal to 1 for an event and 0 for no event at day j for
subject i. Then yie =

∑tie
j=1 zij is the number of events in the exposed period and

yiu =
∑tiu

j=1 zij is the number of events in the unexposed period.
According to Farrington (1995), the conditional Poisson likelihood (CL) is the

product of the likelihood across subjects which is of the following form for the
ith subject

LCL(i) = { tie exp(xieβ)
tie exp(xieβ) + tiu exp(xiuβ)

}
yie

{ tiu exp(xiuβ)
tie exp(xieβ) + tiu exp(xiuβ)

}
yiu

(2.1)
where xie is a row vector of covariates for the exposed period and xiu is a row
vector of covariates for the unexposed period. In equation (2.1) we have defined
only two time periods: exposed and unexposed. Even if the exposure status re-
mains unchanged within a time interval, further partitioning of the interval would
be necessary for changes in values of time-varying covariates other than exposure
status. In other words, a covariate can be time-varying across the exposed and
unexposed periods, but constant within each period of time. Otherwise, more
partitions are needed for fixed covariate values with an interval. If a covariate is
constant over both exposed and unexposed periods, it will cancel out of equation
(2.1).

If each day of follow-up is treated as an observation for subject i, and a
dummy variable (e.g., surv) for the time to event in survival analyses is assigned
a value of 1 (or any positive constant) for each observation, all of the days in
the follow-up period are at risk. Further, unlike conventional survival analysis,
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assume that each individual i is a member of all ti risk sets. That is, there is
no dropping out of risk sets for any reason including becoming an event or being
censored, until the end of the observation period. Within a subject-level stratum,
the Cox’s (Cox, 1975) partial likelihood (PL) is then

LPL(i) =
ti∏

j=1

{ exp(xijβ)∑ti
j=1 exp(xijβ)

}
zij

=
tie∏
j=1

{ exp(xijβ)∑ti
j=1 exp(xijβ)

}
zij tiu∏

j=1

{ exp(xijβ)∑ti
j=1 exp(xijβ)

}
zij

= { exp(xieβ)
tie exp(xieβ) + tiu exp(xiuβ)

}
yie

{ exp(xiuβ)
tie exp(xieβ) + tiu exp(xiuβ)

}
yiu

(2.2)

Note that equations (2.1) and (2.2) differ in the numerators of the two terms.
Equation (2.2) has no person times in the numerators while equation (2.1) does.

2.2 Maximum likelihood estimates (MLEs)

The conditional Poisson likelihood and Cox’s partial likelihood are used in
place of likelihood for obtaining estimates for β and their standard errors. Taking
logs of equations (2.1) and (2.2), log LCL(i) = log LPL(i)+yie log(tie)+yiu log(tiu),
it becomes obvious that the first and second derivatives with respect to β are
identical. It can be shown that the first and second derivatives of log LCL(i) and
log LPL(i) are

∂ log L.(i)

∂β
=

yiexietiu exp(xiuβ) − yiexiutiu exp(xiuβ)
tie exp(xieβ) + tiu exp(xiuβ)

+
yiuxiutie exp(xieβ) − yiuxietie exp(xieβ)

tie exp(xieβ) + tiu exp(xiuβ)

∂2 log L.(i)

∂β2 =
tiutie exp(2xiuβ)(2yiex′

iuxie + 2yiux′
iuxie − yiex′

iexie)
{tie exp(xieβ) + tiu exp(xiuβ)}2

+
tiutie exp(2xiuβ)(−yiex′

iuxiu − yiux′
iexie − yiux′

iuxiu)
{tie exp(xieβ) + tiu exp(xiuβ)}2

When there is only an exposure indicator variable in the covariate vector (e.g.,
xie = 1 and xiu = 0), the first and second derivatives reduce to

∂ log L.(i)

∂β
|xie=1,xiu=0 =

yietiu − yiutie exp(β)
tie exp(β) + tiu

and
∂2 log L.(i)

∂β2 |xie=1,xiu=0 = − tiutie exp(β)(yie + yiu)
{tie exp(β) + tiu}2
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To obtain β̂,

∂ log L.

∂β
=

n∑
i=1

yiexietiu exp(xiuβ) − yiexiutiu exp(xiuβ)
tie exp(xieβ) + tiu exp(xiuβ)

+
n∑

i=1

yiuxiutie exp(xieβ) − yiuxietie exp(xieβ)
tie exp(xieβ) + tiu exp(xiuβ)

= 0

where n is the number of subjects. Since there is no closed form of solution for β,
either nonlinear optimization program or EM algorithm can be used to obtain the
maximum likelihood (partial) estimate of β. The standard error of the estimate
of β is the square root of this variance,

V ar(β̂) = inv{−E(
∂2 log L.

∂β2 )}
β=

ˆβ.

More generally, the variance-covariance matrix for a vector of parameter estimates
for a multivariate model is the inverse of the negative symmetric matrix of partial
second derivatives with respect to all pairs of parameters (Hessian matrix).

The difference in the likelihood function has no impact on fixed effect esti-
mates and their standard errors. If all of the subjects have the same exposed and
unexposed person-times (te and tu for all subjects) and there is only an exposure
indicator in the covariate vector, then the effect of exposure and its variance are

β̂ = log
∑n

i=1 yietu∑n
i=1 yiute

and

V ar(β̂) =
1∑n

i=1
tiutie exp(β̂)(yie+yiu)

{tie exp(β̂)+tiu}
2

=
{te exp(β̂) + tu}

2∑n
i=1 tute exp(β̂)(yie + yiu)

3. Matched Cohort Study

The purpose of a matched cohort study is to control confounding effects by
matching exposed to unexposed subjects on certain characteristics. Usually a
common correlation is assumed among the subjects within a stratum. Let k
denote the kth stratum, in which there are nk subjects who have the same values
of matching criteria. Similar to the SCCS study design, the conditional Poisson
likelihood for the kth stratum in a matched cohort study is then

LCL(k) =
nk∏
i=1

tki exp(xki)β∏nk
i=1 tki exp(xki)β

(3.1)
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where yki is the dependent variable and tki is the duration for subject i in the
kth stratum. If the unit of t is the day and an event can only occur once in a
day, we can treat each day as an observation, and then there are tki observations
for the ith subject in the kth stratum. The Cox’s stratified partial likelihood will
be

LPL(k) =
nk∏
i=1

exp(xki)β∏nk
i=1 tki exp(xki)β

(3.2)

We showed in section 2.2, that the difference between (3.1) and (3.2) has no
impact on the estimation of fixed effects. Thus, we expect the same estimates
of fixed effects and their standard errors from the conditional Poisson regression
and the Cox’s stratified partial likelihood method in matched cohort studies.

4. Examples

4.1 A SCCS study

Miller et al. (2001) studied the association between measles, mumps, rubella
(MMR) vaccine and idiopathic thrombocytopenic purpura (ITP) in children aged
12-23 months. The data were later updated in a SCCS tutorial by Whitaker et
al. (2006) The ITP events are defined as hospital admissions for ITP. Six of
the 35 children were admitted to hospital more than once during the follow up
period. In the tutorial, six age groups were used for a parametric model: 366-426
days, 427-487 days, 488-548 days, 549-609 days, 610-670 days, and 671-730 days.
However, mis-specification of the age groups can produce biased estimation of
the association of ITP with MMR. A semi-parametric model was proposed in
which the age effect was left unspecified (Whitaker, et al., 2006; Farrington and
Whitaker, 2006). In our current analysis, we fitted both parametric and semi-
parametric models in analyzing the MMR-ITP data. Three risk windows were
studied: 0-14, 15-28, and 29-42 days after vaccination. The days outside of the
risk windows represent the control window. A sample patient’s MMR-ITP data
were used to demonstrate how the data were expanded. This patient was followed
from day 366 to 730, was vaccinated at day 710, and experienced two events at
days 414 and 418. Computer programs (e.g., SAS) can be used to produce the
expanded data with three risk windows, five indicator variables for age groups
(671-730 day is the reference age group) , and 43 indicator variables for the days
that ITP events occurred.

Fitting the newly developed semi-parametric model is computationally chal-
lenging (Whitaker, et al., 2006). It is shown in Table 1 that both conditional
Poisson regression and Cox’s stratified partial likelihood method give the same
level of association and 95% confidence intervals between MMR and ITP for
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the three risk periods after MMR vaccination for both parametric and semi-
parametric models although the -2 log likelihood (-2ll) values differ. Coefficients
for age categories in the parametric models are the same for both methods (data
not shown). The parametric model (subject-stratified) for the expanded MMR-
ITP data included the following indicator variables risk1, risk2, risk3, age1, age2,
age3, age4 and age5. For the semi-parametric model (subject-stratified), indica-
tor variables Iday1-Iday43 were added to covariates. Coefficients for all 43 events
days were given in the above model. In the semi-parametric model from STATA,
42 coefficients were given relative to the one of Iday1 (set to zero). The same
values of 42 coefficients relative to Iday1 can be obtained by subtracting a coef-
ficient with the one of Iday1. For example the coefficients for Iday1 and Iday2
are 19.377 and 19.287, respectively. The coefficient of Iday2 relative to Iday1 is
19.287-19.377= -0.09, which is identical to the output from STATA. Statistical
test (e.g., test statement in PHREG in SAS) can be used to examine if the relative
coefficient equals to zero.

Table 1: Relative incidences (95% CI) for analyses of ITP and MMR∗

Risk period: days after MMR

Methods 0-14 15-28 29-42 -2 ll∗∗

PL+ parametric 1.31 (0.30, 5.73) 5.95 (2.52, 14.07) 2.60 (0.75, 9.07) 486.7
semi-parm 1.46 (0.32, 6.60) 5.45 (2.17, 13.66) 2.04 (0.56, 7.50) 361.2

CL++ parametric 1.31 (0.30, 5.73) 5.95 (2.52, 14.07) 2.60 (0.75, 9.07) 226.8
semi-parm 1.46 (0.32, 6.60) 5.45 (2.17, 13.66) 2.04 (0.56, 7.50) 299.7

∗, days outside of the risk windows represent the control window.
∗∗, −2 log PL or −2 log CL.
+, Cox,s stratified partial likelihood method fitted in SAS for both parametric and semi-
parametric models.
++, conditional Poisson likelihood regression fitted in SAS for the parametric model and in
STATA for the semi-parametric model.

4.2 A matched cohort study

This study compares health services use and cost between obese and non-obese
managed care organization (MCO) members (Raebel, et al., 2004). A total of
539 obese and 1,225 non-obese members were matched by age, sex, and medical
clinic with matching ratios from 1 to 3. One outcome of interest is professional
service claims over a one year period. Letting yki be the number of professional
service claims over a one year period (tki) for member i in the kth stratum, we
assumed that the member had events (professional service claims) in yki days,
and no events in (365- yki) days. The source data does not identify on which day
professional service claims occurred and they were arbitrarily assigned to the days
during the follow-up period. The ordering of days is arbitrary and irrelevant to
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the Cox’s stratified partial likelihood method. The results from the conditional
Poisson likelihood regression and Cox’s stratified partial likelihood method are
shown in Table 2.

Table 2: Relative incidences (95% CI) comparing professional services claims
between obese and non-obese HMO members.

Methods Relative incidences -2 ll*
PL+ 1.79 (1.57, 2.04) 13197.0
CL++ 1.79 (1.57, 2.04) 2223.2

∗, −2 log PL or −2 log CL.
+, Cox’s stratified partial likelihood method fitted in SAS.
++, conditional Poisson likelihood regression fitted in SAS.

5. Discussion

To our knowledge, this is the first paper to compare the likelihood of a condi-
tional Poisson regression model to partial likelihood of a stratified proportional
hazards regression model in both a matched cohort and SCCS analysis. Despite
the differences in the likelihood functions, the estimates and standard errors
of coefficients from the conditional Poisson regression models and the stratified
proportional hazards models are equivalent. If time intervals in the conditional
Poisson regression models are expressed as single days, the likelihoods become
identical. Theoretically, we proved that the maximum likelihood estimates from
these two approaches are the same because the first and second derivatives of
the log-likelihood function, with respect to the coefficients, are identical. Using
actual MMR vaccination and ITP case information, we also published a simula-
tion study (Glanz, et al., 2006) in which data were simulated based on different
risk levels (relative incidence=1.5, 2.0, 3.0, 4.0), with varying person times across
the subjects, and with and without time-varying covariates (seasonality). The
simulated data sets contain no ’real’ heath care information. The simulation re-
sults showed that the two approaches generated identical results under all of the
conditions.

Conditional Poisson regression is a useful method for estimating relative inci-
dences in a matched pair setting such as SCCS and matched cohort studies. More
recently, Roy et al. (2006) developed new estimation strategies that allow en-
dogenous time-varying covariates and missing at random dropouts in conditional
Poisson models. Establishing conditions under which conditional Poisson regres-
sion models may be implemented using a Cox’s proportional hazard framework
would be beneficial for several reasons. First, unlike procedures for Cox’s propor-
tional hazard models, conditional Poisson regression models are not universally
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available in commercial software packages. For instance, conditional Poisson re-
gression models are offered in STATA (StataCorp, 2003) but not in SAS (SAS,
2002). Although conditional Poisson models are coded in a series of macros in
SAS from the website http://statistics.open.ac.uk/sccs, it requires the knowledge
of SAS macros and running a series of SAS macros. It has also been shown that
maximizing the log conditional Poisson likelihood is equivalent to maximizing
the Poisson log-likelihood with a fixed intercept entered in the model for each
subject in a SCCS study or for each cluster in a matched cohort study (Lan-
caster, 2002). However, the recently developed semi-parametric models, which
are designed to avoid estimation bias from the mis-specification of age groups,
pose computational challenge and can not be easily fitted in SAS. It is shown
in the MMR-ITP example that the complex semi-parametric models can be eas-
ily fitted using the SAS procedure PHREG. Regardless of the software package,
most statisticians are quite familiar with statistical procedures for fitting Cox’s
proportional hazard models since it is the most commonly used method for per-
forming time-to-event analyses. In particular, statistical analysts in the field of
vaccine safety could benefit from understanding the relationship between the con-
ditional Poisson regression models and the stratified Cox’s proportional hazard
models and, furthermore, how to create the datasets and use Cox’s partial likeli-
hood to obtain relative incidence estimates in SCCS studies while adjusting other
time-varying covariates such as seasonality and ages.
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