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Abstract. Pattern structures, an extension of FCA to data with com-
plex descriptions, propose an alternative to conceptual scaling (binariza-
tion) by giving direct way to knowledge discovery in complex data such
as logical formulas, graphs, strings, tuples of numerical intervals, etc.
Whereas the approach to classification with pattern structures based on
preceding generation of classifiers can lead to double exponent complex-
ity, the combination of lazy evaluation with projection approximations
of initial data, randomization and parallelization, results in reduction of
algorithmic complexity to low degree polynomial, and thus is feasible for
big data.

1 Introduction

In many real-world knowledge discovery problems researchers have to deal with
complex descriptions different from binary datatables. In the last two decades
the use of closed descriptions defined either in terms of Galois connections,
semilattical similarity operation (i.e., operation which is idempotent, commu-
tative, and associative) or in equivalent terms of counting inference proved to
be very useful in various knowledge discovery applications, such as ontology
and taxonomy engineering, mining association rules, machine learning, classi-
fication, and clustering. Several attempts were done in defining closed sets of
graphs 27,136, 129,134,132, 2, [19], strings |11}, [12], numerical intervals |26, 25], log-
ical formulas |7, 110], etc. In [16] a general approach called pattern structures was
proposed, which allows one to extend FCA techniques to arbitrary partially or-
dered data descriptions. Using pattern structures, one can compute taxonomies,
ontologies, implications, implication bases, association rules, concept-based (or
JSM-) hypotheses in the same way it is done with standard concept lattices.
Big data gives another dimension to processing complex description. Using
projections as approximation tools for pattern structures does not help enough,
because general FCA-based knowledge discovery procedures, like generation of
all concepts, implication bases, compact representations of association rules, sets
of minimal hypotheses, have exponential worst-case complexity and many other
complexity features making their computation hardly scalable [30,133,19, 13, 4]. To
meet the big data challenge the problem settings of knowledge discovery should
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be recast to allow for faster procedures. In this paper we show how the clas-
sification and inference problems based on implications, association rules, and
hypotheses can be reformulated to achieve scalability even for complex descrip-
tions.

The rest of the paper is organized as follows: In Section 2 we recall basic defi-
nitions in pattern structures, give examples of applications with graph-based and
interval based pattern structures. In Section 3 we describe our approach to effi-
cient classification with pattern structures, we relate it to some other approaches
outside FCA and make a conclusion in Section 4.

2 Knowledge Discovery with Pattern Structures

2.1 Main Definitions and Results

Let G be a set (of objects), let (D, M) be a meet-semi-lattice (of all possible
object descriptions) and let § : G — D be a mapping. Then (G, D, §), where
D = (D, M), is called a pattern structure, provided that the set §(G) := {0(g)|g €
G} generates a complete subsemilattice (Ds, M) of (D, M), i.e., every subset
X of §(G@) has an infimum MX in (D, M). Elements of D are called patterns
and are naturally ordered by subsumption relation C: given ¢, d € D one has
¢ C d < cnd = c. Operation M is also called a similarity operation. A pattern
structure (G, D, ) gives rise to the following derivation operators (-)°:

A2 =] s(9) for AC G,
geA
d*={ge€G|ldC é(g9)} for d € (D, M)

These operators form a Galois connection between the powerset of G and (D, C).
The pairs (A, d) satisfying A C G, d € D, A® =d, and A = d° are called the
pattern concepts of (G, D, 0), with extent A and pattern intent d. For a, b € D
the pattern implication a — b holds if a® C b°, and the pattern association rule

< < < <
a —¢s b with confidence ¢ and support s holds if s > % and ¢ > %.

Like in case of association rules [37,138], pattern association rules may be inferred
from a concise representation that corresponds to the set of edges of the diagram
of the pattern concept lattice. Operator (-)°° is an algebraical closure operator
on patterns, since it is idempotent, extensive, and monotone.

In [16] by applying the basic theorem of FCA [18] we showed that if (D, M) is
a complete meet-semi-lattice (where infimums are defined for arbitrary subsets of
elements), in particular a finite semi-lattice, there is a subset M C D with the fol-
lowing interesting property: The concepts of the formal context (G, M, I) where
I is given as gIm = m C §(g), called a representation context for (G, D, §),
are in one-to-one correspondence with the pattern concepts of (G, D, §). The
corresponding concepts have the same first components (called extents). These
extents form a complete lattice, which is isomorphic to the concept lattice of
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(G, M, I). This result shows the way to binarizing complex data representa-
tion given by a pattern structure. The cost of this binarization may be a large
amount of attributes of the representation context and hence, the space needed
for storing this context.

The concept-based learning model for standard object-attribute representa-
tion (i.e., formal contexts) |13, 28,130] is naturally extended to pattern structures.
Suppose we have a set of positive examples G and a set of negative examples
G_ w.r.t. a target attribute, G N G_ = @, objects from G, = G\ (G UG_)
are called undetermined examples.

A pattern h € D is a positive hypothesis iff

NG =0and JAC G, : A°=h

A positive hypothesis is the least general generalization of descriptions (“sim-
ilarity”) of positive examples, which is not contained in (does not cover) any
negative example. A negative hypothesis is defined similarly. Various classifica-
tion schemes using hypotheses are possible, as an example consider the following
simplest scheme from [13;[29,16]: If description §(g) of an undetermined example
¢ contains some positive hypothesis h, i.e., h C §(g), then g is classified posi-
tively. Negative classifications are defined similarly. If §(g) contains hypotheses
of both kinds, or if §(g) contains no hypothesis at all, then the classification is
contradictory or undetermined, respectively, and some probabilistic techniques
allowing for a certain tolerance should be applied.

For some pattern structures (e.g., for the pattern structures on sets of graphs
with labeled vertices) even computing subsumption of patterns may be NP-hard.
Hence, for practical situations one needs approximation tools, which would re-
place the patterns with simpler ones, even if that results in some loss of infor-
mation. To this end we use a contractive monotone and idempotent mapping
v : D — D that replaces each pattern d € D by 1(d) such that the pattern
structure (G, D, 9) is replaced by (G, D, 1 o0¢). Under some natural algebraic
requirements that hold for all natural projections in particular pattern struc-
tures we studied in applications, see |34], the meet operation M is preserved:
P(X NY) = ¢(X)Ny(Y). This property of a projection allows one to relate
hypotheses in the original representation with those approximated by a pro-
jection. The representation context of the projected case is obtained from the
unprojected one by removing some attributes. If ¢(a) — ¥(b) and ¥(b) = b
then a — b for arbitrary a, b € D. In particular, if ¢(a) is a positive (negative)
hypothesis in projected representation, then a is positive (negative) hypothesis
in the original representation.

2.2 Pattern Structures in Applications

One may argue that a semi-lattice on descriptions is a too demanding require-
ment. We show easily that this is not the case, see also [1]. Any natural kind of
descriptions available for data analysis has an explicitly or implicitly given par-
tial order relation in the form of “is a” or “part of” relation. Having a partially
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ordered set (P, <) of descriptions one can define a similarity operation N on sets
of descriptions as follows: For two descriptions X and Y from P

(X}N{Y} ={Z2|1Z<X,Y,VZ. < XY Z, # Z},

e, {X}M{Y} is the set of all maximal common subdescriptions of descriptions

X and Y. Similarity of non-singleton sets of descriptions {X7, ..., X3} and
{Y1, ..., Y,,} is defined as
{X1, ., X} {va, o, Yod = MAX< (X 0 {Y5}),
2%

where M AX<(X) returns maximal elements of X w.r.t. <. The similarity oper-
ation M on sets of descriptions is commutative: X MY = Y M X and associative:
(XNY)NZ =XN(YNZ). A set X of descriptions from P for which XYM =X
holds defines a pattern. Then the triple (G, (D, 1M),d), where D is the set of all
patterns, is a pattern structure.

One can think of X MY in the following way, which also gives a straightfor-
ward approach to computing M: One takes the set of all subdesriptions of all
descriptions of X and takes set-theoretic intersection (i.e., N) of this set with
the set of all subdescriptions of all descriptions of ). Finally, from the resulting
set of subdescriptions one chooses the maximal ones w.r.t. the partial order <
on descriptions.

From the lattice-theoretical viewpoint the whole construction looks as follows:
One takes the distributive lattice of order ideals of (P, <) [6], with M being the
meet in this lattice, and computes its subsemilattice generated by all descriptions
of objects from G. For a finite sets G this subsemilattice is finite too, and the
respective LI operator can be defined as

Xuy=n{i(g) |ge G X, YT g}

Note that LI is not the join of the distributive lattice of order ideals, it is the
“ad hoc” join given by M and descriptions of objects from G, and therefore the
lattice given by M and Ul is not necessarily distributive.

Pattern Structures on Sets of Graphs. In [27,29] we proposed a semi-lattice
on sets of graphs with labeled vertices and edges. This semilattice is based on a
partial order given by subgraph isomorphism or its generalizations. For example,
in |29, 16] the following natural order relation on graphs with labeled vertices
and edges, called domination relation, was proposed. Consider connected graphs@
with vertex and edge labels from set £ partially ordered by <. Denote the set of
graphs with labeled vertices and edges by P. Each graph I" from P is a quadruple
of the form ((V, 1), (E, b)), where V is a set of vertices, E is a set of edges,
l:V — L is a function assigning labels to vertices, and b : E — L is a function
assigning labels to edges. In (P, <) we do not distinguish isomorphic graphs.

! Omitting the condition of connectedness, one obtains a similar, but computationally
much harder model.
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For two graphs Fl = ((‘/1, ll), (El, bl)) and FQ = ((‘/Q, 12), (EQ, b2))
from P we say that Iy dominates I'y or Iy < I (or Iy is a subgraph of I7) if
there exists an injection ¢ : V5 — V; such that it respects edges: (v,w) € Ey =
(p(v), p(w)) € Eq and fits under labels: la(v) < l1(e(v)), if (v,w) € Es, then
ba(v,w) < b (p(v), p(w)).

Obviously, (P, <) is a partially ordered set. Having a partial order on graphs,
one can use the definitions above to define similarity operation M and closure
operator (-)°°. A set of graphs X is called closed if X°® = X. This definition is
related to the notion of a closed graph in data mining and graph mining, which
is important for computing association rules between graphs. Closed graphs are
defined in [40] in terms of “counting inference” as follows. Given a graph dataset
E, support of a graph g or support(g) is a set (or number) of graphs in F that
have subgraphs isomorphic to g. A graph g is called closed if no supergraph
f of g (i.e., a graph such that g is isomorphic to its subgraph) has the same
support. In terms of pattern structures, F is a set of objects, each object e € F
having a graph description d(e), support(g) = {e € E|d(g) < e}. Closed sets of
graphs [21, 29] form a meet semi-lattice w.r.t. M. Closed graphs [40] do not have
this property, since in general, there are pairs of closed graphs with no infimums.
However, closed graphs and closed sets of graphs are intimately related [34, 131
as stated in the following.

Proposition 1. Let a dataset described by a pattern structure (E,(D,M),d) on
graphs be given, i.e., E is a set of objects with graph descriptions, and (D,M) is
a semilattice on graph sets. Then the following two properties hold:

1. For a closed graph g there is a closed set of graphs G such that g € G.

2. For a closed set of graphs G and an arbitrary g € G, graph g is closed.

Hence, one can use the algorithms for computing (frequent) closed sets of graphs
[29,132] to compute closed graphs. A learning model based on graph pattern struc-
tures along the lines of the previous subsection was used in series of applications
in bioinformatics |17, [34], in text analysis [15] and conflict analysis [14].

Pattern Structures on Intervals. In practice, a typical object-attribute data
table is not binary, but has many-valued attributes. In FCA a quadruple K; =
(G, S, W, I), where G, S, W are sets and I; is a ternary relation I; C
G x S x W, is called a many-valued context. Consider an example of analyzing
gene expression data (GED) given by many-valued tables [25]. The names of
rows correspond to genes, the names of the columns correspond to situations
where genes are tested. A table entry is called an ezpression value. A row in the
table is called expression profile associated to a gene. In terms of many-valued
contexts, the set of genes makes the set of objects G, the set of situations makes
the set of many-valued attributes S, the set of expression values makes the set
W CRand J C G xS xW. Then K = (G, S, W, J) is a many-valued context
representing a GED. The fact (g, s, w) € J or simply ¢g(s) = w means that
gene g has an expression value w for situation s. The objective of GED analysis
is to extract subsets of genes sharing “similar values” of W, i.e. lying in a same
interval.
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To represent intervals of numerical values, one can use interordinal scaling (see
p. 42 in [18]) of the form Iy, = (W,, W,, <)|(W,, W, >), where apposition
| of two contexts, applied to a pair of contexts with the same set of objects,
returns a context with the same set of objects and the set of attributes being
the disjoint union of the attribute sets of the apposed contexts. For example, for
the set W, = {4, 5,6}, the interordinal scale is

51 <45, <55 <68 >451>552>6
4| X X X X
5 X X X X
6 X X X X

The intents of an interordinal scale are intervals of attribute values.

Instead of scaling, one can directly work with many-valued attributes by ap-
plying interval pattern structures, which were successfully applied to the GED
analysis [24, 25]. For two intervals [a1, b1] and [ag, ba], with a1, b1, a2, by € R,
we define their meet as

[a17 bl] [ [ag, bg] = [min(al, ag), max(bh bg)]

This operator is obviously idempotent, commutative and associative, thus defin-
ing a pattern structure on tuples (vectors) of intervals of attribute values.
The natural order relation (subsumption) on intervals is given as follows:

la1, b1] C [az, bo)
[

]
= [al, bl] M [CLQ, b2] al, bl]
]

< [min(ar, ag), max(b, b2)] = [a1, bi]
< a1 < ag and by > by

Contrary to the usual intuition, smaller intervals subsume larger intervals that
contain the former. The meet M for vectors (tuples) of intervals is defined
component-wise. Interval p-vector patterns are p-dimensional rectangular par-
allelepipeds in Euclidean space. Another step further would be to allow for any
type of patterns for each component. The general meet operator on a vector like
that is defined by component-wise meet operators.

For a many-valued context (G, M,W,J) with W C R consider the respec-
tive pattern structure (G, (D,M),d) on interval vectors, the interordinal scaling
Iy, = (Ws, Ws, <)|[(Ws, Ws, >), and the context K resulting from interor-
dinal scaling Iy, to (G, M,W,J). Consider usual derivation operators (-)" in
context K. Then the following proposition establishes an isomorphism between
the concept lattice of K and the pattern concept lattice of (G, (D, ), 9).

Proposition 2. Let A C G, then the following statements 1 and 2 are equiva-
lent:
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1. Ais an extent of the pattern structure (G, (D,M),d) and A® = ([m;, Mi])ie[1,p)
2. A is a concept extent of the context K1 so that for all i € [1, p] m; is the
largest number n such that the attribute s; > n is in A’ and m; is the smallest

number n such that the attribute s; < n is in A’.

So, the lattice of interval pattern structures is isomorphic to the concept lattice
of the context that arises from the interordinal scaling of the initial many-valued
numerical context. However, interval tuples give better understanding of results
and computation with them is faster than that with interordinal scaling [23-25].

Other Types of Pattern Structures. Partition pattern structures [5] are
useful for describing and computing dependencies in many-valued contexts when
attribute values are understood nominally, i.e., having no similarity as in case of
similarity intervals for numbers. Taking attributes of the many-valued context
as new objects and partitions on the set of (old) objects w.r.t. attribute values as
patterns allows one to compute functional dependencies directly from the table,
without quadratic blow-up resulting from reducing many-valued context to a
binary context where new objects are pairs of the objects of the initial many-
valued context, and implications in the new context are syntactically the same
as functional dependencies in the original many-valued context, see [18]. Pattern
structures were also used for computing ontologies from partial ordered data on
annotations [g].

3 Pattern Structures for Big Data

On the one hand, the goal of computing implications, association rules, hy-
potheses, and there concise representations is to “understand” data by creating
“knowledge” in the form of implicational dependencies (classifiers). On the other
hand, the goal is to use these dependencies for making predictions for new data.
Intractability results on the sizes of concepts [30], implication bases [33, 19, 4],
(minimal) hypotheses [30,13] say that the amount of “knowledge” generated from
data can be exponential in the size of data, this amount being hardly possible
to estimate before computing the whole set of dependencies. This kind of knowl-
edge cannot give us better explanation of data than data themselves and for
large datasets may be even inractable. Possible solutions can be feature selec-
tion approaches (i.e., selecting representative attributes), sampling (i.e., selecting
representative objects), generating small subsets of dependencies which would
classify “almost in the same way” as the whole set of dependencies. Another
option is not to generate dependencies at all, since if one needs “knowledge” for
making predictions, i.e., defining missing information like classes of objects de-
scribed by new data, one does not need having (all) knowledge given explicitly,
one just needs having predictions equivalent to those made when all knowledge
is there.
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FCA allows one to benefit from this important distinction by using the equiv-
alence of implicational closure and closure given by the double prime operator
()", or (+)°° in the pattern structures.

Missing information about an object g, with a description §(g,,) is something
that distinguishes d(g,,) from a “larger” information F' € D such that §(g,) C F.
A very natural example of such a missing information is a value of one binary
attribute, which can be a target or class attribute, all other information about
objects and their descriptions being given by a pattern structure (G, (D, M), d),
so one has to predict the value of the target attribute. The situation can be
described in the extended pattern structure

(G, (Dx,Mx),0%) = (G, ((D,M) x ({0,1},A)),d Uwval),

where A is logical conjunction and the mapping val : G — {0, 1} says whether an
object has the target attribute or not. In the following subsections we show how
it works for various types of dependencies. Let us first consider the complexity
of computing in pattern structures and in projections.

Many algorithms for computing concept lattices, like NextClosure and CbO,
may be adapted to computing pattern lattices in bottom-up way. The worst-
case time complexity of computing all pattern concepts of a pattern structure
(G, D, 0) in the bottom-up way is O((p(M) + p(C)|G]|) - |G| - |L|), where p(M)
is time needed to perform MM operation, p(C) is time needed to test T relation,
and L is the set of all patterns. In case of graphs, even p(C) may be exponential
w.r.t. the number of graph vertices, that is why approximations (like those given
by projections) are often needed. For a fixed projection size p(C) and p(M) can
be considered constant. To compute graph patterns in the top-bottom way, e.g.,
for computing frequent patterns, one should seriously remake an existing FCA
algorithm by getting access to the “fine” structure of descriptions, like it was
done for graphs in |32]. The worst-case time complexity of computing the set of
interval pattern structures is O(|G|? - |[M| - |L|), which in practice can be much
lower than the worst-case complexity of computing the set of all concepts of the
interordinally scaled numerical context, which is O(|G|? - [W| - |L|), where W is
the set of all attribute values.

3.1 Classifying with Implications and Association Rules

One of the basic observations in FCA is the equivalence of the implicational
closure of a subset of attributes B C M (i.e., applying to B implications of
the base until the result cannot be extended anymore) and the closure given
by the double prime operator (-)” [18]. For example, in [35] we used this fact
to correct data tables by filling missing attributes. Due to the equivalence of a
pattern structure to a representation context [16], the same equivalence holds in
an arbitrary pattern structure. So, when the class attribute of the description
of a new object g, to be classified with respect to the implications that hold
in the training set given by a pattern structure (G, (D,M),d) is missing, one
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can just compute the closure (w.r.t. (G, (Dx,Mx*),0%)) of the intersection of the
description of the new object with description of every object g € G. If for some
object g the closure contains the target attribute, g, is classified positive by
implications of (G, (Dx,Mx), d%), otherwise it is classified negatively. This can
be described as the following simple two-stage procedure:

1. For every g € G compute ((g,)M0(g))°, i.e. select all objects from G whose
descriptions contain d(g,) M d(g). This takes O(|G| - (p(M) + |G| - p(C))) time.

2. If for some g € G all objects from (§(g,)M0(g))° have the target attribute,
classify g, positively, otherwise negatively. This takes O(|G|?) time for looking
for the target attribute in object descriptions in at most |G| families of object
subsets, each subset consisting of at most |G| objects.

If there is still need for collecting implications, an option is to extract only
those implications from the minimal generator or proper premise bases, which
would produce this very classification if it had been done with the use of an
explicitly generated implication base. To this end one computes minimal gen-
erators or proper premises of the pattern E (target attribute) given the set of
objects GU{gy, } together with their descriptions, using standard algorithms and
their improvements, like e.g. in [39]. Thus, the process of collecting implications
will follow classification tasks which come from practical needs. One can call this
collection of implications an anecdotal or experimental subbase.

Example. A formal context represents the simplest form of a pattern structure.
Consider the following context, where my is the target attribute.

G\Mm0m1 mo ™3 Mg My Mg
g1 X X X X
g2 X X X X
g3 X X X X
ga X X X X X X
gs X | X X X X X
g6 X | X X X X X
g7 X | X X X X X
gs X | X X X X X
go X | X X X X X

Here, we have 23 = 8 pseudo-intents: {my, ma, m3}, {m1, ma, mg}, {m1, ms, ms},
{m1,ms,me}, {ma,ma,ms}, {mqg, ma, mg}, {mq, ms,ms}, {mq,ms, mg} and
the corresponding implications in the Duquenne-Guigues base |20]. To classify
two new objects with intents {mq,m2, ms} and {mq,ma, mz} w.r.t. mg in the
standard way, one needs to compute all implications in the base (the number
of them is exponential in |M]) and apply them all to new object intents. In-
stead of doing this, one can just compute closures ({mi,ma2,ms} N g¢’)" and
({m1,m2,m3} N g")" for every g € G - which takes just O(|G|* - |M]) time - to
realize that the first object should be classified negatively (no target attribute
myg), and the second object should be classified positively.
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In case of using association rules for classification instead of implications, a
natural way is to accept that the new object g, has the missing subpattern
(attribute) F' if there is an association rule D — E with a confidence more than
6, where 6 is a parameter such that D C §(g,) and F C E. If one does not
need to produce all valid association rules (with sufficiently large confidence and
support), but just needs to know how the set of the valid rules would classify the
new object g, w.r.t the missing subpattern F', one can proceed in the following
way: for every object g from G one computes 0(g,) Md(g) and tests whether at
least @ part of all objects from G that contain 6(g,) Md(g) also contain F. This
takes O(|G| - p(M)) time for computing all intersections and O(|G|? - p(E)) for
testing all containments.

3.2 Classifying with Hypotheses

Classification with hypotheses even when they are not to be generated, is not
tractable, unless P=NP [30]. However, one can slightly change the definition of
the classification to obtain the following tractable version, which we call lazy
hypothesis evaluation.

— Suppose that the object g, to be classified is added to the set of positive ex-
amples. Can the hypotheses arising from the new context classify the object
gn positively if we “forget” its class value?

— Suppose also that the object g, to be classified is added to the set of nega-
tive examples. Can the hypotheses arising from the new context classify the
object g, negatively if we “forget” its class value?

If only the first question is answered “yes”, object g, is classified positively, if
only the second question is answered “yes”, then g, is classified negatively. If
both or none, the object remains unclassified. Note that if there is a positive
hypothesis in favor of positive classification of g, as described in Section 2.1 the
first question is answered “yes”, symmetric for negative classification and second
question.

In this classification setting, one does not need to compute all hypotheses, but
can take the largest ones that are contained in 6(gy,) . For considering positive
classification these hypotheses are sought among all intersections of the form
d(gn)Md(g), where g € G4, after which this intersections are tested for the con-
tainment in descriptions of all negative examples g € G_. Similarly for negative
hypotheses. Note that there are at most |G| such positive and at most |G_|
such negative hypotheses, so, the total time needed for computing classification
is at most O(|G4|+|G-]) - (p(M) +p(E)), where p(M) > p(E). Together with the
above considerations about implications this proves the following

Proposition 3. Classification of an object can be done for

— implications in O(|G| - (|G| - p(C) + p(M))) time and in O(|G|?) time in
projections of fixed size;

— lazy hypothesis evaluation in O((|G4 |+ |G=]|) - p(M)) time and in O(|G4|+
|G_]) time in a projection of fized size.
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3.3 Parallelization and Possible Randomization

We have reduced classification with implications, association rules, and hypothe-
ses to computing (6(g) M 6(g,))° and testing the target attribute in all ob-
jects of this set, which is easily parallelizable: one partitions the dataset G in
G = Gy U...UGy, where k is the number of processors, computes in each G;
the set of objects (d(g)Md(gn))®, tests the target attribute for all objects in the
union of these sets over i. Thus, we have the following

Proposition 4. Classification of m objects using k processors can be done for
— implications in O(|G| - (|G| - p(C) + p(M)) - m/k) time and in O(|G|* - m/k)
time in projections of fized size;
— lazy hypothesis evaluation in O((|G4| + |G_|) - p(N) - m/k) time and in
O((|G+| + |G=]) - m/k) time in projection of fized size.

Randomization can be realized by taking random objects from each of G; for
computing the closures. Here, classification with association rules will not change,
since the random estimate of the confidence will converge to the confidence, but
will change classifications based on implications and hypotheses, making them
probabilistic: one will have to assign correct probability values to them.

4 Related Work and Conclusions

Pattern structures propose a useful means for discovering implicational dependen-
cies in data given by complex ordered descriptions. Even most concise representa-
tions of knowledge that can be mined from data can be intractable for binary con-
texts, the simplest type of pattern structures. We have proposed an approach where
one does not need to mine all knowledge, but produce necessary classifications di-
rectly from data, saving knowledge that was used for classification. Our approach
is close to some approaches outside FCA: Nearest Neighbors [41] (finding nearest
classes in metric spaces), Case-Based Reasoning [21/] (classifying similar to clas-
sification of similar cases), abduction in Horn theories [22] (lazy evaluation from
models instead of generating implications on Boolean variables), however differs
from them in being based on partially ordered structures, not metric or Boolean.
Using projections, parallel computations and randomization, one can drastically
reduce algorithmic complexity from double exponential to low degree polynomial
and meet the challenge of big complex data.
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