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FITTING SMOOTH PATHS ON RIEMANNIAN
MANIFOLDS

LUÍS MIGUEL MACHADO AND F. SILVA LEITE

Abstract: In this paper we formulate a least squares problem on a Riemannian
manifold M , in order to generate smoothing spline curves fitting a given data set
of points in M , q0, q1, . . . , qN , at given instants of time t0 < t1 < · · · < tN .

Using tools from Riemannian geometry, we derive the Euler-Lagrange equations
associated to this variational problem and prove that its solutions are Riemannian
cubic polynomials defined at each interval [ti, ti+1[, i = 0, . . . , N − 1, and satisfying
some smoothing constraints at the knot points ti. The geodesic that best fits the
data, arises as a limiting process of the above.

When M is replaced by the Euclidean space IRn, the proposed problem has a
unique solution which is a natural cubic spline given explicitly in terms of the data.
We prove that, in this case, the straight line obtained from the limiting process is
precisely the linear regression line associated to the data.

Using tools from optimization on Riemannian manifolds we also present a direct
procedure to generate geodesics fitting a given data set of time labelled points for
the particular cases when M is the Lie group SO(n) and the unitary n−sphere Sn.

Keywords: Covariant differentiation, curvature tensor, geodesics, geodesic dis-
tance, Riemannian cubic polynomials, normal equations.

1. Introduction

The most primitive and important class of functions for the purpose of
fitting curves to data in Euclidean spaces is indeed the class of polynomial
curves. Polynomial interpolation is the most elementary notion of curve
fitting. We refer to Lancaster and Salkauskas [14] for an overview of the
curve fitting problem.

The classical least squares method, introduced by Lagrange (1736-1813),
can also be seen as a typical method for fitting curves. Here we are given a
finite set of points in IRn, q0, q1, . . . , qN , and a sequence of instants of time
t0 < t1 < · · · < tN and the objective is to find, in the class Pm of polynomial
functions of degree not exceeding m (m ≤ N), a polynomial that best fits
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the given data, in the sense that the functional

E(γ) =
N
∑

i=0

d2 (qi, γ(ti)) ,

should be as small as possible, where d denotes Euclidean distance.
It is well known ([14]) that for each m ∈ IN, with m ≤ N , there exists

a unique polynomial in Pm minimizing E, whose m + 1 coefficients can be
obtained by solving a linear system of equations known in the literature as
the “normal equations”.

The progression from polynomial to piecewise polynomial gave rise to spline
methods for curve fitting. These more advanced methods turned out to be
more flexible and powerful than the classical methods.

Interpolating polynomial splines in Euclidean spaces appeared in the 1940’s
as the solution of some optimization problems. The most common are the
cubic splines, which minimize changes in velocity and are, for that reason,
particularly useful in applications. Other interpolating splines (generalized
splines, L-splines,...) have been introduced and their optimal properties have
been studied.

Splines on Riemannian manifolds have received much attention during the
last 15 years, since the pioneer work of Noakes et al. [17]. Other rele-
vant works, where splines are also seen as solutions of a variational problem,
include Crouch and Silva Leite [6, 7]), Camarinha [2] and Krakowski [13].
Contrary to these contributions on interpolating splines, our concentration
goes to spline curves that best approximate a given data on a Riemannian
manifold. This might be more realistic in situations where the data is cor-
rupted by noise and frequently also results in a significant decrease in the
cost. This is also of particular importance for problems arising, for instance,
in physics and engineering. Trajectory planning in aeronautics, robotics,
and biomechanics are some areas which motivate the study of least squares
problems on Riemannian manifolds, since the configuration spaces of most
mechanical systems have components which are particular manifolds, such is
the case of Lie groups or symmetric spaces. The case when the manifold is
the 2-dimensional sphere, has been extensively studied in the early 80’s (see,
for instance, Jupp and Kent [11] and references therein). In particular, Jupp
and Kent defined smoothing spherical splines and presented a method for
computing them, which is based on a reduction of the problem to the plane
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tangent to S2, at a particular point, via convenient diffeomorphisms. Splines
fitting data on general Riemannian manifolds is the subject of this article.

The paper is organized as follows. In section 2, we revisit the classical
Euclidean least squares method and present an alternative approach using
techniques from optimization on Riemannian manifolds. The linear regres-
sion line appears as a particular case.

For Riemannian manifolds where explicit formulas for geodesics are avail-
able, the least squares problem for the linear regression line can easily be gen-
eralized. Such is the case of the Lie group SO(n) and the unitary n−sphere
Sn. In section 3 we formulate the optimization problems corresponding to
such generalization, and derive the counterpart of the “normal equations”,
which are necessary conditions for the best fitting geodesic.

In section 4 we formulate the least squares problem corresponding to fitting
by cubic splines on Riemannian manifolds. The situation is now more com-
plex since no explicit forms for cubic polynomials on a general Riemannian
manifold M are known. However, these curves have been defined as critical
points for the functional

L(γ) =

∫ 1

0

〈
D2γ

dt2
,
D2γ

dt2
〉 dt,

defined over the class of twice continuously differentiable curves in M , where

〈·, ·〉 is the Riemannian metric and D2γ
dt2

denotes covariant acceleration along
the curve t 7→ γ(t). So, the corresponding least squares problem can be
formulated as: “Find a curve on M which minimizes the functional

J(λ) = E(γ) + λL(γ),

where λ > 0 is a smoothing parameter and the distance defining E is the
geodesic distance on M”.

We derive necessary optimality conditions for the functional J and prove
that when λ converges to +∞ the curve reduces to a geodesic fitting the
data. For the particular case when M = IRn, this limiting process produces
the linear regression line.

2. The Euclidean least squares method revisited

The least squares method (see, for instance, Lancaster and Salkauskas [14]),
is a classical example of fitting curves to data in Euclidean spaces. In this
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method we are given a finite sequence of distinct points in IRn,

q0, q1, . . . , qN , (1)

and a sequence of instants of time

t0 < t1 < · · · < tN , (2)

and the objective is to find a polynomial function t 7−→ x(t), of degree not
exceeding m, with m ≤ N , that best fits the given data in the sense that the
functional

E(x) =
1

2

N
∑

i=0

[d (x(ti), qi)]
2 , (3)

should be as small as possible, where d denotes the Euclidean distance.We
denote by Pm the family of polynomial functions t 7−→ x(t) ∈ IRn, with
degree less than or equal to m (and assume that m ≤ N).

Since t 7−→ (t−t0)/(tN−t0) defines a bijection between the intervals [t0, tN ]
and [0, 1], from now on we also assume that the instants of time (2) form a
partition of the interval [0, 1].

Most literature solves that problem for data in IR, but the approach is
easily adapted to the Euclidean space IRn. Here we show that the least
squares problem above can be reformulated as an optimization problem in
the matrix space IR(m+1)×n, equipped with the Euclidean inner product

〈X, Y 〉 = tr(X⊤Y ).

For that, we first have to introduce some notation.
A point y ∈ IRn will be denoted by

y =









y1

y2

...
yn









. (4)

If yj denotes the value of x at the instant of time tj, the functional defined
by (3) may be written as

E(x) =
1

2

N
∑

j=0

‖yj − qj‖
2 =

1

2

N
∑

j=0

n
∑

k=1

(

yk
j − qk

j

)2
.
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We are looking for a polynomial function

t 7−→ x(t) = a0 + a1t + · · · + amtm, with ai ∈ IRn, ∀i = 0, . . . , m,

which minimizes the functional (3). The unknown coefficients form the
columns of the following matrix

X⊤ =









a1
0 a1

1 a1
2 . . . a1

m

a2
0 a2

1 a2
2 . . . a2

m
...

an
0 an

1 an
2 . . . an

m









∈ IRn×(m+1),

and the data may be used to define the matrices

V⊤ =









1 1 1 . . . 1
t0 t1 t2 . . . tN

...
tm0 tm1 tm2 . . . tmN









∈ IR(m+1)×(N+1)

and

P⊤ =









q1
0 q1

1 q1
2 . . . q1

N

q2
0 q2

1 q2
2 . . . q2

N
...

qn
0 qn

1 qn
2 . . . qn

N









∈ IRn×(N+1).

After some trivial matrix computations and properties of the trace, it fol-
lows that

E(x) = 1
2

N
∑

j=0

n
∑

k=1

(

yk
j − qk

j

)2

= 1
2 tr
(

(X⊤V⊤− P⊤)
⊤
(X⊤V⊤− P⊤)

)

= 1
2 tr (V⊤V XX⊤− 2V⊤PX⊤) .

Therefore, with the above notations, the classical least squares problem in
the Euclidean space IRn can be reformulated as the following optimization
problem in the Riemannian manifold IR(m+1)×n:

(P1) min
X∈IR(m+1)×n

F (X) =
1

2
tr
(

V⊤V XX⊤− 2V⊤PX⊤
)

. (5)

We can now apply techniques of optimization of functions defined on Rie-
mannian manifolds to prove the following result. For more details about
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optimization on Riemannian manifolds, we refer to Helmke and Moore [9]
and Udriste [22].

Theorem 2.1. If q0, q1, . . . , qN are distinct points given in IRn and 0 = t0 <
t1 < · · · < tN = 1 is a given partition of the real interval [0, 1], then there
exists a unique polynomial x ∈ Pm, with m ≤ N , that minimizes the func-
tional E defined by (3). The matrix X whose rows are the coefficients of

that polynomial is given by X = (V⊤V )
−1

V⊤P . Moreover, if m = N , the
polynomial curve x ∈ Pm that minimizes the functional E, interpolates the
given data set of points at the given instants of time.

Proof : Since minimizing the functional E over Pm is equivalent to minimizing
the functional F over IR(m+1)×n, we first find the critical points of the latter,
that is, the points X ∈ IR(m+1)×n such that

TXF (W ) = 0, ∀W ∈ IR(m+1)×n,

where TXF denotes the tangent map of F at the point X. But

TXF (W ) =
d

ds

∣

∣

∣

∣

s=0

F (Γ(s)),

where s 7→ Γ(s) is a curve in IR(m+1)×n satisfying Γ(0) = X and Γ̇(0) = W .
We may take Γ(s) = X + sW . So,

TXF (W ) =
1

2
tr
(

V⊤V WX⊤+ V⊤V XW⊤− 2V⊤PW⊤
)

=
1

2
tr
((

X⊤V⊤V + X⊤V⊤V − 2P⊤V
)

W
)

= tr
(

(

V⊤V X − V⊤P
)

⊤

W
)

.

Consequently, X is a critical point of the functional F if and only if

V⊤V X = V⊤P. (6)

Since the instants of time ti are all distinct, the matrix V has full rank. Hence
V⊤V is symmetric and positive definite, so, there exists a unique critical point
of F , given by

X =
(

V⊤V
)−1

V⊤P.

Clearly, F takes its minimal value at this critical point. Now, to prove the
last part of the statement, notice that, when m = N , V is a nonsingular
Vandermonde matrix of order N +1 and, therefore, the equation (6) reduces
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to V X = P or, equivalently to X⊤V⊤ = P⊤. Now, a trivial computation
shows that, for i = 0, . . . , N , the (i + 1)th column of the matrix X⊤V⊤ is
equal to x(ti), while the corresponding column of P⊤ is equal to qi. Therefore
x(ti) = qi, ∀i = 0, . . . , N , and the proof is complete.

Remark 2.1. The linear system of equations (6) is known as the normal
equations associated to the least squares method in IRn.

As a particular case of the above, one obtains the straight line that best
fits the given data (1) at the given instants of time (2). This is known as the
linear regression line and corresponds to the case m = 1.

Theorem 2.2. The straight line t 7→ x(t) in IRn that best fits the given data
set of points (1) at the given instants of time (2) is unique and given explicitly
by

x(t) =

N
∑

i=0

t2i

N
∑

i=0

qi −
N
∑

i=0

ti

N
∑

i=0

tiqi

(N + 1)
N
∑

i=0

t2i −

(

N
∑

i=0

ti

)2 +

(N + 1)
N
∑

i=0

tiqi −
N
∑

i=0

ti

N
∑

i=0

qi

(N + 1)
N
∑

i=0

t2i −

(

N
∑

i=0

ti

)2 t. (7)

Proof : We just need to solve the normal equations (6), when m = 1. In this
case,

(V⊤V )
−1

=
1

(N + 1)
N
∑

i=0

t2i −

(

N
∑

i=0

ti

)2















N
∑

i=0

t2i −

N
∑

i=0

ti

−
N
∑

i=0

ti N + 1















,

V⊤P =















N
∑

i=0

qi

N
∑

i=0

tiqi















,

and the result follows straightforward.
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Remark 2.2. Let q, t and q, t be defined by

q̄ =
1

N + 1

N
∑

i=0

qi, t̄ =
1

N + 1

N
∑

i=0

ti,

q =
1

∑N
i=0 ti

N
∑

i=0

tiqi, t =
1

∑N
i=0 ti

N
∑

i=0

t2i .

We note that q is the center of mass of N +1 points qi ∈ IRn, having attached

the masses ti and, similarly, t is the center of mass of N + 1 points ti ∈ IR

having attached the masses ti. When all masses are equal, q and t reduce to
q̄ and t̄ respectively.

Now, a simple computation shows that if t 7→ x(t) is the geodesic given in

the previous theorem, then x(t) = q and x(t) = q, which has an interesting
geometric interpretation in terms of center of masses.

3. Fitting geodesics to data on Riemannian manifolds

The techniques used in the previous section to generate the straight line
that best fits a given data in Euclidean spaces, may be generalized to Rie-
mannian manifolds. In this context, the Riemannian metric plays the role of
the Euclidean metric, the straight line is replaced by a geodesic and the dis-
tance defining the functional (3) is now the geodesic distance. This requires
that one knows explicit formulas for geodesics. Such is the case for the ro-
tation group SO(n), where geodesics are either one-parameter subgroups or
their translations, and for the unit sphere Sn, where geodesics are great cir-
cles. The problem of best fitting a geodesic to data, for these two particular
Riemannian manifolds, are studied next.

3.1. Fitting geodesics to data on SO(n)

Before the statement of the corresponding optimization problem, we intro-
duce some notation and recall some results which will be necessary later on.
For more details concerning the theory of Lie groups we refer to [8].

Let GL(n, IR) be the set of all real n × n invertible matrices. Then,

SO(n) = {Θ ∈ GL(n, IR) : Θ⊤Θ = I and det Θ = 1}.

Since SO(n) is a compact and connected Lie group, geodesics on SO(n) are
translations of one parameter subgroups. They are charaterized by a point
in SO(n) and a vector tangent to SO(n) at the identity I. That is, by a
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rotation matrix and a matrix belonging to so(n), the Lie algebra of SO(n),
that consists of all real n × n skew-symmetric matrices.

It is well known (see, for instance, Horn and Johnson [10]) that logarithms
of an invertible matrix B are the solutions of the matrix equation eX = B, and
when B is real and doesn’t have eigenvalues in the closed negative real line,
there exists only one real logarithm of B whose spectrum lies in the infinite
horizontal strip {z ∈ IC : −π < Im(z) < π} of the complex plane. From now
on we will consider this logarithm only, and will denote it by log B. A very
useful property is that, for every non-singular matrix C,

C−1 log(B)C = log
(

C−1BC
)

.

For α ∈ IR and B a non-singular matrix not having eigenvalues in the
closed negative real line, we define Bα as being the nonsingular matrix

Bα = eα log B. (8)

Geometrically, Bα is the point, corresponding to t = α, on the geodesic that
passes through the identity (at t = 0) with initial velocity log B.

If B belongs to the Lie group SO(n), then log(B) belongs to its Lie algebra
so(n).

We now state a few results that will be used later on.

Lemma 3.1. (Moakher [16]) Let B(t) be a differentiable matrix valued func-
tion and assume that, for each t in the domain, B(t) is a non-singular matrix
not having eigenvalues in the closed negative real line. Then,

d

dt
tr
(

log2 B(t)
)

= 2 tr

(

log(B(t))B−1(t)
d

dt
B(t)

)

. (9)

Lemma 3.2. (Sattinger and Weaver [20]) Let X(t) be a differentiable matrix
valued function. Then,

d

dt
eX(t) = f

(

adX(t)

)

(

Ẋ(t)
)

eX(t),

where f(z) =
ez − 1

z
stands for the sum of the series

+∞
∑

k=0

zk

(k + 1)!
, and ad

denotes the adjoint operator defined by adX(Y ) = [X, Y ] = XY − Y X.

The following result, can be easily proved and will be very important for
the derivation of the results presented along this section.
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Lemma 3.3. tr (Y f (adX) (Z)) = tr (f (−adX) (Y )Z), for all n×n matrices
X, Y and Z.

Now, assume that we are given a finite set of time labelled points in SO(n)

Q = {(ti, Qi) : i = 0, . . . , N} , (10)

where Qi ∈ SO(n), i = 0, . . . , N , and 0 = t0 < t1 < . . . < tN = 1 is a
partition of the time interval [0, 1], and the objective is to find the geodesic
that best fits this data.

Since geodesics on SO(n) can be parameterized explicitly as

γ : IR −→ SO(n)
t 7−→ γ(t) = ΘetX ,

(11)

where Θ ∈ SO(n) and X ∈ so(n), the corresponding optimization problem
may be formulated as:

(P2) min
(Θ,X)∈SO(n)×so(n)

1

2

N
∑

i=0

d2
(

Qi, ΘetiX
)

, (12)

where d denotes geodesic distance. Geodesic distance between 2 points in
SO(n) is the length of the shortest geodesic curve joining them. So, since the
shortest geodesic curve joining Qi to ΘetiX can be parameterized explicitly
by

c(s) = Qie
s log(Q⊤

i
ΘetiX), s ∈ [0, 1],

it follows that

d2
(

Qi, ΘetiX
)

= − tr
(

log2
(

Q⊤

iΘetiX
))

.

Consequently, a necessary condition for (Θ, X) to be a solution for the
optimization problem (P2) is that (Θ, X) is a critical point of the following
function:

F : SO(n) × so(n) −→ IR

(Θ, X) 7−→ F (Θ, X) = −
1

2

N
∑

i=0

tr
(

log2
(

Q⊤

iΘetiX
))

.

Now, to solve the optimization problem (P2), we first have to compute the
first variation of F .

The tangent space of SO(n) × so(n) at the point (Θ, X) is given by

T(Θ,X) (SO(n) × so(n)) = {(ΘY, Z) : Y, Z ∈ so(n)} . (13)
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Therefore, we can endow the manifold SO(n) × so(n) with a Riemann-
ian metric, by defining the following inner product on each tangent space
T(Θ,X) (SO(n) × so(n)):

≪ (ΘY1, Z1) , (ΘY2, Z2) ≫= tr
(

Y⊤

1 Y2

)

+ tr
(

Z⊤

1Z2

)

, (14)

where Y1, Y2, Z1, Z2 ∈ so(n). (We note that 〈X, Y 〉 = tr(X⊤Y ) = − tr(XY )
is the Frobenius inner product on so(n).)

By definition, the tangent map of F at a point (Θ, X) ∈ SO(n) × so(n) is
given by

T(Θ,X)F (ΘY, Z) =
d

ds

∣

∣

∣

∣

s=0

F (α(s)),

where α is any smooth curve on SO(n) × so(n), satisfying the initial condi-
tions

α(0) = (Θ, X), α̇(0) = (ΘY, Z). (15)

In particular,
α : IR −→ SO(n) × so(n)

s 7−→ α(s) =
(

ΘesY , X + sZ
)

,

fulfills the initial conditions (15).
Then, attending to lemmas 3.1, 3.2 and 3.3, we can write successively the

following identities

T(Θ,X)F (ΘY, Z)

= −
1

2

N
∑

i=0

d

ds

∣

∣

∣

∣

s=0

tr
(

log2
(

Q⊤

iΘesY eti(X+sZ)
))

= −
N
∑

i=0

tr

(

log
(

Q⊤

iΘetiX
)

e−tiXΘ⊤Qi
d

ds

∣

∣

∣

∣

s=0

(

Q⊤

iΘesY eti(X+sZ)
)

)

= −
N
∑

i=0

tr
(

log
(

Q⊤

iΘetiX
)

e−tiXΘ⊤Qi

(

Q⊤

iΘY etiX+ Q⊤

iΘf (adtiX) (tiZ) etiX
))

= −

N
∑

i=0

tr
(

log
(

etiXQ⊤

iΘ
)

Y + log
(

etiXQ⊤

iΘ
)

f (adtiX) (tiZ)
)

= −
N
∑

i=0

tr
(

log
(

etiXQ⊤

iΘ
)

Y + tif (−adtiX)
(

log
(

etiXQ⊤

iΘ
))

Z
)
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= 〈

N
∑

i=0

log
(

etiXQ⊤

iΘ
)

, Y 〉 + 〈

N
∑

i=0

tif (−adtiX)
(

log
(

etiXQ⊤

iΘ
))

, Z〉. (16)

We are now in conditions to formulate the main theorem of this section,
which contains the counterpart to the “normal equations” derived in the last
section.

Theorem 3.4. A necessary condition for the geodesic t 7→ γ(t) = ΘetX to
be a solution of the optimization problem (P2), is that the pair (Θ, X) ∈
SO(n) × so(n) satisfies the following set of equations:























N
∑

i=0

log
(

etiXQ⊤

iΘ
)

= 0

N
∑

i=0

tif (−adtiX)
(

log
(

etiXQ⊤

iΘ
))

= 0

. (17)

Proof : By definition, (Θ, X) ∈ SO(n) × so(n) is a critical point for F if

T(Θ,X)F (ΘY, Z) = 0, ∀Y, Z ∈ so(n).

The result is now a consequence of the non-degeneracy of the Frobenius inner
product in so(n) and the above considerations.

Contrary to the Euclidean case, no explicit solutions of the normal equa-
tions (17) have been found, except for the situation when N = 1. Indeed,
in this case t0 = 0, t1 = 1 and, as expected, the geodesic that joins Q0

(at t = 0) to Q1 (at t = 1) and given by γ(t) = Q0 et log(Q⊤0Q1) satisfies
equations (17), and also minimizes the functional (12), since in this case
d2(Qi, γ(ti)) = 0, i = 0, 1.

At this point, a natural question is to know whether or not the geodesic
that best fits the given data in SO(n) × [0, 1] passes through the analogue
of the center of mass. We believe that the answer is no, although when the
given points lie in a connected, compact and abelian subgroup G of SO(n),
the geodesic in G that best fits the data satisfies similar properties to those
mentioned in remark 2.2, as we now explain, after some considerations about
the analogue of the center of mass.

The concept of center of mass, of a finite set of points in a manifold with
equal masses, has been generalized to Riemannian manifolds and is called
“Riemannian mean” in the literature (see, for instance, [13, 16]) . Contrary
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to the Euclidean situation, only a necessary condition for a point Q ∈ SO(n)
to be the Riemannian mean of the points Q0, . . . , QN is known. That con-
dition, which corresponds to the Euler-Lagrange equation associated to the
optimization problem giving rise to the Riemannian mean, is written as

N
∑

i=0

log(Q⊤

iQ) = 0. (18)

A slight modification of the previous may be done in order to contemplate the
situation when different masses are attached to the points. In particular, if
the mass ti is attached to the point Qi, the necessary condition for Q ∈ SO(n)
to be the “weighted” Riemannian mean is that

N
∑

i=0

ti log(Q⊤

iQ) = 0. (19)

Now assume that the optimization problem (P2) has been formulated on
a connected, compact and abelian subgroup G of SO(n) (typically a torus
SO(2)× · · · × SO(2)). In this case, every pair of elements in the Lie algebra
L of G commute, so eXeY = eX+Y , ∀X, Y ∈ L and log(PQ) = log P +
log Q,∀P, Q ∈ G. We are now in conditions to prove the following result,
which generalizes to a torus the properties referred in remark 2.2.

Theorem 3.5. If Q0, . . . , QN belonging to a connected, compact and abelian
subgroup G of SO(n) and 0 = t0 < t1 < . . . < tN = 1 are given, then a
geodesic t 7→ γ(t) = ΘetX in G satisfies the equations (17) if and only if























N
∑

i=0

log
(

Q⊤

iγ
(

t
))

= 0

N
∑

i=0

ti log
(

Q⊤

iγ
(

t
))

= 0

, (20)

where t and t are defined as in remark 2.2.

Proof : Due to the commutativity property, the first equation of (17) is equiv-
alent to the first equation of (20). Indeed,

N
∑

i=0

log
(

Q⊤

iγ(t)
)

= log

((

N
∏

i=0

Q⊤

i

)

ΘN+1e
∑

N

i=0 tiX

)
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= log

(

N
∏

i=0

(Q⊤

iΘetiX)

)

=
N
∑

i=0

log
(

Q⊤

iΘetiX
)

=
N
∑

i=0

log
(

etiXQ⊤

iΘ
)

.

A similar calculation proves the equivalence between the second equations of
(17) and (20).

3.2. Fitting geodesics to data on spheres

Analogously to the previous section, we will deduce the counterpart of
the “normal equations” for the unit sphere Sn =

{

p ∈ IRn+1 : ‖p‖ = 1
}

,
equipped with the Riemannian metric induced by the Euclidean metric in
IRn+1.

The tangent space to Sn at a point p ∈ Sn is the vector subspace of IRn+1

given by

TpS
n =

{

v ∈ IRn+1 : 〈v, p〉 = 0
}

,

and the projection of a vector w ∈ IRn+1 into the tangent space TpS
n is

w − 〈w, p〉p. (21)

A point p ∈ Sn and a vector v ∈ TpS
n uniquely define a geodesic t 7→ γ(t)

in Sn, which passes through p at t = 0, with velocity v and is given by:

γ(t) = p cos (‖v‖t) +
v

‖v‖
sin (‖v‖t) . (22)

Again, we are given a finite set of points q0, q1, . . . , qN in Sn, a partition
0 = t0 < t1 < · · · < tN = 1, of the time interval [0, 1], and the objective is to
find the geodesic on Sn that best fits this data. This least squares problem
is thus formulated as:

(P3) min
(p,v)∈TSn

1

2

N
∑

i=0

d2(qi, γ(ti)), (23)

where d(p, q) denotes the spherical distance between two points p and q.
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In order to determine the first order necessary conditions for the optimiza-
tion problem (P3), we consider the following function defined in the tangent
bundle TSn,

F : TSn −→ IR

(p, v) 7−→ F (p, v) =
1

2

N
∑

i=0

d2
(

qi, p cos(‖v‖ti) + v
‖v‖ sin(‖v‖ti)

) ,

and endow the manifold TSn with a natural Riemannian metric (the Sasaki
metric induced by the Riemannian metric on Sn) defined on each tangent
space at (p, v) ∈ TSn, by the inner product

≪ (w1, z1), (w2, z2) ≫= w⊤

1w2 + z⊤1z2, (24)

where wi, zi ∈ TpS
n, for i = 1, 2.

In order to find the expression of the critical points for the function F , we
recall the expression for the shortest geodesic t 7→ x(t) in Sn that joins 2 non
antipodal points, p (at t = 0) to q (at t = 1):

x(t) = p cos (αt) +
q − p cos α

sin α
sin (αt) ,

where α = cos−1〈p, q〉 ∈ ]0, π[. The geodesic distance between the two points
is precisely equal to α.

The geodesic distance between the points qi and γ(ti) is, therefore,

d(qi, γ(ti)) = cos−1 〈qi, γ(ti)〉 = cos−1
〈

qi, p cos(‖v‖ti) + v
‖v‖ sin(‖v‖ti)

〉

,

which clearly depends on the point (p, v) ∈ TSn. To emphasize this depen-
dence, from now on we use the following notation

αi = αi(p, v) = cos−1
〈

qi, p cos(‖v‖ti) + v
‖v‖ sin(‖v‖ti)

〉

. (25)

Therefore, the function F above may be rewritten as

F (p, v) =
1

2

N
∑

i=0

α2
i (p, v) (26)

=
1

2

N
∑

i=0

cos−2

〈

qi, p cos(‖v‖ti) +
v

‖v‖
sin(‖v‖ti)

〉

.

A point (p, v) ∈ TSn is a critical point of F if and only if

T(p,v)F (w, z) = 0, ∀w, z ∈ TpS
n,
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where the tangent map of F at the point (p, v) ∈ TSn, can be defined as

T(p,v)F : T(p,v)(TSn) −→ IR

(w, z) 7−→
d

ds

∣

∣

∣

∣

s=0

F (c(s)),

for any smooth curve s 7→ c(s) in TSn, defined in a small neighborhood
of s = 0 and satisfying c(0) = (p, v) and ċ(0) = (w, z). We may take
c(s) = (p(s), v(s)) ∈ Sn × TpS

n, with

p(s) = p cos(‖w‖s) + w
‖w‖ sin(‖w‖s), c(s) = v + sz.

It is straightforward to check that c satisfies the required initial conditions.
So, according to (26),

d

ds

∣

∣

∣

∣

s=0

F (c(s)) =
N
∑

i=0

αi(p, v)
d

ds

∣

∣

∣

∣

s=0

αi (p(s), v(s)) . (27)

In order to proceed with the computation of the tangent map of F , notice
that,

d

ds

∣

∣

∣

∣

s=0

‖v(s)‖ =
1

‖v(0)‖
〈v(0), v̇(0)〉 =

1

‖v‖
〈v, z〉.

Hence, according to the notation introduced in (25) and using the initial
conditions satisfied by the curve c, we can write

d

ds

∣

∣

∣

∣

s=0

αi (p(s), v(s))

=
d

ds

∣

∣

∣

∣

s=0

cos−1
〈

qi, p(s) cos (‖v(s)‖ti) + v(s)
‖v(s)‖ sin (‖v(s)‖ti)

〉

= −1
sin αi

〈

qi, w cos (‖v‖ti) − p 〈v,z〉
‖v‖ ti sin (‖v‖ti) + z‖v‖2−v〈v,z〉

‖v‖3 sin (‖v‖ti)

+ v〈v,z〉ti
‖v‖2 cos (‖v‖ti)

〉

= −1
sin αi

[

〈

cos (‖v‖ti) qi, w
〉

−
v

v2
〈

sin(‖v‖ti)
‖v‖

(

ti〈qi, p〉v − qi + 〈qi, v〉
v

‖v‖2

)

− ti cos (‖v‖ti) 〈qi, v〉
v

‖v‖2 , z
〉]

.
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Replacing this last expression into (27), one obtains

d

ds

∣

∣

∣

∣

s=0

F (c(s)) =
N
∑

i=0

−αi

sinαi

[

〈

cos (‖v‖ti) qi, w
〉

− v
‖v‖2

〈

sin(‖v‖ti)
‖v‖

(

ti〈qi, p〉v − qi + 〈qi, v〉
v

‖v‖2

)

− ti cos (‖v‖ti) 〈qi, v〉
v

‖v‖2 , z
〉]

.

(28)

Consequently, T(p,v)F (w, z) = 0, ∀w, z ∈ TpS
n if and only if the following

conditions hold






































N
∑

i=0

−αi

sin αi

〈

cos (‖v‖ti) qi, w
〉

= 0, ∀w ∈ TpS
n

N
∑

i=0

−αi

sin αi

〈

sin(‖v‖ti)
‖v‖

(

−ti〈qi, p〉v + qi − 〈qi, v〉
v

‖v‖2

)

+

ti cos (‖v‖ti) 〈qi, v〉
v

‖v‖2 , z
〉

= 0, ∀z ∈ TpS
n

.

Now, taking into account that a vector in IRn+1 belongs to T⊥
p Sn if and

only if its orthogonal projection into TpS
n (given by (21)) vanishes, we can

conclude that the following statement is true.

Theorem 3.6. (p, v) ∈ TSn is a critical point for the function F if and only
if


























N
∑

i=0

αi

sinαi

cos(‖v‖ti) (qi − 〈qi, p〉 p) = 0

N
∑

i=0

αi sin(‖v‖ti)
sin αi

(

qi − 〈qi, p〉(tiv + p) − 〈qi,v〉
‖v‖2v

)

=
N
∑

i=0

−αi cos(‖v‖ti)
sinαi

〈qi,v〉
‖v‖ tiv

, (29)

where αi = cos−1
〈

qi, p cos (‖v‖ti) + v
‖v‖ sin (‖v‖ti)

〉

, for i = 0, . . . , N .

The equations (29) are called the “normal equations” for the unit sphere
Sn. Attending to the nonlinearity of these equations, it seems a very difficult
task to exhibit explicit solutions for problem (P3).
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4. Fitting smoothing splines to data on Riemannian man-

ifolds

The linear regression problem was generalized to some particular Riemann-
ian manifolds in the previous section. This was possible, due to the availabil-
ity of explicit expressions for geodesics. However, for the more general least
squares problem of fitting polynomial curves to data, the approach presented
in the previous sections can’t be generalized, the main difficulty being that
no explicit solutions are known for the analogue to polynomial curves. How-
ever, polynomial curves on manifolds have been defined as solutions of the
Euler-Lagrange equations associated to a variational problem. Interpolating
polynomial splines on Riemannian manifolds can also be defined similarly,
since they are composed of polynomial curves smoothly joined.

The most well studied are the cubic splines. Without being exhaustive,
we refer to Jupp and Kent [11], where the equation for the cubic spline on
S2 has been deduced, Noakes, Heinzinger and Paden [17], Crouch and Silva
Leite [6, 7] and Camarinha [2]. For general polynomial splines on Riemann-
ian manifolds we refer the work of Camarinha, Silva Leite and Crouch [3].
The main motivation to study such problems arose from applications in en-
gineering, and the number of works in this area has increased considerably
in the last decade.

In this section we formulate a new least squares problem on a general
Riemannian manifold M , that generates smoothing splines fitting a given
data set of time labelled points in M .

The classical linear regression method developed in section 2 will arise as
a limiting process of the method developed here.

In what follows, M denotes a complete and connected Riemannan manifold
endowed with its Riemannian connection (Levi-Civita connection), that we
denote by ∇, and D

dt
stands for the covariant derivative in M relative to its

Riemannian connection.
For details concerning these standard notions in Riemannian manifolds,

we refer to Boothby [1], Carmo [4], Helgason [8], Milnor [15], Nomizu [18],
among others.

We will consider on M , a tensor of type (1,3), known as the curvature
tensor, which is defined by

R(X, Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z, (30)

where X, Y and Z are smooth vector fields on M .
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We start with a collection of time labelled data points in M ,

Q = {(ti, qi) : i = 0, . . . , N} , (31)

where the qi’s lie on M and 0 = t0 < t1 < · · · < tN = 1 is a partition of the
time interval [0, 1]. Our objective is to generate a smooth spline on M that
best fits the data (in a sense to be made precise later). This process in now
known as “smoothing by splines”. We refer the work of Martin, Magnus and
Sun ([21, 5]), for smoothing splines on Euclidean spaces and Jupp and Kent
[11] for smoothing splines on the 2-dimensional sphere.

For the sake of simplicity, here we restrict our study to smoothing by cubic
splines and start this section with some facts about cubic polynomials on
Riemannian manifolds.

4.1. Cubic Polynomials on Riemannian Manifolds

Cubic polynomials in Euclidean spaces can be seen as curves along which
changes in velocity are minimized.

In Riemannian manifolds, cubic polynomials arise as a generalization of
this and result from the following variational principle

min
γ

∫ 1

0

〈
D2γ

dt2
,
D2γ

dt2
〉 dt,

over the class of twice continuously differentiable paths γ : [0, 1] → M (typ-

ically satisfying some prescribed boundary conditions). (Here D2γ
dt2

denotes

the covariant derivative of the velocity vector field dγ
dt

, along γ).
The Euler-Lagrange equation associated to this problem is the fourth order

differential equation

D4γ

dt4
+ R

(

D2γ

dt2
,
dγ

dt

)

dγ

dt
= 0, (32)

where R is the curvature tensor defined by (30). Although only twice con-
tinuous differentiability is required a priori, the solutions of this variational
problem turn out to be C∞ ([17, 6, 7, 2]).

Contrary to the situation in Euclidean spaces, there is no guarantee that the
solutions of equation (32) minimize the energy functional above. Following
Noakes et al. [17] we adopt the definition of a cubic polynomial as being
any smooth curve, γ : I ⊂ IR −→ M , satisfying the fourth order differential
equation (32). A geodesic on M , that is a smooth curve γ : I ⊂ IR −→ M ,
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satisfying
D2γ

dt2
= 0,

is just a particular cubic polynomial on M .
We now recall some useful results that were derived in Camarinha [2],

the last two being concerned with the existence and uniqueness of cubic
polynomials on M .

Remark 4.1. (Camarinha [2]) The quantity

〈
D3γ

dt3
,
dγ

dt
〉 −

1

2
〈
D2γ

dt2
,
D2γ

dt2
〉,

is preserved along a smoothing path γ, satisfying (32).

Theorem 4.1. For each point (p, v, y, z) ∈ T 3M , there exists a unique cubic
polynomial t 7→ γ(t) on M , defined for t ∈ (−ǫ, ǫ), ǫ > 0, satisfying the
initial conditions

γ(0) = p,
dγ

dt
(0) = v,

D2γ

dt2
(0) = y,

D3γ

dt3
(0) = z. (33)

This cubic polynomial depends differentiably on (p, v, y, z). Moreover, if there
is another cubic polynomial satisfying the same initial conditions (33), then
they coincide in an open interval containing t = 0.

The next theorem gives conditions that allow the extension indefinitely of
the domain of a cubic polynomial.

Theorem 4.2. Let (U, φ) be a system of local coordinates in M , q ∈ U and
τ a positive real number. Then, there exists a neighborhood D of q, D ⊂ U
and a real number δ > 0 such that, if p ∈ D and v, y, z ∈ TpM with ‖v‖ < δ,
‖y‖ < δ, ‖z‖ < δ, there exists a unique cubic polynomial γ : (−τ, τ) −→ U
satisfying the initial conditions (33). Moreover, this cubic polynomial depends
differentiably on (p, v, y, z).

Cubic splines on a Riemannian manifold M are obtained by piecing to-
gether smoothly segments of cubic polynomials. The typical situation is that
of an interpolating cubic spline, which is required to be C2, to pass through
some prescribed points qi in M at prescribed instants of time ti, and to be a
cubic polynomial, when restricted to each subinterval. However, here we are
mainly interested in cubic splines that best approximate some data.
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4.2. Problem’s Formulation

Before the correct formulation of our problem, we define the family of
admissible paths. Let 0 = t0 < . . . < tN = 1 be a given partition of the time
interval [0, 1] and q0, . . . , qN be a distinct set of points in M .

Definition 4.1. By an admissible path will be meant a C2 (twice continuously
differentiable) path, γ : [0, 1] → M , satisfying

• γ
∣

∣

[ti,ti+1]
is smooth, for i = 0, . . . , N − 1;

• the left and right covariant derivatives at the knot point ti,

lim
t→t−

i

Dkγ

dtk
(t) =

Dkγ

dtk
(t−i ), lim

t→t+
i

Dkγ

dtk
(t) =

Dkγ

dtk
(t+i ),

exist, for every integer k ≥ 3.

The set of all admissible paths will be hereafter denoted by Ω.
Our main objective is to find an admissible path on M that best fits the

given points at the given instants of time, in the sense that the cost functional

J(γ) =
1

2

N
∑

i=0

1

wi

d2 (qi, γ(ti)) +
λ

2

∫ 1

0

〈
D2γ

dt2
,
D2γ

dt2
〉 dt, (34)

defined over Ω, should be as small as possible. Here d(p, q) denotes the
Riemannian distance between p and q, λ > 0 is a real parameter and the
wi are weights (positive real numbers) associated with the given data points.
For our purposes here, we will assume wi = 1, for all i = 0, . . . , N . λ plays
the role of a smoothing parameter.

If p and q are points in M sufficiently close, the shortest geodesic arc joining
them may be parameterized explicitly by (Karcher [12])

c(s) = expp

(

s exp−1
p (q)

)

, s ∈ [0, 1], (35)

and the geodesic distance d(p, q), is given by

d(p, q) = 〈c′(s), c′(s)〉
1
2 =

∫ 1

0

〈c′(s), c′(s)〉
1
2 ds,

where c′(s) = dc(s)/ds.
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If s 7→ ci(s) denotes the geodesic curve joining qi to γ(ti), for i = 0, . . . , N ,
we can rewrite the functional J as

J(γ) =
1

2

N
∑

i=0

∫ 1

0

〈c′i(s), c
′
i(s)〉 ds +

λ

2

∫ 1

0

〈
D2γ

dt2
,
D2γ

dt2
〉 dt, (36)

Consequently, our optimization problem can be formulated as follows:

(P4) min
γ∈Ω

J(γ) =
1

2

∫ 1

0

(

N
∑

i=0

〈c′i(s), c
′
i(s)〉

)

ds +
λ

2

∫ 1

0

〈
D2γ

dt2
,
D2γ

dt2
〉 dt.

4.3. Main results

Our objective consists on finding the curves γ ∈ Ω such that

J(γ) ≤ J(ω),

for all admissible paths ω in a neighborhood of γ. These curves γ are called
local minimizers for the functional J and the values J(γ) are called local
minima of J . Those curves γ ∈ Ω, which satisfy

J(γ) ≤ J(ω),

for all admissible paths ω are called global minimizers of J and the values
J(γ) are global minima of J .

In order to find the critical paths for J , one needs to define an admissible
variation of γ ∈ Ω. Apart from adaptations to the present situation, this
follows closely what has been done in the literature, to derive first order
conditions for Riemannian cubic splines.

Definition 4.2. Let γ : [0, 1] → M be an admissible path in M , in the
sense of definition 4.1. By a one-parameter variation of γ will be meant a C2

function

α : (−ǫ, ǫ) × [0, 1] → M,

for some ǫ > 0, such that:

• α(0, t) = γ(t),
• α is smooth on each strip (−ǫ, ǫ) × [ti, ti+1], i = 0, . . . , N − 1.

Moreover, if α(u, 0) = γ(0) and α(u, 1) = γ(1), for all u ∈ (−ǫ, ǫ), then α is
called a proper variation of γ.
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We may use the notation αt : (−ǫ, ǫ) → Ω, defined by αt(u) = α(u, t),
to denote the variation α. αt can be seen as a “smooth path” in Ω and its

velocity vector
dαt

du
(0) ∈ TγΩ is defined as the vector field W along γ given

by

W (t) =
dαt

du
(0) =

∂α

∂u
(0, t).

Clearly W ∈ TγΩ and we will refer to this vector field as the variational
vector field associated with the variation α.

We can thought of Ω as an infinite dimensional manifold and introduce the
tangent space of Ω at a path γ, TγΩ, as the set of all C2 variational vector
fields t 7→ W (t) along γ, satisfying

• t 7−→ W (t) is smooth on the domains [ti, ti+1], for i = 0, . . . , N .

• t 7−→
D2W

dt2
(t) is continuous in [0, 1].

Hence, by exponentiating a vector field W ∈ TγΩ, we obtain a one-parameter
variation of γ, α : (−ǫ, ǫ) × [0, 1] → M , defined by

α(u, t) = expγ(t) (uW (t)) , (37)

for some ǫ > 0.

Theorem 4.3. If α is a one-parameter variation of γ ∈ Ω and W ∈ TγΩ is
the variational vector field associated to α, then

d

du

∣

∣

∣

∣

u=0

J(αt(u)) =
N−1
∑

i=1

〈W (ti), λ
D3γ

dt3
(t+i ) − λ

D3γ

dt3
(t−i ) − exp−1

γ(ti)
(qi)〉 +

〈W (0), λ
D3γ

dt3
(0) − exp−1

γ(0)(q0)〉 − 〈W (1), λ
D3γ

dt3
(1) + exp−1

γ(1)(qN)〉 +

λ〈
DW

dt
(1),

D2γ

dt2
(1)〉 − λ〈

DW

dt
(0),

D2γ

dt2
(0)〉 +

λ

∫ 1

0

〈
D4γ

dt4
+ R

(

D2γ

dt2
,
dγ

dt

)

dγ

dt
, W 〉 dt.

Proof : Before we compute the value of d
du

J(αt(u)), we make some consider-
ations.
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Since d(qi, γ(ti)) denotes the Riemannian distance between points qi and
γ(ti), and since, according to (35),

ci(s) = expqi

(

s exp−1
qi

(γ(ti))
)

, s ∈ [0, 1],

by considering the variation α of γ, defined by (37), one obtains the param-
eterized surface in M (Krakowski [13]), given by

ci(s, u) = expqi

(

s exp−1
qi

(αti(u))
)

, s ∈ [0, 1], u ∈ (−ǫ, ǫ). (38)

Let us introduce the following vector fields associated to (38),

c′i(s, u) =
∂

∂s
ci(s, u), ċi(s, u) =

∂

∂u
ci(s, u). (39)

Since for fixed u, s 7−→ ci(s, u) is a family of geodesics, s 7−→ ċi(s, u) is a
family of Jacobi vector fields along the family of geodesics s 7−→ ci(s, u).
This can now be used in the following .

d

du
J(αt(u)) =

N
∑

i=0

∫ 1

0

〈
D

∂u
c′i(s, u), c′i(s, u)〉 ds + λ

∫ 1

0

〈
D

∂u

D

∂t

∂α

∂t
,
D2α

∂t2
〉 dt

=
N
∑

i=0

∫ 1

0

〈
D

∂s
ċi(s, u), c′i(s, u)〉 ds

+λ

∫ 1

0

〈
D

∂t

D

∂u

∂α

∂t
+ R

(

∂α

∂u
,
∂α

∂t

)

∂α

∂t
,
D2α

∂t2
〉 dt

=
N
∑

i=0

(〈ċi(1, u), c′i(1, u)〉 − 〈ċi(0, u), c′i(0, u)〉)

+λ

∫ 1

0

〈
D

∂t

D

∂t

∂α

∂u
,
D2α

∂t2
〉 dt

+λ

∫ 1

0

〈R

(

D2α

∂t2
,
∂α

∂u
,

)

∂α

∂t
,
∂α

∂u
〉 dt.

(40)

Since for each i = 0, . . . , N , ci(0, u) = qi, we have ċi(0, u) = 0.
Moreover, since the C2-path α is smooth on each strip (−ǫ, ǫ) × [ti, ti+1],

we can integrate by parts twice on [ti, ti+1] the first integral on (40), (as in
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[6], [2])

∫ 1

0

〈
D

∂t

D

∂t

∂α

∂u
,
D2α

∂t2
〉 dt =

∫ 1

0

d

dt
〈
D

∂t

∂α

∂u
,
D2α

∂t2
〉 dt −

∫ 1

0

〈
D

∂t

∂α

∂u
,
D3α

∂t3
〉 dt

= 〈
D

∂t

∂α

∂u
(1),

D2α

∂t2
(1)〉 − 〈

D

dt

∂α

∂u
(0),

D2α

∂t2
(0)〉

−

∫ 1

0

d

dt
〈
∂α

∂u
,
D3α

∂t3
〉 dt +

∫ 1

0

〈
∂α

∂u
,
D4α

∂t4
〉 dt

= 〈
D

∂t

∂α

∂u
(1),

D2α

∂t2
(1)〉 − 〈

D

∂t

∂α

∂u
(0),

D2α

∂t2
(0)〉

−
N−1
∑

i=0

〈
∂α

∂u
,
D3α

∂t3
〉

∣

∣

∣

∣

∣

t−
i+1

t+
i

+

∫ 1

0

〈
∂α

∂u
,
D4α

∂t4
〉 dt. (41)

Plugging expression (41) into (40) and considering u = 0, we obtain,

d

du

∣

∣

∣

∣

u=0

J(αt(u))

= −

N
∑

i=0

〈W (ti), exp−1
γ(ti)

(qi)〉 + λ〈
DW

dt
(1),

D2γ

dt2
(1)〉 − λ〈

DW

dt
(0),

D2γ

dt2
(0)〉

+λ〈W (0),
D3γ

dt3
(0)〉 − λ〈W (1),

D3γ

dt3
(1)〉

+
N−1
∑

i=1

〈W (ti), λ
D3γ

dt3
(t+i ) − λ

D3γ

dt3
(t−i )〉

+λ

∫ 1

0

〈
D4γ

dt4
+ R

(

D2γ

dt2
,
dγ

dt

)

dγ

dt
, W 〉 dt

=
N−1
∑

i=1

〈W (ti), λ
D3γ

dt3
(t+i ) − λ

D3γ

dt3
(t−i ) − exp−1

γ(ti)
(qi)〉

+〈W (0), λ
D3γ

dt3
(0) − exp−1

γ(0)(q0)〉 − 〈W (1), λ
D3γ

dt3
(1) + exp−1

γ(1)(qN)〉

+λ〈
DW

dt
(1),

D2γ

dt2
(1)〉 − λ〈

DW

dt
(0),

D2γ

dt2
(0)〉
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+λ

∫ 1

0

〈
D4γ

dt4
+ R

(

D2γ

dt2
,
dγ

dt

)

dγ

dt
, W 〉 dt.

As a consequence of the previous theorem, we can define the linear form
TγJ , in TγΩ, by setting

TγJ(W ) =
d

du

∣

∣

∣

∣

u=0

J(αt(u)).

TγJ(W ) is known as the first variation of J in γ and plays a crucial role
to establish necessary conditions for γ to be a solution of the optimization
problem (P4). Indeed, if γ ∈ Ω is a minimizer for J then γ is a critical path
of J , that is TγJ(W ) = 0, for all W ∈ TγΩ.

The next result gives necessary optimality conditions for problem (P4). It
generalizes for general Riemannian manifolds the results of Jupp and Kent
[11] for the 2-sphere.

Theorem 4.4. If γ ∈ Ω is a minimizer for J , then on each subinterval
[ti, ti+1], i = 0, . . . , N − 1, γ is smooth and satisfies the following condition

D4γ

dt4
+ R

(

D2γ

dt2
,
dγ

dt

)

dγ

dt
= 0. (42)

Moreover, at the knot points ti, γ satisfies the following differentiability con-
ditions

Dkγ

dtk
(t+i ) −

Dkγ

dtk
(t−i ) =















0, k = 0, 1, (i = 1, . . . , N − 1)

0, k = 2, (i = 0, . . . , N)
1

λ
exp−1

γ(ti)
(qi), k = 3, (i = 0, . . . , N)

,

(43)
where we assume for shorten of notation that

D2γ

dt2
(t−0 ) =

D3γ

dt3
(t−0 ) =

D2γ

dt2
(t+N) =

D3γ

dt3
(t+N) = 0. (44)

Proof : Assume that γ ∈ Ω is a minimizer for J . Then TγJ(W ) = 0, ∀W ∈
TγΩ. Taking into account conditions (44), we can write TγJ in the simplified
form

TγJ(W ) =
N
∑

i=0

〈W (ti), λ
D3γ

dt3
(t+i ) − λ

D3γ

dt3
(t−i ) − exp−1

γ(ti)
(qi)〉 +
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λ〈
DW

dt
(1),

D2γ

dt2
(1)〉 − λ〈

DW

dt
(0),

D2γ

dt2
(0)〉 +

λ

∫ 1

0

〈
D4γ

dt4
+ R

(

D2γ

dt2
,
dγ

dt

)

dγ

dt
, W 〉 dt (45)

Now, take W ∈ TγΩ to be the vector field defined by

W (t) = F (t)

[

D4γ

dt4
+ R

(

D2γ

dt2
,
dγ

dt

)

dγ

dt

]

,

where F : [0, 1] → IR is a smooth real function defined in the interval [0, 1],

such that F (ti) =
dF

dt
(ti) = 0, and F (t) > 0, for t 6= ti, for i = 0, . . . , N .

Therefore, the equality

TγJ(W ) =

∫ 1

0

λF (t)

∥

∥

∥

∥

D4γ

dt4
+ R

(

D2γ

dt2
,
dγ

dt

)

dγ

dt

∥

∥

∥

∥

2

dt,

holds. But, since λ > 0 and F (t) > 0 for all t ∈ [0, 1], except for a finite
number, we conclude that for each domain [ti, ti+1]

∥

∥

∥

∥

D4γ

dt4
+ R

(

D2γ

dt2
,
dγ

dt

)

dγ

dt

∥

∥

∥

∥

2

= 0,

which implies (42). This means that γ should be a smooth cubic polynomial
in each interval [ti, ti+1].

Now consider a vector field W ∈ TγΩ in such a way that

DW

dt
(0) = −

D2γ

dt2
(0),

DW

dt
(1) =

D2γ

dt2
(1),

and

W (ti) = λ
D3γ

dt3
(t+i ) − λ

D3γ

dt3
(t−i ) − exp−1

γ(ti)
(qi), i = 0, . . . , N.

Then,

TγJ(W ) = λ

[

∥

∥

∥

∥

D2γ

dt2
(0)

∥

∥

∥

∥

2

+

∥

∥

∥

∥

D2γ

dt2
(1)

∥

∥

∥

∥

2
]

+

N
∑

i=0

∥

∥

∥

∥

λ
D3γ

dt3
(t+i ) − λ

D3γ

dt3
(t−i ) − exp−1

γ(ti)
(qi)

∥

∥

∥

∥

2

,
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hence,
D2γ

dt2
(0) =

D2γ

dt2
(1) = 0,

and

λ
D3γ

dt3
(t+i ) − λ

D3γ

dt3
(t−i ) − exp−1

γ(ti)
(qi) = 0, i = 0, . . . , N.

Putting together all the conditions above, we see that if γ is a minimizer
for J then γ is a cubic polynomial in each domain [ti, ti+1], i = 0, . . . , N − 1,
and at the knot points ti, it satisfies the system of equations (43).

Proposition 4.5. If in conditions (42)-(43) of theorem 4.4, one considers
the smoothing parameter λ converging to +∞, then the cubic spline defined
in [0, 1] converges to a geodesic curve on M that best fits the given data set
of points at the given instants of time.

Proof : If λ tends to +∞, then according to the last condition given in (43),
we conclude that for each i = 0, . . . , N

D3γ

dt3
(t−i ) =

D3γ

dt3
(t+i ), (46)

which means that γ is of class C3 in the whole interval [0, 1]. In particular,
attending to equations (44)-(46), we have

D3γ

dt3
(t+0 ) =

D3γ

dt3
(t−N) = 0. (47)

We will denote the unique value given in (46) by D3γ
dt3

(ti) and the cubic
spline defined in the interval [ti, ti+1] by γi.

Then, attending to the existence and uniqueness theorem for ordinary dif-
ferential equations and in particular to the existence and uniqueness theorem
for cubic polynomials (theorem 4.1), given

(

γi(ti),
dγi

dt
(ti),

D2γi

dt2
(ti),

D3γi

dt3
(ti)

)

∈ T 3M, (48)

there exists a unique cubic polynomial on M ,

c : (ti − ǫ, ti + ǫ) −→ M, (ǫ > 0)

satisfying

c(ti) = γi(ti),
dc

dt
(ti) =

dγi

dt
(ti),

D2c

dt2
(ti) =

D2γi

dt2
(ti),

D3c

dt3
(ti) =

D3γi

dt3
(ti).
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Now, attending to theorem 4.2 and to the fact that two polynomials sat-
isfying the same initial conditions (48) must coincide in an open interval
containing ti, we conclude that

γi ≡ γi−1, ∀i = 1, . . . , N − 1,

and it is an immediate consequence that all the piecewise cubic splines are
in fact a unique (smooth) cubic polynomial in the whole interval [0, 1]. That
is, we have

D4γ

dt4
+ R

(

D2γ

dt2
,
dγ

dt

)

dγ

dt
= 0, ∀t ∈ [0, 1].

Let us denote by c the unique cubic polynomial on M satisfying the initial
conditions

c(0) = γ(0),
dc

dt
(0) =

dγ

dt
(0),

D2c

dt2
(0) = 0,

D3c

dt3
(0) = 0. (49)

Now, since a geodesic is a particular case of a cubic polynomial, according
to the existence and uniqueness of cubic polynomials given by theorem 4.1,
the cubic polynomial c characterized by (49) is in fact a geodesic in M .

We notice that an alternative proof of proposition 4.5 can be made by
integrating the invariant along a cubic polynomial given in remark 4.1.

Proposition 4.6. If in conditions (42)-(43) of theorem 4.4, one considers
the smoothing parameter λ converging to 0, then the cubic spline defined in
[0, 1] converges to an interpolating smoothing spline on M that passes through
the given data set of points at the given instants of time.

Proof : In fact, the third condition of the system of equations (43) reduces to

γ(ti) = qi, i = 0, . . . , N,

and the solution of (42)-(43) is a cubic spline that interpolates the given
points at the given instants of time.

4.4. The Particular Case When M = IRn

As a title of example, we will see that the method developed in the previous
section is a generalization of the classical variational method in Euclidean
spaces for generating smoothing spline functions and presented in Reinsch
[19].

The counterpart of theorem 4.4 for the Euclidean space IRn, is given by the
following.
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Theorem 4.7. If γ ∈ Ω is a minimizer for J , then on each domain [ti, ti+1],
γ is smooth and satisfies the following condition

d4γ

dt4
= 0. (50)

Moreover, at the knot points ti, γ satisfies the following system of equations

dkγ

dtk
(t+i )−

dkγ

dtk
(t−i ) =















0, k = 0, 1, (i = 1, . . . , N − 1)

0, k = 2, (i = 0, . . . , N)
1

λ
(qi − γ(ti)) , k = 3, (i = 0, . . . , N)

, (51)

where we have assumed for convenience

d2γ

dt2
(t−0 ) =

d3γ

dt3
(t−0 ) =

d2γ

dt2
(t+N) =

d3γ

dt3
(t+N) = 0.

As an immediate consequence of propositions 4.5 and 4.6 of the previous
section, we conclude, that if in the system of equations (50)-(51), we consider
the smoothing parameter λ converging to +∞, we will obtain a smooth line
that best fits the given data set of points at the given instants of time,
respectively, if we consider λ converging to zero, we will obtain a smoothing
spline that interpolates the given data set of points.

As in Reinsch [19], we can integrate explicitly equation (50) in each interval
[ti, ti+1[, i = 0, . . . , N − 1, and deduce a method for computing the solution
of (50)-(51).

We can write γ explicitly in the form

γ(t) =











ai + bi(t − ti) + ci(t − ti)
2 + di(t − ti)

3, ti ≤ t < ti+1

aN−1 + bN−1 (t − tN−1) +

cN−1 (t − tN−1)
2 + dN−1 (t − tN−1)

3 , tN−1 ≤ t ≤ tN

, (52)

where ai, bi, ci, di ∈ IRn, for i = 0, . . . , N − 1.
Inserting (52) in (51) we obtain relations in the spline coefficients.
By differentiating γ in order to t, we obtain, successively,

dγ

dt
(t) = bi + 2ci(t − ti) + 3di(t − ti)

2, ti ≤ t < ti+1

d2γ

dt2
(t) = 2ci + 6di(t − ti), ti ≤ t < ti+1

d3γ

dt3
(t) = 6di, ti ≤ t < ti+1,
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for i = 0, . . . , N − 2. The expressions for t ∈ [tN−1, tN ] are equivalent.
Now it is convenient to introduce the following positive quantities

hi = ti+1 − ti, i = 0, . . . , N − 1.

For k = 2 in the system of equations (51), we deduce

d2γ

dt2
(t0) = 2c0 =⇒ c0 = 0,

d2γ

dt2
(tN) = 2cN−1 + 6dN−1hN−1 =⇒ dN−1 = −

cN−1

3hN−1

d2γ

dt2
(t+i+1) −

d2γ

dt2
(t−i+1) = 2ci+1 − 2ci − 6dihi =⇒ di =

ci+1 − ci

3hi

,

i = 0, . . . , N − 2.

Introducing the new variable cN , by considering cN = 0, the equality

di =
ci+1 − ci

3hi

, (53)

is valid for i = 0, . . . , N − 1.
Now, for k = 0, in the system of equations (51), we obtain

γ(t+i+1) − γ(t−i+1) = 0 ⇐⇒ bi =
ai+1 − ai

hi

− cihi − dih
2
i , (54)

for i = 0, . . . , N − 2.
For k = 1, in the system of equations (51),

dγ

dt
(t+i ) −

dγ

dt
(t−i ) = 0 ⇐⇒ bi = bi−1 + 2ci−1hi−1 + 3di−1h

2
i−1, (55)

for i = 1, . . . , N − 1.
Using equation (55) for i = N −1, we can obtain bN−1 and introducing the

new variable aN given by

aN = γ(tN) = aN−1 + bN−1hN−1 + cN−1h
2
N−1 + dN−1h

3
N−1,

the formula

bi =
ai+1 − ai

hi

− cihi − dih
2
i , (56)

is valid for i = 0, . . . , N − 1.



32 L. MACHADO AND F. SILVA LEITE

Inserting (56) and (53) into (55), we get

ai−1

(

1

hi−1

)

+ ai

(

−
1

hi

−
1

hi−1

)

+ ai+1

(

1

hi

)

= ci−1

(

hi−1

3

)

+

ci

(

2

3
hi +

2

3
hi−1

)

+ ci+1

(

hi

3

)

,

for i = 1, . . . , N − 1, which is equivalent to the system of equations






































a0

(

1
h0

)

+ a1

(

− 1
h1

− 1
h0

)

+ a2

(

1
h1

)

= c1

(

2
3h0 + 2

3h1

)

+ c2

(

h1

3

)

a1

(

1
h1

)

+ a2

(

− 1
h2

− 1
h1

)

+ a3

(

1
h2

)

= c1

(

h1

3

)

+ c2

(

2
3h1 + 2

3h2

)

+ c3

(

h2

3

)

...

aN−2

(

1
hN−2

)

+ aN−1

(

− 1
hN−2

− 1
hN−1

)

+ aN

(

1
hN−1

)

= cN−2

(

hN−2

3

)

+

cN−1

(

2
3hN−2 + 2

3hN−1

)

.

(57)
The system of equations (57) can be written as the matrix equation

Q⊤A = TC, (58)

where Q⊤ is the tridiagonal matrix with N − 1 rows and N + 1 columns,

Q⊤ =











1
h0

− 1
h0

− 1
h1

1
h1

· · · 0

0 1
h1

− 1
h1

− 1
h2

1
h2

· · · 0
...

...
...

0 · · · 1
hN−2

− 1
hN−2

− 1
hN−1

1
hN−1











, (59)

T =











2
3 (h0 + h1)

h1

3 · · · 0
h1

3
2
3 (h1 + h2)

h2

3 0
... . . . ...

0 · · · hN−2

3
2
3 (hN−2 + hN−1)











∈ IR(N−1)×(N−1),

A =









a⊤0
a⊤1
...
a⊤N









=









a1
0 a2

0 · · · an
0

a1
1 a2

1 · · · an
1

...
...

...
...

a1
N a2

N · · · an
N









∈ IR(N+1)×n, (60)
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and finally

C =









c⊤1
c⊤2
...
c⊤N−1









=









c1
1 c2

1 · · · cn
1

c1
2 c2

2 · · · cn
2

...
...

...
...

c1
N−1 c2

N−1 · · · cn
N−1









∈ IR(N−1)×n. (61)

Now, for k = 3, in the system of equations (51), we have

d3γ

dt3
(t+i ) −

d3γ

dt3
(t−i ) =

1

λ
(qi − γ(ti)) ⇐⇒ (di − di−1) =

1

λ
(qi − γ(ti)) ,

and attending to (53), we obtain

ci−1

(

1

hi−1

)

+ ci

(

−
1

hi

−
1

hi−1

)

+ ci+1

(

1

hi+1

)

=
1

2λ
(qi − ai) , (62)

for i = 1, . . . , N − 1.

Since
d3γ

dt3
(tN) = 6dN−1, we have

cN−1

(

1

hN−1

)

=
1

2λ
(qN − aN) . (63)

Therefore, we can write the system of equations (62)-(63) as the matrix
equation

QC =
1

2λ
(P − A) , (64)

where

P =









q⊤0
q⊤1
...
q⊤N









=









q1
0 q2

0 · · · qn
0

q1
1 q2

1 · · · qn
1

...
...

...
...

q1
N q2

N · · · qn
N









∈ IR(N+1)×n, (65)

and A and C are given respectively by (60) and (61).
Then, according to (58)-(64), conditions (50)-(51) are equivalent to the

following system of matrix equations






Q⊤A = TC

QC =
1

2λ
(P − A)

. (66)
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From this, we can get explicitly the matrices A and C, in terms of the known
matrices T , Q and P . Indeed, since the matrix T + 2λQ⊤Q is symmetric and
positive definite, the system of equations (66) is equivalent to the following:

{

Q⊤(P − 2λQC) = TC

P − 2λQC = A
⇐⇒

{

(T + 2λQ⊤Q) C = Q⊤P

P − 2λQC = A

⇐⇒

{

C = (T + 2λQ⊤Q)
−1

Q⊤P

A = P − Q
(

1
2λ

T + Q⊤Q
)−1

Q⊤P
.

The remaining coefficients of the curve γ defined in (52), can now be com-
puted from these using the identities (53) and (56). So, we conclude that,
for each λ > 0, there is a unique Euclidean cubic spline that minimizes the
functional J .

Clearly, when λ tends to +∞, the matrix A tends to

A = P − Q
(

Q⊤Q
)−1

Q⊤P. (67)

In this case Q⊤A = 0, and since the matrix T is also invertible, it follows from
the first equation in (66) that C = 0. This, together with (53) and (56), imply
that γ is a straight line in each subinterval. The required differentiability
implies that γ is a straight line. At this point it is not obvious that this
straight line is the solution of the linear regression problem formulated at
the end of section 2.

Theorem 4.8. The straight line in the Euclidean space IRn obtained from the
solution of equations (50)-(51) when the parameter λ converges to +∞ is the
linear regression line given by the classical least squares problem presented in
section 2.

Proof : According to theorem 2.2, given in section 2, there exists a unique
straight line γ : [0, 1] −→ IRn that minimizes the functional

E(γ) =
1

2

N
∑

i=0

‖γ(ti) − qi‖
2. (68)

In order to show that this is precisely the straight line obtained as the lim-
iting process (when λ → +∞) of the best fitting cubic spline, we have to
reparameterize γ so that γ(ti) = ai. So, we are now looking for vectors
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a0, . . . , aN and b0 in IRn, so that the straight line given by

γ(t) =

{

ai + b0(t − ti), ti ≤ t < ti+1, i = 0, . . . , N − 1

aN , t = tN
, (69)

minimizes the functional (68).
Since γ is continuous in the whole interval [t0, tN ], the following restrictions

have to be fulfilled:

ai+1 = ai + b0(ti+1 − ti), i = 0, . . . , N − 1. (70)

Using the notation hi = ti+1 − ti, we obtain the following expression for b0

in terms of the ai’s and some restrictions for these coefficients:

b0 =
ai+1 − ai

hi

, (71)

and
ai+1 − ai

hi

=
ai − ai−1

hi−1
, i = 1, . . . N − 1, (72)

which is equivalent to

1

hi−1
ai−1 +

(

−
1

hi−1
−

1

hi

)

ai +
1

hi

ai+1 = 0, i = 1, . . . N − 1. (73)

Attending to the matrices Q and A given respectively by (59) and (60),
equation (73) is equivalent to the matrix equation

Q⊤A = 0,

that is, the matrix A, of the coefficients ai, lies in the vector subspace of
IR(N+1)×n,

M =
{

A ∈ IR(N+1)×n : Q⊤A = 0
}

.

With this new parametrization, the functional E reduces to

E(a0, . . . , aN) =
1

2

N
∑

i=0

d2(ai, qi) =
1

2

N
∑

i=0

(

a⊤iai − 2a⊤iqi + q⊤iqi

)

,

or in matrix form

E(A) =
1

2
tr
(

AA⊤− 2AP⊤+ PP⊤
)

=
1

2
d2(A, P ),

where the last d denotes the distance induced by the Frobenius norm on
IR(N+1)×n. Since P is a given matrix, the linear regression line in IRn can
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now be formulated as the following optimization problem in the Riemannian
manifold M,

(P5) min
A∈M

1

2
tr
(

AA⊤− 2AP⊤
)

.

We will show that A is a solution of this optimization if and only if A =
P − Q (Q⊤Q)

−1
Q⊤P . This will be enough to prove the theorem.

Since M is a vector subspace of IR(N+1)×n, the tangent map of M at any
point A ∈ M coincides with M. So, A ∈ M is a critical point for the
function

F : M −→ IR
A 7−→ F (A) = 1

2 tr (AA⊤− 2AP⊤) ,

if and only if

TAF (Y ) = 0, ∀Y ∈ M.

Using standard techniques from optimization on manifolds, already used pre-
viously, we can write

TAF (Y ) =
1

2
tr
(

Y A⊤+ AY⊤− 2Y P⊤
)

= tr
(

(A − P )Y⊤
)

,

and therefore, A ∈ M is a critical point for the function F if and only if

tr
(

(A − P )Y⊤
)

= 0, ∀Y ∈ M.

Now, since A and Y belong to M (that is, Q⊤A = 0 and Y⊤Q = 0), we can
conclude that

tr
(

Q
(

Q⊤Q
)−1

Q⊤(A − P )Y⊤

)

= tr
(

Q
(

Q⊤Q
)−1

Q⊤AY⊤

)

−

tr
(

Q
(

Q⊤Q
)−1

Q⊤PY⊤

)

= − tr
(

Y⊤Q
(

Q⊤Q
)−1

Q⊤P
)

= 0,

and therefore,

tr
(

(A − P )Y⊤
)

= tr
(

(A − P )Y⊤− Q
(

Q⊤Q
)−1

Q⊤(A − P )Y⊤

)

= tr
((

A − P + Q
(

Q⊤Q
)−1

Q⊤P
)

Y⊤

)

.
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In conclusion, tr ((A − P )Y⊤) = 0, ∀Y ∈ M if and only if

tr
((

A − P + Q
(

Q⊤Q
)−1

Q⊤P
)

Y⊤

)

= 0, ∀Y ∈ M.

Now, just notice that A−P +Q (Q⊤Q)
−1

Q⊤P ∈ M, to conclude that A ∈ M
is a critical point for the function F if and only if

A − P + Q
(

Q⊤Q
)−1

Q⊤P = 0.

We would like to thank M. Camarinha and K. Hüeper for helpful discussions
while preparing this manuscript.
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