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Fitting Spheres to Range Data From
3-D Imaging Systems

Marek Franaszek, Geraldine S. Cheok, Kamel S. Saidi, and Christoph Witzgall

Abstract—Two error functions used for nonlinear least squares
(LS) fitting of spheres to range data from 3-D imaging systems
are discussed: the orthogonal error function and the directional
error function. Both functions allow unrestricted gradient-based
minimization and were tested on more than 40 data sets1 collected
under different experimental conditions (e.g., different sphere
diameters, instruments, data density, and data noise). It was found
that the orthogonal error function results in two local minima and
that the outcome of the optimization depends on the choice of
starting point. The centroid of the data points is commonly used
as the starting point for the nonlinear LS solution, but the choice
of starting point is sensitive to data segmentation and, for some
sparse and noisy data sets, can lead to a spurious minimum that
does not correspond to the center of a real sphere. The directional
error function has only one minimum; therefore, it is not sensitive
to the starting point and is more suitable for applications that
require fully automated sphere fitting.

Index Terms—Directional error function, orthogonal error
function, sphere fitting, target-based registration, 3-D imaging
systems.

I. INTRODUCTION

RANGE data from 3-D imaging systems (e.g., laser scan-
ners) may be used to obtain detailed information about

the shape and location of objects within a region of interest.
Data sets acquired by these instruments are essentially 2-D
range images I(ϕ, θ), where I denotes the distance from an
instrument to a point on a surface of the object, while ϕ and
θ are the azimuth and the elevation angles to that point [1].
Typically, a point cloud in the instrument coordinate frame
is derived from the range image. Within such a point cloud,
a match to a given 3-D model of an object is frequently
sought. The model may be constructed as a collection of either
geometric primitives (e.g., planes, spheres, and cylinders) or
other analytically defined surfaces. The goal is to determine
parameters that define a given model. Fitting methods based on
the minimization of a specified error function are widely used
for this purpose.

In this paper, we are interested in fitting spheres of known
radii to 3-D imaging data where such data may be both sparse
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Fig. 1. Two types of error functions used in sphere fitting. Both are based on
a distance between an experimental point (black dot) and its projection on a
sphere surface (gray dot). (a) Orthogonal fitting—projection along normal to a
surface. (b) Directional fitting—projection along scanning direction.

and noisy. Three-dimensional imaging systems are line-of-sight
instruments and require multiple scans from different locations
to obtain a comprehensive representation of a scene. As a result,
registration of two or more data sets is often required. Spheres
are traditionally used as high-precision fiduciary objects for
such tasks, as they can be viewed from all angles. They can
be quickly identified in different scans and can roughly be
segmented because they appear the same from all directions.
When at least three fitted sphere centers (common to two
or more data sets) are determined, the registration of these
data sets is readily accomplished [2]. Sphere targets are also
used when calibration is required for applications where the
coordinate frame of the instrument has to be related to a given
external coordinate frame representative of the ground truth.
The current trend is to automate such tasks, in which case
the robustness of the fitting procedure, as well as the speed of
computation, is critical.

We compare the performance of two error functions used for
sphere fitting: the directional and the orthogonal error function.
The directional error function, which was originally introduced
in [3], is based on the distance between the measured point and
its projection onto a theoretical modeled sphere surface along
the direction of the instrument’s line-of-sight to the scanned
sphere (see Fig. 1). For some sphere locations, it may not be
possible to define projections of some measured points, and this
limits the search space to a region in which projections exist
for all measured points. To overcome this limitation, the direc-
tional error function has to be extended for measured points
that cannot be projected on a sphere surface. The extension
introduced in [3] resulted in a discontinuous error function. The
new extension introduced in this paper ensures a continuous di-
rectional error function that is almost everywhere differentiable.
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This enables the use of efficient gradient-based minimizations
such as quasi-Newton. We investigate the performance of the
directional error function for 47 data sets, and we compare it
to the commonly used and widely commercialized orthogonal
error function. We observe that the directional error function
has only one minimum, while the orthogonal error function
has two minima.

There are methods that purport to determine the best or
“global” minimum for a specified resolution and search space
[4]–[6]. Such a global minimizer, however, requires computa-
tional effort well beyond that of, e.g., a gradient-based iteration
method, which yields one minimum depending on the starting
point. Such global minimization methods are thus not suitable
for real-time applications.

The existence of an incorrect minimum for the orthogonal
sphere fitting is a consequence of the definition of the orthog-
onal error function and the way 3-D imaging systems collect
data. These systems are line-of-sight instruments, and a single
scan contains points measured only on one half of a sphere.
Other classes of instruments (e.g., coordinate measurement
machines) are able to provide a point cloud (measured in one
coordinate frame) that may cover the whole surface of a sphere.
For data sets acquired with these types of instruments, in
practically all relevant experimental conditions, the orthogonal
error function has only one minimum unless the measured
points are collected from only one side of the sphere surface, as
is the case for a single scan acquired with a 3-D imaging system.
A sphere may also be fitted to range data containing two or
more data sets acquired from different instrument locations and
registered to one coordinate frame. In this case, the resulting
data may cover the whole sphere surface, and the orthogonal
error function has one minimum. Two minima are observed
only when a sphere is fitted with the orthogonal function to data
covering one hemisphere.

This paper is organized as follows. In Section II, the explicit
expression for the sphere center derived from the algebraic
fitting is briefly discussed, followed by the introduction of the
orthogonal and directional error functions. Section III describes
the experimental conditions under which the data were col-
lected. Section IV contains details of the numerical calcula-
tions, and the results are presented in Section V, followed by
a discussion and conclusions in Sections VI and VII, respec-
tively. Appendix A contains the proposition and proof that all
stationary points of the orthogonal error function lie within a
distance less than the sphere radius from the centroid of data
points. Finally, Appendix B shows that all stationary points of
the directional error function lie in a confined region centered
at the centroid. In addition, Appendix B shows that the location
of a stationary point of the directional error function is uniquely
determined only by the azimuth and the elevation angle of that
point.

II. SPHERE FITTING ALGORITHMS

Fitting a sphere to a set of points has extensively been stud-
ied [7]–[16]. A sphere of radius R and center U = [X,Y,Z]
can be fitted to measured points U j = [Xj , Yj , Zj ], where
j = 1, . . . , N , by minimizing a properly defined error function.

Two main strategies have been developed: algebraic fitting
and geometric fitting [10], [17]. The former is based on the
algebraic equation of a sphere

x2 + y2 + z2 + ax + by + cz + d = 0 (1)

where the coefficients of the equation a, b, c, and d are related
to the sphere center and radius by

U = − 0.5[a, b, c] (2a)
R2 = 0.25(a2 + b2 + c2) − d. (2b)

In [3], it was shown that the right side of (2b) is always positive,
and therefore, the existence of a positive radius R is guaranteed.

The determination of the unknown radius R and sphere
center U can be accomplished by minimizing the following
algebraic error function:

ErA(a, b, c, d) = (1/N)
N∑

j=1

Δ2
j (3a)

where

Δj(a, b, c, d)=X2
j + Y 2

j + Z2
j + aXj + bYj + cZj + d. (3b)

At a minimum, the gradient of the error function has to be zero,
and because the jth deviation Δj is linear in its parameters,
i.e., a, b, c, and d, the location of the minimum can analytically
be calculated. This is why this method falls under the category
of linear least squares (LS). This linear LS approach can be
used only in a 4-D search space where the sphere radius
R is unknown and needs to be treated in the same way as
the unknown sphere center U . When the radius R is known,
the gradient of the algebraic error function (3a) depends on
parameters a, b, and c in a nonlinear relationship, so nonlinear
LS optimization is needed [10].

In the following sections, we discuss two different error
functions that can be used in nonlinear LS fitting. Both of them
are differentiable, so the standard quasi-Newton optimization
can be applied.

A. Orthogonal Fitting

For orthogonal fitting, the error function is based on the
distance between the measured point U j and its orthogonal
projection onto a sphere surface, as shown in Fig. 1(a), and can
be written as

ErO(X,Y,Z)

=(1/N)
N∑

j=1

(√
(X − Xj)2+(Y −Yj)2+(Z−Zj)2−R

)2
(4)

and the gradient of ErO is

∇ErO(X,Y,Z)

= (1/N)
N∑

j=1

fj(X,Y,Z)[X − Xj , Y − Yj , Z − Zj ] (5)
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where

fj(X,Y,Z)

= 2

(
1 − R√

(X − Xj)2 + (Y − Yj)2 + (Z − Zj)2

)
. (6)

When U = U j , the jth term in (5) does not have a value (the
limit of the jth term depends on how U approaches U j). In
any arbitrarily small neighborhood of U , the jth term remains
bounded. If a data set does not contain two identical points
Uk = U j for any k �= j, there can only be one term with a sin-
gular behavior at a time, and the contribution of all other terms
in (5) remains continuous. In the numerical implementation, we
set the jth term in (5) to zero when U = U j .

B. Directional Fitting

For directional fitting, the error function is based on the
distance between the measured point U j and its projection onto
the surface of the sphere closer to the instrument along the
direction of U j [see Fig. 1(b)]. The problem with this definition
of the error function is that the projected point may not exist,
but the function must still be defined and has to smoothly
vary. To design such a function, we introduce the following
notation: uj = [xj , yj , zj ], uj = U j/rj , where rj is the length
of the vector U j . We then define the dot and the cross products
pj = uj ◦ U and qj = uj × U , respectively. The length of the
vector qj , qj = ‖qj‖, is the distance from the sphere center to
the line defined by the unit vector uj . In Cartesian coordinates,
the expression for pj and qj (see Fig. 1) can be written as

pj(X,Y,Z) = Xxj + Y yj + Zzj (7)

and

qj(X,Y,Z)

=
√

(yjZ−zjY )2+(zjX−xjZ)2+(xjY −yjX)2. (8)

The directional error function ErD may now be expressed as

ErD(X,Y,Z) = (1/N)
N∑

j=1

Ej(X,Y,Z) (9)

where

Ej(X,Y,Z)=

{(
pj −

√
R2 − q2

j − rj

)2

, if qj < R

(pj − rj)2 + (qj − R)2, if qj ≥ R.
(10)

Let us note that every Ej is a continuous and increasing
function as the value of qj varies from less than R to greater
than R. This corresponds to the transition between the two
configurations where U j can and cannot be projected on a
sphere surface along the U j direction. Thus, the whole direc-
tional error function ErD is also continuous, and it allows for

the unconstrained search for the minimum. The corresponding
gradient may be evaluated as

∇ErD(X,Y,Z) = (1/N)
N∑

j=1

[
∂Ej

∂X
,
∂Ej

∂Y
,
∂Ej

∂Z

]
(11)

where the individual derivatives can be calculated using the
chain rule as follows:

∂Ej

∂X
=

∂Ej

∂pj

∂pj

∂X
+

∂Ej

∂qj

∂qj

∂X
∂Ej

∂Y
=

∂Ej

∂pj

∂pj

∂Y
+

∂Ej

∂qj

∂qj

∂Y
∂Ej

∂Z
=

∂Ej

∂pj

∂pj

∂Z
+

∂Ej

∂qj

∂qj

∂Z
. (12)

Using the definitions of pj and qj and the Lagrange formula for
the triple cross product, the explicit equation for derivatives can
be written as

∂Ej

∂X
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2
(
pj−

√
R2−q2

j −rj

)
×
(

xj + X−xjpj√
R2−q2

j

)
, if qj <R

2(pj−rj)xj +2(qj−R)X−xjpj

qj
, if qj ≥R.

(13a)

In the same way, the derivatives of Ej with respect to Y and Z
can be calculated, yielding similar equations

∂Ej

∂Y
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2(pj −
√

R2 − q2
j − rj)

×
(

yj + Y −yjpj√
R2−q2

j

)
, if qj < R

2(pj − rj)yj + 2(qj − R)Y −yjpj

qj
, if qj ≥ R

(13b)

∂Ej

∂Z
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2
(
pj −

√
R2 − q2

j − rj

)
×
(

zj + Z−zjpj√
R2−q2

j

)
, if qj < R

2(pj − rj)zj + 2(qj − R)Z−zjpj

qj
, if qj ≥ R.

(13c)

Contrary to the orthogonal fitting method, the jth contribution
to a gradient in (11) has a well-defined value for any location
of the sphere center U . Even when qj = R, the corresponding
jth term in (11) has a finite value 2(pj − rj)[xj , yj , zj ]. When,
however, qj → R(−), the jth term in (11) can have an arbitrarily
large value, which may happen not just for one point U j but
simultaneously for many Uk points for which qk → R(−). This,
in turn, may result in a discontinuity in the gradient for the di-
rectional error function for some isolated locations of the sphere
center U . In the numerical implementation, this property does
not adversely affect the convergence of the minimization. This
statement is based on two observations. First, as qj approaches
R from below, the corresponding jth term in (11) shows a
rather weak divergence of type ε−1/2, with ε → 0. Second,
for most data sets, due to the symmetry of a sphere, many
terms with large absolute values in the sum (11) have opposite
signs, and therefore, their net contribution to the gradient will
be moderate. This subject is further discussed in Section VI.
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Fig. 2. Four spheres used in the experiments.

III. EXPERIMENT

Four different spheres were scanned with three different in-
struments at various distances (between 5 and 100 m). The three
instruments used in the experiments fall into two categories.
Instrument In1 is the most accurate of the three instruments
and has a maximum range of 24 m and a manufacturer-specified
measurement error of about 100 μm. This instrument is typi-
cally used in indoor applications where highly accurate mea-
surements are required (e.g., in manufacturing facilities). The
other two instruments, i.e., In2 and In3, have longer maximum
ranges and larger manufacturer-specified range errors. The
maximum ranges of these instruments are greater than 100 m,
and the range errors are between 7 and 10 mm. They are used in
both indoor and outdoor applications (e.g., at construction sites).

The four spheres used in the experiments are made of
different materials, and they have different sizes and surface
finishes (see Fig. 2). The radii for spheres A, B, C, and D
were RA = 101.6 mm, RB = 76.2 mm, RC = 76.2 mm, and
RD = 50.8 mm, respectively. Spheres A and B are made of
anodized aluminum, sphere C is made of styrofoam, and sphere
D is made of titanium. The surface of sphere C is rough
compared to that of the other spheres.

The combination of the three instruments, four spheres, and
many scanning distances resulted in 47 data sets, varying from
very noisy to very clean. All scans were collected indoors under
controlled conditions. The sphere in each acquired data set
was manually segmented, with the number of points in each
segmented point cloud varying from a few hundreds to a few
thousands.

IV. NUMERICAL CALCULATIONS

Each segmented data set contained the Cartesian coordinates
of N points. The process began with fitting a sphere of known
radius R to the data set using the orthogonal error function. The
centroid of the point cloud U0 was selected as the starting point
for the minimization. Once the location of a minimum U c =
[Xc, Yc, Zc] was found, its spherical coordinates [Dc,Φc,Θc]
were determined, where distance Dc = ‖U c‖, and Φc and Θc

are the azimuth and the elevation angle of the fitted sphere
center. Next, the angle Ψ, which is depicted in Fig. 1(b),
was calculated using sin Ψ = R/Dc and the error function
ErO(U) for the grid of points U = [D,Φ,Θ], centered on
[Dc,Φc,Θc]. The magnitudes of the gradients were also cal-
culated on the grid.

Fig. 3. Point cloud P1 (number of points N = 1176). (a) View from the
instrument toward the fitted sphere center. (b) View from the top.

Fig. 4. Point cloud P2 (number of points N = 1096). (a) View from the
instrument toward the fitted sphere center. (b) View from the top.

Fig. 5. Point cloud P3 (number of points N = 20 112). (a) View from the
instrument toward the fitted sphere center. (b) View from the top.

The whole procedure was then repeated with the directional
error function. For both error functions, the same quasi-Newton
minimization procedure was used [18]. Exit conditions for the
optimization process were defined by two parameters, i.e., the
relative length of the step and the relative gradient magnitude,
both of which were set to 10−7. All calculations were performed
to double precision on a 32-bit computer.

V. RESULTS

Figs. 3–5 show examples of typical data sets used for testing
the behavior of the two error functions examined in this paper
and also show the fitted spheres. Point cloud P1 in Fig. 3 was
acquired by scanning sphere D from a distance of about 11 m
with instrument In1, point cloud P2 in Fig. 4 was obtained by
scanning sphere B from a distance of 100 m with instrument
In2, and data set P3 in Fig. 5 was obtained by scanning sphere
A from a distance of about 6 m with instrument In3.

Authorized licensed use limited to: NIST Research Library. Downloaded on September 11, 2009 at 16:38 from IEEE Xplore.  Restrictions apply. 



3548 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 58, NO. 10, OCTOBER 2009

Fig. 6. Contour plots of two error functions for data set P1. (a) Orthogonal
error. (b) Directional error. For this data set, the linear LS solution coincides
with the nonlinear LS for both error functions.

Fig. 7. Contour plots of two error functions for data set P2. (a) Orthogonal.
(b) Directional. For this case, the linear LS solution (triangle) is close to the
nonlinear LS (diamond).

Fig. 8. Contour plots of two error functions for data set P3. (a) Orthogonal.
(b) Directional. For this case, the linear LS solution almost coincides with the
nonlinear LS.

Figs. 6–8 show contour plots of both error functions
ErO(D,Φ,Θ = Θc) and ErD(D,Φ,Θ = Θc) for the data
sets shown in Figs. 3–5. In these figures, the dot represents the
starting point (centroid of the experimental points U0), the dia-
mond represents the end point of optimization, and the triangle
represents the algebraic solution (linear LS). Both axes of each
error plot are normalized so that (0, 0) corresponds to the fitted
sphere center U c indicated by a diamond. For visualization
purposes, we keep the elevation angle fixed (Θ = Θc) and
vary D and Φ such that |Dc − D| < αR and |Φc − Φ| < αΨ,
where α is a dimensionless constant that defines the span of
the grid points around the fitted sphere center U c. To enhance
the visualization and to show the region close to the fitted
center, the contour lines are not equally spaced. In Appendix A,
we prove that all stationary points (including all minima) of
ErO must lie within a sphere of radius R centered at U0.
In Appendix B, we show that, for most practical applications

Fig. 9. Point cloud P4 (marked by both dots and crosses, total number of
points N = 276). (a) View from the scanner toward the fitted sphere center. (b)
View from the top. Dots only correspond to subset P4s (N = 117).

Fig. 10. Contour plots of two error functions for data set P4. (a) Orthogonal.
(b) Directional. For the included data set, the linear LS solution (triangle) is
much closer to the centroid (circle) than to the nonlinear LS solution (diamond).

(where the sphere distance to the instrument is much larger
than R), all stationary points of ErD must be within a bounded
region centered at U0. Therefore, it is sufficient to plot contour
plots of both error functions in the bounded region only.

Contour plots for the orthogonal error function in Figs. 6(a),
7(a), and 8(a) reveal the existence of two local minima: one
marked with a diamond at (0, 0) and the second (not shown)
located at approximately (−1.5,−0.1). The first minimum
(referred hereafter as UG) is the correct one because it cor-
responds to the location of a real sphere. The second one
(referred hereafter as UW ) is the wrong one because ‖UW ‖
is systematically less than a distance from the instrument to the
real sphere center. This spurious minimum UW is shallower
than the correct minimum at UG, and the optimization may
converge to it when a point that lies in the basin of attraction of
UW is chosen as the starting point. The LS solution (marked
by a triangle) is close to UG if it is a good approximation of a
real sphere center.

Fig. 9 shows a point cloud, i.e., P4, acquired by scanning
sphere C from a distance of 6 m with instrument In3. Two
different symbols are used in the figure to differentiate between
the full data set P4 (both dots and crosses) and the subset P4s
(dots only), which was created by deleting points U j that have
a large angular distance to U c. Figs. 10 and 11 show the error
plots for both error functions for the full data set P4 and the
subset P4s.

Fig. 12 shows another full point cloud, i.e., P5, which was
acquired by scanning the sphere D from a distance of 73 m
using instrument In2, and its subset, i.e., P5s, was created in a
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Fig. 11. Contour plots of two error functions for data set P4s. (a) Orthogonal.
(b) Directional. For the included data set, the linear LS solution (triangle)
coincides with the centroid U0 (circle). Selecting either of them as a starting
point for nonlinear LS minimization yields a wrong solution for the orthogonal
error function (diamond) in (a).

Fig. 12. Point cloud P5 (marked by both dots and crosses, total number of
points N = 1268). (a) View from the scanner toward the fitted sphere center.
(b) View from the top. Dots only correspond to subset P5s (N = 321).

Fig. 13. Contour plots of two error functions for data set P5. (a) Orthogonal.
(b) Directional. For this data set, the linear LS solution (triangle) is located
approximately halfway between the centroid (circle) and the nonlinear LS
solution (diamond).

similar way as P4s. Figs. 13 and 14 show error function plots
corresponding to the full data set P5 and the subset P5s.

In Figs. 10(a) and 13(a), a diamond indicating the fitted
sphere center U c is located at the right minimum UG, while
in Figs. 11(a) and 14(a), a diamond is located at the wrong
minimum UW . For the data shown in Figs. 11(a) and 14(a),
the LS solution marked by a triangle is a bad approximation of
the real sphere position.

The actual location of the fitted sphere center U c depends
on the error function used in the optimization, the starting
point, and the data set (e.g., full or subset). The last column
in Table I contains the normalized distance between two sphere
centers Δ = ‖U c(1) − U c(2)‖/R, where U c(1) is the fitted
sphere center for a given error function, starting point, and

Fig. 14. Contour plots of two error functions for data set P5s. (a) Orthogonal.
(b) Directional. For this data set, the linear LS solution (triangle) coincides with
the centroid (circle). Selecting either of them as a starting point for nonlinear
LS minimization yields a wrong solution for the orthogonal error function.

TABLE I
EFFECT OF THE ERROR FUNCTION, STARTING POINT,

AND DATA SET ON THE FITTED SPHERE CENTERS

Fig. 15. Schema explaining the existence of two minima for the orthogonal
error function: the solid circle centered at UG is the correct solution; the dashed
circle centered at UW is the wrong one.

data set (Run 1 in Table I), while U c(2) is the fitted sphere
center where one of the three input parameters used for U c(1)
is changed (Run 2 in Table I). In the table, an O+ indicates
that the minimization located the correct minimum UG from
the orthogonal error function. An O− indicates that the wrong
minimum UW from the orthogonal error function was located,
and a D indicates that the directional error function located the
minimum (see Fig. 15).

Authorized licensed use limited to: NIST Research Library. Downloaded on September 11, 2009 at 16:38 from IEEE Xplore.  Restrictions apply. 



3550 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 58, NO. 10, OCTOBER 2009

VI. DISCUSSION

The most striking difference between the two error functions
is the number of minima: one for the directional error function
and two for the orthogonal error function. For the orthogonal
error function, the correct minimum UG and the wrong one
at UW are separated by an approximate distance of 1.5R
(Table I, rows 1–7). The presence of a wrong minimum UW

is not surprising because the orthogonal error function does
not differentiate between fitting experimental points to the
front and fitting experimental points to the back of the sphere
(alternatively, one may say that the orthogonal error does not
differentiate between points on a convex and those on a concave
surface, i.e., outer and inner parts of a sphere surface). Fig. 15
illustrates that, as the center of the dashed circle moves toward
the instrument, an increasing number of experimental points
will have a distance to this center greater than R. Similarly, as
the center of the dashed circle moves away from the instrument,
an increasing number of points will have a distance less than
R. Due to the continuity of the error function, somewhere
between the two extremes there will be a point UW where
contributions from the negative and positive terms in (5) are
balanced, yielding a zero gradient. Thus, the result of fitting
a sphere to range data depends on the location of the starting
point when the orthogonal error function is used.

The directional error function, in contrast, is different when
fitting the front or back of a sphere (i.e., concave or convex parts
of a sphere surface). It is based on the distance of the measured
points to the sphere along the scanning direction, and therefore,
the function has only one minimum. The results for the variety
of data sets used in this paper support the conclusion that the
observed pattern is general and does not depend on the data
noise level or sphere radius.

As stated in the introduction, the current trend is to automate
sphere fitting for target-based registration of range images;
therefore, the selection of the starting point for minimiza-
tion should automatically be performed, such as by using
the centroid of the points U0. Plots shown in Figs. 11(a)
and 14(a) indicate that U0 may be a wrong starting point,
which leads to an incorrect minimum when the orthogonal
error function is used. Centroid coordinates depend on the
experimental points U j , and therefore, the segmentation of
data for sphere fitting should be done with great caution. This
requirement is particularly important for sparse and noisy data
sets. Fig. 11(a) shows that U0 is located very close to the
local maximum where the gradient magnitude is almost zero.
This makes the optimization sensitive to numerical error: by
moving the starting point to a new location equal to 1.0005U0,
orthogonal fitting yields a different solution (to the right of U0).
Figs. 9–14 clearly demonstrate that discarding too many points
may lead to the wrong result when the orthogonal error function
is used. Another automatic method to select the starting point
is to use the sphere center estimated by the algebraic fit (3),
which is believed to give a better starting point; however, this
may also lead to the wrong minima for sparse and noisy data
sets. Because the directional error function has only one min-
imum, it is not as sensitive to the segmentation and choice of
starting point.

Rows 8–14 in Table I show that both orthogonal and direc-
tional error functions give similar results when applied to the
same data set (assuming that the orthogonal fitting converges to
the right minimum). Fitting a sphere to a full data set and then
to its subset may lead to slightly different results, even for the
same error function. The distance between the two locations
provides a rough estimate of how sensitive the fitted sphere
center is to variations in a data set. In this context, there is no
clear advantage of one error function over the other (assuming
that the right minimum is reached in the orthogonal fitting).
Rows 15 and 16 in Table I show that a shift in the fitted sphere
centers is smaller for directional fitting than for orthogonal
fitting for one pair of data sets, and the opposite is true for
another pair of data sets, as shown in the two bottom rows
of Table I.

The overall behavior of the directional gradient is not af-
fected by the singular behavior of the jth term in (11) when
qj → R(−). The surface plots in Fig. 16 show that the generally
smooth changes in the gradient magnitude are only locally
disturbed by spikes, corresponding to the locations of the sphere
center U for which qj ≈ R, and thus, an arbitrarily large value
of an individual jth term in (13) is expected for qj < R. As
mentioned earlier, these local discontinuities do not hamper the
convergence of the minimization. Fig. 16(a) and the enlarge-
ment of neighborhood of the fitted sphere center U c shown in
Fig. 16(b) reveal two important features. First, the magnitudes
of the spikes are relatively small compared to the rest of the
surface; the value at a spike is only a few times larger than
the gradient magnitude in the immediate neighborhood of the
spike. This supports our earlier observation that, for most data
sets, the large terms in (11) cancel each other and that the result-
ing sum remains small. Second, in the magnified region around
the fitted sphere center U c in Fig. 16(b), the regions where the
directional gradient is discontinuous are less frequent. In the
vicinity close to U c, the directional gradient is smooth. This
means that, when a minimization process converges to the final
solution U c, the exit condition based on a small value of the
gradient magnitude remains valid.

It is worth noting that, in addition to two minima, the
orthogonal error function also has one local maximum and two
saddle points [see Fig. 7(a) for an example]. In all, there are five
stationary points where the gradient of the orthogonal function
has a zero length, all of them lying within less than R from the
centroid U0 (see Appendix A). Robust minimization methods
will generally avoid local maxima, but saddle points are always
potential traps. The directional error function is not prone to this
problem because it has only one stationary point corresponding
to the global minimum.

VII. CONCLUSION

Two different error functions used in fitting a sphere to 3-D
imaging data have been investigated. The directional error
function has only one minimum, and therefore, the choice of
the starting point for minimization is not critical. This finding
is based on the analysis of 47 experimental data sets that were
collected under a range of experimental conditions. Although
there is no analytical proof that the directional error function
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Fig. 16. Gradient magnitude of the directional error function versus range and azimuth for data set P2. (a) Neighborhood around a minimum Uc (indicated by
the arrow). (b) Zoomed-in view around the minimum.

has only one minimum for an arbitrary data set, the theoretical
arguments provided in Appendix B for certain situations (large
distances between the sphere and the instrument) support our
finding. The orthogonal error function has two minima, and
the result of the minimization depends on the choice of the
starting point. The common practice of using the centroid U0

of a data set as the starting point may lead to the wrong
solution when using the orthogonal error function. For sphere
fitting, a wrong minimum may sometimes be avoided if the
starting point is appropriately selected by choosing U ini =
(1 + 2R/‖U0‖)U0; however, for partially occluded spheres
(where U0 is not parallel to U c) or for other objects modeled
by a general analytical surface (particularly those with a large
radius of curvature—e.g., parabolic satellite dishes), the right
choice of starting point remains an open problem when the
orthogonal error function is used. The directional error function
is dependent on the distances of the measured points from the
front side of a scanned object along the instrument’s line of
sight, and therefore, this function has only one minimum. Its
location is very close to the location of the correct minimum
from the orthogonal error function, and both error functions
result in equally fast convergence of optimization; therefore, the
use of the directional error function for fitting a sphere to 3-D
imaging data is more advantageous as it eliminates the problem
of an incorrectly selected starting point.

APPENDIX A

A proposition referred to in the main text concerning orthog-
onal fitting based on LS will be proved. The error function (4)
can be written as

ErO(X,Y,Z) = (1/N)
N∑

j=1

(dj − R)2 (A1)

where dj = ‖U j − U‖ is the Euclidean distance between data
point U j and the sphere center U

dj =
√

(X − Xj)2 + (Y − Yj)2 + (Z − Zj)2. (A2)

Proposition: All stationary points and, particularly, all min-
ima of the error function ErO(X,Y,Z) are within a distance
less than the radius R from the centroid U0 = [X0, Y0, Z0] of
the data points U j .

Proof: Recall that dj �= 0, and from expressions for gra-
dient (5) and (6)

∂ErO

∂X
=X − X0 − (R/N)

N∑
j=1

X − Xj

dj

∂ErO

∂Y
=Y − Y0 − (R/N)

N∑
j=1

Y − Yj

dj

∂ErO

∂Z
=Z − Z0 − (R/N)

N∑
j=1

Z − Zj

dj
(A3)

are the conditions for a stationary point U of ErO. For such a
point, it follows that

‖U0 − U‖2 = (R2/N2)

⎡
⎣
⎛
⎝ N∑

j=1

X − Xj

dj

⎞
⎠

2

+

⎛
⎝ N∑

j=1

Y − Yj

dj

⎞
⎠

2

+

⎛
⎝ N∑

j=1

Z − Zj

dj

⎞
⎠

2⎤
⎦ (A4)

where ‖U0 − U‖ is the Euclidean distance between the cen-
troid U0 and a stationary point U . The right side of (A4) can
be written as a double sum

‖U0 − U‖2

= (R2/N2)
N∑

i=1

N∑
j=1

[(
X − Xi

di

)(
X − Xj

dj

)

+
(

Y − Yi

di

)(
Y − Yj

dj

)

+
(

Z − Zi

di

)(
Z − Zj

dj

)]
. (A5)
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Each term in the square brackets is the dot product of two unit
vectors V i ◦ V j , where V i = (U i − U)/‖U i − U‖, and that
for V j is given in a similar manner. Therefore, the right side of
(A5) represents the double sum of N2 cosines

‖U0 − U‖2 = (R2/N2)
N∑

i=1

N∑
j=1

cos τi,j (A6)

where τi,j is the angle between V i and V j . Since only those
terms for which i = j actually reach the value 1, this establishes
the strict bound of N2 on the double sum

N∑
i=1

N∑
j=1

cos τi,j < N2. (A7)

Thus

‖U0 − U‖ < R (A8)

which proves the proposition for all stationary points U , in-
cluding those that are minima. On the other hand, a minimum
may not occur at an actual data location, that is, if dj = 0.
This is because the corresponding error term ErOj(U) =
(dj − R)2/N represents an upward-oriented cusp centered at
U j , which forces the descent direction—incompatible with a
minimum—of the full error function ErO.

APPENDIX B

A sphere used as a target for registration is usually placed
in a scanned scene in such a way that the distance Dc between
the sphere center and an instrument is much larger than radius
R. Then, the ratio R/Dc and the angle Ψ, which is depicted in
Fig. 1(b), are very small, and all vectors U j can be considered
as parallel. (For all data sets in this paper, the largest ratio
R/Dc and the corresponding Ψ were less than 0.0163). In such
approximation, without lost of generality, the Z-axis can be
aligned with the direction of the centroid U0 (calculated in the
instrument’s coordinates frame), while X and Y are coordinates
on the plane passing through the instrument and perpendicular
to U0. Then, the directional error function ErD(X,Y,Z)
defined by (9) and (10) can be rewritten as

ErDp(X,Y,Z) = (1/N)

⎧⎨
⎩

J∑
j=1

(Z − rj −
√

R2 − z2
j )2

+
K∑

k=1

[
(Z − rk)2 + (Qk − R)2

]}
(B1)

where J is a number of points for which Qj < R, and K is the
number of points for which Qj ≥ R. The actual values of K
and J depend on X and Y : for some (X,Y ), either K or J (but
never both) can be zero. Both numbers satisfy the normalization
condition J + K = N . The function Qj does not depend on Z

Qj(X,Y ) =
√

(X − Xj)2 + (Y − Yj)2 (B2)

where Xj and Yj are coordinates of experimental points ex-
pressed in the rotated coordinate frame, with the Z-axis aligned
to U0. From (B1), the partial derivative of ErDp with respect
to Z can be calculated as

∂ErDp

∂Z

= (2/N)

⎡
⎣ J∑

j=1

(
Z − rj −

√
R2 − Q2

j

)
+

K∑
k=1

(Z − rk)

⎤
⎦ .

(B3)

At any stationary point, including all minima, the gradient of
the directional error function has to be zero. Applying this
condition to the Z-coordinate of the gradient given by (B3),
the following holds for any X and Y :

NZ −
N∑

n=1

rn −
J∑

j=1

√
R2 − Q2

j = 0. (B4)

Since this equation is linear in Z, its explicit solution Z∗ =
Z∗(X,Y ) can be obtained

Z∗(X,Y ) = R0 + (1/N)
J∑

j=1

√
R2 − Q2

j (B5)

where

R0 = (1/N)
N∑

n=1

rn (B6)

is the mean range, which does not depend on (X,Y ). Thus, any
stationary point of the directional error function must be located
at U ∗ = [X∗, Y ∗, Z∗(X∗, Y ∗)], where

∂ErDp

∂X
(X∗, Y ∗, Z∗)=0

∂ErDp

∂Y
(X∗, Y ∗, Z∗)=0. (B7)

It should be noted that the search space for the directional error
function is also confined (similar to the orthogonal error func-
tion discussed in Appendix A). Every Qj in (B5) is restricted
to the [0, R] interval, and therefore, the sum over index j is also
bounded. This leads to the following restriction on Z∗:

R0 ≤ Z∗(X,Y ) ≤ R0 + (J/N)R. (B8)

The number J = J(X,Y ) can vary between two limits: J = 0
(none of the experimental points can be projected on a sphere
centered at [X,Y,Z∗(X,Y )]) and J = N (where all points
can be projected on a sphere). This gives the upper bound on
Z∗(X,Y ) independent of X and Y

R0 ≤ Z∗(X,Y ) ≤ R0 + R. (B9)
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In the case when J = 0, Z∗(X,Y ) = R0 and ErDp(X,Y,Z∗)
can be written as

ErDp(X,Y,Z∗) = (1/N)
N∑

n=1

[
(R0 − rn)2 + (Qn − R)2

]
.

(B10)

Then, the conditions (B7) for a vanishing gradient are given by

N∑
n=1

(Qn − R)
X∗ − Xn

Qn
= 0

N∑
n=1

(Qn − R)
Y ∗ − Yn

Qn
= 0.

(B11)

Noting that −1 ≤ (X∗ − Xn)/Qn ≤ 1 and −1 ≤ (Y ∗ −
Yn)/Qn ≤ 1, the following restrictions have to apply for the
case when J = 0:

|X∗ − X0| ≤ R |Y ∗ − Y0| ≤ R (B12)

where X0 and Y0 are coordinates of the centroid of all data
points

X0 = (1/N)
N∑

n=1

Xn Y0 = (1/N)
N∑

n=1

Yn. (B13)

However, (B12) contradicts the assumption that J = 0 (which
requires that, for a given (X,Y ), all Qn(X,Y ) ≥ R for
n = 1, . . . , N ). Therefore, the directional error function cannot
have a minimum at [X ′, Y ′, Z ′(X ′, Y ′)] if J(X ′, Y ′) = 0, and
the search space in the minimization of ErDp is limited to a
cylinder of radius 2R and height R, with its center located at
[X0, Y0, R0 + R/2] and its axis parallel to the Z-axis of the
coordinate frame.

If data points U j equally cover the entire hemisphere of a tar-
get facing the instrument, then one may reasonably assume that
the only minimum of ErDp is located at X∗≈X0, Y ∗≈Y0,
and Z∗ ≈ Z∗(X0, Y0). For other data sets, where a target is
partially occluded and the data points are not evenly distributed
over the whole hemisphere, the above assumption does not
hold. However, contour plots of ErD for data sets covering
only half of a hemisphere (manually generated from the original
data sets investigated in this paper) have only one minimum,
similar to the plots of ErD included in Figs. 6–8.
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